Counting integer partitions with the method of maximum entropy

Joint work with Marcus Michelen and Will Perkins

Gwen McKinley

October 1, 2020

University of California, San Diego

Outline

- Big idea: a different technique ("principle of maximum entropy") allows us to approach an old problem (enumerating integer partitions) with new intuition and a more powerful/flexible solution.
- Sketch of the method for a classical example (Hardy-Ramanujan asymptotic partition formula)
- Variations on the classical problem
- Our result
- Time permitting, a few ideas from the proof of one part (Local CLT)

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Example:

- 5 + 2 + 1 and 4 + 2 + 1 + 1 are both partitions of 8.
- 5+2+1 and 1+2+5 are the same partition of 8.

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Question: How many different partitions of n are there? Write P(n) for the set of partitions of n, and p(n) for the number. E.g. p(4) = 5:

- 4
- 3 + 1
- 2 + 2
- 2 + 1 + 1
- 1 + 1 + 1 + 1

4

Integer partitions

Definition

A partition of a positive integer n is a representation of n as an unordered sum of positive integers.

Problem: How many different partitions of n are there? Write P(n) for the set of partitions of n, and p(n) for the number.

For the first few values, p(n) is

$$1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297$$

In general, very hard! No closed form known.

Counting partitions

Problem 2.0: Find asymptotic behavior of p(n) as $n \to \infty$.

Theorem (Hardy and Ramanujan, 1918)

$$p(n) = \frac{1 + o(1)}{4\sqrt{3}n} e^{\pi\sqrt{\frac{2}{3}}\sqrt{n}}.$$

Counting partitions

Theorem (Hardy and Ramanujan, 1918)

$$p(n) = \frac{1 + o(1)}{4\sqrt{3}n} e^{\pi\sqrt{\frac{2}{3}}\sqrt{n}}.$$

Question: Intuitive explanation? Even just for the exponent?

- Original proof: circle method.
- Extract p(n) from generating function with Cauchy's residue formula. ⇒ need to evaluate nasty complex integral.
- Our idea: principle of maximum entropy.

Warning! Fuzzy math ahead.

- **Probabilistic approach:** try to understand partitions of *n* by looking at some probability distribution on partitions of *any* integer.
- Which distribution to choose?
- Jaynes' principle of maximum entropy: "best" distribution has maximum entropy among all distributions that give a partition of n in expectation.
- Best how?

Definition

Given a discrete random variable X, the entropy of X is

$$H(X) := \sum_{x} \Pr(X = x) \log \left(\frac{1}{\Pr(X = x)} \right).$$

Measures the amount of "randomness" or "information" in X.

Fact

On a finite set S, the uniform distribution has the largest entropy of any distribution: $\log |S|$.

So $|S| = e^{H(X)}$ if X is uniform. Not any easier!

Fact: If X is uniform on P(n), we have $p(n) = e^{H(X)}$.

Entropy of uniform distribution too hard to compute :(But what about an *almost* uniform distribution?

Hope: maybe we can find a distribution X (on partitions of *any* integer) that's...

- constant(ish) on P(n),
- fairly concentrated on P(n),
- and where we can compute its entropy.

Then maybe $p(n) \approx e^{H(X)}$. Very sketchy.

Idea: Want an "almost uniform" distribution X on partitions of any integer where we can compute H(X). Hope that $p(n) \approx e^{H(X)}$.

What's the "best" distribution? Try Jaynes' principle of maximum entropy. Here, it says:

Find the maximum entropy distribution $X=(X_1,X_2,\dots)$ on $\mathbb{N}\times\mathbb{N}\times\dots$ (where $X_k=$ multiplicity of k) subject to

$$\mathbb{E}\left[\sum_{k\geq 1}k\cdot X_k\right]=n.$$

Problem: Find max entropy $X = (X_1, X_2, ...)$ subject to $\mathbb{E}\left[\sum_{k\geq 1} k \cdot X_k\right] = n$.

Start with any distribution $(Y_1, Y_2, ...)$.

- Fact 1: "Decoupling" the marginals Y_k increases entropy.
- Fact 2: Replacing any Y_k with a geometric r.v. with mean $\mu_k = \mathbb{E}[Y_k]$ increases entropy.

 \Rightarrow Max entropy (X_1, X_2, \dots) has independent geometric X_k 's. Just need the right sequence of means (μ_1, μ_2, \dots) .

New problem: Find right sequence of means (μ_1, μ_2, \dots) to maximize the entropy of the corresponding distribution $(X_1, X_2 \dots)$ of independent geometric random variables, subject to $\sum_{k \geq 1} k \cdot \mu_k = n$.

Fact

A geometric r.v. with mean μ has entropy

$$G(\mu) := (\mu + 1) \log(\mu + 1) - \mu \log \mu.$$

Corresponds to a discrete optimization problem:

$$\text{Maximize} \quad \sum_{k\geq 1} G(\mu_k), \quad \text{subject to} \quad \sum_{k\geq 1} k \cdot \mu_k = n.$$

$$\begin{array}{ll} \text{Maximize} & \displaystyle \sum_{k \geq 1} G(\mu_k), \\ \text{subject to} & \displaystyle \sum_{k \geq 1} k \cdot \mu_k = n. \end{array}$$

Rescale by writing $m(x):=\mu_{x\sqrt{n}}$, "massage" the sums algebraically, and interpret them as Riemann sums. Then as $n\to\infty$, approximately a continuous optimization problem:

Maximize
$$\sqrt{n} \cdot \int_0^\infty G(m(x)) dx$$
, subject to $\int_0^\infty x \cdot m(x) dx = 1$.

$$\label{eq:maximize} \begin{array}{ll} \text{Maximize} & \displaystyle \sum_{k\geq 1} G(\mu_k), \\ \text{subject to} & \displaystyle \sum_{k>1} k \cdot \mu_k = \textit{n}. \end{array}$$

Rescale by writing $m(x) := \mu_{x\sqrt{n}}$, "massage" the sums algebraically, and interpret them as Riemann sums. Then as $n \to \infty$, approximately a continuous optimization problem:

Maximize
$$\sqrt{n} \cdot \int_0^\infty G(m(x)) dx$$
, subject to $\int_0^\infty x \cdot m(x) dx = 1$.

Maximize
$$\int_0^\infty \boldsymbol{G}(\boldsymbol{m}(x)) \, dx$$
, subject to $\int_0^\infty x \cdot \boldsymbol{m}(x) \, dx = 1$.

Pretty easy! Can use Lagrange multipliers (continuous "calculus of variations" version). Solve to find the optimizer, $m^*(x) = \frac{1}{e^{\frac{\pi}{\sqrt{6}}x}-1}$, and plug in to get our final answer:

$$H(X) = \sum_{k>1} G(\mu_k) \approx \sqrt{n} \cdot \int_0^\infty G(m^*(x)) dx = \sqrt{n} \cdot \pi \sqrt{\frac{2}{3}}.$$

Look familiar? :)

Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

We've approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$. Correct exponential term in Hardy-Ramanujan!

Method: Solve continuous optimization problem (approximates \sum with \int).

Can we make this less sketchy?

Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

Question: How close to the truth is this assumption?

Answer: For the maximizing distribution X, we have

$$p(n) = \Pr[X \in P(n)] \cdot e^{H(X)}.$$

"Reason": compute directly from distribution.

Magic fact

Let $X = (X_1, X_2, ...,)$ be given by a probability distribution satisfying some set of constraints in expectation, and where we've specified the support of the X_k 's (must be discrete). For a wide variety of such constraints, if X is the entropy maximizing distribution, we will have:

```
\binom{\# \text{ vectors satisfying the constraints}}{} = \Pr[X \text{ satisfies constraints}] \cdot e^{H(X)}.
```

- "Just do it" max entropy distribution will always have independent X_k's of a specified type.
- Use constraints + Lagrange multipliers to pin down parameters, then compute directly from distribution.

Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Initially hoped that $p(n) \approx e^{H(X)}$.

We've approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$.

Magic fact: $p(n) = \Pr[X \in P(n)] \cdot e^{H(X)}$.

Remaining questions:

- Error from $\sum \rightarrow \int$? $\frac{1}{\sqrt[4]{24}n^{1/4}}$
- What is $\Pr[X \in P(n)]$? Probability that $\sum_{k \geq 1} k \cdot X_k$ hits its mean of n. Prove a (local) central limit theorem. $\frac{1}{2\sqrt[4]{6}n^{3/4}}$

Multiply to get $\frac{1+o(1)}{4\sqrt{3}n}e^{\pi\sqrt{\frac{2}{3}}\sqrt{n}}$. Hardy-Ramanujan!!

CONTINUE SAVE

WARNING THIS GAME IS REALLY DIFFICULT.

Generalizations & related work

Asymptotic count known for many "flavors" of partitions of n, e.g.,

- $\leq k$ parts (Szekeres, 1953 + others)
- $\leq k$ parts, difference $\geq d$ between parts (Romik, 2005)
- parts are kth powers (Wright, 1934 + others)
- $\leq k$ parts, each $\leq \ell$, "q-binomial coefficients" (e.g. Melczer, Panova, and Pemantle, 2019, and Jiang and Wang, 2019)

Also, many papers studying the structure of a "typical" partition (e.g. Fristedt, 1997)

Generalizations & related work

Methods including:

- Circle method (many)
- Use results about "typical" partitions + prove a local central limit theorem (e.g. Romik, 2005)
- "Physics stuff" (e.g. Tran, Murthy, and Badhuri, 2003)
- Large deviations (Melczer, Panova, and Pemantle, 2019)

No free lunch – usually some messy integrals.

Related: "counting via maximum entropy" e.g. for counting lattice points in polytopes (Barvinok and Hartigan, 2010).

Can use the "maximum entropy" approach for any of these: becomes a constrained optimization problem with more constraints. But many a slip 'twixt the cup and the lip... (especially: local CLT)

As a "proof of concept", we'll count the following partitions:

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers $\mathbf{N} = (N_j)_{j \in J}$, we say that a partition P has profile \mathbf{N} if

$$\sum_{x \in P} x^j = N_j \text{ for all } j \in J.$$

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers $\mathbf{N} = (N_j)_{j \in J}$, we say that a partition P has profile \mathbf{N} if

$$\sum_{x \in P} x^j = N_j \text{ for all } j \in J.$$

Write p(N) for the number of such partitions.

- "Unrestricted" partitions $(J = \{1\})$
- Partitions with fixed # of parts ($J = \{0, 1\}$)
- Partitions of n into k^{th} powers $(J = \{k\})$ and $n = N_k$

Notation: For any index set J, and any $\beta \in \mathbb{R}_+^{|J|}$, write $N = (N_j)_{j \in J} = (\lfloor \beta_j n^{(j+1)/2} \rfloor)_{j \in J}$. Then define:

$$M(eta)=$$
 maximum of $\int_0^\infty G(m(x))\,dx,$ subject to $\int_0^\infty x^j\cdot m(x)\,dx=eta_j,$ for all $j\in J.$

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any $\beta \in \mathbb{R}_+^{|J|}$,

$$p(\mathbf{N}) = (1 + o(1)) \frac{e^{M(\beta)\sqrt{n}}}{c_1(\beta) \cdot n^{c_2(J)}}$$

if N is "feasible".

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any $\boldsymbol{\beta} \in \mathbb{R}_+^{|J|}$,

$$p(\mathbf{N}) = (1 + o(1)) \frac{e^{M(\beta)\sqrt{n}}}{c_1(\beta) \cdot n^{c_2(J)}}$$

if N is "feasible".

- $M(\beta)\sqrt{n} =$ entropy of max entropy distribution, after approximating $\sum \rightarrow \int$. $M(\beta) =$ solution to continuous optimization problem (constant)
- c_1, c_2 constants.
- Other terms: error from $\sum \to \int$, and probability that max entropy distribution hits P(N). (Local CLT rest of talk)

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

 $X=(X_1,X_2,...)$ a joint distribution of independent geometric r.v.s with appropriate parameters. Write $\mathbf{N}_X=(\sum_{k\geq 1}k^jX_k)_{j\in J}$ (the profile of X). Then for any possible profile $\mathbf{a}\in\mathbb{N}^J$,

$$\Pr(extbf{ extit{N}}_X = extbf{ extit{a}}) pprox \mathbbm{1}_{ extbf{ extit{a}}}$$
 is "feasible" $(^\#$ integer-valued polys. $) \cdot (\mathsf{PDF} \ \mathsf{of} \ \mathsf{Gaussian})$

- Many impossible profiles \mathbf{a} , e.g. $\mathbf{a}_1 = (\text{even})$ and $\mathbf{a}_2 = (\text{odd})$.
- $\Rightarrow \Pr(N_X = a) = 0$ in many places
- ullet \Rightarrow probability mass "piles up" on remaining points.
- Extra factor on remaining points ("feasible" points).

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

 $X=(X_1,X_2,...)$ a joint distribution of independent geometric r.v.s with appropriate parameters. $N_X=(\sum_{k\geq 1} k^j X_k)_{j\in J}$. Then

 $\Pr(extbf{ extit{N}}_X = extbf{ extit{a}}) pprox \mathbbm{1}_{ extbf{ extit{a}}}$ is "feasible" (** integer-valued polys.*) \cdot (PDF of Gaussian)

Proof ideas:

- Want to understand PMF of N_X , and know that N_X is defined in terms of sums of independent geometric r.v.s.
- Work with the characteristic functions of the X_k 's.
- Characteristic function = Fourier transform of PMF, so to extract PMF from characteristic function: Fourier inversion.

Local CLT

Local CLT (M., Michelen, and Perkins, 2020?)

$$\Pr(extbf{ extit{N}}_X = extbf{ extit{a}}) pprox \mathbbm{1}_{ extbf{ extit{a}}}$$
 is "feasible" ($^\#$ integer-valued polys.) \cdot (PDF of Gaussian)

Proof ideas:

- Fourier inversion gives $\Pr(N_X = a)$ as a nasty complex integral in terms of characteristic functions.
- Throw away regions that "obviously" don't contribute much.
- Green-Tao (2012): this leaves us with a neighborhood around the coefficients of each integer-valued polynomial.
- On each neighborhood, approximate with a Gaussian.

Overall recap

Recap:

- Max entropy approach gives # of partitions (with restrictions allowed) as $\Pr[X \in P] \cdot e^{H(X)}$, where $X = \max$ entropy distribution.
- $e^{H(X)}$ fairly easy to find! Leading constant in H(X) given by a continuous optimization problem.
- Still no free lunch though: for lower-order terms, have to approximate ∑ → ∫ error, and (more difficult) to find Pr[X ∈ P], have to deal with nasty complex integral by proving local CLT.

