Coloring the Middle Layers of the Hamming Cube

Lina L_{i}, Gwen McKinley, Jinyoung Park

Outline

- Background \& Definitions
- Our results explain $\begin{aligned} & \text { this picture: }\end{aligned}$
- Techniques $C_{\text {just }}$ a bit, fume permitting!
explain this picture:

Hamming cube Q_{n} :
vertices $=$ binary strings of length n

$$
\text { edges }=\text { flip } 1 \text { bit }
$$

applications in CS:

e.g., error - correcting codes

Hamming cube Q_{n} :
vertices $=$ binary strings of length n
Q_{4}
edges $=$ flip 1 bit
applications in CS: e.g., error - correcting

 codes

Hamming cube Q_{n} :
vertices $=$ binary strings of length n
Q_{4}

$$
\text { edges }=\text { flip } 1 \text { bit }
$$

applications in CS: e.g., error - correcting

 codes

Hamming cube Q_{n} :
vertices $=$ binary strings of length n
edges $=$ flip 1 bit
applications in CS: e.g., error - correcting codes

Q What is $\underbrace{X\left(Q_{n}\right)}$?
A 2
\# colors needed
Q_{n} is bipartite

Q What is $\underbrace{X\left(Q_{n}\right)}$? \# colors needed
to color Q_{n}

A 2
Q_{n} is bipartite

Q What is $\underbrace{X\left(Q_{n}\right)}$? \# colors needed
to color Q_{n}

A 2
Q_{n} is bipartite

Q_{n} can be colored with 2 colors.
Question How many ways can Q_{n} be colored with 3 colors?

Lower bound:

Question How many ways can Q_{n} be colored with 3 colors?
(Observation: at least $6 \cdot 2^{2^{n-1}}$ ways)

The (Gavin, 2003) The \# of 3-colorings of Q_{n} is $(1+o(1)) e\left(6 \cdot 2^{2^{n-1}}\right)$.

The (Gavin, 2003) The \# of 3-colorings of Q_{n} is $(1+o(1)) e\left(6 \cdot 2^{2^{n-1}}\right)$.

Up the ante:

- How many q-colorings of Q_{n} are there?
- Structure of a typical q-coloring?
- Other bipartite graphs?

Q How many q-colorings of Q_{n} are there?

- $q=3 \rightarrow$ Galvin, 2003
- typical structure \longrightarrow Engbers + Calvin, 2012 for $q \geq 4$
- $q=4 \rightarrow$ Park + Kahn, 2020
- $q \geqslant 5 \rightarrow$ Jenssen + Keevash, 2020+

Structural results
nerve

a "ground state" the coloring other half

a typical coloring

Flaws are typically very small and "not too close together" in q-colorings of Q_{n}.

Q What about other bipartite graphs? Should depend on structure:

Q What about other bipartite graphs? Should depend on structure:

Q What about other bipartite graphs? Should depend on structure:

Q What about other bipartite graphs? Should depend on structure:

Q What about other bipartite graphs? Should depend on structure:

Q What about other bipartite graphs?
Conjecture (folklore?) A regular bipartite graph G has typical colorings with this structure ("small flaws") if it is a "good enough expander".

some vtxs

Our problem
Look at just the middle layers of Q_{n}.

Still good expansion, but less structure
 than Q_{n}.

Our results

- Typical q-coloring of middle layers has "small flaws" if $q \geqslant 4$ is even.

const. size, depending on q
- Counting:

Theorem 1.1. Let $q \geq 4$ be even. Then we have

$$
c_{q}\left(\mathcal{B}_{d}\right)=(q / 2)^{N}\binom{q}{q / 2} \exp ((1+o(1)) f(q, d))
$$

as $d \rightarrow \infty$, where

$$
f(q, d)=N(1-2 / q)^{d}+N(1-2 / q)^{2 d} \cdot \frac{1}{2}\left(d(1-2 / q)^{-2}-d-1\right) .
$$

In particular, for $q=4$,

Proof strategy
"cake"

- Step 1 No large flaws entropy approach: Kahn/Engbers\square where it breaks for odd a
- Step 2 No medium flaws graph containers + entropy
- Step 3 Counting
"frosting"

"assembly"

Step 1 Original argument from Kahn relies on a matching between half cubes:

In middle layers, only half of the matching survives:

Step 1 Original argument from Kahn relies on a matching between half cubes:

In middle layers, only half of the matching survives:

$\frac{\text { This is good enough! }}{\text { (for even q...) }}$

Remaining questions

- Odd q ?
- Other bipartite expanders - Step 1?
(large flaws)

Thank you!

What breaks for odd q ?

middle lagers

