MATH 220. Complex Analysis
Qualifying exam. September 8, 2005

General instructions: 3 hours. No books or notes. Be sure to motivate all (non-trivial) claims and statements. You may use without proof any result proved in the text unless otherwise stated. You need to reprove any result given as an exercise. The notation $B(a, r) := \{ z : |z - a| < r \}$ and $D := B(0, 1)$ will be used. If $G \subset \mathbb{C}$ is an open set, $H(G)$ denotes the set of all analytic functions in G.

1. Find all functions $f \in H(B(0; 2))$ such that the following two conditions are satisfied:
 (a) $|f(z)| = 1$ if $|z| = 1$
 (b) f has a zero of multiplicity 2 at $z = 1/2$ and no other zeroes.
 Hint: Consider first the case where f satisfies (a), but has no zeroes.

2. Let f be a nonconstant analytic function in D with $f(0) = 0$. Show that there exist a real number r, $0 < r \leq 1$, a function $g \in H(B(0, r))$ with $g(0) \neq 0$, and a positive integer m, such that
 $$f(z) = (zg(z))^m, \quad z \in B(0, r).$$

3. Prove that if f is a non-constant analytic function on a bounded open set $G \subset \mathbb{C}$ and is continuous on \overline{G}, then either f has a zero in G or $|f(z)|$ reaches its minimum value on ∂G.

4. Let $K \subset G \subset \mathbb{C}$ with K compact and G open. Suppose that for any f analytic in an open neighborhood of K and any $\epsilon > 0$ there is $g \in H(G)$ so that $|f(z) - g(z)| < \epsilon$ for all $z \in K$. Let $z_0 \in G \setminus K$ be arbitrary. Show that there exists $h \in H(G)$ such that
 $$|h(z_0)| > \sup_{w \in K} |h(w)|.$$

5. Use the method of residues to compute the integral $\int_0^\infty \frac{\sin x}{x} dx$. Justify all your steps.
 Hint: Integrate the function $\frac{e^{iz}}{z}$ on an appropriate closed curve.

6. State and prove Harnack's inequality for non-negative functions that are continuous in \overline{D} and harmonic in D. (You may use without proof the Poisson integral formula.)