
Super-logarithmic clique numbers in dense

inhomogeneous random graphs

Gwen McKinley

May 10, 2019

Massachusetts Institute of Technology

1



Outline

• Background & definitions

• Previous work

• My results

• Proof methods

• Future directions

2



Background & Definitions



Background & Definitions

• The Erdős-Rényi random graph, G(n,p), has n vertices,

and each pair of vertices forms an edge independently with

probability p.

• The clique number, ω(G), of a graph G is the number of

vertices in the largest complete subgraph of G .
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Background & Definitions

Theorem

ω(G(n, p)) = (1 + o(1))
2

log(1/p)
log(n)

with probability 1− o(1), as n→∞.

Proof idea:

• Upper bound on ω(G(n, p)): find k for which the expected

number of k-cliques in G(n, p) is asymptotically zero. (first

moment method)

• Lower bound on ω(G(n, p)): for slightly smaller k, show that

the number of k-cliques is highly concentrated around its

expectation. (second moment method)
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Background & Definitions

• More recently, interest in inhomogeneous random graphs.

• Edge probabilities not equal to a constant p and/or not

independent.
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Background & Definitions

• A (dense) graphon is a symmetric, measurable function

W : [0, 1]2 → [0, 1].

• Can generate an inhomogeneous random graph from W by

uniformly sampling n numbers x1, . . . , xn ∈ [0, 1] and making

each (i , j) an edge with probability W (xi , xj).

• Call this a W-random graph, and write G(n,W ).
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Background & Definitions

• Natural extension of the Erdős-Rényi random graph:

• Notice that G(n, p) = G(n,W ) for the constant graphon

W = p.
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W -random graph example

W (x , y) = (1− x)(1− y)
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Background & Definitions

Question: what can we say about clique numbers of W -random

graphs?
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Previous Results

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon W : Ω2 → [0, 1] that is essentially bounded away

from 0 and 1,

ω(G(n,W )) = (1 + o(1))κ(W ) log n,

with probability 1− o(1) as n→∞, where

κ(W ) = sup

{
2‖h‖2

1∫
(x,y)∈Ω2 h(x)h(y) log(1/W (x ,y)) d(ν2)

: h ≥ 0 an L1-function on Ω

}
.

“essentially bounded” = bound holds everywhere except perhaps

on some set of measure zero.
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Previous Results

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon W : Ω2 → [0, 1] that is essentially bounded away

from 0 and 1,

ω(G(n,W )) = (1 + o(1))κ(W ) log n.

• Most important part is the characterization of κ(W ):

• If W is bounded between p1 > 0 and p2 < 1, then can couple

G(n,W ) with G(n, p1) and G(n, p2) so that

ω(G(n, p1)) ≤ ω(G(n,W )) ≤ ω(G(n, p2)).

• Both these bounds are Θ(log n), so ω(G(n,W )) = Θ(log n).
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Previous Results

Clique numbers for other inhomogeneous random graphs:

• Graphs with a power-law degree distribution (Janson,

 Luczak, and Norros, 2010)

• Hyperbolic random graphs (Bläsius, Friedrich, and Krohmer,

2018)

• Rank-1 inhomogeneous random graphs (Bogerd, Castro,

and van der Hofstad, 2018); explicitly computed clique

number when vertex weights bounded away from 1, showed

2-point concentration.
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Graphons that approach 1

Returning to graphons,

• Question: what happens if W is not bounded away from 1?

• Easy case: if W = 1 on S × S for some set S of positive

measure, then ω(G(n,W )) is linear a.a.s.

• General case: too hard! (or too weird...)
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Graphons that approach 1

Example (Doležal, Hladký, and Máthé, 2017)

There exists a graphon W and a sequence of integers

n1 < n2 < · · · such that ω(G(ni ,W )) alternates between at most

log log ni and at least ni
log log ni

on elements of the sequence

asymptotically almost surely.

• In fact, can replace log log n with any ω(1) function.

• Shown for a highly discontinuous graphon W : [0, 1]2 → [0, 1].

• Question: Even if W is not bounded away from 1, can we

find a good characterization of ω(G(n,W )) as long as W is

reasonably “well-behaved”?
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Graphons that approach 1

• Question: Even if W is not bounded away from 1, can we

find a good characterization of ω(G(n,W )) as long as W is

reasonably “well-behaved”?

• Note: we only care about points on the diagonal (i.e. with

x = y) where W approaches 1.

Lemma (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon whose essential supremum

is strictly less than 1 in some neighborhood of each point (x , x)

for x ∈ [0, 1]. Then ω(G(n,W )) = O(log n) asymptotically

almost surely.
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Graphons that approach 1

• Updated question: If W approaches 1 near at least one

point (a, a), and W is sufficiently “well-behaved”, can we find

a good characterization of ω(G(n,W ))?

• Depends...

• How many points (a, a)?

• How fast does W approach 1?

• How well-behaved?
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New Results



Moderate rate of approach

• Know that if W never approaches 1, then

ω(G(n,W )) = O(log n).

• New fact: If W approaches 1 “moderately fast” at a finite

number of points, then ω(G(n,W )) = Θ(
√

n).

Theorem (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon equal to 1 at some

collection of points (a1, a1), . . . , (ak , ak), and essentially bounded

away from 1 in some neighborhood of (x , x) for each other

x ∈ [0, 1]. If all directional derivatives of W exist at the points

(a1, a1), . . . , (ak , ak), and are uniformly bounded away from 0 and

−∞, then ω(G(n,W )) = Θ(
√

n) asymptotically almost surely.
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Moderate rate of approach

Even if W doesn’t have directional derivatives, can sometimes

obtain a similar bound:

Lemma (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point

(a, a). If W is locally Lipschitz continuous at (a, a), then

ω(G(n,W )) = Ω(
√

n) asymptotically almost surely.
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Immoderate rate of approach

So what doesn’t have a clique number Θ(
√
n)?

Example (M., 2019)

For any constant r > 0, define the graphon

Ur (x , y) := (1− x r )(1− y r ).

The random graph G(n,Ur ) asymptotically almost surely has

clique number Θ(n
r

r+1 ).
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W -random graph example

U2, clique number = Θ(n2/3) U 1
2
, clique number = Θ(n1/3)
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Immoderate rate of approach

Example (M., 2019)

For any constant r > 0, define the graphon

Ur (x , y) := (1− x r )(1− y r ).

The random graph G(n,Ur ) asymptotically almost surely has

clique number Θ(n
r

r+1 ).

• If r > 1, the directional derivatives are 0, and r
r+1 >

1
2 .

• If r < 1, the directional derivatives are −∞, and r
r+1 <

1
2 .
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Immoderate rate of approach

A bit more general:

Lemma (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon equal to 1 at some point

(a, a). If W is locally α-Hölder continuous at (a, a) for some

constant α, then ω(G(n,W )) = Ω(n
α

α+1 ) asymptotically almost

surely.
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Immoderate rate of approach

Can also show

• If W is equal to 1 at some point (a, a), and all directional

derivatives of W at (a, a) exist and are equal to zero, then

ω(G(n,W )) = ω(
√

n) a.a.s.

• If W is equal to 1 at the points (a1, a1), . . . , (ak , ak), and

bounded away from 1 near all other (x , x), and all directional

derivatives of W at (a1, a1), . . . , (ak , ak) are equal to −∞,

then ω(G(n,W )) = o(
√

n) a.a.s.
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Methods



Methods

Before we get to some proofs, one thing to notice...
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Wait...what happened to the constants?

• In all the results above, clique number is given up to a

constant factor.

• But for Erdős-Rényi random graphs, and the result by Doležal,

Hladký, and Máthé, a correct constant is given.

• Does a correct constant exist for the examples considered

here? Yes!

Theorem (Doležal, Hladký, and Máthé, 2017)

For any graphon W , with probability 1− o(1),

ω(G(n,W )) = (1 + o(1)) · E[ω(G(n,W ))].
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Wait...what happened to the constants?

• Correct constant exists - why haven’t we found it?

• Recall method for finding clique number for Erdős-Rényi
random graphs:

• Upper bound: find k for which the expected number of

k-cliques in G(n, p) is asymptotically zero. (first moment

method)

• Lower bound: show that the number of k-cliques has low

variance ⇒ close to its expectation with high probability.

(second moment calculation)

• Problem here: the number of k-cliques has high variance in

most of the examples above (for k in relevant range).
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Wait...what happened to the constants?

• Problem here: the number of k-cliques has high variance in

most of the examples above (for k in relevant range).

• A few ways possible around this:

• Doležal, Hladký, and Máthé applied the second moment

method to a carefully chosen restriction of the original

graphon.

• Could try using tools from large deviations theory (as in

Achlioptas, Peres, 2003).

• However, to get a lower bound tight up to a constant, there is

a simpler way!
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Proof sketch

Keep that in mind - we’ll come back to it in a moment! For now,

look at the overall proof strategy for some of the results above.

30



Proof sketch

Overall approach to prove results above:

• Compute the clique numbers associated to some family of

specific graphons with the desired local behavior.

• Fact: the clique number of G(n,W ) is primarily determined

by local behavior of W near points with W (x , x) = 1.

• Use elements of specific family, together with fact above, to

determine the clique number associated to any graphon with

comparable local behavior.
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Proof sketch - moderate rate of approach

Use this framework to sketch a proof of the following:

Theorem (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon equal to 1 at the point

(0, 0), and essentially bounded away from 1 in some

neighborhood of (x , x) for each other x ∈ [0, 1]. If all directional

derivatives of W exist at (0, 0), and are uniformly bounded away

from 0 and −∞, then ω(G(n,W )) = Θ(
√

n) a.a.s.
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Proof sketch - moderate rate of approach

First, a family of graphons with the desired local behavior:

Definition

For any r > 0, define the graphon

Wr (x , y) = (1− x)r (1− y)r .

Wr has directional derivatives between −r and − r√
2

at (0, 0).
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Proof sketch - moderate rate of approach

Family of graphons: Wr (x , y) = (1− x)r (1− y)r

W2 W1/2
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Proof sketch - moderate rate of approach

Now, find the clique number of G(n,Wr ). For upper bound, use

first moment method:

E[# k-cliques in G(n,Wr )] =

(
n

k

)
· Pr([k] is a clique)

=

(
n

k

)∫
[0,1]k

∏
` 6=m∈[k]

Wr (x`, xm) d~x

=

(
n

k

)(∫ 1

0
(1− x)r(k−1)dx

)k

=

(
n

k

)(
1

r(k − 1) + 1

)k

.
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Proof sketch - moderate rate of approach

E[# k-cliques in G(n,Wr )] =

(
n

k

)(
1

r(k − 1) + 1

)k

.

• If k is slightly more than
(e

r

)1/2 ·
√

n, then this is o(1).

• ⇒ by Markov, with probability (1− o(1)), have

ω(G(n,Wr )) ≤ (1 + o(1))

(
e
r

)1/2

·
√

n.
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Proof sketch - moderate rate of approach

Now for a lower bound on ω(G(n,Wr )).

We want a clique of size Θ(
√

n). Recall that

Wr (x , y) = (1− x)r (1− y)r .

• Question: Which vertices are likely to form a large clique?

• Answer: Vertices i with xi close to 0.
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Proof sketch - moderate rate of approach

Wr (x , y) = (1− x)r (1− y)r .

• Question: Which vertices are likely to form a large clique?

• Answer: Vertices i with xi close to 0.

• Fact: For any constant c , there are at least c
√

n vertices

with xi ≤ (1 + o(1)) c√
n , a.a.s. (Chebyshev)
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Proof sketch - moderate rate of approach

• Have c
√

n vertices with xi ≤ (1 + o(1)) c√
n .

• In general, they won’t form a clique, but...

• With probability 1− o(1), the subgraph they induce will be

missing at most c
√

n
2 edges if c ≤

(
1

3er

)1/2
.

definition of Wr + union bound + some algebra

• Delete one vertex from each non-edge ⇒ remaining vertices

form a clique of size c
√
n

2 = Θ(
√

n).
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Proof sketch - moderate rate of approach

Quick recap:

• For any r > 0, the graphon Wr (x , y) = (1− x)r (1− y)r has

clique number Θ(
√
n).

• Upper bound: (1 + o(1))
(e

r

)1/2 ·
√

n, by first moment

method.

• Lower bound: 1
2

(
1

3er

)1/2√
n, by guessing which vertices

are likely to form a large clique, and showing this indeed

happens with high probability.
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Proof sketch - moderate rate of approach

Recall proof strategy for general W :

• Compute the clique numbers associated to some specific

family of graphons with the desired local behavior. Done.

• Fact: the clique number of G(n,W ) is primarily determined

by local behavior of W near points with W (x , x) = 1.

• Use elements of specific family, together with fact above, to

determine the clique number associated to any graphon with

comparable local behavior.

41



Proof sketch - moderate rate of approach
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Proof sketch - moderate rate of approach

Fact: the clique number of G(n,W ) is primarily determined by

local behavior of W near points with W (x , x) = 1. Explicitly...

Lemma (M., 2019)

Let W ,U : [0, 1]→ [0, 1]2 be graphons equal to 1 at some point

(a, a), and essentially bounded away from 1 in some

neighborhood of (x , x) for all other x ∈ [0, 1]2. If there exists a

neighborhood N of (a, a) on which W (x , y) ≤ U(x , y), then

a.a.s.,

ω(G(n,W )) ≤ (1 + o(1)) · ω(G(n,U)) + O(log n).
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Proof sketch - moderate rate of approach

Now, putting it all together...

• Let W be any graphon equal to 1 at (0, 0), bounded away

from 1 near all other points (x , x), and with directional

derivatives bounded away from 0 and −∞ at (0, 0).

• Recall: Wr has directional derivatives between −r and − r√
2

.

• So if we take r1 sufficiently large and r2 sufficiently small, we

can bound W between Wr1 and Wr2 in some neighborhood of

(0, 0).
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Proof sketch - moderate rate of approach

• W is locally bounded between Wr1 and Wr2 in some

neighborhood of (0, 0) for some r1, r2.

• So by the Lemma, ω(G(n,W )) is bounded between

ω(G(n,Wr1)) = Θ(
√

n) and ω(G(n,Wr2)) = Θ(
√

n).

• Thus ω(G(n,W )) = Θ(
√

n).
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Proof sketch - moderate rate of approach

We’ve proved:

Theorem (M., 2019)

Let W : [0, 1]2 → [0, 1] be a graphon equal to 1 at the point

(0, 0), and essentially bounded away from 1 in some

neighborhood of (x , x) for each other x ∈ [0, 1]. If all directional

derivatives of W exist at (0, 0), and are uniformly bounded away

from 0 and −∞, then ω(G(n,W )) = Θ(
√

n) a.a.s.
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Bonus!

Can use the same ideas to prove:

Example (M.,, 2019)

Define the graphon W : [0, 1]2 → [0, 1] by

W = (1− f (x))(1− f (y)), where f (x) =

e−1/x2
x 6= 0

0 x = 0
.

The random graph G(n,W ) has clique number n1−o(1) a.a.s.
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Bonus!

Example (M., 2019)

W = (1− f (x))(1− f (y)), where f (x) =

e−1/x2
x 6= 0

0 x = 0
.

The random graph G(n,W ) has clique number n1−o(1) a.a.s.

• Infinitely many zero derivatives at (0, 0).

• ⇒ locally bound below by Ur = (1− x r )(1− y r ) for any r .

• ⇒ bound ω(G(n,W )) below by ω(G(n,Ur )) = Θ(n
r

r+1 ).
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Future directions



Constants

Determining correct constants: Could perhaps use tools from

large deviations theory, or a very technical second moment

calculation.
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Finding large cliques

• Finding a large clique: In Gn,1/2, no known poly-time

algorithm finds a clique more than half the size of the max

clique (e.g. Krivelevich, Sudakov, 1998; problem due to Karp,

1976). Could we do better here?

• Finding a planted clique: Plant a clique of size k in a

random graph, ask for poly-time algorithm to recover it. For

Gn,p, algorithm known only if k ≥
√
n (e.g. Alon et al, 1998),

much larger than ω(Gn,p). Could we do better here?

50



More points equal to 1

What about graphons with W (x , x) = 1 at infinitely many points?

For example,

W (x , y) = 1− |x − y |

or

W (x , y) =
(
1− x sin2

(
1
x

))
·
(
1− y sin2

(
1
y

))
51



Thank you!
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