Symmetry Group Problems

1. Let G be the symmetry group of a tetrahedral centered at the origin in \mathbb{R}^{3}. Let E be the set of edges of the tetrahedral. Show that G acts on E, giving a homomorphism from G to $\operatorname{Sym}(6)$ (because there are 6 edges of a tetrahedral). Show that this action is transitive.
2. Let G be the symmetry group of a tetrahedral as in problem one. Now let V be the set of vertices of the tetrahedral. Show that G acts on V, giving a homomorphism from G to $\operatorname{Sym}(4)$. Show that G is isomorphic to $\operatorname{Sym}(4)$ by showing that the homomorphism induced by the action is an isomorphism.
3. Let G be the symmetry group of a tetrahedral as in problems 1 and 2 . Let

$$
\varphi: G \longrightarrow \operatorname{Sym}(4)
$$

be the isomorphism induced by the action of G on the vertices of the tetrahedral. By definition, G is a subset of $\mathrm{GL}_{3}(\mathbb{R})$. Let $\iota: G \rightarrow \mathrm{GL}_{3}(\mathbb{R})$ be the inclusion homomorphism. Show that the composition homomorphism

$$
\operatorname{det} \circ \iota \circ \varphi^{-1}: \operatorname{Sym}(4) \xrightarrow{\varphi^{-1}} G \xrightarrow{\iota} \mathrm{GL}_{3}(\mathbb{R}) \xrightarrow{\operatorname{det}} \mathbb{R}^{\times}
$$

is the sign homomorphism sgn $: \operatorname{Sym}(4) \rightarrow\{ \pm 1\}$.
4. Let G be the group of rotations of a cube centered as the origin in \mathbb{R}^{3}. Show that $G \cong \operatorname{Sym}(4)$.
5. Observe that $D_{6} \subset D_{12}$ because we can choose 3 vertices of a hexagon that are the vertices of an equilateral triangle. Then the action of D_{12} on the 6 vertices of the hexagon induces a homomorphism

$$
D_{6} \longrightarrow D_{12} \longrightarrow \operatorname{Sym}(6)
$$

Show that this action of D_{6} on the 6 vertices of the hexagon is not transitive.

