- Neighborhood $N_G(v)$ of v = the set of vertices adjacent to v
- **Degree** $d_{G}(v)$ of v = the number of neighbors of v
- Minimum degree $\delta(G)$ of a graph $G = \min\{d_G(v) : v \in V\}$
- Maximum degree $\Delta(G)$ of a graph $G = \max\{d_G(v) : v \in V\}$

Can you find these?

- $N_G(a) = _$ $d_G(a) = _$
- $N_G(e) = _$ $d_G(e) = _$
- $\bullet \ \delta(G) \quad = ___ \ \Delta(G) = ___$
- A graph H with $\delta(H) = \Delta(H)$
- A graph with **one** vertex of degree 3, and **all others** of degree 2