Brooks' Thy Let G be a connected graph with max degree \triangle. If G is not a complete graph or an odd cycle, then:

$$
x(G) \leq \Delta .
$$

Easy case $\triangle \leq 2$. DONE (last time)
M م 上 上.

Remaining $\Delta \geqslant 3$.
Let G be a connected graph with max degree $\Delta \geqslant 3$ that is not a complete graph (i.e., \uparrow

Sod cycle has $\triangle=2$,

$$
\left.G \neq k_{\Delta+1}\right) \text {. }
$$

so not an option)
Want to show: $\chi(G) \leqslant \Delta$.

Idea do greedy coloring, try to save just a little: remember, greedy coloring always uses $\leq \Delta+1$ colors, so we only need to reduce by one!

Strategy Do greedy coloring on some vtx order $v_{1}, v_{2}, \ldots, v_{(x)}$. Dream ordering" would be:

$$
|v(G)|=n
$$

so that each v_{i} has $\leq \Delta-1$ neighbors among $v_{1}, v_{2}, \ldots, v_{i-1}$ ("backward nbrs").

Then at step i, there is $\geqslant 1$ available color (from among Δ colors) that can be used for v_{i}.

Surprisingly, this "dream order" is almost possible!

Lemma (For any connected graph G n vtxs, and any $v \in V(G)$, there is a $v+x$ ordering $v_{1}, v_{2}, \ldots, v_{n}=v$ so that v_{i} has $\leq d_{G}\left(v_{i}\right)-1$ nbrs among v_{1}, \ldots, v_{i-1}, for all i except $i=n$.

Pf idea Do BFS (or DFS) order, with v as the root, then reverse the ordering,

Every vex v_{i} other than the root has $\geqslant 1$ "ancestor" in the tree.
 $\Rightarrow v_{i}$ has $\geqslant 1 \mathrm{nbr}$ later in the ordering, i.e. in v_{i+1}, \ldots, v_{n}.
$\Rightarrow v_{i}$ has $\leq d_{G}\left(v_{i}\right)$-1 ubrs in $v_{1}, v_{2}, \ldots, v_{i-1}$.

But what to do about root vex?

If there is a $v t x \quad v \in V(G)$ with degree $\leqslant \Delta-1$, apply lemma , then do greedy coloring \Rightarrow uses $\leq \Delta$ colors.

But if every vtx has degree Δ, we're out of luck "Need to "save a color" some other way for last vtx v.

Still haven't used the assumption that $G \neq K_{\Delta+1}$!

Take any vtx v, has degree Δ. Since $G \neq K_{\Delta+1}$, v must have a "missing edge" u,w in its nbhd. (if every two nbs of v were adjacent, get $K_{\Delta+1}$.)

Trick apply Lemma * to G-u-w using v as the root.

Then put u,w at the beginning, and greedily color.

- Since u,w not adjacent, both colored with $1^{\text {st }}$ color.
- For each subsequent vtx before $v, \leq \Delta-1$ nbrs earlier in ordering, $\Rightarrow \geq 1$ color available.
- And for v, Δ ubrs, but $\leq \Delta-1$ colors used on nbrs of v (since u, w have same color) $\Rightarrow \geqslant 1$ color available.
\Rightarrow colored G with $\leq \Delta$ colors! II

1. Not quite done though! There was a subtle flaw in this argument. Can you spot it?

To apply Lemma to G-u-w (i.e. to build BFS tree), need $G-n-w$ connected!

What if $G-n-w$ is disconnected?
Then G is made of nearly disconnected "chunks". Maybe we can color the chunks separately, then fuse the colorings @ u and w ?

Feels like a divide \& conquer algorithm! \Rightarrow use induction

This is what well do!

Note we will probably skip the next two pages in class and go straight to the "remaining cases" page, which is the heart of the induction.

Pf of Brooks' Thu.
Strategy: Fix $\Delta \geqslant 3$ and induct on (n).
UTS \forall connected G on n vies with max $\operatorname{deg} \Delta$ and $G \neq K_{\Delta+1}, X(G) \leq \Delta$.

Base step: what's the smallest $\#$ of votes in a graph with max deg Δ ?

A $\Delta+1 \quad v t x s$.
$(\max \operatorname{deg} v t x+n b h d))$
since $G \neq K_{\Delta+1}$, $\exists u, w$ not adjacent.
\Rightarrow color u, w same color, this leaves $\Delta-1$ colors (out of Δ colors total) for the $\Delta-1$ remaining vies.
\Rightarrow can color G with $\leq \Delta$ colors.

Inductive step assume every connected G on n vtxs with max $\operatorname{deg} \Delta$ and $G \neq K_{\Delta+1}$ has $X(G) \leq \Delta$.

Let G be a connected graph on $n+1$ utes with max $\operatorname{deg} \Delta$ and $G \neq K_{\Delta}+1$.
UTS $\quad X(G) \leq \triangle$.

Take a $v t x v$ of degree Δ. Since $G \neq K_{\Delta+1}$, v has nears u, w that are not adjacent.

Already showed theorem is true if $G-u-w$ is connected. \leftarrow BFS trick
(A /so showed true if \exists vtr of degree $<\Delta$, but we don't actually need/use that here.)

Remaining cases:
(1) Removing one of u, v disconnects G. (WLOG, u)

$G_{i}=$ itch component of $G-u$, together with u.
technicalities: check $G_{i} \neq K_{\Delta+1}$. And if $\Delta\left(G_{i}\right)<\Delta$, color with greedy algorithm instead of IH.

By inductive hypothesis, can color each G_{i} using $\leq \Delta$ colors.

Then in each G_{i}, permute the colors so that u is colored with color 1 . (colorings now match/agree at u)
\Rightarrow merge colorings to get a coloring of G with $\leq \Delta$ colors.
similar strategy to (1) but a bit
Remaining case: L trickier since colorings will have
(2) Removing both u, w disconnets G, but removing just one doesn't.

$G_{i}=$ th component of $G-u-v$ together with u \& v.

We could cololor each G_{i} by the inductive hypothesis, but it's possible that u, v would get same color as each other in one G_{i} and different colors in another \Rightarrow no way to merge colorings "

Clever trick notice: $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$ in each G_{i}. \Rightarrow if we add edge $\{u, v\}$, then $G_{i}+\{u, v\}$ still has max deg $\leq \Delta$.
\Rightarrow we can color each $G_{i}+\{u, v\}$ using $\leq \Delta$ colors (by inductive hyp.). And u, v are assigned different colors (since they are adjacent in $G_{i}+\{u, v\}$).
\Rightarrow can permute colors in each $G_{i}+\{u, v\}$ so $u=$ color $1, v=$ color 2 . Then we can merge the colorings (and delete edge $\{u, v\}$), to obtain a coloring of F with $\leq \Delta$ colors.

