Super-logarithmic clique numbers in dense inhomogeneous random graphs

Gwen McKinley

May 10, 2019

Massachusetts Institute of Technology

- Background & definitions
- Previous work
- My results
- Proof methods
- Future directions

Background & Definitions

- The Erdős-Rényi random graph, G(n, p), has n vertices, and each pair of vertices forms an edge independently with probability p.
- The clique number, ω(G), of a graph G is the number of vertices in the largest complete subgraph of G.

Background & Definitions

Theorem

$$\omega(\mathbb{G}(n,p)) = (1+o(1))\frac{2}{\log(1/p)}\log(n)$$

with probability 1 - o(1), as $n \to \infty$.

Proof idea:

- Upper bound on ω(G(n, p)): find k for which the expected number of k-cliques in G(n, p) is asymptotically zero. (first moment method)
- Lower bound on ω(G(n, p)): for slightly smaller k, show that the number of k-cliques is highly concentrated around its expectation. (second moment method)

- More recently, interest in inhomogeneous random graphs.
- Edge probabilities not equal to a constant *p* and/or not independent.

- A (dense) graphon is a symmetric, measurable function $W: [0,1]^2 \rightarrow [0,1].$
- Can generate an inhomogeneous random graph from W by uniformly sampling n numbers x₁,..., x_n ∈ [0, 1] and making each (i, j) an edge with probability W(x_i, x_j).
- Call this a **W-random graph**, and write $\mathbb{G}(n, W)$.

- Natural extension of the Erdős-Rényi random graph:
- Notice that G(n, p) = G(n, W) for the constant graphon
 W = p.

W(x,y) = (1-x)(1-y)

Question: what can we say about clique numbers of *W*-random graphs?

Previous Work

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon $\mathcal{W}\colon \Omega^2 \to [0,1]$ that is essentially bounded away from 0 and 1,

 $\omega(\mathbb{G}(n, W)) = (1 + o(1))\kappa(W) \log n,$

with probability 1-o(1) as $n o \infty$, where

$$\kappa(W) = \sup\left\{\frac{2\|h\|_1^2}{\int_{(x,y)\in\Omega^2} h(x)h(y)\log(1/W(x,y))\,d(\nu^2)} : h \ge 0 \text{ an } L^1\text{-function on } \Omega\right\}.$$

"essentially bounded" = bound holds everywhere except perhaps on some set of measure zero.

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon $W\colon \Omega^2 \to [0,1]$ that is essentially bounded away from 0 and 1,

 $\omega(\mathbb{G}(n, W)) = (1 + o(1))\kappa(W) \log n.$

- Most important part is the characterization of $\kappa(W)$:
- If W is bounded between $p_1 > 0$ and $p_2 < 1$, then can couple $\mathbb{G}(n, W)$ with $\mathbb{G}(n, p_1)$ and $\mathbb{G}(n, p_2)$ so that

 $\omega(\mathbb{G}(n,p_1)) \leq \omega(\mathbb{G}(n,W)) \leq \omega(\mathbb{G}(n,p_2)).$

Both these bounds are Θ(log n), so ω(𝔅(n, W)) = Θ(log n).

Clique numbers for other inhomogeneous random graphs:

- Graphs with a **power-law** degree distribution (Janson, Łuczak, and Norros, 2010)
- **Hyperbolic** random graphs (Bläsius, Friedrich, and Krohmer, 2018)
- Rank-1 inhomogeneous random graphs (Bogerd, Castro, and van der Hofstad, 2018); explicitly computed clique number when vertex weights bounded away from 1, showed 2-point concentration.

Returning to graphons,

- Question: what happens if W is not bounded away from 1?
- Easy case: if W = 1 on S × S for some set S of positive measure, then ω(G(n, W)) is linear a.a.s.
- General case: too hard! (or too weird...)

Example (Doležal, Hladký, and Máthé, 2017)

There exists a graphon W and a sequence of integers $n_1 < n_2 < \cdots$ such that $\omega(\mathbb{G}(n_i, W))$ alternates between at most $\log \log n_i$ and at least $\frac{n_i}{\log \log n_i}$ on elements of the sequence asymptotically almost surely.

- In fact, can replace $\log \log n$ with any $\omega(1)$ function.
- Shown for a highly discontinuous graphon $W : [0,1]^2 \rightarrow [0,1]$.
- Question: Even if W is not bounded away from 1, can we find a good characterization of ω(G(n, W)) as long as W is reasonably "well-behaved"?

- Question: Even if W is not bounded away from 1, can we find a good characterization of ω(G(n, W)) as long as W is reasonably "well-behaved"?
- Note: we only care about points on the diagonal (i.e. with x = y) where W approaches 1.

Lemma (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon whose essential supremum is strictly less than 1 in some neighborhood of each point (x,x)for $x \in [0,1]$. Then $\omega(\mathbb{G}(n,W)) = O(\log n)$ asymptotically almost surely.

- Updated question: If W approaches 1 near at least one point (a, a), and W is sufficiently "well-behaved", can we find a good characterization of ω(G(n, W))?
- Depends...
 - How many points (a, a)?
 - How fast does *W* approach 1?
 - How well-behaved?

New Results

Moderate rate of approach

- Know that if W never approaches 1, then $\omega(\mathbb{G}(n, W)) = O(\log n)$.
- New fact: If W approaches 1 "moderately fast" at a finite number of points, then ω(𝔅(n, W)) = Θ(√n).

Theorem (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon equal to 1 at some collection of points $(a_1, a_1), \ldots, (a_k, a_k)$, and essentially bounded away from 1 in some neighborhood of (x, x) for each other $x \in [0,1]$. If all directional derivatives of W exist at the points $(a_1, a_1), \ldots, (a_k, a_k)$, and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W)) = \Theta(\sqrt{n})$ asymptotically almost surely. Even if W doesn't have directional derivatives, can sometimes obtain a similar bound:

Lemma (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon equal to 1 at some point (a, a). If W is locally Lipschitz continuous at (a, a), then $\omega(\mathbb{G}(n, W)) = \Omega(\sqrt{n})$ asymptotically almost surely.

So what *doesn't* have a clique number $\Theta(\sqrt{n})$?

Example (M., 2019)

For any constant r > 0, define the graphon

$$U_r(x,y) := (1-x^r)(1-y^r).$$

The random graph $\mathbb{G}(n, U_r)$ asymptotically almost surely has clique number $\Theta(n^{\frac{r}{r+1}})$.

Example (M., 2019)

For any constant r > 0, define the graphon

$$U_r(x,y) := (1-x^r)(1-y^r).$$

The random graph $\mathbb{G}(n, U_r)$ asymptotically almost surely has clique number $\Theta(n^{\frac{r}{r+1}})$.

- If r > 1, the directional derivatives are 0, and $\frac{r}{r+1} > \frac{1}{2}$.
- If r < 1, the directional derivatives are $-\infty$, and $\frac{r}{r+1} < \frac{1}{2}$.

A bit more general:

Lemma (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon equal to 1 at some point (a,a). If W is locally α -Hölder continuous at (a,a) for some constant α , then $\omega(\mathbb{G}(n,W)) = \Omega(n^{\frac{\alpha}{\alpha+1}})$ asymptotically almost surely.

Can also show

- If W is equal to 1 at some point (a, a), and all directional derivatives of W at (a, a) exist and are equal to zero, then ω(𝔅(n, W)) = ω(√n) a.a.s.
- If W is equal to 1 at the points (a₁, a₁),..., (a_k, a_k), and bounded away from 1 near all other (x, x), and all directional derivatives of W at (a₁, a₁),..., (a_k, a_k) are equal to -∞, then ω(G(n, W)) = o(√n) a.a.s.

Methods

Before we get to some proofs, one thing to notice...

Wait...what happened to the constants?

- In all the results above, clique number is given up to a constant factor.
- But for Erdős-Rényi random graphs, and the result by Doležal, Hladký, and Máthé, a correct constant is given.
- Does a correct constant exist for the examples considered here? Yes!

Theorem (Doležal, Hladký, and Máthé, 2017)

For any graphon W, with probability 1 - o(1),

$$\omega(\mathbb{G}(n, W)) = (1 + o(1)) \cdot \mathbb{E}[\omega(\mathbb{G}(n, W))].$$

Wait...what happened to the constants?

- Correct constant exists why haven't we found it?
- Recall method for finding clique number for Erdős-Rényi random graphs:
 - Upper bound: find k for which the expected number of k-cliques in G(n, p) is asymptotically zero. (first moment method)
 - Lower bound: show that the number of k-cliques has low variance ⇒ close to its expectation with high probability. (second moment calculation)
- **Problem here:** the number of *k*-cliques has *high* variance in most of the examples above (for *k* in relevant range).

Wait...what happened to the constants?

- **Problem here:** the number of *k*-cliques has *high* variance in most of the examples above (for *k* in relevant range).
- A few ways possible around this:
 - Doležal, Hladký, and Máthé applied the second moment method to a carefully chosen restriction of the original graphon.
 - Could try using tools from large deviations theory (as in Achlioptas, Peres, 2003).
- *However*, to get a lower bound tight up to a constant, there is a simpler way!

Keep that in mind - we'll come back to it in a moment! For now, look at the overall proof strategy for some of the results above.

Overall approach to prove results above:

- Compute the clique numbers associated to some family of *specific* graphons with the desired local behavior.
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with W(x, x) = 1.
- Use elements of specific family, together with fact above, to determine the clique number associated to *any* graphon with comparable local behavior.

Use this framework to sketch a proof of the following:

Theorem (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon equal to 1 at the point (0,0), and essentially bounded away from 1 in some neighborhood of (x,x) for each other $x \in [0,1]$. If all directional derivatives of W exist at (0,0), and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W)) = \Theta(\sqrt{n})$ a.a.s.

First, a family of graphons with the desired local behavior:

Definition

For any r > 0, define the graphon

$$W_r(x, y) = (1 - x)^r (1 - y)^r.$$

 W_r has directional derivatives between -r and $-\frac{r}{\sqrt{2}}$ at (0,0).

Family of graphons: $W_r(x, y) = (1 - x)^r (1 - y)^r$

 W_2

Now, find the clique number of $\mathbb{G}(n, W_r)$. For upper bound, use first moment method:

$$\mathbb{E}[\# \text{ k-cliques in } \mathbb{G}(n, W_r)] = \binom{n}{k} \cdot \Pr([k] \text{ is a clique})$$

$$= \binom{n}{k} \int_{[0,1]^k} \prod_{\ell \neq m \in [k]} W_r(x_\ell, x_m) \ d\vec{x}$$

$$= \binom{n}{k} \left(\int_0^1 (1-x)^{r(k-1)} dx \right)^k$$

$$= \binom{n}{k} \left(\frac{1}{r(k-1)+1} \right)^k.$$

$$\mathbb{E}[\# \text{ k-cliques in } \mathbb{G}(n, W_r)] = \binom{n}{k} \left(\frac{1}{r(k-1)+1}\right)^k.$$

- If k is slightly more than $\left(\frac{e}{r}\right)^{1/2} \cdot \sqrt{n}$, then this is o(1).
- ullet \Rightarrow by Markov, with probability (1-o(1)), have

$$\omega(\mathbb{G}(n, W_r)) \leq (1 + o(1)) \left(\frac{e}{r}\right)^{1/2} \cdot \sqrt{n}.$$

Now for a **lower bound** on $\omega(\mathbb{G}(n, W_r))$. We want a clique of size $\Theta(\sqrt{n})$. Recall that

$$W_r(x,y) = (1-x)^r (1-y)^r.$$

- Question: Which vertices are likely to form a large clique?
- Answer: Vertices *i* with *x_i* close to 0.

$$W_r(x,y) = (1-x)^r (1-y)^r.$$

- Question: Which vertices are likely to form a large clique?
- Answer: Vertices *i* with *x_i* close to 0.
- Fact: For any constant c, there are at least c√n vertices with x_i ≤ (1 + o(1)) c/√n, a.a.s. (Chebyshev)

- Have $c\sqrt{n}$ vertices with $x_i \leq (1 + o(1))\frac{c}{\sqrt{n}}$.
- In general, they won't form a clique, but...
- With probability 1 − o(1), the subgraph they induce will be missing at most c√n/2 edges if c ≤ (1/(3er))^{1/2}.
 definition of W_r + union bound + some algebra
- Delete one vertex from each non-edge \Rightarrow remaining vertices form a clique of size $\frac{c\sqrt{n}}{2} = \Theta(\sqrt{n})$.

Quick recap:

- For any r > 0, the graphon $W_r(x, y) = (1 x)^r (1 y)^r$ has clique number $\Theta(\sqrt{n})$.
- Upper bound: $(1 + o(1)) \left(\frac{e}{r}\right)^{1/2} \cdot \sqrt{n}$, by first moment method.
- Lower bound: $\frac{1}{2} \left(\frac{1}{3er}\right)^{1/2} \sqrt{n}$, by guessing which vertices are likely to form a large clique, and showing this indeed happens with high probability.

Recall proof strategy for general W:

- Compute the clique numbers associated to some *specific* family of graphons with the desired local behavior. **Done.**
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with W(x, x) = 1.
- Use elements of specific family, together with fact above, to determine the clique number associated to *any* graphon with comparable local behavior.

Recall proof strategy for general W:

- Compute the clique numbers associated to some *specific* family of graphons with the desired local behavior.
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with W(x, x) = 1.
- Use elements of specific family, together with fact above, to determine the clique number associated to *any* graphon with comparable local behavior.

Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with W(x, x) = 1. Explicitly...

Lemma (M., 2019)

Let $W, U : [0,1] \rightarrow [0,1]^2$ be graphons equal to 1 at some point (a, a), and essentially bounded away from 1 in some neighborhood of (x, x) for all other $x \in [0, 1]^2$. If there exists a neighborhood N of (a, a) on which $W(x, y) \leq U(x, y)$, then a.a.s.,

$$\omega(\mathbb{G}(n, W)) \leq (1 + o(1)) \cdot \omega(\mathbb{G}(n, U)) + O(\log n).$$

Now, putting it all together...

- Let W be any graphon equal to 1 at (0,0), bounded away from 1 near all other points (x, x), and with directional derivatives bounded away from 0 and -∞ at (0,0).
- **Recall:** W_r has directional derivatives between -r and $-\frac{r}{\sqrt{2}}$.
- So if we take r₁ sufficiently large and r₂ sufficiently small, we can bound W between W_{r1} and W_{r2} in some neighborhood of (0,0).

- W is locally bounded between W_{r1} and W_{r2} in some neighborhood of (0,0) for some r1, r2.
- So by the Lemma, $\omega(\mathbb{G}(n, W))$ is bounded between $\omega(\mathbb{G}(n, W_{r_1})) = \Theta(\sqrt{n})$ and $\omega(\mathbb{G}(n, W_{r_2})) = \Theta(\sqrt{n})$.
- Thus $\omega(\mathbb{G}(n, W)) = \Theta(\sqrt{n})$.

We've proved:

Theorem (M., 2019)

Let $W: [0,1]^2 \to [0,1]$ be a graphon equal to 1 at the point (0,0), and essentially bounded away from 1 in some neighborhood of (x,x) for each other $x \in [0,1]$. If all directional derivatives of W exist at (0,0), and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W)) = \Theta(\sqrt{n})$ a.a.s.

Can use the same ideas to prove:

Example (M.,, 2019)

Define the graphon $W: [0,1]^2
ightarrow [0,1]$ by

$$W = (1 - f(x))(1 - f(y)), \text{ where } f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

The random graph $\mathbb{G}(n, W)$ has clique number $n^{1-o(1)}$ a.a.s.

Example (M., 2019)

$$W = (1 - f(x))(1 - f(y)), \text{ where } f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}.$$

The random graph $\mathbb{G}(n, W)$ has clique number $n^{1-o(1)}$ a.a.s.

- Infinitely many zero derivatives at (0,0).
- \Rightarrow locally bound below by $U_r = (1 x^r)(1 y^r)$ for any r.
- \Rightarrow bound $\omega(\mathbb{G}(n, W))$ below by $\omega(\mathbb{G}(n, U_r)) = \Theta(n^{\frac{r}{r+1}})$.

Future directions

Determining correct constants: Could perhaps use tools from large deviations theory, or a very technical second moment calculation.

- Finding a large clique: In $G_{n,1/2}$, no known poly-time algorithm finds a clique more than half the size of the max clique (e.g. Krivelevich, Sudakov, 1998; problem due to Karp, 1976). Could we do better here?
- Finding a planted clique: Plant a clique of size k in a random graph, ask for poly-time algorithm to recover it. For G_{n,p}, algorithm known only if k ≥ √n (e.g. Alon et al, 1998), much larger than ω(G_{n,p}). Could we do better here?

More points equal to 1

What about graphons with W(x, x) = 1 at infinitely many points?

For example,

Thank you!