Homework 1

1. (10 points) Let S and T be sets and let $f: S \rightarrow T$ be a function. Prove the following statements:
(a) If U is a set and $g: T \rightarrow U$ is a function such that $g \circ f$ is injective, the f is also injective.
(b) If R is a set and $h: R \rightarrow S$ is a function such that $f \circ h$ is surjective then f is also surjective.
(c) Show that if $g, h: T \rightarrow S$ are functions satisfying $g \circ f=i d_{S}$ and $f \circ h=i d_{T}$, then f is bijective and $g=h=f^{-1}$. Hint: use parts (a) and (b).
2. (5 points) Let S be a set with 3 elements. How many functions are there from S to S ? How many bijections are there from S to S ? What if S has 4 elements? What if S has n elements ($n \in \mathbb{N}$)? Explain.
3. (10 points) Equivalence relations. Let \sim be an equivalence relation on a set S. For $x \in S,[x]=\{y \in S: x \sim y\}$ denotes the equivalence class containing x.
(a) Prove that for all $x \in S,[x] \neq \emptyset$.
(b) Prove that $\bigcup_{x \in S}[x]=S$.
(c) Prove that if $y \in[x]$, then $[y]=[x]$ and if $y \notin[x]$, then $[x] \cap[y]=\emptyset$.
(d) A partition of a set S is a collection of subsets of $S:\left\{S_{i} \subset S: i \in I\right\}$, where I is an indexing set, such that $\bigcup_{i \in I} S_{i}=S$ and for all $i \neq j, S_{i} \cap S_{j}=\emptyset$. Explain why the equivalence classes of \sim partition S.
(e) Prove that every partition of a set S can be realized as the equivalence classes of a unique equivalence relation.
4. (5 points) Show by way of an example that the binary operation given by subtraction on \mathbb{Z} :

$$
\begin{array}{rll}
-: \mathbb{Z} \times \mathbb{Z} & \longrightarrow \mathbb{Z} \\
(a, b) & \longmapsto a-b
\end{array}
$$

is not associative.
5. (10 points) Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by $f(x)=3 x-1$.
(a) Show that f is bijective and compute f^{-1}.
(b) Find a binary operation $*$ on \mathbb{Q} such that $f:(\mathbb{Q},+) \rightarrow(\mathbb{Q}, *)$ is an isomorphism.
(c) Find a binary operation $*$ on \mathbb{Q} such that $f:(\mathbb{Q}, *) \rightarrow(\mathbb{Q},+)$ is an isomorphism.
6. (5 points) Let (G, \cdot) be a group. Prove that for all $a \in G,\left(a^{-1}\right)^{-1}=a$.
7. (10 points) Let

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in M_{2 \times 2}(\mathbb{R}): a, b, c \in \mathbb{R}, a d \neq 0\right\}
$$

and consider G with the binary operation given by matrix multiplication. Prove that G with this binary operation is a group. Is G abelian? If so prove it. If not, give an example of two elements of G that do not commute.
8. (5 points) Prove that the special linear group,

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A)=1\right\}
$$

is a subgroup of the general linear group, $\mathrm{GL}_{2}(\mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{det}(A) \neq 0\right\}$.
9. (10 points) Let $f: G \rightarrow H$ be a group homomorphism. Show that the image of f is a subgroup of H. That is, show that the subset

$$
\operatorname{im}(f)=\{h \in H: \exists g \in G \text { with } f(g)=h\} \subset H
$$

is a subgroup of H.
10. (10 points) Write down all the subgroups of Sym(3). What are their sizes?
11. (extra credit) (10 points) For which n is the set of nonzero equivalence classes modulo n with binary operation given by multiplication, $(\mathbb{Z} / n \mathbb{Z}-\{0+n \mathbb{Z}\}, \cdot)$, a group? Prove that your answer is correct.
12. Question: How difficult was this homework? Feel free to elaborate on the amount of time spent, the harder questions, and the easier questions.

