(25) 1. State and prove the SVD Existence Theorem (for real $m \times n$ matrices).

(20) 2. Let A be the $m \times n$, rank(A) = r. Use the SVD of A, $U \Sigma V^T$, to show:
 (a) Nullspace (A) = span{v_{r+1}, \ldots, v_n}
 (b) Range (A) = span{u_1, \ldots, u_r}

(30) 3. (a) Let D be an $m \times n$ diagonal matrix. Prove $\|D\|_p = \max |d_{ii}|$ for $1 \leq p \leq \infty$.
 (b) Prove that if A is $m \times n$, rank(A) = n and $\|E\|_p \|A^{-1}\|_p < 1$ for some p, $1 \leq p \leq \infty$, then rank($A + E$) = n.
 (c) Let A be $n \times n$, nonsingular, and $A = QR$, where Q is orthogonal and R is upper triangular with positive diagonal. Prove that Q and R are unique.

(30) 4. Suppose the computed $a_{ik}^{(k)} = 0$ for $1 \leq k \leq n - 1$, where A is $n \times n$, then the computed L and U satisfy $A + E = LU$, where L is unit lower triangular and U is upper triangular. Derive the bound on E:

$$|E_{ij}| \leq \left\{ \begin{array}{ll}
(3 + u)(i-1)^r |u| & \text{for } i \leq j \\
(3 + u)(j-1)^r |u| & \text{for } i > j
\end{array} \right.$$

and u = unit roundoff.

(55) 5. (20) (a) Show that if the single shift QR method converges, then the convergence is: (a) quadratic for general matrices. (b) cubic for symmetric matrices.

(25) (b) Let $A_0 = A$, where A is symmetric positive definite.

 for $k = 1, 2, \ldots$

 $A_{k-1} = G_k G_k^T$ (Cholesky)

 $A_k \equiv G_k^T G_k$

 Prove that if $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ with $a \geq c$ then $A_k = \text{diag}(\lambda_1, \lambda_2)$, where $\lambda_1 \geq \lambda_2 > 0$.

(10) (c) Let $S = \begin{bmatrix} 0 & -B^T \\ B & 0 \end{bmatrix}$, where B is $n \times n$. Relate the eigenvalues and eigenvectors of S to the SVD of B, $B = U \Sigma V^T$.

1
NA Qual. Part C: Approximation, Interpolation, and Numerical Quadrature.

Question 3.1. [20 points]

(1) Let \(f \in C[-1,1] \) be an even function. Let \(p_n \in \mathcal{P}_n \) be the best uniform approximation of \(f \) in \(\mathcal{P}_n \). Prove that \(p_n \) is also an even function.

(2) Let \(n \geq 1 \) be an integer. Let \(l_0(x), \ldots, l_n(x) \) be the Lagrange basic interpolation polynomials associated with \(n + 1 \) distinct points \(x_0, \ldots, x_n \), i.e.,

\[
l_k(x) = \prod_{\substack{j=1, j\neq k \atop j=1, j\neq n}}^{n} \frac{x-x_j}{x_k-x_j}, \quad k = 0, \ldots, n.
\]

Prove that

\[
x^n = \sum_{j=0}^{n} x_j^m l_j(x), \quad m = 1, \ldots, n.
\]

Question 3.2. [20 points]

Let \(n \geq 1 \) be an integer and \(-\infty < a < b < \infty \). Consider the numerical quadrature

\[
\int_a^b f(x) \, dx \approx \sum_{k=1}^{n} A_k f(x_k),
\]

where \(x_1, \ldots, x_n \in [a,b] \) are distinct points and \(A_1, \ldots, A_n \in \mathbb{R} \). Let \(m \) denote the degree of precision of this numerical quadrature. Prove the following:

(i) \(m \leq 2n - 1 \);

(ii) If this is an interpolatory quadrature, then \(m \geq n - 1 \);

(iii) That \(m = 2n - 1 \) if and only if this is a Gaussian quadrature.