Applied Algebra Qualifying Exam: Part I

9:00am–Noon, AP&M 6402
Tuesday May 28th, 2013

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>20</td>
</tr>
<tr>
<td>#2</td>
<td>20</td>
</tr>
<tr>
<td>#3</td>
<td>20</td>
</tr>
<tr>
<td>#4</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
</tr>
</tbody>
</table>

- Do all four problems.
- This part of the exam will represent 40% of your total score.
- Add your name in the box provided and staple this page to your solutions.

- Notation:
 - $\mathcal{M}_{m,n}$ denotes the set of $m \times n$ matrices with complex entries.
 - If $m = n$, $\mathcal{M}_{m,n}$ is denoted by \mathcal{M}_n.
 - \mathbb{C}^n is the set of column vectors with n complex entries.
 - x^H is the Hermitian transpose of a vector or matrix x.
 - $\text{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).
 - $\text{Re}(\lambda)$ and $\text{Im}(\lambda)$ denote the real and imaginary parts of the scalar λ.
Question 1.

(a) (8 points) Prove the Schur decomposition theorem for a matrix $A \in M_n$.

(b) (12 points) Prove that for $A, B \in M_n$, if $x^H A x = x^H B x$ for all $x \in \mathbb{C}^n$, then $A = B$.

Question 2.

(a) (10 points) Prove that every $A \in M_n$ may be written uniquely as $A = S + iT$, where S and T are Hermitian.

(b) (10 points) For any $A \in M_n$, consider the unique expansion $A = S + iT$, where S and T are Hermitian. Prove that for any $\lambda \in \text{eig}(A)$, it holds that

$$\lambda_n(S) \leq \text{Re}(\lambda) \leq \lambda_1(S) \quad \text{and} \quad \lambda_n(T) \leq \text{Im}(\lambda) \leq \lambda_1(T),$$

where, by convention, the eigenvalues of a Hermitian matrix $C \in M_n$ are arranged in nonincreasing order, i.e.,

$$\lambda_1(C) \geq \lambda_2(C) \geq \cdots \geq \lambda_n(C).$$

Question 3.

(a) (4 points) Define the p-norm $\|A\|_p$ and Frobenius norm $\|A\|_F$ of a matrix $A \in M_{m,n}$.

(b) (10 points) Suppose that $D \in M_n$ with $D = \text{diag}(d_1, d_2, \ldots, d_n)$. Prove that for all $1 \leq p \leq \infty$ the p-norm of D is given by $\|D\|_p = \max_{1 \leq i \leq n} |d_i|$.

(c) (6 points) Given $b \in \mathbb{C}^{n-1}$, find $\|B\|_2$ for the matrices

$$B = \begin{pmatrix} 0 & b^H \\ b & 0 \end{pmatrix} \quad \text{and} \quad B = bb^H.$$

(Show your work. Simply writing down the answer will not be sufficient.)

Question 4.

(a) (15 points) Prove that if $A \in M_n$ is positive semidefinite, then there exists a unique positive semidefinite X such that $A = X^2$.

(b) (5 points) Let X be a matrix whose columns define a basis for a subspace $X \subset \mathbb{C}^n$. Consider the matrix $\hat{X} = X|X|^{-1}$, where $|X|$ denotes the modulus of X, i.e., $|X| = (X^HX)^{\frac{1}{2}}$. Prove that \hat{X} exists and that $\hat{X}\hat{X}^H$ is an orthogonal projection onto X.
Do as many problems as you can, but you must attempt at least 5 problems where two of the problems are from problems 1-5, one problem for 6-7, and one problem are from problems 8-9. The point values are relative values for this part of the exam. Your final score will be scaled so that this part of the exam will represent 60% of your point total.

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$, $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$, \mathbb{Q} equal the rationals and \mathbb{C} denote the complex numbers.

Suppose that $\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k)$ is a partition of n. Then A^λ denotes the irreducible representation of the symmetric group S_n such that the Frobenius image of $\chi^A = \chi^\lambda$ is the Schur function $S_\lambda(x_1, \ldots, x_N)$ where $N > n$ and $S_{\lambda_1} \times \cdots \times S_{\lambda_k}$ denotes the Young subgroup of S_n corresponding to λ.

(1) (30 pts.) Let H be a subgroup of G and $A : H \rightarrow \text{GL}_n(\mathbb{C})$ be a representation of H. Let $\chi^A : H \rightarrow \mathbb{C}$ be the character of A. Define $\chi^A : G \rightarrow \mathbb{C}$ by

$$\chi^A(\sigma) = \begin{cases} \chi^A(\sigma) & \text{if } \sigma \in H \text{ and } \\ 0 & \sigma \in G - H. \end{cases}$$

(a) Define the representation $A \uparrow^G_H$.

(b) Prove that $\chi^A \uparrow^G_H = \frac{1}{|H|} \sum_{\sigma \in G} \sigma \cdot \chi^A \cdot \sigma^{-1}$.

(c) State and prove the Frobenius Reciprocity Theorem.

(2) (40 pts)

(a) Compute the values of the character $\chi^{(1,2^2)}$ on the conjugacy classes of S_5.

(b) Find the character table of $S_3 \times S_2$.

(c) Decompose the $A^{(1,2^2)} \downarrow^{S_5}_{S_3 \times S_2}$ as a sum of irreducible characters of $S_3 \times S_2$.

(3) (40 pts) Let Q be the quaternion group of order 8 defined by the relations

$$a^4 = 1, \quad a^2 = b^2, \quad \text{and} \quad b^{-1}ab = a^3.$$

(a) Show that $ba = ab^3 = a^2b$ and, hence, that every element of Q is of the form a^i or $a^i b$ for some $i \in \{0, 1, 2, 3\}$.

(b) Verify that the conjugacy classes of G are $C_1 = \{1\}$, $C_2 = \{a^2\}$, $C_3 = \{a, a^3\}$, $C_4 = \{b, a^2b\}$, and $C_5 = \{ab, a^3b\}$.

(c) Show that $H = \{1, a^2\}$ is a normal subgroup of G for which G/H is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(d) Give the character character table for the lifting of the four linear characters of Q/H to Q.

(e) Use parts (c) and (d) to give the complete character table for Q.

1
(4) (30 pts)

(a) Let \(T \) denote the trivial representation on the Young subgroup \(S_2 \times S_3 \times S_1 \) of \(S_6 \) and \(Alt \) denote the alternating representation on the Young subgroup \(S_2 \times S_3 \times S_1 \) of \(S_6 \). Express the characters of \(T \uparrow_{S_2 \times S_3 \times S_1}^{S_6} \) and \(Alt \uparrow_{S_2 \times S_3 \times S_1}^{S_6} \) as a sum of irreducible characters of \(S_6 \).

(b) Find the decomposition of the Kronecker product \(A^{(1,4)} \otimes A^{(1,2^2)} \) as a sum of irreducible representations of \(S_5 \).

(c) Find the decomposition of \(A^{(1,2)} \times A^{(1,3)} \uparrow_{S_3 \times S_4}^{S_7} \) as a sum of irreducible representations of \(S_7 \).

(5) (40 pts.) Let \(G \) and \(H \) be finite groups and let \(A : G \rightarrow GL_n(C) \) and \(B : H \rightarrow GL_m(C) \) be representations of \(G \) and \(H \) respectively.

a) Show that \(A \times B : G \times H \rightarrow GL_{nm}(C) \) is representation where for \((\sigma, \tau) \in G \times H\),

\[
A \times B((\sigma, \tau)) = A(\sigma) \otimes B(\tau)
\]

and for matrices \(M \) and \(N \), \(M \otimes N \) is the Kronecker product of \(M \) and \(N \).

b) Show that \(A \times B \) is an irreducible representation of \(G \times H \) if and only if \(A \) is an irreducible representation of \(G \) and \(B \) is an irreducible representation of \(H \).

c) Show that every irreducible representation of \(G \times H \) is of the form \(A \times B \) where \(A \) is an irreducible representation of \(G \) and \(B \) is an irreducible representation of \(H \).

(d) Show that it is not always the case that if \(C \) is a representation of \(G \times H \), then \(C \) is similar to a representation of the form \(A \times B : G \times H \rightarrow GL_n(C) \) where \(A \) is representation of \(G \) and \(B \) is representation of \(H \). (Hint: Consider the two dimensional representations of \(S_2 \times S_2 \).)

(6) (40 pts.) Consider the equations

\[
\begin{align*}
x^2 - xy - 2x &= 0 \\
y^2 - 2xy - y &= 0
\end{align*}
\]

(a) Let \(I \) be the ideal of \(\mathbb{C}[x, y] \) generated by these equations. Find the reduced Groebner basis for \(I \) relative to lexicographic order where \(y > x \).

(b) Find a reduced Groebner basis for \(\mathbb{C}[x] \cap I \).

(c) Find all solutions to these equations that lie \(\mathbb{C}^2 \).

(d) Find a vector space basis for \(\mathbb{C}[x, y]/I \).
(7) (30 pts.) Let S be the parametric surface defined by
\[
 \begin{align*}
 x &= u - 2v \\
 y &= uv \\
 z &= v
 \end{align*}
\]
(a) Compute a reduced Groebner basis for the ideal generated by this set of equations relative to the lexicographic order where $u > v > x > y > z$.

(b) Find the equation of the smallest variety V that contains S.

(c) Show that $S = V$.

(8) (40 pts.) Let k be an algebraically closed field.
Two ideals I and J of $k[x_1, \ldots, x_n]$ are said to be *comaximal* if and only if $I + J = k[x_1, \ldots, x_n]$.

(a) State the Weak Nullstellensatz and Hilbert’s Nullstellensatz Theorem.

(b) Show that two ideals I and J are comaximal if and only if $V(I) \cap V(J) = \emptyset$.

(c) Show that if I and J are ideals in $k[x_1, \ldots, x_n]$, then $I \cap J = (tI + (1-t)J) \cap k[x_1, \ldots, x_n]$.

(d) Show that if $I = \langle f \rangle$ and $J = \langle f \rangle$, then $I \cap J = \langle h \rangle$ where h is a least common multiple of f and g.

(9) (30 pts.) Let $A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$.

(a) Show that A generates a matrix group G of order three.

(b) Find a set of homogeneous G-invariant polynomials which generate $\mathbb{C}[x, y]^G$.

(c) Compute the Hilbert Series of $\mathbb{C}[x, y]^G$.

3