Super-logarithmic clique numbers in dense inhomogeneous random graphs

Gwen McKinley
May 10, 2019
Massachusetts Institute of Technology

Outline

- Background \& definitions
- Previous work
- My results
- Proof methods
- Future directions

Background \& Definitions

Background \& Definitions

- The Erdős-Rényi random graph, $\mathbb{G}(\boldsymbol{n}, \boldsymbol{p})$, has n vertices, and each pair of vertices forms an edge independently with probability p.
- The clique number, $\boldsymbol{\omega}(\boldsymbol{G})$, of a graph G is the number of vertices in the largest complete subgraph of G.

Background \& Definitions

Theorem

$$
\omega(\mathbb{G}(n, p))=(1+o(1)) \frac{2}{\log (1 / p)} \log (n)
$$

with probability $1-o(1)$, as $n \rightarrow \infty$.

Proof idea:

- Upper bound on $\omega(\mathbb{G}(n, p))$: find k for which the expected number of k-cliques in $\mathbb{G}(n, p)$ is asymptotically zero. (first moment method)
- Lower bound on $\omega(\mathbb{G}(n, p))$: for slightly smaller k, show that the number of k-cliques is highly concentrated around its expectation. (second moment method)

Background \& Definitions

- More recently, interest in inhomogeneous random graphs.
- Edge probabilities not equal to a constant p and/or not independent.

Background \& Definitions

- A (dense) graphon is a symmetric, measurable function $W:[0,1]^{2} \rightarrow[0,1]$.
- Can generate an inhomogeneous random graph from W by uniformly sampling n numbers $x_{1}, \ldots, x_{n} \in[0,1]$ and making each (i, j) an edge with probability $W\left(x_{i}, x_{j}\right)$.
- Call this a W-random graph, and write $\mathbb{G}(\boldsymbol{n}, \boldsymbol{W})$.

Background \& Definitions

- Natural extension of the Erdős-Rényi random graph:
- Notice that $\mathbb{G}(n, p)=\mathbb{G}(n, W)$ for the constant graphon $W=p$.

W-random graph example

W-random graph example

W-random graph example

$W(x, y)=(1-x)(1-y)$

$\mathbb{G}(n, W)$

Background \& Definitions

Question: what can we say about clique numbers of W-random graphs?

Previous Work

Previous Results

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon W : $\Omega^{2} \rightarrow[0,1]$ that is essentially bounded away from 0 and 1,

$$
\omega(\mathbb{G}(n, W))=(1+o(1)) \kappa(W) \log n,
$$

with probability $1-o(1)$ as $n \rightarrow \infty$, where

$$
\kappa(W)=\sup \left\{\frac{2\| \| \|_{1}^{2}}{J_{(x, y) \in \Omega^{2}} h(x) h(y) \log (1 / W(x, y)) d\left(\nu^{2}\right)}: \mathrm{h} \geq 0 \text { an } L^{1} \text {-function on } \Omega\right\} .
$$

"essentially bounded" = bound holds everywhere except perhaps on some set of measure zero.

Previous Results

Theorem (Doležal, Hladký, and Máthé, 2017)

For a graphon $W: \Omega^{2} \rightarrow[0,1]$ that is essentially bounded away from 0 and 1 ,

$$
\omega(\mathbb{G}(n, W))=(1+o(1)) \kappa(W) \log n .
$$

- Most important part is the characterization of $\kappa(W)$:
- If W is bounded between $p_{1}>0$ and $p_{2}<1$, then can couple $\mathbb{G}(n, W)$ with $\mathbb{G}\left(n, p_{1}\right)$ and $\mathbb{G}\left(n, p_{2}\right)$ so that

$$
\omega\left(\mathbb{G}\left(n, p_{1}\right)\right) \leq \omega(\mathbb{G}(n, W)) \leq \omega\left(\mathbb{G}\left(n, p_{2}\right)\right) .
$$

- Both these bounds are $\Theta(\log n)$, so $\omega(\mathbb{G}(n, W))=\Theta(\log n)$.

Previous Results

Clique numbers for other inhomogeneous random graphs:

- Graphs with a power-law degree distribution (Janson, Łuczak, and Norros, 2010)
- Hyperbolic random graphs (Bläsius, Friedrich, and Krohmer, 2018)
- Rank-1 inhomogeneous random graphs (Bogerd, Castro, and van der Hofstad, 2018); explicitly computed clique number when vertex weights bounded away from 1, showed 2-point concentration.

Graphons that approach 1

Returning to graphons,

- Question: what happens if W is not bounded away from 1 ?
- Easy case: if $W=1$ on $S \times S$ for some set S of positive measure, then $\omega(\mathbb{G}(n, W))$ is linear a.a.s.
- General case: too hard! (or too weird...)

Graphons that approach 1

Example (Doležal, Hladký, and Máthé, 2017)

There exists a graphon W and a sequence of integers $n_{1}<n_{2}<\cdots$ such that $\omega\left(\mathbb{G}\left(n_{i}, W\right)\right)$ alternates between at most $\log \log n_{i}$ and at least $\frac{n_{i}}{\log \log n_{i}}$ on elements of the sequence asymptotically almost surely.

- In fact, can replace $\log \log n$ with any $\omega(1)$ function.
- Shown for a highly discontinuous graphon $W:[0,1]^{2} \rightarrow[0,1]$.
- Question: Even if W is not bounded away from 1 , can we find a good characterization of $\omega(\mathbb{G}(n, W))$ as long as W is reasonably "well-behaved"?

Graphons that approach 1

- Question: Even if W is not bounded away from 1, can we find a good characterization of $\omega(\mathbb{G}(n, W))$ as long as W is reasonably "well-behaved"?
- Note: we only care about points on the diagonal (i.e. with $x=y)$ where W approaches 1 .

Lemma (M., 2019)

Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon whose essential supremum is strictly less than 1 in some neighborhood of each point (x, x) for $x \in[0,1]$. Then $\omega(\mathbb{G}(n, W))=O(\log n)$ asymptotically almost surely.

Graphons that approach 1

- Updated question: If W approaches 1 near at least one point (a, a), and W is sufficiently "well-behaved", can we find a good characterization of $\omega(\mathbb{G}(n, W))$?
- Depends...
- How many points (a, a) ?
- How fast does W approach 1 ?
- How well-behaved?

New Results

Moderate rate of approach

- Know that if W never approaches 1 , then

$$
\omega(\mathbb{G}(n, W))=O(\log n)
$$

- New fact: If W approaches 1 "moderately fast" at a finite number of points, then $\omega(\mathbb{G}(n, W))=\Theta(\sqrt{n})$.

Theorem (M., 2019)

Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon equal to 1 at some collection of points $\left(a_{1}, a_{1}\right), \ldots,\left(a_{k}, a_{k}\right)$, and essentially bounded away from 1 in some neighborhood of (x, x) for each other $x \in[0,1]$. If all directional derivatives of W exist at the points $\left(a_{1}, a_{1}\right), \ldots,\left(a_{k}, a_{k}\right)$, and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W))=\Theta(\sqrt{n})$ asymptotically almost surely.

Moderate rate of approach

Even if W doesn't have directional derivatives, can sometimes obtain a similar bound:

Lemma (M., 2019)
Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon equal to 1 at some point (a, a). If W is locally Lipschitz continuous at (a, a), then $\omega(\mathbb{G}(n, W))=\Omega(\sqrt{n})$ asymptotically almost surely.

Immoderate rate of approach

So what doesn't have a clique number $\Theta(\sqrt{n})$?

Example (M., 2019)

For any constant $r>0$, define the graphon

$$
U_{r}(x, y):=\left(1-x^{r}\right)\left(1-y^{r}\right)
$$

The random graph $\mathbb{G}\left(n, U_{r}\right)$ asymptotically almost surely has clique number $\Theta\left(n^{\frac{r}{r+1}}\right)$.

W-random graph example

U_{2}, clique number $=\Theta\left(n^{2 / 3}\right)$

$U_{\frac{1}{2}}$, clique number $=\Theta\left(n^{1 / 3}\right)$

Immoderate rate of approach

Example (M., 2019)

For any constant $r>0$, define the graphon

$$
U_{r}(x, y):=\left(1-x^{r}\right)\left(1-y^{r}\right) .
$$

The random graph $\mathbb{G}\left(n, U_{r}\right)$ asymptotically almost surely has clique number $\Theta\left(n^{\frac{r}{r+1}}\right)$.

- If $r>1$, the directional derivatives are 0 , and $\frac{r}{r+1}>\frac{1}{2}$.
- If $r<1$, the directional derivatives are $-\infty$, and $\frac{r}{r+1}<\frac{1}{2}$.

Immoderate rate of approach

A bit more general:
Lemma (M., 2019)
Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon equal to 1 at some point (a, a). If W is locally α-Hölder continuous at (a, a) for some constant α, then $\omega(\mathbb{G}(n, W))=\Omega\left(n^{\frac{\alpha}{\alpha+1}}\right)$ asymptotically almost surely.

Immoderate rate of approach

Can also show

- If W is equal to 1 at some point (a, a), and all directional derivatives of W at (a, a) exist and are equal to zero, then $\omega(\mathbb{G}(n, W))=\omega(\sqrt{n})$ a.a.s.
- If W is equal to 1 at the points $\left(a_{1}, a_{1}\right), \ldots,\left(a_{k}, a_{k}\right)$, and bounded away from 1 near all other (x, x), and all directional derivatives of W at $\left(a_{1}, a_{1}\right), \ldots,\left(a_{k}, a_{k}\right)$ are equal to $-\infty$, then $\omega(\mathbb{G}(n, W))=o(\sqrt{n})$ a.a.s.

Methods

Methods

Before we get to some proofs, one thing to notice...

Wait...what happened to the constants?

- In all the results above, clique number is given up to a constant factor.
- But for Erdős-Rényi random graphs, and the result by Doležal, Hladký, and Máthé, a correct constant is given.
- Does a correct constant exist for the examples considered here? Yes!

Theorem (Doležal, Hladký, and Máthé, 2017)

For any graphon W, with probability $1-o(1)$,

$$
\omega(\mathbb{G}(n, W))=(1+o(1)) \cdot \mathbb{E}[\omega(\mathbb{G}(n, W))]
$$

Wait...what happened to the constants?

- Correct constant exists - why haven't we found it?
- Recall method for finding clique number for Erdős-Rényi random graphs:
- Upper bound: find k for which the expected number of k-cliques in $\mathbb{G}(n, p)$ is asymptotically zero. (first moment method)
- Lower bound: show that the number of k-cliques has low variance \Rightarrow close to its expectation with high probability. (second moment calculation)
- Problem here: the number of k-cliques has high variance in most of the examples above (for k in relevant range).

Wait...what happened to the constants?

- Problem here: the number of k-cliques has high variance in most of the examples above (for k in relevant range).
- A few ways possible around this:
- Doležal, Hladký, and Máthé applied the second moment method to a carefully chosen restriction of the original graphon.
- Could try using tools from large deviations theory (as in Achlioptas, Peres, 2003).
- However, to get a lower bound tight up to a constant, there is a simpler way!

Proof sketch

Keep that in mind - we'll come back to it in a moment! For now, look at the overall proof strategy for some of the results above.

Proof sketch

Overall approach to prove results above:

- Compute the clique numbers associated to some family of specific graphons with the desired local behavior.
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with $W(x, x)=1$.
- Use elements of specific family, together with fact above, to determine the clique number associated to any graphon with comparable local behavior.

Proof sketch - moderate rate of approach

Use this framework to sketch a proof of the following:

Theorem (M., 2019)

Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon equal to 1 at the point $(0,0)$, and essentially bounded away from 1 in some neighborhood of (x, x) for each other $x \in[0,1]$. If all directional derivatives of W exist at $(0,0)$, and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W))=\Theta(\sqrt{n})$ a.a.s.

Proof sketch - moderate rate of approach

First, a family of graphons with the desired local behavior:

Definition

For any $r>0$, define the graphon

$$
W_{r}(x, y)=(1-x)^{r}(1-y)^{r}
$$

W_{r} has directional derivatives between $-r$ and $-\frac{r}{\sqrt{2}}$ at $(0,0)$.

Proof sketch - moderate rate of approach

Family of graphons: $W_{r}(x, y)=(1-x)^{r}(1-y)^{r}$

Proof sketch - moderate rate of approach

Now, find the clique number of $\mathbb{G}\left(n, W_{r}\right)$. For upper bound, use first moment method:

$$
\begin{aligned}
\mathbb{E}\left[\# \text { k-cliques in } \mathbb{G}\left(n, W_{r}\right)\right] & =\binom{n}{k} \cdot \operatorname{Pr}([k] \text { is a clique }) \\
& =\binom{n}{k} \int_{[0,1]^{k}} \prod_{\ell \neq m \in[k]} W_{r}\left(x_{\ell}, x_{m}\right) d \vec{x} \\
& =\binom{n}{k}\left(\int_{0}^{1}(1-x)^{r(k-1)} d x\right)^{k} \\
& =\binom{n}{k}\left(\frac{1}{r(k-1)+1}\right)^{k}
\end{aligned}
$$

Proof sketch - moderate rate of approach

$\mathbb{E}\left[\# \mathrm{k}\right.$-cliques in $\left.\mathbb{G}\left(n, W_{r}\right)\right]=\binom{n}{k}\left(\frac{1}{r(k-1)+1}\right)^{k}$.

- If k is slightly more than $\left(\frac{e}{r}\right)^{1 / 2} \cdot \sqrt{n}$, then this is $o(1)$.
- \Rightarrow by Markov, with probability $(1-o(1))$, have

$$
\omega\left(\mathbb{G}\left(n, W_{r}\right)\right) \leq(1+o(1))\left(\frac{e}{r}\right)^{1 / 2} \cdot \sqrt{n} .
$$

Proof sketch - moderate rate of approach

Now for a lower bound on $\omega\left(\mathbb{G}\left(n, W_{r}\right)\right)$.
We want a clique of size $\Theta(\sqrt{n})$. Recall that

$$
W_{r}(x, y)=(1-x)^{r}(1-y)^{r} .
$$

- Question: Which vertices are likely to form a large clique?
- Answer: Vertices i with x_{i} close to 0.

Proof sketch - moderate rate of approach

$$
W_{r}(x, y)=(1-x)^{r}(1-y)^{r} .
$$

- Question: Which vertices are likely to form a large clique?
- Answer: Vertices i with x_{i} close to 0.
- Fact: For any constant c, there are at least $c \sqrt{n}$ vertices with $x_{i} \leq(1+o(1)) \frac{c}{\sqrt{n}}$, a.a.s. (Chebyshev)

Proof sketch - moderate rate of approach

- Have $c \sqrt{n}$ vertices with $x_{i} \leq(1+o(1)) \frac{c}{\sqrt{n}}$.
- In general, they won't form a clique, but...
- With probability $1-o(1)$, the subgraph they induce will be missing at most $\frac{c \sqrt{n}}{2}$ edges if $c \leq\left(\frac{1}{3 e r}\right)^{1 / 2}$. definition of $W_{r}+$ union bound + some algebra
- Delete one vertex from each non-edge \Rightarrow remaining vertices form a clique of size $\frac{c \sqrt{n}}{2}=\Theta(\sqrt{n})$.

Proof sketch - moderate rate of approach

Quick recap:

- For any $r>0$, the graphon $W_{r}(x, y)=(1-x)^{r}(1-y)^{r}$ has clique number $\Theta(\sqrt{n})$.
- Upper bound: $(\mathbb{1}+o(\mathbb{1}))\left(\frac{e}{r}\right)^{1 / 2} \cdot \sqrt{n}$, by first moment method.
- Lower bound: $\frac{1}{2}\left(\frac{1}{3 e r}\right)^{1 / 2} \sqrt{n}$, by guessing which vertices are likely to form a large clique, and showing this indeed happens with high probability.

Proof sketch - moderate rate of approach

Recall proof strategy for general W :

- Compute the clique numbers associated to some specific family of graphons with the desired local behavior. Done.
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with $W(x, x)=1$.
- Use elements of specific family, together with fact above, to determine the clique number associated to any graphon with comparable local behavior.

Proof sketch - moderate rate of approach

Recall proof strategy for general W :

- Compute the clique numbers associated to some specific family of graphons with the desired local behavior.
- Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with $W(x, x)=1$.
- Use elements of specific family, together with fact above, to determine the clique number associated to any graphon with comparable local behavior.

Proof sketch - moderate rate of approach

Fact: the clique number of $\mathbb{G}(n, W)$ is primarily determined by local behavior of W near points with $W(x, x)=1$. Explicitly...

Lemma (M., 2019)

Let $W, U:[0,1] \rightarrow[0,1]^{2}$ be graphons equal to 1 at some point (a, a), and essentially bounded away from 1 in some neighborhood of (x, x) for all other $x \in[0,1]^{2}$. If there exists a neighborhood N of (a, a) on which $W(x, y) \leq U(x, y)$, then a.a.s.,

$$
\omega(\mathbb{G}(n, W)) \leq(1+o(1)) \cdot \omega(\mathbb{G}(n, U))+O(\log n) .
$$

Proof sketch - moderate rate of approach

Now, putting it all together...

- Let W be any graphon equal to 1 at $(0,0)$, bounded away from 1 near all other points (x, x), and with directional derivatives bounded away from 0 and $-\infty$ at $(0,0)$.
- Recall: W_{r} has directional derivatives between $-r$ and $-\frac{r}{\sqrt{2}}$.
- So if we take r_{1} sufficiently large and r_{2} sufficiently small, we can bound W between $W_{r_{1}}$ and $W_{r_{2}}$ in some neighborhood of $(0,0)$.

Proof sketch - moderate rate of approach

- W is locally bounded between $W_{r_{1}}$ and $W_{r_{2}}$ in some neighborhood of $(0,0)$ for some r_{1}, r_{2}.
- So by the Lemma, $\omega(\mathbb{G}(n, W))$ is bounded between $\omega\left(\mathbb{G}\left(n, W_{r_{1}}\right)\right)=\Theta(\sqrt{n})$ and $\omega\left(\mathbb{G}\left(n, W_{r_{2}}\right)\right)=\Theta(\sqrt{n})$.
- Thus $\omega(\mathbb{G}(n, W))=\Theta(\sqrt{n})$.

Proof sketch - moderate rate of approach

We've proved:
Theorem (M., 2019)
Let $W:[0,1]^{2} \rightarrow[0,1]$ be a graphon equal to 1 at the point $(0,0)$, and essentially bounded away from 1 in some neighborhood of (x, x) for each other $x \in[0,1]$. If all directional derivatives of W exist at $(0,0)$, and are uniformly bounded away from 0 and $-\infty$, then $\omega(\mathbb{G}(n, W))=\Theta(\sqrt{n})$ a.a.s.

Bonus!

Can use the same ideas to prove:

Example (M.,, 2019)

Define the graphon $W:[0,1]^{2} \rightarrow[0,1]$ by

$$
W=(1-f(x))(1-f(y)), \text { where } f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

The random graph $\mathbb{G}(n, W)$ has clique number $n^{1-o(1)}$ a.a.s.

Bonus!

Example (M., 2019)

$$
W=(1-f(x))(1-f(y)), \text { where } f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

The random graph $\mathbb{G}(n, W)$ has clique number $n^{1-o(1)}$ a.a.s.

- Infinitely many zero derivatives at $(0,0)$.
- \Rightarrow locally bound below by $U_{r}=\left(1-x^{r}\right)\left(1-y^{r}\right)$ for any r.
- \Rightarrow bound $\omega(\mathbb{G}(n, W))$ below by $\omega\left(\mathbb{G}\left(n, U_{r}\right)\right)=\Theta\left(n^{\frac{r}{r+1}}\right)$.

Future directions

Constants

Determining correct constants: Could perhaps use tools from large deviations theory, or a very technical second moment calculation.

Finding large cliques

- Finding a large clique: In $G_{n, 1 / 2}$, no known poly-time algorithm finds a clique more than half the size of the max clique (e.g. Krivelevich, Sudakov, 1998; problem due to Karp, 1976). Could we do better here?
- Finding a planted clique: Plant a clique of size k in a random graph, ask for poly-time algorithm to recover it. For $G_{n, p}$, algorithm known only if $k \geq \sqrt{n}$ (e.g. Alon et al, 1998), much larger than $\omega\left(G_{n, p}\right)$. Could we do better here?

More points equal to 1

What about graphons with $W(x, x)=1$ at infinitely many points?
For example,

$$
W(x, y)=1-|x-y|
$$

$$
\begin{aligned}
W(x, y)= & \left(1-x \sin ^{2}\left(\frac{1}{x}\right)\right) \\
& \cdot\left(1-y \sin ^{2}\left(\frac{1}{y}\right)\right)
\end{aligned}
$$

Thank you!

