Complex Analysis Qualifying Exam – Fall 2016

Name: __

Student ID: _________________________________

Instructions:

You have 3 hours. No textbooks and notes are allowed. Make sure to state clearly the hypotheses of any results used.

Solve at least 7 of the following 8 problems. You have 180 minutes to complete the test.

Notation: $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

Prove that if f is an entire function such that $\lim_{z \to \infty} f(z) = \infty$, then f must be a polynomial.
Problem 2. [10 points.]

Assume that $f : \mathbb{D} \to \mathbb{D}$ is an analytic function such that $f(0) = 0$. Show that

$$g(z) = \sum_{n=0}^{\infty} f(z^n)$$

converges to an analytic function on \mathbb{D}.
Problem 3. [10 points.]

Using the calculus of residues, compute

\[\int_0^\infty \frac{\log x}{x^2 + 1} \, dx. \]
Problem 4. [10 points.]

Let \(f : \mathbb{D} \to \mathbb{C} \) be a continuous function which is analytic on \(\mathbb{D} \). Assume that there exists \(0 < \alpha \leq 2\pi \) such that \(f(e^{i\theta}) = 0 \), for all \(\theta \in (0, \alpha) \). Prove that \(f(z) = 0 \), for every \(z \in \mathbb{D} \).
Problem 5. [10 points.]

Let $U \subset \mathbb{C}$ be a connected open and let $a \in U$. Let $f_n : U \to \mathbb{D}$ be a sequence of analytic functions such that $f_n(a) = 0$, for all $n \geq 1$. Prove that there exists an analytic function $f : U \to \mathbb{D}$ and a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges uniformly to f on compact subsets of U.
Problem 6. [10 points; 5, 5.]

For $k \geq 1$, let $a_k = 1 - \frac{1}{k^2}$. For $n \geq 1$, define $f_n: \mathbb{D} \to \mathbb{D}$ by letting

$$ f_n(z) = \prod_{k=1}^{n} \frac{a_k - z}{1 - a_k z}. $$

(a) Prove that the sequence $\{f_n\}$ converges to an analytic function $f : \mathbb{D} \to \mathbb{D}$, uniformly on compact subsets of \mathbb{D}.

(b) Prove that there do not exist an open set $U \subset \mathbb{C}$ and an analytic function $g : U \to \mathbb{C}$ such that $\overline{\mathbb{D}} \subset U$, and $g(z) = f(z)$, for every $z \in \mathbb{D}$.
Problem 7. [10 points.]

Let $\gamma : [0,1] \rightarrow \mathbb{C}$ be a path such that $\gamma(0) = 1$ and $\gamma(t) \neq 0$, for every $t \in [0,1]$. Assume that $(f_t, D_t)_{0 \leq t \leq 1}$ is an analytic continuation of $f_0(z) = \log z$ along γ. Prove that f_t is a branch of the logarithm, for every $t \in [0,1]$.
Problem 8. [10 points; 5, 5.]

Let $u : \mathbb{C} \to \mathbb{R}$ be a harmonic function such that $\int \int |u(x + iy)|^2 \, dx \, dy < \infty$.

(a) Prove that $u(a) = \frac{1}{\pi r^2} \int \int_{B_r(a)} u(x + iy) \, dx \, dy$, for every $a \in \mathbb{C}$ and $r > 0$. Here, $B_r(a) = \{ z \in \mathbb{C} | |z - a| < r \}$ denotes the open ball of radius r centered at a.

(b) Prove that $u(z) = 0$, for every $z \in \mathbb{C}$.