1. Let A, B, and X be $n \times n$ matrices such that A, X, and $A - AX$ are invertible with $(A - AX)^{-1} = X^{-1}B$.
 (a) Explain why B is invertible.
 (b) Solve the equation $(A - AX)^{-1} = X^{-1}B$ for X. If you need to invert a matrix, explain why that matrix is invertible.

2. Let A be an invertible matrix. Explain why the columns of A^{-1} are linearly independent.

3. Let W be the set of all vectors of the form
 \[
 \begin{bmatrix}
 s + 3t \\
 s - t \\
 2s - t \\
 s + t
 \end{bmatrix}.
 \]
 (a) Show that W is a subspace of \mathbb{R}^4.
 (b) Let $v = \begin{bmatrix} 9 \\ 1 \\ 4 \\ 5 \end{bmatrix}$. Determine whether or not $v \in W$.

4. Let
 \[
 A = \begin{bmatrix}
 1 & 5 & -4 & -3 & 1 \\
 0 & 1 & -2 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}.
 \]
 Find a linearly independent set of vectors that span $\text{Nul}(A)$, the null space of A.

5. The following matrices A and B are row equivalent.
 \[
 A = \begin{bmatrix}
 1 & 2 & 1 & 11 & -3 \\
 2 & 4 & 1 & 15 & 2 \\
 1 & 2 & 0 & 4 & 5 \\
 3 & 6 & 1 & 19 & -2
 \end{bmatrix}, \quad B = \begin{bmatrix}
 1 & 2 & 0 & 4 & 0 \\
 0 & 0 & 1 & 7 & 0 \\
 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}.
 \]
 (a) Find a basis for $\text{Nul}(A)$, the null space of A.
 (b) Find a basis for $\text{Col}(A)$, the column space of A.

6. Let V be an n-dimensional vector space. Suppose $S = \{v_1, \ldots, v_k\}$ is a subset of V containing k vectors with $k < n$. Explain why S cannot span V.
