Ph.D./Masters Qualifying Examination in Numerical Analysis

Examiners: Philip E. Gill and Michael Holst

9am–12 Noon
Wednesday May 25, 2005
5829 AP&M

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1.1</td>
<td>20</td>
</tr>
<tr>
<td>#1.2</td>
<td>20</td>
</tr>
<tr>
<td>#1.3</td>
<td>20</td>
</tr>
<tr>
<td>#2.1</td>
<td>20</td>
</tr>
<tr>
<td>#2.2</td>
<td>20</td>
</tr>
<tr>
<td>#2.3</td>
<td>20</td>
</tr>
<tr>
<td>#3.1</td>
<td>20</td>
</tr>
<tr>
<td>#3.2</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
</tr>
</tbody>
</table>

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.
1. Norms, Condition numbers and Linear Equations

Question 1.1.

(a) Let $\Delta = \text{diag}(\delta_1, \delta_2, \ldots, \delta_n)$. Prove that for all $1 \leq p \leq \infty$,$$
\|\Delta\|_p = \max_{1 \leq i \leq n} |\delta_i|.
$$

(b) Let A and B be any pair of matrices such that the product AB is defined. Prove that $\|AB\|_F \leq \|A\|_2 \|B\|_F$.

(c) Let $\| \cdot \|$ and $\| \cdot \|_D$ denote any vector norm and its corresponding dual norm. If $A \in \mathbb{C}^{n \times n}$, let $\| A \|_D$ denote the matrix norm subordinate to $\| \cdot \|_D$. Prove that if $x, y \in \mathbb{C}^n$ then$$
\|xy^H\| = \|x\| \|y\|_D.
$$

Question 1.2.

(a) Consider the subtraction $x = a - b$ of two real numbers a and b such that $a \neq b$. Suppose that \tilde{a} and \tilde{b} are the result of making a relative perturbation Δa and Δb to a and b. Find the relative error in $\tilde{x} = \tilde{a} - \tilde{b}$ as an approximation to x and hence find a condition number for the operation of subtraction. Assume that all calculations are done in exact arithmetic.

(b) State the standard rounding-error model for floating-point arithmetic. Given three representable numbers a, b and c, compute the backward and forward relative error for the floating-point value \hat{s} of the calculation $s = ab + c$. Describe a situation in which \hat{s} has large forward error, but small backward error.

Question 1.3.

(a) Prove that every nonsingular symmetric matrix A can be written in the form $PAP^T =LBL^T$, where P is a permutation, L is unit lower triangular and B is a block-diagonal matrix with diagonal blocks of order at most one or two.

(b) Briefly describe the diagonal complete pivoting method for finding the factorization $PAP^T =LBL^T$. Show that $\|L\|$ is bounded independently of A.

2. Least-Squares and Eigenvalues

Question 2.1. Let \(A \) be an \(m \times n \) with rank \(r \). Assume that \(b \in \text{range}(A) \).

(a) Derive necessary and sufficient conditions for \(x \) to be the least-length solution of \(Ax = b \) and prove that the least-length solution is unique.

(b) Define an algorithm for computing the general solution of \(Ax = b \) using the QR factorization of \(A^T \) with column interchanges.

(c) Use part (b) to define the least-length solution. Verify that your algorithm gives the solution of least length.

Question 2.2. Consider a non-defective matrix \(A \in \mathbb{C}^{2 \times 2} \) such that

\[
A = \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}.
\]

(a) Find the left and right eigenvectors of \(A \).

(b) Find the condition number of each of the eigenvalues of \(A \).

(c) Briefly discuss the situation where \(A \) is close to a defective matrix.

Question 2.3. Let \(A \in \mathbb{C}^{n \times n} \). Given an approximate eigenpair \((\lambda, u) \), describe how you would use one step of inverse iteration to find an improved eigenvector \(v \) of \(A \). Hence show that \((\lambda, v) \) is an exact eigenpair of \(A + E \) where \(E \) may be chosen to satisfy

\[
\|E\|_F = \frac{\|u\|_2}{\|v\|_2}.
\]
3. Interpolation, Approximation and ODEs

Question 3.1. Consider the function \(f(x) = 2x^3 - x^2 + 1 \) on \([0, 2]\).

(a) Construct the (unique) quadratic interpolation polynomial \(p_2(x) \) which interpolates \(f(x) \) at \(x = 0, 1, 2 \).

(b) Derive a bound on the error \(|f(x) - p_2(x)| \) which is valid over the interval \([0, 2]\).

(c) Use Simpson’s rule based on \(p_2(x) \) to compute an approximation to

\[
I(f) = \int_0^2 f(x) \, dx,
\]

and give an expression for the error in the approximation.

(d) Derive a bound on the error in the finite difference approximation:

\[
f'(x) = \left[\frac{f(x + h) - f(x - h)}{2h} \right].
\]

Question 3.2. Consider the problem of best \(L^p \)-approximation of a (continuous) function \(u(x) \) over the interval \([0, 1]\) from a subspace \(V \subset L^p([0, 1]) \): Find \(u^* \in V \) such that

\[
||u - u^*||_{L^p} = \inf_{v \in V} ||u - v||_{L^p},
\]

where

\[
||u||_{L^p} = \left(\int_0^1 |u|^p \, dx \right)^{1/p}, \quad 1 \leq p < \infty, \quad ||u||_{L^\infty} = \sup_{x \in [0, 1]} |u(x)|.
\]

We wish to find the best \(L^p \)-approximation of the specific function \(u(x) = x^4 \).

(a) Determine the best \(L^2 \)-approximation in the subspace of quadratic functions; i.e., \(V = \text{span}\{1, x, x^2\} \), and justify the technique you use.

(b) Why (specifically) does this problem become tremendously more difficult if we consider the case \(p \neq 2 \)?

(c) Prove that the decomposition of an element of a Hilbert space using the Projection Theorem is unique.