Midterm 2
ave. 60%
std. dev. 17%
\[e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \]

\[f(x) = \ln(x) \quad [f'(x) = e^x], \quad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[\frac{1}{x} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} \]

\[\frac{\ln(x+h) - \ln(x)}{h} = \frac{\ln \left(\frac{x+h}{x} \right)}{h} = \frac{1}{h} \ln \left(\frac{x+h}{x} \right) = \ln \left(\left(\frac{x+h}{x} \right)^{\frac{1}{h}} \right) \]

\[\frac{1}{x} = \lim_{h \to 0} \ln \left(\left(1 + \frac{h}{x} \right)^{\frac{1}{h}} \right) \]

\[e^x = e^{\lim_{h \to 0} \ln \left(\left(1 + \frac{h}{x} \right)^{\frac{1}{h}} \right)} = \lim_{h \to 0} e^{\frac{\ln \left((1 + \frac{h}{x})^{\frac{1}{h}} \right)}{\frac{h}{x}}} = \lim_{h \to 0} (1 + \frac{h}{x})^{\frac{1}{h}} \]
\[e^{\frac{1}{x}} = \lim_{h \to 0} (1 + \frac{h}{x})^{\frac{1}{h}} \quad n = \frac{1}{h} \quad hu = 1 \quad h = \frac{1}{n} \]

\[e^{\frac{1}{x}} = \lim_{n \to \infty} (1 + \frac{1}{nx})^{n} \quad \text{as} \quad h \to 0^+, n \to \infty \]

Play in \(x = 1 \) get \(e = \lim_{n \to \infty} (1 + \frac{1}{n})^{n} \)

Substitute \(z = \frac{1}{x} \) \(x = \frac{1}{z} \)

\[e^{z} = \lim_{n \to \infty} (1 + \frac{z}{n})^{n} \]
4.2 Maximum and Minimum Values

Optimization

- What is the shape of a can that minimizes manufacturing costs?
- What is the radius of a contracted wind pipe that expels air most rapidly during a cough?

Local and absolute mins/maks

\(D = \text{domain of a function } f \)
\(c = \text{number in } D \)

\(f(c) \) is the \underline{absolute maximum} of \(f \) on \(D \) \(\iff \) \(f(c) \geq f(x) \) \(\forall x \in D \)

\(f(c) \) is the \underline{absolute minimum} \(\iff f(c) \leq f(x) \) \(\forall x \in D \)

\(f(c) \) \(\implies \) a \underline{local maximum} \(\iff \) \(f(c) \geq f(x) \) near \(c \)

\(f(c) \) \(\implies \) \underline{local minimum} \(\iff \) \(f(c) \leq f(x) \) near \(c \)
Picture Example

\[y = f(x) \]

Absolute max

D = [a, b]

- O = local maximums
- \(\square \) = local minimums

More pictures

1. \[y = x^2, \ D = \mathbb{R} \]

Absolute and local min of 0 at \((0, 0)\)

No absolute or local max.
1.5 \quad y = x^2, \quad D = [-1, 2]

Absolute and local min of 0 at (0,0).
Local max of 1 at (-1,1).
Absolute and local max of 4 at (2,4).

2 \quad y = \sin(x), \quad D = \mathbb{R}

Absolute and local max
y = 1 at \(x = \frac{\pi}{2} + 2\pi k \)
where k is an integer.
Absolute and local min
y = -1 at \(x = \frac{3\pi}{2} + 2\pi k \)
where k is a whole number.
$3)$ \(y = x^3, \quad D = \mathbb{R} \)

No absolute or local maxes or mins.

Extreme Value Theorem: If \(f \) is continuous on a closed interval \([a, b]\)
then \(f \) attains an absolute max value \(f(c) \) and an absolute min value \(f(d) \) on some numbers \(c \) and \(d \) in \([a, b]\).
Fermat's Theorem: If \(f \) has a local max or min at \(c \) and \(f'(c) \) is defined, then \(f'(c) = 0 \).

Def: A critical number of \(f \) is a number \(c \) in \(D \) where either \(f'(c) = 0 \) or \(f'(c) \) is not defined.

If \(f \) has a local max or min at \(c \), then \(c \) is a critical number for \(f \).
Closed Interval Method

To find the absolute max and min values of a continuous function \(f \) on \(D = [a,b] \):

1. Find critical numbers of \(f \) in \((a,b)\)
2. Find the \(y \)-values of \(f \) at critical numbers.
3. Find the \(y \)-values of \(f \) at the end points of interval \((x=a, x=b) \).

3. The largest of the \(y \)-values from steps 1 and 2 is the absolute maximum. The smallest is the absolute minimum.

Examples

1. \(f(x) = 2x^3 - 3x^2 - 12x + 1 \), \(D = [-2,3] \)
 Find absolute max and min of \(f \) on \(D \).
Step 0

\[f'(x) = 6x^2 - 6x - 12 \]

0 = 6x^2 - 6x - 12
0 = x^2 - x - 2
0 = (x - 2)(x + 1)

\[x = 2 \text{ or } x = -1 \]

Critical numbers are \(x = 2, x = -1 \)

Step 1

\[f(2) = ? , \quad f(-1) = ? \]

\[f(2) = 2 \cdot (2)^3 - 3 \cdot (2)^2 - 12 \cdot 2 + 1 \]

= 2 \cdot 8 - 3 \cdot 4 - 24 + 1
= 16 - 12 - 23 = 4 - 23 = -19

\[f(-1) = 2 \cdot (-1)^3 - 3 \cdot (-1)^2 - 12 \cdot (-1) + 1 \]

= -2 - 3 + 12 + 1 = -5 + 13 = 8

\[f(2) = -19 \]

\[f(-1) = 8 \]

Step 2

\[a = -2, \quad b = 3, \quad f(-2) = ?, \quad f(3) = ? \]
\[f(-2) = 2(-2)^3 - 3(-2)^2 - 12(-2) + 1 \]
\[= 2(-8) - 3(4) + 24 + 1 \]
\[= -16 - 12 + 25 = -28 + 25 = -3 \]
\[f(3) = 2(3)^3 - 3(3)^2 - 12(3) + 1 \]
\[= 2(27) - 3(9) - 36 + 1 \]
\[= 54 - 27 - 35 = 27 - 35 = -8 \]

Step 3

- \[f(2) = -19, \]
- \[f(-1) = 8, \]
- \[f(-2) = -3, \]
- \[f(3) = -8 \]

\[f \] has an absolute max of 8 at \(x = -1 \)

\[f \] has an absolute min of 19 at \(x = 2 \)