1. (15) (a) State and prove the Schur Decomposition Theorem.

(b) Use it to prove: A has n orthonormal eigenvectors iff \(A^H A = A A^H \), where \(A \in \mathbb{C}^{n\times n} \).

2. (20) (a) Let \(A \) be \(m \times n, m > n, B = [A|z] \). Show that \(\sigma_1(B) \geq \sigma_1(A) \) and \(\sigma_{n+1}(B) \leq \sigma_n(A) \).

(b) Let \(A \) be \(m \times n, m \geq n, C = \begin{bmatrix} A \\ v^T \end{bmatrix} \). Show that \(\sigma_n(C) \geq \sigma_n(A) \) and \(\sigma_1(A) \leq \sigma_1(C) \leq \sqrt{\sigma_1(A)^2 + v^Tv} \).

3. (10) (a) Use Gershgorin's Theorem to prove that a real symmetric diagonally dominant matrix with positive diagonal elements is positive definite.

(b) Show that if the single shift QR method converges, then the convergence is:
 (a) quadratic for general matrices
 (b) cubic for symmetric matrices

4. (10) Prove that \(\| B(\lambda) - A^+ \|_2 = \frac{\lambda}{\sigma_r(\sigma_r^2 + \lambda)} \), where \(B(\lambda) = (A^T A + \lambda I)^{-1} A^T, \lambda > 0, A \) is \(m \times n, m \geq n, r = \text{rank}(A) \).

5. (10) Let \(A \) be \(n \times n \), nonsingular, and \(A = QR \), where \(Q \) is orthogonal and \(R \) is upper triangular with positive diagonal. Prove that \(Q \) and \(R \) are unique.

6. (15) Prove that if \(A \) is symmetric positive definite, \(\max_{i,j} |a_{ij}| = 1 \), then \(\max_{i,j,k} |a_{ij}^{(k)}| = 1 \) under \(LDL^T \) (or \(LU \)) decomposition.
Question 1. Let $f \in C^4(a, b)$, and let $x_0 = a < x_1 < \ldots < x_{n-1} < x_n = b$. Let s be the C^2 natural cubic spline interpolant of f and let g be any other C^2 function satisfying $g(x_i) = f(x_i), 0 \leq i \leq n, g''(x_0) = g''(x_n) = 0$. Prove
\[\| s'' \|_{L^2(a,b)} \leq \| g'' \|_{L^2(a,b)}. \]

Question 2. Find the one-point Gauss-Quadrature Rule of the form
\[\int_0^1 f(x)\sqrt{x} \, dx \approx Af(\alpha). \]

Question 3. Define the terms:

a. Consistency
b. Stability
c. Convergence

as they relate to a multi-step formula for solving the initial value problem $y' = f(y), y(0) = y_0$. Apply these concepts to analyze the two step formula
\[y_{k+1} = y_{k-1} + 2hf(y_k). \]