Reminder

Homework 3 is due turned in on gradescope.com
Midterm on Monday Jan 27

- covers 1.1, 1.2, 1.3, 1.5, 1.6, 2.1, 2.2
- 6 problems for 50 points
 - 3 problems from 1.1, 1.2, 1.3, 1.5, 1.6 worth 21 pts
 - 3 problems from 2.1, 2.2 worth 29 points

- To prepare
 - understand HW problems
 - do problems in book similar to HW problems
 - understand concepts and examples in book
 - "from lecture"
Example from 1.6

Determine the inverse of \(f(x) = \frac{3x+1}{x-2} \).

\[
\begin{align*}
y &= \frac{3x+1}{x-2} \\
(x-2)y &= (x-2)\left(\frac{3x+1}{x-2}\right) \\
(x-2)y &= 3x+1 \\
x &= \frac{1+2y}{y-3} \\
\Rightarrow \quad y &= \frac{1+2x}{x-3} \\
f^{-1}(x) &= \frac{1+2x}{x-3}
\end{align*}
\]
2.1 Velocity (speed)

\[f(t) = \text{function that tells you your distance away from a point at time } t \] (position function)

in general, average velocity = \(\frac{\text{distance traveled in time } t}{\text{time } t} \)

with \(f(t) \):

average velocity from time \(t_1 \) to time \(t_2 \) = \(\frac{f(t_2) - f(t_1)}{t_2 - t_1} \)

Question: What is instantaneous velocity?

Example \(f(t) = t^2 \)

average velocity from time \(t=1 \) to time \(t=3 \):

\[\frac{f(3) - f(1)}{3 - 1} = \frac{3^2 - 1^2}{2} = \frac{8}{2} = 4 \]

" \(t=1 \)

average velocity from time \(t=2 \) to time \(t=3 \):

\[\frac{f(3) - f(2)}{3 - 2} = \frac{3^2 - 2^2}{1} = 3 \]
The average velocities from time $t=1$ to time $t=2$ or $t=3$ are estimates of the instantaneous velocity at time $t=1$.

To get a better estimate of instantaneous velocity at $t=1$, calculate the average velocity over a smaller time interval: $t=1$ to time $(1+h)$ where $t=1+h$ is a small time interval if h is small. Average velocity from time $t=1$ to time $t=1+h$:
\[\frac{f(1+h) - f(1)}{1+h - 1} = \frac{(1+h)^2 - 1^2}{h} \]

\[= \frac{1+2h+h^2 - 1}{h} \]

\[= \frac{2h+h^2}{h} \]

\[= h(2+h) \]

\[= 2+h \]

\[2+h = \text{average velocity from time } t=1 \text{ to time } t=1+h \]

The smaller \(h \) is, the closer \(2+h \) is to the instantaneous velocity at \(t=1 \).

In general, the average velocity is given by \(\frac{f(t+h) - f(t)}{h} \) from time \(t \) to time \(t+h \), The smaller \(h \) is, the better this numerical estimate is for the instantaneous velocity at time \(t \).
2.2 The Limit of a Function

Definition: We write
\[\lim_{{x \to a}} f(x) = L \]
and say "the limit of \(f(x) \) as \(x \) approaches \(a \) equals \(L \)" if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) but not equal to \(a \).

Limits from a table of values

EX: \(f(x) = \frac{x-1}{x^2-1} \). Determine \(\lim_{{x \to 1}} f(x) \) from the following table of values: (note we cannot plug in \(x = 1 \), that is \(x = 1 \) is not in the domain of \(f \))
<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.666...</td>
</tr>
<tr>
<td>0.9</td>
<td>0.526...</td>
</tr>
<tr>
<td>0.99</td>
<td>0.502...</td>
</tr>
<tr>
<td>0.999</td>
<td>0.5002...</td>
</tr>
<tr>
<td>1</td>
<td>undefined</td>
</tr>
<tr>
<td>1.001</td>
<td>0.499...</td>
</tr>
<tr>
<td>1.01</td>
<td>0.497...</td>
</tr>
<tr>
<td>1.1</td>
<td>0.476...</td>
</tr>
<tr>
<td>1.5</td>
<td>0.400...</td>
</tr>
</tbody>
</table>

When do limits not exist

It is possible that $\lim_{x \to a} f(x)$ does not exist.

Two possibilities:

1. Limit on left does not equal limit on right.
2. $f(x)$ oscillates as x approaches
Possibility 1

\[\lim_{{x \to a^-}} f(x) = L \] (limit as \(x \) approaches \(a \) on the left)
equals \(L \)

\[\lim_{{x \to a^+}} f(x) = L \] (right)

means we can make \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) and less than \(a \).

and greater than \(a \)