Homework 4

1. Examples of centers of groups.
(a) (10 points) Show that $Z(\operatorname{Sym}(n))=\{i d\}$ if $n>2$.
(b) (10 points) Show that

$$
Z\left(\mathrm{GL}_{2}(\mathbb{R})\right)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right): a \in \mathbb{R}, a \neq 0\right\}
$$

2. Let

$$
\mathrm{GL}_{2}(\mathbb{C})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{C}, a d-b c \neq 0\right\}
$$

be the set of invertible two by two matrices with complex number coefficients. Convince yourself that $\mathrm{GL}_{2}(\mathbb{C})$ is a group. Let

$$
\mathrm{SL}_{2}(\mathbb{C})=\left\{A \in \mathrm{GL}_{2}(\mathbb{C}): \operatorname{det}(A)=1\right\}
$$

Convince yourself that $\mathrm{SL}_{2}(\mathbb{C})$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$. Let N be the subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ of diagonal matrices (not a typo this time):

$$
N=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right): a \in \mathbb{C}, a \neq 0\right\}
$$

In this problem, you will show that

$$
\mathrm{SL}_{2}(\mathbb{C}) /\left\{ \pm I_{2}\right\} \cong \mathrm{GL}_{2}(\mathbb{C}) / N
$$

where

$$
\left\{ \pm I_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \subset \mathrm{SL}_{2}(\mathbb{C})
$$

(a) (5 points) Show that $\mathrm{GL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) N$. That is, show that any invertible 2×2 matrix can be written as the product of a matrix with determinant 1 and a diagonal matrix.
(b) (10 points) Show that $N \cap \mathrm{SL}_{2}(\mathbb{C})=\left\{ \pm I_{2}\right\}$ and apply the second isomorphism theorem to conclude that $\mathrm{SL}_{2}(\mathbb{C}) /\left\{ \pm I_{2}\right\} \cong \mathrm{GL}_{2}(\mathbb{C}) / N$.
(c) (5 points) Where does this proof break down if we replace \mathbb{C} with \mathbb{R} and try to do the same thing?
3. Define an action of $\operatorname{Sym}(3)$ on \mathbb{R}^{3} as follows: for $\sigma \in \operatorname{Sym}(3)$ and $v=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, set

$$
\sigma * v=\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)
$$

(a) (10 points) Show that the subspace $V=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}$ has the following property: if $v \in V$, then $\sigma * v$ is also in V.
(b) (10 points) Find a line (that is a one-dimensional subspace) which has this same property?
4. Sylow theorems.
(a) (10 points) Show that if G is a group and $|G|=15$, then G cyclic.
(b) (10 points) Show that if G is a group and $|G|=1001$, then G is cyclic.
5. Extra credit (10 points): Let G be a group such that $|G|=1000$. Show that G has a proper, nontrivial normal subgroup.
6. Extra credit (10 points): Let G be a group such that $|G|=30$. Prove that G has a normal, nontrivial, proper subgroup.
7. Extra credit (10 points): Let \mathscr{L} denote the set of lines through the origin in \mathbb{R}^{2}, so

$$
\mathscr{L}=\left\{\ell=\operatorname{span}(v): v \in \mathbb{R}^{2}, v \neq 0\right\}
$$

Define an action of $\mathrm{GL}_{2}(\mathbb{R})$ on \mathscr{L} by the rule

$$
\begin{aligned}
& *: \mathrm{GL}_{2}(\mathbb{R}) \times \mathscr{L} \longrightarrow \mathscr{L} \\
& A * \operatorname{span}(v)=\operatorname{span}(A v)
\end{aligned}
$$

Show that this action is well defined, show that it is indeed an action, and show that the action is transitive.

