Determine the truth or falsity of each of the following statements. Be sure to explain your answers.

1. If A is invertible and AB is invertible, then B is invertible.

Solution. This is true. If A and AB are invertible, then A^{-1} is invertible and
\[B = IB = (A^{-1}A)B = A^{-1}(AB). \]
Thus, as the product of invertible matrices is invertible, B is invertible.

2. If A is not invertible and B is not invertible, then AB is not invertible.

Solution. This is false. Let
\[A = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]
Then neither A nor B is invertible, but
\[AB = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = [2] \]
is invertible.

3. There exists a vector
\[\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 \]
such that $[T]$ is invertible, where T is the linear function $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by the formula
\[T(\vec{v}) = \vec{a} \times \vec{v}, \quad \vec{v} \in \mathbb{R}^3. \]

Solution. This is false. Choose a nonzero vector \vec{x} in \mathbb{R}^3 that is colinear with \vec{a}. Then
\[[T]\vec{x} = T(\vec{x}) = \vec{a} \times \vec{x} = 0. \]
But then $[T]$ cannot be invertible as it cannot have a left inverse: if $B[T] = I$, then
\[\vec{x} = I\vec{x} = B[T]\vec{x} = 0, \]
contradicting the fact that \vec{x} was chosen to be a nonzero vector.