Brooks' Thm Let G be a connected graph with max degree Δ . If G is not a complete graph or an odd cycle, then:

 $\chi(G) \leq \Lambda$.

Easy case $\Delta \leq 2$. DONE (last time) $MM \Leftrightarrow \diamond \sim$

<u>Remaining</u> $\Delta \ge 3$.

Let G be a connected graph with max degree $\Delta \ge 3$ that is not a complete graph (i.e., 1 Codd cycle has $\Delta = 2$, so not an option) G \neq K_{\Delta+1}.

Want to show: $\chi(G) \leq \Lambda$.

<u>Idea</u> do greedy coloring, try to save just <u>a little</u>: remember, greedy coloring <u>always</u> uses $\leq \Delta + 1$ colors, so we only need to reduce by one!

Strategy Do greedy coloring on some vtx order VI, Vz, ..., Vo. "Dream ordering" would be: |V(G)| = n $\begin{array}{c} \bullet \\ \bullet \\ v_{i} \\ v_{2} \\ v_{i} \\ v_{i} \\ v_{n} \end{array}$

so that each v_i has $\leq \Delta - 1$ neighbors among v_1, v_2, \dots, v_{i-1} ("backword nbrs").

Then at step i, there is ≥ 1 available color (from among \triangle colors) that can be used for v_i .

Surprisingly, this "dream order" is <u>almost</u> possible!

Lemma For any connected graph G n vtxs, and any $v \in V(G)$, there is a vtx ordering $v_1, v_2, ..., v_n = v$ so that v_i has $\leq d_G(v_i) - 1$ nbrs among $v_1, ..., v_{i-1}$, for all i except i = n.

Pfidea Do BFS (or DFS) order, with v as the root, then reverse the ordering, to get $v_1, v_2,$ $\dots, \nabla n-1, \nabla n = V$ 2nd vtx last vtx added to tree added to Every vtx v: other than the root

has ≥ 1 "ancestor" in the tree. => V_i has ≥ 1 nbr later in the ordering, i.e. in $V_{i+1}, ..., V_n$.

=> V_i has $\leq d_G(v_i) - ($ ubrs in V_1, V_2, \dots, V_{i-1} .

But what to do about root vtx?

But if every vtx has degree Δ , we're out of luck " Need to "save a color" some other way for last vtx v.

Still haven't used the assumption that $G \neq K_{S+1}$!

Take any vtx v, has degree Δ . Since $G \neq K_{\Delta+1}$, v must have a "missing edge " u,w in its nbhd. (if every two nbrs of v were adjacent, get $K_{\Delta+1}$.)

Then put u, w at the <u>beginning</u>, and greedily color.

- Since u, w not adjacent, both colored with 1st color.
- For each subsequent vtx before v, ≤ ∆-1
 nbrs earlier in ordering, ⇒ ≥ 1 color
 ailable.
- And for v, Δ nbrs, but $\leq \Delta 1$ colors used on nbrs of v (since u, whave <u>same</u> color) $\Rightarrow \geq 1$ color available.
 - ⇒ colored G with < △ colors! "

A Not quite done though! There was a subtle flaw in this argument. Can you spot it?

What if G-n-w is disconnected? Then G is made of nearly disconnected "chunks". Maybe we can color the chunks separately, then fuse the colorings @ n and w?

Feels like a divide & conquer algorithm! => use induction

This is what we'll do!

Note we will probably skip the <u>next two</u> <u>pages</u> in class and go straight to the <u>"remaining cases"</u> page, which is the heart of the induction.

 \Rightarrow color u, w same color, this leaves $\Delta - 1$ colors (out of Δ colors total) for the $\Delta - 1$ remaining vtxs.

 \Rightarrow can color G with $\leq \Delta$ colors. \checkmark

<u>Inductive step</u> assume every connected G on n vtxs with max deg Δ and $G \neq K_{\Delta+1}$ has $\mathcal{X}(G) \in \Delta$.

Let G be a connected graph on <u>n+1</u> vtxs with max deg Δ and $G \neq K_{S+1}$. WTS $\mathcal{X}(G) \in \Delta$.

Take a vtx v of degree Δ . Since $G \neq K_{\Delta+1}$, v has above u, wthat are not adjacent.

<u>Already showed</u> theorem is true if G-u-w is connected.
BFS trick

(Also showed true if I vtx of degree < A, but we don't actually need/use that here.) Then in each G;, permute the colors so that u is colored with color 1. 5 (colorings now match/agree at u)

=> merge colorings to get a coloring of G with $\leq \Delta$ colors.

G: = ith component of G-u-v together with u&v.

We could cololor each Gi by the inductive hypothesis, but it's possible that u, v would get <u>same</u> color as each other in one Gi and <u>different</u> colors in another \Rightarrow no way to merge colorings "

<u>Clever trick</u> notice: deg(u), deg(v) < Δ in <u>each</u> G: \Rightarrow if we add edge $\{u, v\}$, then $G_i + \{u, v\}$ still has max deg $\leq \Delta$. \Rightarrow we can color each $G_i + \{u, v\}$ using $\leq \Delta$ colors (by inductive hyp). And u, v are assigned <u>different</u> colors (since they are adjacent in $G_i + \{u, v\}$).

 \Rightarrow can permute colors in each $G_i + \{u, v\}$ so u = color I, v = color 2. Then we can merge the colorings (and delete edge $\{u, v\}$), to obtain a coloring of F with $\leq \Delta$ colors. [:]