Let p be a prime, and G a group of order p^3. Prove that G has a normal subgroup of order p^2.

"[n]" means the problem is worth n points.

1. Let p be a prime, and G a group of order p^3. Prove that G has a normal subgroup of order p^2.

Name: ____________________________
b. Assume that G has a cyclic normal subgroup N of order p^2, generated by some element n. Let g be an element not in N.
i [5]. If the order $|g|$ of g is p^2, classify the possible G up to isomorphism.

ii [15]. If the order $|g|$ of g is p, classify the possible G up to isomorphism.

(Incidentally, there exist groups of neither type, such as the group of 3×3 upper triangular matrices over \mathbb{F}_p with 1s on the diagonal.)
2. Let I, J be two ideals in a commutative ring R (with unit). Define $K = \{ r : rJ \leq I \}$. Show that K is an ideal.
b [10]. If R is a principal ideal domain, so $I = \langle i \rangle, J = \langle j \rangle$, give a formula for a generator k of K.
Describe, up to isomorphism, all the $\mathbb{R}[t]$-module structures one might put on a 3-dimensional real vector space (extending the fixed \mathbb{R}-action).
4. Let $\mathbb{C}[x]/\langle x^n \rangle$ denote the evident $\mathbb{C}[x]$ (bi)module, and let $m, n \in \mathbb{N}$. Show that there exist d_1, \ldots, d_k such that

$$\mathbb{C}[x]/\langle x^n \rangle \otimes_{\mathbb{C}[x]} \mathbb{C}[x]/\langle x^m \rangle \cong \bigoplus_{i=1}^{k} \mathbb{C}[x]/\langle x^{d_i} \rangle.$$
b [20]. Determine the \(\{d_i\} \) in terms of \(m, n \).

Hint: figure out the action of \(x \) on the obvious \(C \)-basis.
Recall that a "perfect" field of characteristic p is one for which the Frobenius map $F: x \to x^p$ is onto.

Let K be a perfect field, and F an algebraic extension. Show that F is perfect.