Counting integer partitions with the method of maximum entropy

Joint work with Marcus Michelen and Will Perkins

Gwen McKinley
October 1, 2020
University of California, San Diego

Outline

- Big idea: a different technique ("principle of maximum entropy") allows us to approach an old problem (enumerating integer partitions) with new intuition and a more powerful/flexible solution.
- Sketch of the method for a classical example (Hardy-Ramanujan asymptotic partition formula)
- Variations on the classical problem
- Our result
- Time permitting, a few ideas from the proof of one part (Local CLT)

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Example:

- $5+2+1$ and $4+2+1+1$ are both partitions of 8 .
- $5+2+1$ and $1+2+5$ are the same partition of 8 .

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Question: How many different partitions of n are there? Write $P(n)$ for the set of partitions of n, and $p(n)$ for the number.
E.g. $p(4)=5$:

- 4
- $3+1$
- $2+2$
- $2+1+1$
- $1+1+1+1$

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Problem: How many different partitions of n are there? Write $P(n)$ for the set of partitions of n, and $p(n)$ for the number.

For the first few values, $p(n)$ is

$$
1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297
$$

In general, very hard! No closed form known.

Counting partitions

Problem 2.0: Find asymptotic behavior of $p(n)$ as $n \rightarrow \infty$.
Theorem (Hardy and Ramanujan, 1918)

$$
p(n)=\frac{1+o(1)}{4 \sqrt{3} n} e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}} .
$$

Counting partitions

Theorem (Hardy and Ramanujan, 1918)

$$
p(n)=\frac{1+o(1)}{4 \sqrt{3} n} e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}
$$

Question: Intuitive explanation? Even just for the exponent?

- Original proof: circle method.
- Extract $p(n)$ from generating function with Cauchy's residue formula. \Rightarrow need to evaluate nasty complex integral.
- Our idea: principle of maximum entropy.

Warning! Fuzzy math ahead.

Maximum entropy

- Probabilistic approach: try to understand partitions of n by looking at some probability distribution on partitions of any integer.
- Which distribution to choose?
- Jaynes' principle of maximum entropy: "best" distribution has maximum entropy among all distributions that give a partition of n in expectation.
- Best how?

Maximum entropy

Definition

Given a discrete random variable X, the entropy of X is

$$
H(X):=\sum_{x} \operatorname{Pr}(X=x) \log \left(\frac{1}{\operatorname{Pr}(X=x)}\right) .
$$

Measures the amount of "randomness" or "information" in X.

Fact

On a finite set S, the uniform distribution has the largest entropy of any distribution: $\log |S|$.

So $|S|=e^{H(X)}$ if X is uniform. Not any easier!

Maximum entropy

Fact: If X is uniform on $P(n)$, we have $p(n)=e^{H(X)}$.
Entropy of uniform distribution too hard to compute :(But what about an almost uniform distribution?

Hope: maybe we can find a distribution X (on partitions of any integer) that's...

- constant(ish) on $P(n)$,
- fairly concentrated on $P(n)$,
- and where we can compute its entropy.

Then maybe $p(n) \approx e^{H(X)}$. Very sketchy.

Maximum entropy

Idea: Want an "almost uniform" distribution X on partitions of any integer where we can compute $H(X)$. Hope that $p(n) \approx e^{H(X)}$.

What's the "best" distribution? Try Jaynes' principle of maximum entropy. Here, it says:

Find the maximum entropy distribution $X=\left(X_{1}, X_{2}, \ldots\right)$ on $\mathbb{N} \times \mathbb{N} \times \ldots$ (where $X_{k}=$ multiplicity of k) subject to

$$
\mathbb{E}\left[\sum_{k \geq 1} k \cdot X_{k}\right]=n
$$

Maximum entropy

Problem: Find max entropy $X=\left(X_{1}, X_{2}, \ldots\right)$ subject to
$\mathbb{E}\left[\sum_{k \geq 1} k \cdot X_{k}\right]=n$.
Start with any distribution $\left(Y_{1}, Y_{2}, \ldots\right)$.

- Fact 1: "Decoupling" the marginals Y_{k} increases entropy.
- Fact 2: Replacing any Y_{k} with a geometric r.v. with mean $\mu_{k}=\mathbb{E}\left[Y_{k}\right]$ increases entropy.
\Rightarrow Max entropy $\left(X_{1}, X_{2}, \ldots\right)$ has independent geometric X_{k} 's. Just need the right sequence of means $\left(\mu_{1}, \mu_{2}, \ldots\right)$.

Maximum entropy

New problem: Find right sequence of means $\left(\mu_{1}, \mu_{2}, \ldots\right)$ to maximize the entropy of the corresponding distribution ($X_{1}, X_{2} \ldots$) of independent geometric random variables, subject to $\sum_{k \geq 1} k \cdot \mu_{k}=n$.

Fact

A geometric r.v. with mean μ has entropy

$$
G(\mu):=(\mu+1) \log (\mu+1)-\mu \log \mu
$$

Corresponds to a discrete optimization problem:
Maximize $\quad \sum_{k \geq 1} G\left(\mu_{k}\right), \quad$ subject to $\quad \sum_{k \geq 1} k \cdot \mu_{k}=n$.

Maximum entropy

$$
\begin{aligned}
\text { Maximize } & \sum_{k \geq 1} G\left(\mu_{k}\right), \\
\text { subject to } & \sum_{k \geq 1} k \cdot \mu_{k}=n .
\end{aligned}
$$

Rescale by writing $m(x):=\mu_{x \sqrt{n}}$, "massage" the sums algebraically, and interpret them as Riemann sums. Then as $n \rightarrow \infty$, approximately a continuous optimization problem:

$$
\begin{array}{ll}
\text { Maximize } & \sqrt{n} \cdot \int_{0}^{\infty} G(m(x)) d x \\
\text { subject to } & \int_{0}^{\infty} x \cdot m(x) d x=1
\end{array}
$$

Maximum entropy

$$
\begin{aligned}
\text { Maximize } & \sum_{k \geq 1} G\left(\mu_{k}\right), \\
\text { subject to } & \sum_{k \geq 1} k \cdot \mu_{k}=n .
\end{aligned}
$$

Rescale by writing $m(x):=\mu_{x \sqrt{n}}$, "massage" the sums algebraically, and interpret them as Riemann sums. Then as $n \rightarrow \infty$, approximately a continuous optimization problem:

$$
\begin{array}{ll}
\text { Maximize } & \sqrt{n} \cdot \int_{0}^{\infty} G(m(x)) d x \\
\text { subject to } & \int_{0}^{\infty} x \cdot m(x) d x=1
\end{array}
$$

Maximum entropy

$$
\begin{array}{ll}
\text { Maximize } & \int_{0}^{\infty} \boldsymbol{G}(\boldsymbol{m}(x)) d x \\
\text { subject to } & \int_{0}^{\infty} x \cdot \boldsymbol{m}(x) d x=1
\end{array}
$$

Pretty easy! Can use Lagrange multipliers (continuous "calculus of variations" version). Solve to find the optimizer, $m^{*}(x)=\frac{1}{e^{\frac{\pi}{\sqrt{6}} x}-1}$, and plug in to get our final answer:

$$
H(X)=\sum_{k \geq 1} G\left(\mu_{k}\right) \approx \sqrt{n} \cdot \int_{0}^{\infty} G\left(m^{*}(x)\right) d x=\sqrt{n} \cdot \pi \sqrt{\frac{2}{3}} .
$$

Look familiar? :)

Maximum entropy

Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

We've approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$. Correct exponential term in Hardy-Ramanujan!

Method: Solve continuous optimization problem (approximates \sum with \int).

Can we make this less sketchy?

Maximum entropy

Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

Question: How close to the truth is this assumption?

Answer: For the maximizing distribution X, we have

$$
p(n)=\operatorname{Pr}[X \in P(n)] \cdot e^{H(X)}
$$

"Reason": compute directly from distribution.

Maximum entropy

Magic fact

Let $X=\left(X_{1}, X_{2}, \ldots,\right)$ be given by a probability distribution satisfying some set of constraints in expectation, and where we've specified the support of the X_{k} 's (must be discrete). For a wide variety of such constraints, if X is the entropy maximizing distribution, we will have:

$$
\binom{\# \text { vectors satisfying }}{\text { the constraints }}=\operatorname{Pr}[X \text { satisfies constraints }] \cdot e^{H(X)} .
$$

- "Just do it" - max entropy distribution will always have independent X_{k} 's of a specified type.
- Use constraints + Lagrange multipliers to pin down parameters, then compute directly from distribution.

Maximum entropy

Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Initially hoped that $p(n) \approx e^{H(X)}$.

We've approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$.
Magic fact: $p(n)=\operatorname{Pr}[X \in P(n)] \cdot e^{H(X)}$.

Remaining questions:

- Error from $\sum \rightarrow \int ? \frac{1}{\sqrt[4]{24 n^{1 / 4}}}$
- What is $\operatorname{Pr}[X \in P(n)]$? Probability that $\sum_{k \geq 1} k \cdot X_{k}$ hits its mean of n. Prove a (local) central limit theorem. $\frac{1}{2 \sqrt[4]{6} n^{3 / 4}}$
Multiply to get $\frac{1+o(1)}{4 \sqrt{3} n} e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$. Hardy-Ramanujan!!

x ©RMTINNE CBHE

Generalizations \& related work

Asymptotic count known for many "flavors" of partitions of n, e.g.,

- $\leq k$ parts (Szekeres, $1953+$ others)
- $\leq k$ parts, difference $\geq d$ between parts (Romik, 2005)
- parts are $k^{\text {th }}$ powers (Wright, $1934+$ others)
- $\leq k$ parts, each $\leq \ell$, " q-binomial coefficients" (e.g. Melczer, Panova, and Pemantle, 2019, and Jiang and Wang, 2019)

Also, many papers studying the structure of a "typical" partition (e.g. Fristedt, 1997)

Generalizations \& related work

Methods including:

- Circle method (many)
- Use results about "typical" partitions + prove a local central limit theorem (e.g. Romik, 2005)
- "Physics stuff" (e.g. Tran, Murthy, and Badhuri, 2003)
- Large deviations (Melczer, Panova, and Pemantle, 2019)

No free lunch - usually some messy integrals.
Related: "counting via maximum entropy" e.g. for counting lattice points in polytopes (Barvinok and Hartigan, 2010).

Our result

Can use the "maximum entropy" approach for any of these: becomes a constrained optimization problem with more constraints. But many a slip 'twixt the cup and the lip... (especially: local CLT)

As a "proof of concept", we'll count the following partitions:

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers
$\boldsymbol{N}=\left(N_{j}\right)_{j \in J}$, we say that a partition P has profile \boldsymbol{N} if

$$
\sum_{x \in P} x^{j}=N_{j} \text { for all } j \in J .
$$

Our result

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers $\boldsymbol{N}=\left(N_{j}\right)_{j \in J}$, we say that a partition P has profile \boldsymbol{N} if

$$
\sum_{x \in P} x^{j}=N_{j} \text { for all } j \in J
$$

Write $p(\boldsymbol{N})$ for the number of such partitions.

- "Unrestricted" partitions $(J=\{1\})$
- Partitions with fixed $\#$ of parts $(J=\{0,1\})$
- Partitions of n into $k^{\text {th }}$ powers $\left(J=\{k\}\right.$ and $\left.n=N_{k}\right)$

Our result

Notation: For any index set J, and any $\boldsymbol{\beta} \in \mathbb{R}_{+}^{|J|}$, write $\boldsymbol{N}=\left(N_{j}\right)_{j \in J}=\left(\left\lfloor\beta_{j} \eta^{(j+1) / 2}\right\rfloor\right)_{j \in J}$. Then define:

$$
\begin{aligned}
M(\boldsymbol{\beta})=\text { maximum of } & \int_{0}^{\infty} G(m(x)) d x, \\
\text { subject to } & \int_{0}^{\infty} x^{j} \cdot m(x) d x=\beta_{j}, \quad \text { for all } j \in J .
\end{aligned}
$$

Main Theorem (M., Michelen, and Perkins, 2020?)
For any index set J, and any $\boldsymbol{\beta} \in \mathbb{R}_{+}^{|J|}$,

$$
p(\boldsymbol{N})=(1+o(1)) \frac{e^{M(\boldsymbol{\beta}) \sqrt{n}}}{c_{1}(\beta) \cdot n^{c_{2}(J)}}
$$

if \boldsymbol{N} is "feasible".

Our result

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any $\boldsymbol{\beta} \in \mathbb{R}_{+}^{|J|}$,

$$
p(\boldsymbol{N})=(1+o(1)) \frac{e^{M(\boldsymbol{\beta}) \sqrt{n}}}{c_{1}(\beta) \cdot n^{c_{2}(J)}}
$$

if \boldsymbol{N} is "feasible".

- $M(\beta) \sqrt{n}=$ entropy of max entropy distribution, after approximating $\sum \rightarrow \int . M(\beta)=$ solution to continuous optimization problem (constant)
- c_{1}, c_{2} constants.
- Other terms: error from $\sum \rightarrow \int$, and probability that max entropy distribution hits $P(\boldsymbol{N})$. (Local CLT - rest of talk)

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

$X=\left(X_{1}, X_{2}, \ldots\right)$ a joint distribution of independent geometric r.v.s with appropriate parameters. Write $\boldsymbol{N}_{X}=\left(\sum_{k \geq 1} k^{j} X_{k}\right)_{j \in J}$ (the profile of X). Then for any possible profile $\boldsymbol{a} \in \mathbb{N}^{J}$,

$$
\operatorname{Pr}\left(\boldsymbol{N}_{X}=\boldsymbol{a}\right) \approx \mathbb{1}_{\boldsymbol{a}} \text { is "feasible" }\binom{\# \text { integer-valued polys. }}{\text { in some region }} \cdot(\text { PDF of Gaussian })
$$

- Many impossible profiles a, e.g. $a_{1}=($ even $)$ and $a_{2}=(o d d)$.
- $\Rightarrow \operatorname{Pr}\left(\boldsymbol{N}_{\boldsymbol{X}}=\boldsymbol{a}\right)=0$ in many places
- \Rightarrow probability mass "piles up" on remaining points.
- Extra factor on remaining points ("feasible" points).

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

$X=\left(X_{1}, X_{2}, \ldots\right)$ a joint distribution of independent geometric r.v.s with appropriate parameters. $\boldsymbol{N}_{X}=\left(\sum_{k \geq 1} k^{j} X_{k}\right)_{j \in J}$. Then

$$
\operatorname{Pr}\left(\boldsymbol{N}_{X}=\boldsymbol{a}\right) \approx \mathbb{1}_{\boldsymbol{a}} \text { is "feasible"" }\binom{\# \text { integer-valued polys. }}{\text { in some region }} \cdot(\text { PDF of Gaussian })
$$

Proof ideas:

- Want to understand PMF of \boldsymbol{N}_{X}, and know that \mathbf{N}_{X} is defined in terms of sums of independent geometric r.v.s.
- Work with the characteristic functions of the X_{k} 's.
- Characteristic function $=$ Fourier transform of PMF, so to extract PMF from characteristic function: Fourier inversion.

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

$$
\operatorname{Pr}\left(\boldsymbol{N}_{X}=\boldsymbol{a}\right) \approx \mathbb{1}_{\boldsymbol{a}} \text { is "feasible" }\binom{\# \text { integer-valued polys. }}{\text { in some region }} \cdot(\text { PDF of Gaussian })
$$

Proof ideas:

- Fourier inversion gives $\operatorname{Pr}\left(\boldsymbol{N}_{X}=\boldsymbol{a}\right)$ as a nasty complex integral in terms of characteristic functions.
- Throw away regions that "obviously" don't contribute much.
- Green-Tao (2012): this leaves us with a neighborhood around the coefficients of each integer-valued polynomial.
- On each neighborhood, approximate with a Gaussian.

Overall recap

Recap:

- Max entropy approach gives \# of partitions (with restrictions allowed) as $\operatorname{Pr}[X \in P] \cdot e^{H(X)}$, where $X=$ max entropy distribution.
- $e^{H(X)}$ fairly easy to find! Leading constant in $H(X)$ given by a continuous optimization problem.
- Still no free lunch though: for lower-order terms, have to approximate $\sum \rightarrow \int$ error, and (more difficult) to find $\operatorname{Pr}[X \in P]$, have to deal with nasty complex integral by proving local CLT.

Thank you!

