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1 Prerequisites

1.1 Notation (Numbers and sets) (a) N := {1, 2, 3, . . .} denotes the set of positive
integers. If we include the number 0 we use the symbol N0 := {0, 1, 2, . . . , }. The set
of all integers will be denoted by Z := {. . . ,�2,�1, 0, 1, 2, . . .}. Furthermore, we write
Q := {a

b | a 2 Z, b 2 N} for the set of all rational numbers, R for the set of all real
numbers, and C := {a+ bi | a, b 2 R} for the set of complex numbers.

(b) If S is a set we write |S| 2 N0 [ {1} for the cardinality of S, i.e., the number of
elements of S. The empty set has cardinality 0 and is denoted by ;. We call S a finite

set if |S| < 1. If T is a subset of S we indicated this by writing T ✓ S. If T is a proper

subset of S, i.e., T ✓ S and T 6= S, then we indicate this by T ⇢ S.

1.2 Definition (Functions) Assume that f : S ! T is a function between two sets S
and T .

(a) The function f is called surjective if every element in T can be written as f(s)
for some s 2 S. And f is called injective if for any two elements s1, s2 2 S with s1 6= s2
one has f(s1) 6= f(s2). If f is injective and surjective, we call f bijective. In this case,
for every t 2 T , there exists a unique element s 2 S with f(s) = t, and we denote the
map that sends t to s by f�1 : T ! S. This map is called the inverse of f and it satisfies
f�1 � f = idS and f � f�1 = idT . Note that the function f is bijective if and only if there
exists a function g : T ! S such that g � f = idS and f � g = idT (see Exercise 1(a)-(c)).
Here, idS denotes the identity function of S. It is defined by idS(s) = s for all s 2 S.

(b) If U ✓ S we set f(U) := {f(u) | u 2 U}, the image of U under f . Note that
f(U) ✓ T . And if V ✓ T we set f�1(V ) := {s 2 S | f(s) 2 V }, the preimage of V under

f . Note that f�1(V ) ✓ S. We emphasize that the symbol f�1(V ) is defined even if f is
not bijective. In the case that f is bijective, the preimage of V under f coincides with
the image of V under f�1, so that there is no ambiguity with this notation.

1.3 Proposition (Division with remainder) Let n 2 N and let a 2 Z. Then there

exist unique numbers q 2 Z and r 2 {0, 1, . . . , n� 1} such that a = qn+ r. The number q
is called the quotient and the number r is called the remainder of the division of a by n.

For example, if n = 5 and a = 17 then q = 3 and r = 2
(17 = 3 · 5 + 2), and if n = 5 and a = �17 then q = �4 and
r = 3 (�17 = (�4) · 5 + 3).

Proof Since the union of the integer ‘intervals’ {qn, qn+1, qn+2, . . . , qn+(n�1)}, q 2 Z,
is equal to Z, there must exist q 2 Z with qn 6 a 6 qn+(n�1). We set r := a�qn. This
shows the existence of the numbers q and r. Assume that one also has a = q0n + r0 for
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numbers q0 2 Z and r0 2 {0, 1, . . . , n� 1}. Then n > |r � r0| = |q0n� qn| = |q0 � q|n > 0.
This implies |q0 � q| = 0, and then |r � r0| = 0.

1.4 Definition (Congruences) Let n 2 N. For integers a, b 2 Z, we write

a ⌘ b mod n (or also a
n⌘ b)

if n divides a � b (notation n | a � b), i.e., if there exists q 2 Z with a � b = qn. In this
case we say that a and b are congruent modulo n. The statement a ⌘ b mod n is called
a congruence modulo n.

For instance: 17 ⌘ 2 mod 5, and �4 ⌘ 6 mod 10.

1.5 Proposition Let n 2 N.
(a) Congruence modulo n defines an equivalence relation on Z. The equivalence class

that contains an integer a is also called the congruence class of a modulo n. The congru-
ence class of a modulo n is equal to

a+ nZ := {a+ nk | k 2 Z} .

(b) If a, b, c, d are integers and if a ⌘ b mod n and c ⌘ d mod n then

a+ c ⌘ b+ d mod n ,

a� c ⌘ b� d mod n ,

ac ⌘ bd mod n ,

In other words, one can add, subtract and multiply congruences.

(c) If a, b, c 2 Z and if a ⌘ b mod n then a+ c ⌘ b+ c mod n, a� c ⌘ b� c mod n
and ac = bc mod n.

(d) If r 2 {0, 1, . . . , n�1} is the remainder of the division of a by n then a ⌘ r mod n.

(e) The set of integers is partitioned into n distinct congruence classes modulo n,
namely the classes of the numbers 0, 1, . . . , n� 1.

Proof (a) Reflexivity: For every a 2 Z we have a ⌘ a mod n, since a � a = 0 · n.
Symmetry: If a ⌘ b mod n then one can write a� b = qn for some q 2 Z. This implies
b � a = (�q)n and therefore b ⌘ a mod n. Transitivity: If a ⌘ b mod n and b ⌘ c
mod n then one can write a� b = q1n and b� c = q2n for some q1, q2 2 Z. Adding these
two equations we obtain a� c = (q1 + q2)n and therefore a ⌘ c mod n.
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If b belongs to the congruence class of a modulo n then b ⌘ a mod n and there exists
q 2 Z such that b � a = qn. This implies that b = a + nq 2 a + nZ. Conversely, if
b 2 a + nZ then there exists q 2 Z with b = a + nq. This implies b � a = nq and b ⌘ a
mod n. Therefore, b belongs to the congruence class of a modulo n.

(b) Since a ⌘ b mod n and c ⌘ d mod n there exist q1, q2 2 Z such that a� b = q1n
(1) and c� d = q2n (2). Adding equation (1) and (2) yields (a+ c)� (b+ d) = (q1 + q2)n
and therefore a + c ⌘ b + d mod n. Subtracting equation (2) from equation (1) yields
(a�c)�(b�d) = (q1�q2)n and therefore a�c ⌘ b�d mod n. Finally, multiplying equation
(1) by c yields ac � bc = q1cn and multiplying equation (2) by b yields bc � bd = q2bn.
Adding these two equations now gives ac � bd = (q1c + q2b)n and therefore, ac ⌘ bd
mod n

(c) These are special cases of (b) with c = d.

(d) If a = qn + r with q 2 Z then a ⌘ qn + r ⌘ 0 + r ⌘ r mod n, by (c). Since
congruence modulo n is an equivalence relation, we obtain a ⌘ r mod n.

(e) By (d) every congruence class modulo n is equal to the congruence class containing
one of the elements 0, 1, . . . , n� 1. On the other hand, if 0 6 r < s 6 (n� 1) then r and
s lie in di↵erent congruence classes, since 0 < s� r < n.

For instance, if n = 2 then the set of even integers is one
congruence class and the set of odd integers is the other
congruence class modulo 2. And if n = 3, the three congru-
ence classes modulo 3 are given by {. . . ,�6,�3, 0, 3, 6, . . .},
{. . . ,�5,�2, 1, 4, 7, . . .} and {. . . ,�4,�1, 2, 5, 8, . . .}.

1.6 Corollary Let n 2 N and let a, b 2 Z. Let r1 and r2 be the remainders of the division

of a and b by n, respectively. Then:

a ⌘ b mod n () r1 = r2 .

Proof Write a = q1n+ r1 and b = q2n+ r2 with q1, q2 2 Z and r1, r2 2 {0, 1, . . . , n� 1}
according to Proposition 1.3. Then a lies in the congruence class of r1 and b lies in the
congruence class of r2 by Proposition 1.5(d). So, a and b are congruent modulo n if and
only if r1 and r2 are. But, by Proposition 1.5(e), this is the case if and only if r1 = r2.
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Exercises for §1

1. Let S and T be sets and let f : S ! T be a function. Prove the following
statements:

(a) If U is a set and g : T ! U is a function such that g � f is injective then also f is
injective.

(b) If R is a set and h : R ! S is a function such that f � h is surjective then also f
is surjective.

(c) Show that if g, h : T ! S are functions satisfying g � f = idS and f � h = idT then
f is bijective and g = h = f�1. (Use (a) and (b)).

(d) Show that for subsets V1 and V2 one has f�1(V1 [ V2) = f�1(V1) [ f�1(V2) and
f�1(V1 \ V2) = f�1(V1) \ f�1(V2). (Here, f is not assumed to be bijective.)

(e) Show that for subsets U1 and U2 one has f(U1[U2) = f(U1)[f(U2) and f(U1\U2) ✓
f(U1) \ f(U2). Give an example where the last inclusion is not an equality.

2. Assume that n is a natural number. Let d0, d1, . . . , dr 2 {0, . . . , 9} be its decimals,
read from right to left; that is, n = d0 + d110 + d2102 + · · ·+ dr10r.

(a) Show that n ⌘ d0 + · · ·+ dr mod 9.

(b) Show that n is divisible by 9 if and only if d0 + · · ·+ dr is divisible by 9.

(c) Show that n is divisible by 3 if and only if d0 + · · ·+ dr is divisible by 3.

(d) Show that n ⌘ d0 � d1 + d2 �+ · · · mod 11.

(e) Show that n is divisible by 11 if and only if d0 � d1 +� · · · is divisible by 11.

(f) Compute the remainder of 2015 after division by 11, without carrying out the
division.
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2 Binary operations, binary structures, homomor-

phisms

2.1 Definition A binary operation on a set S is a function

⇤ : S ⇥ S ! S .

For a, b 2 S, we usually write a ⇤ b instead of ⇤(a, b). We also say the (S, ⇤) is a binary

structure.

The choice of the symbol ⇤ is arbitrary. One could have
used any other symbol, as for example ”4”, ”⇤”, ”•”, etc.
For specific examples of binary operations one uses more
descriptive symbols. If the operation is ”addition” one uses
usually ”+”, if it is ”multiplication”, one uses ”·”, and if it
is the ”composition of functions” one usually uses ”�”.

2.2 Examples (a) +: N⇥ N ! N, (a, b) 7! a+ b, defines a binary operation on the set
of natural numbers.

(b) � : Z⇥ Z ! Z, (a, b) 7! a� b, defines a binary operation on the set of integers.

(c) ⇤ : Q ⇥ Q ! Q, (a, b) 7! a+b
2 , defines a binary operation on the set of rational

numbers.

(d) For any sets X and Y let F (X, Y ) denote the set of functions f : X ! Y . Then, for
every set X, the composition of functions defines a binary operation on the set F (X,X),
namely (f, g) 7! f � g.

(e) For any set X let P(X) denote the power set of X, i.e., the set of all subsets of X.
Then (P(X),[) and (P(X),\) are binary structures.

2.3 Definition Let ⇤ : S⇥S ! S be a binary operation on a set S. We say that a subset
T of S is closed under ⇤ if for any two elements a, b 2 T one also has a ⇤ b 2 T . In this
case, (T, ⇤) is again a binary structure.

For instance, N is closed in (Z,+), but not in (Z,�).

2.4 Definition Let ⇤ : S ⇥ S ! S be a binary operation on a set S.

(a) ⇤ is called commutative if a ⇤ b = b ⇤ a for all a, b 2 S.

(b) ⇤ is called associative if (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c) for all a, b, c 2 S.

(c) An element e 2 S is called an identity element (or short an identity) for ⇤ if
a ⇤ e = a = e ⇤ a for all a 2 S.
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2.5 Proposition Let ⇤ : S ⇥ S ! S be a binary operation on a set S. Then S can have

at most one identity element.

Proof If e and e0 are identity elements of S for ⇤ then e = e ⇤ e0 = e0. Here, the first
equation uses that e0 is an identity element, and the second equation uses that e is an
identity element.

2.6 Examples (a) (N,+) is a commutative and associative binary structure. It does not
have an identity element.

(b) (N0,+) is an associative and commutative binary structure with identity element
0.

(c) (Z,�) is not commutative, not associative, and has no identity element.

(d) (Q, ⇤) with a⇤ b = a+b
2 is a commutative binary structure. It is not associative and

does not have an identity element.

(e) Let X be a set. Then, (F (X,X), �) is an associative binary structure with identity
element idX . If X has more than 1 element then it is not commutative.

(f) Let X be a set. The binary structures (P(X),[) and (P(X),\) are commutative,
associative and have identity elements, namely ; and X, respectively.

2.7 Remark (a) If (S, ⇤) is an associative binary structure then one can omit parenthesis.
Expressions like a ⇤ b ⇤ c or a ⇤ b ⇤ c ⇤ d are then unambiguous. In fact, no matter how one
groups these expressions by parentheses, they give the same result. This can be proved
with little e↵ort by induction on the number of factors. For instance, repeated application
of the associativity law gives ((a ⇤ b) ⇤ c) ⇤ d = (a ⇤ b) ⇤ (c ⇤ d) = a ⇤ (b ⇤ (c ⇤ d)).

(b) One can define or depict a binary operation ⇤ on a finite set S by a square table.
If S = {a, b, c}, for instance, then ⇤ is depicted in the form

⇤ a b c
a a ⇤ a a ⇤ b a ⇤ c
b b ⇤ a b ⇤ b b ⇤ c
c c ⇤ a c ⇤ b c ⇤ c

We will call such tables often ‘multiplication tables’. Usually there is no preferred ordering
of the elements of a set S. Di↵erent orderings usually lead to di↵erent multiplication tables
of the same binary structure. The following tables describe 4 di↵erent binary structures:

+ 0
0 0

· 0 1
0 0 0
1 0 1

· 1 0
1 1 0
0 0 0

· 1 �1
1 1 �1
�1 �1 1

+2 0 1
0 0 1
1 1 0
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The second and third table describe the same binary structure. The fourth and fifth
describe so-called isomorphic binary structures. It will be explained in the next definition
what this precisely means. A binary operation is commutative if and only if the associated
table is symmetric with respect to the diagonal. However, associativity cannot be read
o↵ the table as quickly.

2.8 Definition Let (S, ⇤) and (T,⇤) be binary structures.

(a) A function f : S ! T is called a homomorphism of binary structures from (S, ⇤)
to (T,⇤) if

f(a ⇤ b) = f(a)⇤f(b)

for all a, b 2 S. A bijective homomorphism is called an isomorphism.

(b) (S, ⇤) and (T,⇤) are called isomorphic, and we write (S, ⇤) ⇠= (T,⇤), if there exists
an isomorphism f : S ! T .

2.9 Examples (a) The binary structures ({0, 1},+2) and ({1,�1}, ·) from Remark 2.7
are isomorphic. In fact, the function f : {0, 1} ! {1,�1} given by f(0) = 1 and f(�1) =
�1 is an isomorphism. In terms of tables this just means the following: If one applies the
function f to every element in the first table then one obtains the second table (possibly
after reordering the elements in the second set).

(b) We write R>0 for the set of positive real numbers. With this notation, (R,+) ⇠=
(R>0, ·), since the exponential function exp: R ! R>0, x 7! ex, is an isomorphism. In
fact, the function exp is bijective and ea+b = ea · eb, for all a, b 2 R.

2.10 Proposition Let (S, ⇤), (T,⇤) and (U,4) be binary structures.

(a) If f : (S, ⇤) ! (T,⇤) is an isomorphism and e 2 S is an identity element for ⇤ then

f(e) 2 T is an identity element for ⇤.

(b) If f : (S, ⇤) ! (T,⇤) is an isomorphism then f�1 : (T,⇤) ! (S, ⇤) is also an

isomorphism.

(c) If f : (S, ⇤) ! (T,⇤) and g : (T,⇤) ! (U,4) are homomorphisms then also g �
f : (S, ⇤) ! (U,4) is a homomorphism. If f and g are isomorphisms then also g � f is an

isomorphism and (g � f)�1 = f�1 � g�1
.

(d) ‘Being isomorphic’ is an equivalence relation on binary structures.

Proof (a) Let b 2 T . We need to show that f(e)⇤b = b = b⇤f(e). Since f is surjective,
there exists a 2 S such that f(a) = b. Therefore, f(e)⇤b = f(e)⇤f(a) = f(e ⇤ a) =
f(a) = b and, similarly, b⇤f(e) = b.
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(b) Since f is bijective, also f�1 is bijective. Therefore it su�ces to show that, for all
b, b0 2 T , one has f�1(b⇤b0) = f�1(b) ⇤ f�1(b0). Since f is surjective, there exist a, a0 2 S
such that f(a) = b and f(a0) = b0. But then we have

f�1(b⇤b0) = f�1(f(a)⇤f(a0)) = f�1(f(a ⇤ a0)) = a ⇤ a0 = f�1(b) ⇤ f�1(b0) .

(c) Let a, a0 2 S. Then

(g �f)(a⇤a0) = g(f(a⇤a0)) = g(f(a)⇤f(a0)) = g(f(a))4g(f(a0)) = (g �f)(a)4(g �f)(a0).

This shows that g � f is a homomorphism.
If f and g are isomorphisms then g � f is a homomorphism by the first part of (c) and

it is also bijective, since f and g are bijective. Thus, g � f is an isomorphism. Finally,
(g � f) � (f�1 � g�1) = idU and (f�1 � g�1) � (g � f) = idS, since composition of functions
is associative. Thus, (g � f)�1 = f�1 � g�1.

(d) Reflexivity follows from the fact that the identity map is always an isomorphism
from a binary structure to itself. Symmetry follows from part (b), and transitivity follows
from part (c).

2.11 Remark An isomorphism f : (S, ⇤) ! (T,⇤) does the following. It matches up the
elements of S with the elements of T such that the binary operations on S and T are
respected in the following sense: If a ⇤ b = c holds in S then f(a)⇤f(b) = f(c) holds in
T . In other words, if one applies f to all entries in a multiplication table of (S, ⇤), one
obtains a multiplication table of (T,⇤).

If (S, ⇤) and (T,⇤) are isomorphic binary structures then every true statement that
only involves S and ⇤ can be translated via an isomorphism f : S ! T into a similar true
statement about T and ⇤. In this sense, (S, ⇤) and (T,⇤) have the same properties and
every isomorphism transfers a property of S to the same property of T .

For instance, if (S, ⇤) and (T,⇤) are isomorphic, then (S, ⇤) is commutative if and
only if (T,⇤) is commutative, and (S, ⇤) is associative if and only if (T,⇤) is associative
(See Exercise 4).
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Exercises for §2

1. Let S = {a, b, c, d, e} and let ⇤ be the binary operation on S defined by the
following table:

⇤ a b c d e
a a b c b d
b b c a e c
c c a b b a
d b e b e d
e d b a d c

(a) Is ⇤ commutative?

(b) Is ⇤ associative?

2. Suppose that ⇤ is an associative and commutative binary operation on a set S.
Show that the subset

T := {a 2 S | a ⇤ a = a}

of S is closed under ⇤.

3. Let f : Q ! Q defined by f(x) = 3x� 1.

(a) Show that f is bijective and compute f�1.

(b) Find a binary operation ⇤ on Q such that f : (Q,+) ! (Q, ⇤) is an isomorphism.

(c) Find a binary operation ⇤ on Q such that f : (Q, ⇤) ! (Q,+) is an isomorphism.

4. Assume that (S, ⇤) and (T,⇤) are isomorphic binary structures.

(a) Show that (S, ⇤) is commutative if and only if (T,⇤) is commutative.

(b) Show that (S, ⇤) is associative if and only if (T,⇤) is associative.
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3 Groups

3.1 Definition (a) A binary structure (G, ⇤) is called a group if it satisfies the following
axioms:

(i) ⇤ is associative.

(ii) (G, ⇤) has an identity element e.

(iii) For every element a 2 G there exists an element a0 2 G with a⇤a0 = e = a0⇤a.
(b) A group (G, ⇤) is called an abelian group if ⇤ is commutative.

(c) If (G, ⇤) is a group, the number of elements in G is called the order of G and it is
denoted by |G|. A group is called a finite group if its order is finite.

3.2 Remark Every group (G, ⇤) is a binary structure. The notions of homomorphism and
isomorphism between two groups are the same as those of the underlying binary structures.
Again, two groups are called isomorphic, if there exists an isomorphism between them.
Note that if (S, ⇤) and (T,⇤) are isomorphic binary structures and one of them is a group,
then also the other one is a group (See Exercise 1).

3.3 Proposition Let (G, ⇤) be a group.

(a) The left and right cancellation laws hold: If a, b, c are elements of G with a⇤b = a⇤c
then b = c; and if a, b, c 2 G satisfy b ⇤ a = c ⇤ a then b = c.

(b) For a, b 2 G, the equation a ⇤ x = b has a unique solution in G and also the

equation x ⇤ a = b has a unique solution in G.

(c) For every element a 2 G, there exists precisely one element a0 2 G satisfying

a ⇤ a0 = e = a0 ⇤ a. This element will be called the inverse of a, and it will be denoted by

a�1
.

(d) For a, b 2 G, one has (a ⇤ b)�1 = b�1 ⇤ a�1
. Moreover e�1 = e.

Proof (a) Assume that a ⇤ b = a ⇤ c. By the group axiom (iii), there exists an element
a0 2 G such that a0 ⇤ a = e. Therefore, b = e ⇤ b = (a0 ⇤ a) ⇤ b = a0 ⇤ (a ⇤ b) = a0 ⇤ (a ⇤ c) =
(a0 ⇤ a) ⇤ c = e ⇤ c = c. Similarly, one shows that the right cancellation law holds.

(b) By axiom (iii) there exists a0 2 G with a ⇤ a0 = e = a0 ⇤ a. Therefore, a ⇤ (a0 ⇤ b) =
(a ⇤ a0) ⇤ b = e ⇤ b = b and x = a0 ⇤ b is a solution. If also a ⇤ y = b = a ⇤ x then the left
cancellation law implies y = x. Similarly, one shows the second part.

(c) By axiom (iii) there exists an element a0 2 G such that a ⇤ a0 = e and a0 ⇤ a = e.
By Part (b), a0 is uniquely determined by either of these two properties.
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(d) One has (a⇤b)⇤(b�1⇤a�1) = ((a⇤b)⇤b�1)⇤a�1 = (a⇤(b⇤b�1))⇤a�1 = (a⇤e)⇤a�1 =
a ⇤ a�1 = e and similarly one has (b�1 ⇤ a�1) ⇤ (a ⇤ b) = e. Therefore, b�1 ⇤ a�1 is the
inverse element of a ⇤ b. Finally, since e ⇤ e = e, the element e is the inverse of e.

3.4 Remark (a) If the binary operation of a group is written additively, i.e., using the
symbol ‘+’, then one usually denotes the identity element by 0 and the inverse of an
element a by �a. If the binary operation is written multiplicatively, i.e, using the symbols
·, �, or the general symbol ⇤ then we always denote the inverse of an element a by a�1.
In the multiplicative case we often denote the identity element by 1 instead of e. It is a
standard convention that additive notation may only be used for commutative groups.

(b) The statements in Proposition 3.3(a) and (b) imply that in the multiplication
table of a finite group, every group element occurs precisely once in every row and every
column.

3.5 Examples (a) (Z,+) is an abelian group.

(b) ({1,�1}, ·) is an abelian group.

(c) Let n 2 N and let Zn := {0, 1, . . . , n � 1}. We define a binary operation +n on
the set Zn by the following rule. If a, b 2 Zn, let a +n b be the remainder of a + b after
division by n. Note that a +n b ⌘ a + b mod n, by Proposition 1.5(d). We show that
(Zn,+n) is an abelian group. First we check that +n is associative. Let a, b, c 2 Zn. Then
(a +n b) +n c ⌘ (a +n b) + c ⌘ (a + b) + c = a + (b + c) ⌘ a + (b +n c) ⌘ a +n (b +n c)
mod n. Since (a+n b) +n c and a+n (b+n c) are elements in {0, 1, . . . , n� 1}, the above
congruence implies (a +n b) +n c = a +n (b +n c). Clearly, 0 is an identity element of
(Zn,+n). Also, if a 2 {1, . . . , n � 1} then n � a 2 {1, . . . , n � 1} and a +n (n � a) = 0.
Thus every a 2 {1, . . . , n� 1} has an inverse element. Also a = 0 has an inverse element,
namely 0. Finally, +n is clearly commutative.

The table of (Z4,+4), for instance, is given by

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(c) GL2(R) := {A =

 
a b
c d

! ��� a, b, c, d 2 R, det(A) = ad � bc 6= 0} is a group under

multiplication, called the general linear group of 2 ⇥ 2-matrices over R. The identity
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element is the identity matrix

 
1 0
0 1

!

. The inverse element of A =

 
a b
c d

!

is equal to

 
d/ det(A) �b/ det(A)
�c/ det(A) a/ det(A)

!

=
1

det(A)

 
d �b
�c a

!

.

(d) For every set X, the set Sym(X) of bijective functions ⇡ : X ! X, together
with the composition of such functions, is a group. It is called the symmetric group of
X. Elements of Sym(X) are also called permutations of X. The identity element is the
identity function idX and the inverse element of a permutation ⇡ is the inverse function
⇡�1.

If n 2 N and X = {1, . . . , n} then we usually write Sym(n) instead of Sym(X). An
element ⇡ of Sym(n) is usually written in the form

 
1 2 3 · · · n� 1 n

⇡(1) ⇡(2) ⇡(3) · · · ⇡(n� 1) ⇡(n)

!

In Sym(3), for instance, we have

 
1 2 3
2 1 3

!

�
 
1 2 3
2 3 1

!

=

 
1 2 3
1 3 2

!

.

Note that |Sym(n)| = n! = n · (n� 1) · (n� 2) · · · 3 · 2 · 1, since we have n choices for the
image of the element 1, then n� 1 remaining choices for the image of the element 2, and
so on.

(e) If (G1, ⇤1) and (G2, ⇤2) are two groups then the set G1⇥G2 together with the binary
operation ⇤ defined by (a1, a2)⇤ (b1, b2) := (a1 ⇤1 b1, a2 ⇤2 b2) is again a group. The identity
element is (e1, e2), if ei denotes the identity element of (Gi, ⇤i), and (a1, a2)�1 = (a�1

1 , a�1
2 ).

3.6 Examples (Groups of order 1, 2, 3 and 4) We already know that for any given
n 2 N there exists at least one group of order n, namely (Zn,+n). For some natural
numbers n, this is the only group of order n, in the sense that every group of order n is
isomorphic to this one. We will see below that this is the case for n = 1, 2, 3. However,
we will also see that there are precisely two isomorphism classes of groups of order 4.

(a) Every group with just one element is called a trivial group. This element must be
the identity element. Its multiplication table is given by

⇤ e
e e

14



Clearly, any two groups of order 1 are isomorphic, since the unique function between them
is an isomorphism.

(b) If a group has two elements, and one denotes these elements by e (the identity
element) and a, then there is only one possibility for the multiplication table (see Re-
mark 3.4(b)), namely

⇤ e a
e e a
a a e

This group is isomorphic to (Z2,+2) under the isomorphism e 7! 0, a 7! 1. Thus, any
group of order 2 is isomorphic to (Z2,+2).

(c) If a group has three elements, and one denotes them by e, a and b, then again
there is only one possibility for the multiplication table by Remark 3.4(b), namely

⇤ e a b
e e a b
a a b e
b b e a

This group is isomorphic to (Z3,+3), since e 7! 0, a 7! 1, b 7! 2 is an isomorphism. Thus,
every group of order 3 is isomorphic to (Z3,+3).

(d) We already constructed two groups of order 4, namely (Z4,+4) and the direct
product Z2 ⇥ Z2. If one abbreviates the elements of the latter group by e = (0, 0),
x = (1, 0), y = (0, 1), z = (1, 1), their operation tables are given by

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

and

⇤ e x y z
e e x y z
x x e z y
y y z e x
z z y x e

These two groups are not isomorphic, since a ⇤ a = e for every element a of the second
group, but the same is not true for every element in the first group: For instance 1+41 6= 0.
(Here we used that fact that an isomorphism maps the identity element of one group to
the identity element of the other group, cf. Proposition 2.10(a).) Every group isomorphic
to Z2 ⇥ Z2 is called a Klein 4-group (named after the mathematician Felix Klein).

It is not di�cult to verify that every other group of order 4 is isomorphic to one
of those two. In fact, assume that G = {e, a, b, c} is a group of order 4 with binary
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operation ⇤. Using again the property from Remark 3.4(b), one obtains only four possible
multiplication tables, namely

⇤ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

⇤ e a b c
e e a b c
a a c e b
b b e c a
c c b a e

⇤ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

⇤ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

The first of these four groups is isomorphic to (Z4,+4) under the isomorphism e 7! 0,
a 7! 1, b 7! 2, c 7! 3. The second is also isomorphic to (Z4,+4), under the isomorphism
e 7! 0, a 7! 1, b 7! 3, c 7! 2. The third is again isomorphic to (Z4,+4), this time under
the isomorphism e 7! 0, a 7! 2, b 7! 1, c 7! 3. Finally, the fourth group is isomorphic to
the Klein 4-group under the isomorphism e 7! e, a 7! x, b 7! y, c 7! z. Altogether we
know now that there are precisely two isomorphism classes of groups of order 4.

Note that for any given natural number n, there are only
finitely many isomorphism classes of binary structures (S, ⇤)
with |S| = n. In fact there are at most nn2

such isomorphism
classes, as one sees quickly by counting the possible multi-
plication tables. Similarly, one sees that for a given natural
number n, there are only finitely many isomorphism classes
of groups of order n. However, there is no explicit formula
that gives the number of isomorphism classes of groups of
order n.

The easy proof of the following proposition is left to reader (see Exercise 2).

3.7 Proposition Assume that (G, ⇤) and (H,⇤) are groups and that f : G ! H is a

homomorphism.

(a) Let eG and eH denote the identity elements of G and H, respectively. Then one

has f(eG) = eH .

(b) For every a 2 G one has f(a�1) = f(a)�1
.
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Exercises for §3

1. Let (S, ⇤) and (T,⇤) be isomorphic binary structures. Show that (S, ⇤) is a group
if and only if (T,⇤) is a group.

2. Assume that (G, ⇤) and (H,⇤) are groups and that f : (G, ⇤) ! (H,⇤) is a
homomorphism.

(a) Let eG and eH denote the identity elements of G and H, respectively. Show that
f(eG) = eH .

(b) Show that one has f(a�1) = f(a)�1 for every a 2 G.

3. Assume that (G, ⇤) is a group and that every element a 2 G satisfies a ⇤ a = 1.
Show that (G, ⇤) is abelian.

4. (a) Show that Sym(3) is not abelian.

(b) Let X be a set. Show that Sym(X) is abelian if and only if |X| 6 2.

5. Show that the group (Z6,+6) is isomorphic to the direct product of the groups
(Z3,+3) and (Z2,+2).

6. (a) Show that (Rr {0}, ·) is a group.

(b) Show that det : (GL2(R), ·) ! (Rr {0}, ·) is a homomorphism.
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4 Subgroups

4.1 Remark From now on, if G is a general group, we will denote its binary operation
with no symbol at all. Thus, for elements a, b 2 G, we write ab for the binary operation
applied to a and b. The identity element will be denoted by 1G or just by 1 if there is
no risk of confusion, and the inverse of an element a 2 G will be denoted by a�1. Since
groups are associative binary structures we can write expressions like ab�1cd, for elements
a, b, c, d 2 G, without using any parentheses. For a 2 G and n 2 Z, we also define

an :=

8
>><

>>:

aa · · · a (n factors) if n > 0,

1 if n = 0,

a�1a�1 · · · a�1 (|n| factors) if n < 0.

If a 2 G and m,n 2 Z then

aman = am+n and (am)n = amn.

This can be verified easily by distinguishing the 9 cases thatm and n are positive, negative
or equal to 0. Note that (ab)n is in general not equal to anbn. However, if G is abelian,
then this holds for all a, b 2 G. Because the notations introduced are similar to the
multiplication of numbers, we say that G is written multiplicatively. We refer to the
binary operation as the group multiplication and to ab as the product of a and b.

Sometimes one prefers that a general group G is written additively. In this case the
binary operation is written as +, the identity element is denoted by 0G or just 0, and the
inverse of a 2 G is written as �a. One also defines a � b := a + (�b) for a, b 2 G. For
n 2 Z and a 2 G one defines na, as the n-fold sum of a if n is positive, as 0 if n = 0, and
as the |n|-fold sum of �a if n is negative. Recall that the additive notation may only be
used if G is abelian.

4.2 Definition Let G be a (multiplicatively written) group. A subset H of G is called a
subgroup of G if it has the following three properties:

(i) 1G 2 H.

(ii) H is closed under the binary operation of G, i.e., for all a, b 2 H also ab lies in H.

(iii) For all a 2 H also a�1 lies in H.

If H is a subgroup of G we indicate this by the notation H 6 G. If H is a subgroup of
G and H 6= G then we call H a proper subgroup of G and write H < G. The subgroup
H = {1G} is called the trivial subgroup of G.
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Note that a subgroup H of G, together with the binary operation of G restricted to
H, is again a group in its own right. With this in mind, one has 1G = 1H and the inverse
of an element a 2 H is the same if one views it as the inverse in the group H or in the
group G.

4.3 Examples (a) Z is a subgroup of (Q,+).

(b) The special linear group

SL2(R) := {A 2 GL2(R) | det(A) = 1}

is a subgroup of GL2(R), since det(AB) = det(A) det(B) for any two real 2⇥ 2-matrices
A and B.

(c) {0, 2} is a subgroup of (Z4,+4). The subset {0, 1, 2} is not a subgroup of (Z4,+4),
since it is not closed: 1 +4 2 = 3.

(d) N and N0 are not subgroups of (Z,+), since they don’t contain the inverse of the
element 1. However, the set 2Z of even numbers is a subgroup of (Z,+). More generally,
for every n 2 N the set nZ = {nk | k 2 Z} is a subgroup of (Z,+).

(e) If H is a subgroup of G and K is a subgroup of H then K is also a subgroup of
G. If K and H are subgroups of G and if K is contained in H then K is also a subgroup
of H. The subgroups of a group G are often depicted in a diagram. The subgroups are
points and an edge between one subgroup K and another subgroup H indicates that K
is contained in H. For instance, the diagrams of subgroups of (Z4,+4) and of Z2⇥Z2 are
given by

q {0}
q {0, 2}
q Z4

q
q
q

q q
@

@
@

@

�
�
�

�

�
�

�
�

@
@
@

@

{e}

Z2 ⇥ Z2

{e, z}{e, x} {e, y}

where e := (0, 0), x := (1, 0), y := (0, 1) and z := (1, 1).

4.4 Proposition Let G be a group and let a be an element of G. Then the subset

H := {an | n 2 Z}
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is a subgroup of G which contains a. Moreover, if K is a subgroup of G which contains a
then K contains H.

Proof We first prove that H is a subgroup. Obviously, H contains a0 = 1. Moreover,
with two elements of H, say am and an, also their product aman = am+n belongs to H.
Finally, for every element in H, say an, also its inverse (an)�1 = a�n belongs to H.

Next, assume that K is a subgroup of G and that a 2 K. We want to show that
H ✓ K. Clearly, a0 = 1G 2 K and a1 = a 2 K. By induction on n 2 N we can show
that an 2 K. In fact, if an 2 K then also an+1 = ana 2 K. Also, a 2 K implies a�1 2 K.
Now, by induction on n 2 N, one can show in a similar way that a�n 2 K.

4.5 Definition Let G be a group.

(a) For every element a of G, the subgroup {an | n 2 Z} from the previous proposition
is called the subgroup generated by a and it is denoted by hai.

(b) The group G is called cyclic if there exists an element a 2 G such that G = hai.
In this case a is called a generator of G.

With this notation we can reformulate Proposition 4.4 as follows: For every a 2 G one
has hai 6 G. Moreover, if a 2 K 6 G then hai 6 K. In other words, hai is the smallest
subgroup of G (with respect to inclusion) which contains a as an element.

We will study cyclic groups in more detail in the next section. One immediate property
of cyclic groups we establish already here.

4.6 Proposition Every cyclic group is abelian.

Proof If G is a cyclic group then G = hai for some a 2 G. For arbitrary elements x = am

and y = an of G (m,n 2 Z), one has xy = aman = am+n and yx = anam = an+m. Since
m+ n = n+m, we have xy = yx. Thus, G is abelian.

4.7 Example For every n 2 N, the group (Zn,+n) is cyclic. In fact we have Zn = h1i.
Similarly, (Z,+) is a cyclic group, since it is generated by the element 1.

We return to the study of subgroups.

4.8 Proposition Let G be a group and let Hi, i 2 I, be a collection of subgroups of G.

Then their intersection, H :=
T

i2I Hi, is again a subgroup of G.
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Proof Since 1G 2 Hi for all i 2 I, we have 1G 2 H. To show that H is closed assume
that a, b are elements in H. Then, for every i 2 I, the elements a and b belong to Hi.
Since Hi is a subgroup of H, also ab lies in Hi. But this holds for all i 2 I. Therefore,
ab 2 H. Similarly, to show that H contains inverses, let a 2 H. Then a 2 Hi for all
i 2 I. Since Hi is a subgroup of G, also a�1 2 Hi. Since this holds for all i 2 I, we have
a�1 2 H. Thus, H 6 G.

4.9 Remark Let G be a group and let a 2 G. By the second part of Proposition 4.4,
the group hai is contained in the intersection of all subgroups K of G which contain a.
But, since hai is one of these groups K, we obtain

hai =
\

a2K6G

K .

The next definition generalizes the concept of a subgroup generated by one element a to
the concept of a subgroup generated by an arbitrary subset X of G.

4.10 Definition Let G be a group.

(a) For any non-empty subset X of G we define hXi as the set of all elements of G of
the form

x✏1
1 x

✏2
2 · · · x✏n

n

where n 2 N, x1, . . . , xn 2 X and ✏1, . . . , ✏n 2 {1,�1}. We extend this definition to the
empty subset of G by setting h;i := {1G}. Note that one always has X ✓ hXi. In fact,
for every x 2 X we can choose n = 1, x1 = x, and ✏1 = 1. In the following proposition
we will prove that hXi is a subgroup of G. It is called the subgroup generated by X.

(b) If X is a subset of G such that hXi = G, then we call X a generating set of G.

4.11 Proposition Let X be a subset of a group G. Then the following hold:

(a) hXi is a subgroup of G which contains X.

(b) Every subgroup K of G which contains X also contains hXi.
(c) hXi = T

X✓K6G K.

Proof All Parts (a)–(c) are easy to verify when X = ;. So we assume from now on that
X 6= ;.

(a) We already saw in Definition 4.10 that X ✓ hXi. Next we show that H := hXi
is a subgroup of G. Since X is non-empty, here exists an element x 2 X and we have
1G = xx�1 2 H. Also, if a and b are two elements of hXi then clearly ab is again a product
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of elements which are either in X or inverses of elements in X. Similarly, if a 2 hXi then
a = x✏1

1 · · · x✏n
n and its inverse, a�1 = x�✏n

n · · · x�✏1
1 , is of the same form and therefore an

element of hXi.
(b) Assume that K is a subgroup of G which contains X. Then K contains every

element of X and also the inverse of every element of X. Since K is closed, it also
contains all products of such elements. Thus, hXi ✓ K.

(c) It follows from Part (a) that hXi is one of the subgroups K occurring in the
intersection. This shows that the right hand side is contained in the left hand side. On
the other hand, Part (b) implies that every subgroup K occurring in the intersection also
contains hXi. This shows that the left hand side is contained in the right hand side.

4.12 Example Let G = Sym(3). By Proposition 4.6, we can easily see that Sym(3) is
not cyclic (i.e., not generated by a single element). In fact if we set

� :=

 
1 2 3
2 3 1

!

and ⌧ :=

 
1 2 3
2 1 3

!

.

then

�⌧ =

 
1 2 3
3 2 1

!

and ⌧� =

 
1 2 3
1 3 2

!

which shows that Sym(3) is not abelian.
But Sym(3) can be generated by two elements. For example, Sym(3) = h�, ⌧i. (This

notation is not quite correct, but a standard abbreviation for h{�, ⌧}i.) In fact, we can
produce all six elements of Sym(3) as iterated products of the elements � and ⌧ :

� =

 
1 2 3
2 3 1

!

, �2 =

 
1 2 3
3 1 2

!

, �3 =

 
1 2 3
1 2 3

!

,

⌧ =

 
1 2 3
2 1 3

!

, �⌧ =

 
1 2 3
3 2 1

!

, �2⌧ =

 
1 2 3
1 3 2

!

.

4.13 Remark The following statement is proved very easily, using the definitions: If
f : G ! H is a homomorphism between groups G and H and if X ✓ G then f(hXi) =
hf(X)i. In particular, if f is surjective and X is a generating set of G then f(X) is a
generating set of H.

We close this section with the statement that images and preimages of subgroups (with
respect to a homomorphism) are again subgroups. The easy proof is left as an exercise.
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4.14 Proposition Let f : G ! H be a homomorphisms between groups G and H.

(a) If U is a subgroup of G then f(U) is a subgroup of H.

(b) If V is a subgroup of H then f�1(V ) is a subgroup of G.
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Exercises for §4

1. Let G be a group and let H be a non-empty subset of G.

(a) Show that H is a subgroup of G if and only if for all a, b 2 H one has ab�1 2 H.

(b) Assume that H is finite. Show that H is a a subgroup of G if and only if for all
a, b 2 H one has ab 2 H. (Hint: Consider the set {a, a2, a3, . . .} for an element a 2 H to see
that 1 2 H and a�1 2 H.)

2. Find all subgroups of the symmetric group Sym(3). What are their orders. (Hint:
Start with subgroups generated by one element. Show that these together with Sym(3) are all
the subgroups.)

3. (a) Show that (Q,+) is not cyclic. (This is only a warm-up problem for part (b))

(b) Show that (Q,+) has no finite generating set.

4. Find all generators of Z12. What do you observe? Formulate a general statement
about the set of generators of (Zn,+n) (without proving it).

5. Denote by Q8 the subgroup of the group of invertible 2⇥2-matrices with complex
coe�cients generated by the elements

a =

 
i 0
0 �i

!

and b =

 
0 1
�1 0

!

.

This group is called the quaternion group of order 8.

(a) Show that a4 = 1, b4 = 1, a2 = b2, and ba = ab3.
(b) Show that Q8 has order 8, give a list of all its elements, and show that Q8 is not

abelian. (Hint: Use the relations in (a) to reduce any element of ha, bi to the form aibj with
i 2 {0, 1, 2, 3} and j 2 {0, 1}.)

6. Consider the elements �, ⌧ 2 Sym(4) defined by

� :=

✓
1 2 3 4
2 3 4 1

◆
and ⌧ :=

✓
1 2 3 4
4 3 2 1

◆
.

(a) Show that �4 = 1, ⌧2 = 1, and ⌧� = �3⌧ .

(b) Show that the subgroup D8 := h�, ⌧i of Sym(4) has order 8 and write down all its
elements. Show that D8 is not abelian. The group D8 is called the dihedral group of order 8.

7. Prove the statements in Remark 4.13.

8. Prove the statements in Proposition 4.14.
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5 Cyclic groups

5.1 Theorem Every subgroup of a cyclic group is cyclic.

Proof Let G = hai = {an | n 2 Z} and let H be a subgroup of G. If H = {1} then H is
cyclic (H = h1i) and we are done. So assume from now on that H 6= {1}. Since H 6= {1},
there must exist an element n 2 Z, n 6= 0, such that 1 6= an 2 H. With an also its inverse,
a�n is an element of H and a�n 6= 1. Therefore, there must exist a positive integer n such that
1 6= an 2 H. Thus, we can choose n 2 N minimal such that 1 6= an 2 H. We will show that
H = hani. First note that an 2 H, and therefore, by Proposition 4.4, we obtain hani 6 H.
Conversely, assume that h 2 H. Then h = am for some m 2 Z. We can divide m by n with
remainder and obtain an integer q and a remainder r 2 {0, . . . , n � 1} such that m = nq + r.
Now we have am = anq+r = anqar. Since am 2 H and an 2 H, we have anq = (an)q 2 H and
a�nq = (anq)�1 2 H. This implies that ar = a�nqam 2 H. By the minimal choice of n 2 N
such that 1 6= an 2 H, we must have ar = 1. But this implies h = am = (an)q 2 hani, and the
theorem is proven.

5.2 Corollary The subgroups of (Z,+) are the groups hni = nZ = {nk | k 2 Z} with n 2 N0.
Moreover, if mZ = nZ for m,n 2 N0, then m = n.

Proof Let H be a subgroup of (Z,+). Since Z is cyclic (Z = h1i), H is again cyclic by
Theorem 5.1. Therefore H =< n >= nZ for some element n 2 Z. Since nZ = (�n)Z, there
exists n 2 N0 such that H = nZ. Conversely, nZ = hni is obviously a cyclic subgroup of Z, for
every n 2 N0.

Assume that m and n are in N0 such that mZ = nZ. If m = 0 then mZ = {0} and
nZ = mZ = {0} implies that also n = 0. Similarly, n = 0 implies m = 0. So we may assume
that both m and n are positive. Then, m is the smallest positive element in mZ and n is the
smallest positive element in nZ. Since mZ = nZ, we obtain m = n.

5.3 Theorem Let a, b 2 N. Then, in (Z,+), one has

ha, bi = hgcd(a, b)i

and there exist m,n 2 Z such that

gcd(a, b) = ma+ nb .

Proof First note that ha, bi = {ma + nb | m,n 2 Z}. In fact, by definition, ha, bi is the set of
arbitrary sums of the elements a, �a, b and �b.

Next, since ha, bi is a subgroup of Z, Corollary 5.2 implies that there exists a unique element
d 2 N0 such that hdi = ha, bi. Since 0 6= a 2 ha, bi = hdi, we obtain that d > 0. By the first part
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of the proof there existm,n 2 Z such that d = ma+nb. It su�ces now to show that d = gcd(a, b).
First we show that d is a common divisor of a and b. In fact, since a 2 ha, bi = hdi = dZ, we see
that a is a multiple of d, and since b 2 ha, bi = hdi = dZ, we see that also b is a multiple of d.
Next assume that e 2 N is a common divisor of a and b. Then we can write a = re and b = se
for some elements r, s 2 N. This implies that d = ma+ nb = mre+ nse = (mr + ns)e. Thus, e
is a divisor of d. This show that d is the greatest common divisor of a and b.

5.4 Example gcd(11, 14) = 1 and one can write 1 = (�5) · 11 + 4 · 14.

5.5 Lemma Let G be a group, let a be an element in G and assume that n is a positive integer
such that an = 1. Then hai = {1, a, a2, . . . , an�1}. In particular, hai has at most n elements.

Proof Clearly, {1, a, a2, . . . , an�1} ✓ hai, by the definition of hai. Conversely, let b 2 hai.
Then there exists m 2 Z such that b = am. We divide m by n with remainder and can write
m = qn+ r with q 2 Z and r 2 {0, 1, . . . , n� 1}. We have

b = am = anq+r = (an)qar = 1qar = ar 2 {1, . . . .an�1} .

5.6 Theorem Let G = hai be an infinite cyclic group.

(a) If k and l are distinct integers then ak 6= al.

(b) The function
f : Z ! G , k 7! ak ,

is an isomorphism between (Z,+) and G. Thus, every infinite cyclic group is isomorphic to
(Z,+).

Proof (a) Assume that k 6= l are integers and that ak = al. Then ak�l = aka�l = ala�l = 1.
Therefore, there exists an integer n 2 Z, n 6= 0, such that an = 1. Replacing n by �n if
necessary, we see that there also exists n 2 N such that an = 1. Now Lemma 5.5 implies that
G = hai is finite. This is a contradiction.

(b) The function f is a homomorphism, since f(k + l) = ak+l = akal = f(k)f(l), for all
k, l 2 Z. It is surjective, because every element of G = hai is of the form ak = f(k) for some
k 2 Z. Finally, f is injective by part (a).

5.7 Definition Let G be a group and let a be an element of G. The order of a is defined as
the smallest n 2 N such that an = 1. If no such n exists, we define the order of a to be 1. We
denote the order of a by o(a).
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5.8 Example (a) Let a be an element in a group. Then o(a) = 1 if and only if a = 1.

(b) The element � =

✓
1 2 3
2 3 1

◆
in Sym(3) has order 3, since �1 = � 6= 1, �2 =

✓
1 2 3
3 1 2

◆
6=

1 and �3 = 1. The element ⌧ =

✓
1 2 3
2 1 3

◆
has order 2, since ⌧ 6= 1 and ⌧2 = 1.

(c) The element 3 in the group (Z12,+12) has order 4, since 3 6= 0, 3 +12 3 = 6 6= 0,
3 +12 +3 +12 3 = 9 6= 0 and 3 +12 +3 +12 3 +12 3 = 0.

Orders of elements are preserved under isomorphisms in the
following sense. Assume that f : G ! H is an isomorphism
between groups G and H and that a is an element of G.
Then o(f(a)) = o(a). The proof is left as an exercise.

5.9 Theorem Let G = hai be a finite cyclic group of order n.

(a) One has G = {1, a, . . . , an�1}, the elements 1, a, a2, . . . , an�1 are pairwise distinct, and
o(a) = n = |G|.

(b) For all integers k and l one has: ak = al if and only if k ⌘ l mod n.

(c) The function
f : Zn ! G , k 7! ak ,

is an isomorphism between (Zn,+n) andG. Therefore, every cyclic group of order n is isomorphic
to (Zn,+n).

Proof (a) Since G has order n, the n+ 1 elements 1, a, a2, . . . , an cannot be pairwise distinct.
Therefore, there exists 0 6 k < l 6 n such that ak = al. But then al�k = ala�k = aka�k = 1.
If l � k 6 n � 1, then, by Lemma 5.5, we obtain G = {1, a, . . . , al�k�1} ✓ {1, a, . . . , an�2} and
G has at most n � 1 elements. This is a contradiction. Thus, k = 0 and l = n and an = 1.
Again by Lemma 5.5 we see that G = {1, a, . . . , an�1}. Since G has order n, there cannot be any
repetition in the the n elements 1, a, a2, . . . , an�1 and therefore, ak 6= 1 for every 1 6 k 6 n� 1.
Together with an = 1 this implies that a has order n.

(b) Divide k and l by n with remainder and write k = qn+ r and l = q0n+ s with q, q0 2 Z
and r, s 2 {0, . . . , n� 1}. Then, ak = aqn+r = (an)qar = ar and similarly, al = as. Now we have
the following chain of equivalences:

k ⌘ l mod n () r = s () ar = as () ak = al .

In fact, the middle equivalence follows from Part (a).

(c) The function f is surjective, since G = hai. Moreover, it is injective by Part (a). It
remains to be shown that f is a homomorphism. So let k, l 2 {0, 1, . . . , n � 1} and write
k + l = qn+ r with q 2 Z and r 2 {0, 1, . . . , n� 1}. Then, k +n l = r and we have

f(k +n l) = f(r) = ar = (an)qar = aqn+r = ak+l = akal = f(k)f(l) .
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This completes the proof.

5.10 Corollary Let G be a group and let a be an element of G. Then o(a) = |hai|.

Proof If hai is a group of infinite order then also o(a) = 1 by Theorem 5.6(a) applied to the
group hai. If hai is a group of finite order n then, by Theorem 5.9(a) applied to the group hai,
we also have o(a) = n = |hai|.

5.11 Corollary Let G be a group and let a 2 G be an element of finite order n. For every
k 2 Z one has:

ak = 1 () n divides k.

Proof Write k = qn + r with q 2 Z and r 2 {0, 1, . . . , n � 1}. Then, by Theorem 5.9(b), we
have ak = ar. Moreover, by Theorem 5.9(a), we have ar = 1 if and only if r = 0. But this is
equivalent to n dividing k.

5.12 Proposition Let G be a group, let a 2 G be an element of finite order n, and let k 2 N.
Then

o(ak) =
n

gcd(k, n)
.

Proof We write d := gcd(k, n). For every m 2 N we have (ak)m = 1 if and only if akm = a0.
By Theorem 5.9(b), the latter statement is equivalent to km ⌘ 0 mod n. This holds if and
only if n divides km. This in turn holds if and only if n

d divides k
dm. Since k

d and n
d have no

common prime divisor, the latter holds if and only if n
d divides m. Thus, the smallest m with

this property is n
d , and the proof is complete.

5.13 Corollary Let G = hai be a finite group of order n. For k 2 {1, . . . , n� 1} one has

G = haki () gcd(k, n) = 1 .

Proof By Corollary 5.10 we have: ak is a generator of G if and only if o(ak) = n. By
Proposition 5.12, the latter condition is equivalent to gcd(k, n) = 1.

5.14 Example (a) If G = hai is a group of order 20, then each of the elements

a, a3, a7, a9, a11, a13, a17, a19

is a generator of G, and there are no other generators of G.

(b) The subgroup h12i of (Z20,+20), generated by the element 12, has order 5. In fact, 1 is a
generator of Z20, 12 = 12 ·1, gcd(12, 20) = 4 and 20/4 = 5. We can also compute h12i explicitly:
h12i = {0, 12, 4, 16, 8}.
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Exercises for §5

1. Let f : G ! H be an isomorphism between groups G and H.

(a) Show that for every a 2 G one has o(f(a)) = o(a).

(b) Show that G is cyclic if and only if H is cyclic.

2. Show that the groups Q8, D8, Z8, Z4 ⇥ Z2, Z2 ⇥ Z2 ⇥ Z2 are pairwise non-isomorphic.

3. Compute the order of the element 34 in (Z200,+200).

4. (a) Let a and b be elements of a group G. Assume that m := o(a) and n := o(b) satisfy
gcd(m,n) = 1 and that ab = ba. Show that o(ab) = mn.

(b) Is the statement in (a) still true if one drops the hypothesis gcd(m,n) = 1 or the
hypothesis ab = ba?

(c) Let G be a cyclic group of order m and let H be a cyclic group of order n. Assume that
gcd(m,n) = 1. Show that G⇥H is cyclic.

5. Let G = hai be a cyclic group of order n. Show that, for every divisor d of n, there
exists a subgroup of G whose order is d.

6. Let f : G ! H be a homomorphism between two groups G and H. Assume that a 2 G
is an element of finite order n 2 N. Show that the order of f(a) divides n.
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6 Symmetric groups

Recall that for any set X, the group Sym(X), the symmetric group on X consists of all per-
mutations of X, i.e., all bijective functions from X to X. The binary operation is given by
composition of functions. If X = {1, . . . , n} we also used the notation Sym(n). To distinguish
between the element 1 of {1, . . . , n} from the identity element of Sym(n), we will denote the
latter by id.

6.1 Proposition If X and Y are sets with the same cardinality (i.e., if there exists a bijection
between X and Y ) then Sym(X) and Sym(Y ) are isomorphic.

Proof Let f : X ! Y be a bijective function. Consider the functions

' : Sym(X) ! Sym(Y ) , � 7! f � � � f�1

and
 : Sym(Y ) ! Sym(X) , ⌧ 7! f�1 � ⌧ � f .

They satisfy ( � ')(�) = � and (' �  )(⌧) = ⌧ for all � 2 Sym(X) and all ⌧ 2 Sym(Y ). Thus,
' is bijective (with inverse  ). Moreover, ' is a homomorphism, since

'(� � ⌧) = f � � � ⌧ � f�1 = f � � � f�1 � f � ⌧ � f�1 = '(�) � '(⌧) .

Therefore ' : Sym(X) ! Sym(Y ) is an isomorphism.

The previous proposition shows that if X is a finite set with
n elements then Sym(X) is isomorphic to Sym(n). There-
fore, it su�ces to investigate the group Sym(n). Everything
we will prove about Sym(n) will also be true for Sym(X)
after translating the statement via an isomorphism.

6.2 Definition Let n 2 N and let a1, a2, . . . , ak be k distinct elements of {1, . . . , n}. We define

(a1, a2, . . . , ak) 2 Sym(n)

as the permutation that maps a1 to a2, a2 to a3, . . ., ak�1 to ak, and ak to a1. Every element
in {1, . . . , n} r {a1, . . . , ak} is mapped to itself. An element as above is called a k-cycle and
k is called its length. Note that every 1-cycle (a) is equal to the identity. 2-cycles are also
called transpositions. Two cycles (a1, . . . , ak) and (b1, . . . , bl) are called disjoint if {a1, . . . , ak}\
{b1, . . . , bl} = ;.
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6.3 Example The element

✓
1 2 3 4 5
3 5 2 4 1

◆
= (1, 3, 2, 5) = (3, 2, 5, 1) = (2, 5, 1, 3) = (5, 1, 3, 2)

is a 4-cycle in Sym(5). Usually it is clear from the context if (1, 3, 2, 5) is viewed as an element
in Sym(5), or Sym(6), or Sym(7), etc.

6.4 Proposition Let n 2 N and let � and � be two disjoint cycles in Sym(n). Then � and �
commute, i.e., �� = ��.

Proof We can write � = (a1, . . . , ak) and � = (b1, . . . , bl). If c 2 {a1, . . . , ak} then

(��)(c) = �(�(c)) = �(c) = �(�(c)) = (��)(c) ,

since c and �(c) are not in {b1, . . . , bl}. Similarly, if c 2 {b1, . . . , bl} then

(��)(c) = �(�(c)) = �(c) = �(�(c)) = (��)(c) ,

since �(c) and c are not in {a1, . . . , ak}. Finally, if c 2 {1, . . . , n} is neither contained in
{a1, . . . , ak} nor in {b1, . . . , bl} then we obtain for similar reasons that (��)(c) = �(c) = c =
�(c) = (��)(c). Altogether, this implies that �� = ��.

6.5 Example Let’s pick a random permutation, say

� =

✓
1 2 3 4 5 6 7 8 9
2 5 8 4 9 3 1 6 7

◆
2 Sym(9)

Note that we can write

� = (1, 2, 5, 9, 7)(3, 8, 6)(4) = (1, 2, 5, 9, 7)(3, 8, 6) ,

a product of pairwise disjoint cycles (of length > 2 if we want). The next theorem shows that
this is no coincidence. This can be done for every element � in Sym(n).

Sometimes we will talk about the empty product in a group.
This means a product with 0 factors. Our convention is that
such a product is always equal to the identity element. Thus,
an expression g1g2 · · · gr is interpreted as the identity of the
group if r = 0.

6.6 Theorem Let n 2 N. Every element � 2 Sym(n) can be written as a product �1 · · · �r of
pairwise disjoint cycles �1, . . . , �r of lengths > 2.
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Proof For � 2 Sym(n) denote by M(�) the set of elements a 2 {1, . . . , n} which are moved
by �, i.e., such that �(a) 6= a. Note that M(�⌧) ✓ M(�) [M(⌧), that M(�) = M(��1), and
that M(�) = ; if and only if � = id. Also, if � = (a1, . . . , ak) is a k-cycle with k > 2 then
M(�) = {a1, . . . , ak}. Finally, note that there exists no permutation � with |M(�)| = 1.

If � = id then we can write � as the empty product.
We will prove by induction on m the following assertion: If � 6= id and |M(�)| = m then

� can be written as a product �1 · · · �r of pairwise disjoint cycles of lengths > 2 such that
M(�) = M(�1) [ · · · [M(�r). This assertion then clearly implies the one in the theorem.

By the above, we need to start the induction with m = 2. So assume that � is an element
of Sym(n) such that M(�) = {a1, a2} has two elements. This means that �(a) = a for all
a 2 {1, . . . , n} r {a1, a2} and �(a1) = a2 and �(a2) = a1. Thus, � = (a1, a2) is a transposition
and the statement is proved.

Next let � 2 Sym(n) with |M(�)| = m > 2 and assume that the assertion of the theorem
holds for all id 6= ⌧ 2 Sym(n) with |M(⌧)| < m. Pick an element a 2 M(�) and consider the
sequence a,�(a),�2(a),�3(a), . . . of elements in {1, . . . , n}. Let k be the smallest natural number
such that a,�(a), . . . ,�k(a) contains a repetition. Then k > 2 and a,�(a), . . . ,�k�1(a) contains
no repetition. We claim that �k(a) = a. In fact, if �k(a) = �i(a) for some i = 1, . . . , k � 1 then
applying the inverse of �i we obtain �k�i(a) = a and we would already have had a repetition
in a,�(a), . . . ,�k�i(a), contradicting the minimality of k. Set � := (a,�(a),�2(a), . . . ,�k�1(a))
and ⌧ := ���1. Note that M(�) = {a,�(a), . . . ,�k�1(a)} ✓ M(�) and that M(⌧) \M(�) = ;.
Moreover, we have M(�) = M(⌧�) ✓ M(⌧) [M(�) = M(���1) [M(�) ✓ M(�) [M(��1) [
M(�) = M(�). Thus, M(�) = M(⌧) [ M(�) and this union is disjoint. If ⌧ = 1 then � = �
and we are done. If ⌧ 6= id then, by induction (note that |M(⌧)| = m � k) we can write
⌧ as ⌧ = �1 · · · �r with pairwise disjoint cycles �1, . . . , �r of lengths > 2 such that M(⌧) =
M(�1) [ · · ·M(�r). This implies that � = �1 · · · �r� can be written as a product of cycles of
lengths > 2. They are disjoint, since (M(�1) [ · · · [M(�r)) \M(�) = M(⌧) \M(�) = ;. We
also have M(�) = M(⌧) [M(�) = M(�1) [ · · · [M(�r) [M(�). This completes the proof.

6.7 Proposition Let n 2 N. Every element in Sym(n) can be written as a product of trans-
positions.

Proof Let � be an element in Sym(n). By Theorem 6.6, � can be written as a product of cycles
of length > 2. Therefore it su�ces to show that we can write every k-cycle with k > 2 as a
product of transpositions. So let � = (a1, . . . , ak) be a k-cycle with k > 2. Then, by inspection,
we see that

(a1, . . . , ak) = (a1, ak)(a1, ak�1)(a1, ak�2) · · · (a1, a3)(a1, a2) .

In fact, if a 2 {1, . . . , n}r {a1, . . . , ak} then both sides map a to a. And also if a 2 {a1, . . . , ak}
then both sides map a to the same element. This completes the proof.
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6.8 Definition A transposition in Sym(n) of the form (i, i+1) with i 2 {1, . . . , n� 1} is called
a simple transposition.

6.9 Proposition Let n 2 N. Every transposition in Sym(n) is a product of an odd number
of simple transpositions. In particular, by Proposition 6.7, Sym(n) is generated by the set
{(1, 2), (2, 3), . . . , (n� 1, n)} of simple transpositions.

Proof Let 1 6 k < l 6 n. We will show by induction on l� k that (k, l) is a product of an odd
number of simple transpositions. If l� k = 1 then (k, l) is a simple transposition and a product
of such with 1 factor. Next assume that l � k > 2. One can check by inspection that

(k, l) = (k, k + 1)(k + 1, l)(k, k + 1) .

Since l� (k+1) < l� k, we can apply the induction hypothesis and write (k+1, l) as a product
of an odd number of simple transpositions. This completes the proof.

6.10 Definition Let n be a positive integer and let � be an element in Sym(n). A pair (i, j)
with 1 6 i < j 6 n is called an inversion of � if �(i) > �(j). The number of inversions of � will
be denoted by N(�). The permutation � is called even if N(�) is even and odd if N(�) is odd.
We also define the sign function

sgn: Sym(n) ! {1,�1} , � 7! (�1)N(�) .

Thus, an even permutation has sign 1 and and an odd permutation has sign �1.

Note that the symbol (i, j) can mean two di↵erent things:
First it can be a transposition, i.e., an element of Sym(n);
secondly it can be just a pair of elements for which one wants
to decide if it is an inversion for �. It should be clear from
the context which of the two one is talking about. To avoid
confusion we can also say ”the transposition (i, j)”, or in the
other cast ”the pair (i, j)”.
It is clear that, for every � 2 Sym(n), the number of in-
versions N(�) satisfies 0 6 N(�) 6 n(n � 1)/2. Exercise 4
shows that the upper bound n(n�1)/2 actually occurs, and
only for one choice of �.

6.11 Example Let

� :=

✓
1 2 3 4
1 4 2 3

◆
2 Sym(4) .

The inversions of � are (2, 3) and (2, 4). Thus, sgn(�) = 1 and � is an even permutation.

33



6.12 Lemma Let n 2 N and let � 2 Sym(n).
(a) One has N(�) = 0 if and only if � = id.
(b) If 1 6 k < l 6 n and � = (k, l) then N(�) = 2(l � k) � 1. Thus, every transposition is

an odd permutation.
(c) Let 1 6 k < n. If �(k) < �(k+1) then N(�(k, k+1)) = N(�)+1 and if �(k) > �(k+1)

then N(�(k, k + 1)) = N(�)� 1
(d) Assume that � = ⌧1 · · · ⌧s is a product of s simple transpositions ⌧1, . . . , ⌧s. Then N(�) ⌘

s mod 2.

Proof (a) If � = id then � has no inversions. Conversely, if � has no inversion then �(1) <
�(2) < · · · < �(n). This implies that � = id.

(b) Let 1 6 i < j 6 n. If both i and j are not contained in {k, l} then (i, j) is not an
inversion. If i = k and j 2 {k + 1, . . . , l � 1} then (i, j) is an inversion and if j > l then (i, j) is
not an inversion. Similarly, if j = l and i 2 {k+1, . . . , l�1} then (i, j) is an inversion and if i < k
then (i, j) is not an inversion. Finally, the only remaining pair, namely (k, l), is an inversion.
Altogether we have found that the permutation (k, l) has (l�k�1)+(l�k�1)+1 = 2(l�k)�1
inversions.

(c) Let 1 6 i < j 6 n. If i and j are not in {k, k + 1} then (�(k, k + 1))(i) = �(i) and
(�(k, k + 1))(j) = �(j). Thus, (i, j) is an inversion for � if and only if (i, j) is an inversion for
�(k, k + 1). Next assume that j > k + 1. Then (k, j) is an inversion of �(k, k + 1) if and only if
(k + 1, j) is an inversion of � and (k + 1, j) is an inversion of �(k, k + 1) if and only if (k, j) is
an inversion of �. Also if i < k then (i, k) is an inversion of �(k, k+1) if and only if (i, k+1) is
an inversion of � and (i, k + 1) is an inversion of �(k, k + 1) if and only if (i, k) is an inversion
of �. Finally, we see that (k, k+1) is an inversion of �(k, k+1) if an only if (k, k+1) is not an
inversion of �. This proves the statement in (c).

(d) We prove the statement by induction on s. If s = 0 then � = id and s = 0 = N(�) by
Part (a). Similarly, if s = 1 then s = 1 = N(�) by Part (b). Now assume that s > 1 and set
�0 := ⌧1 · · · ⌧s�1. Then � = �0⌧s and, by Part (c) and the induction hypothesis applied to �0, we
have N(�) ⌘ N(�0) + 1 ⌘ (s� 1) + 1 = s mod 2.

6.13 Theorem Let n 2 N and let � 2 Sym(n). Assume that � = ⌧1 · · · ⌧r is a product of r
transpositions. Then N(�) ⌘ r mod 2.
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The theorem states that if � is even then also r must be even,
and if � is odd then also r must be odd. This shows that if �
can be written as a product of an even number of transposi-
tions then every other product of transpositions that equals
� must also have an even number of factors. Similarly, if �
can be written as a product of an odd number of transposi-
tions then every other product of transpositions that equals
� must also have an odd number of factors. For instance,
it cannot happen that � can be expressed as a product of 3
transpositions and also as a product of 4 transpositions.
Another consequence of the theorem is that a permutation
is even (resp. odd) if and only if it can be written as a prod-
uct of an even (resp. odd) number of transpositions. This
property is often used in textbooks as a definition for even
(resp. odd) permutations.

Proof By Proposition 6.9 we can write every transposition ⌧i as a product of si simple trans-
positions, such that si 2 N is odd. Substituting each ⌧i by such a product yields an expression
of � as a product of s = s1 + . . .+ sr simple transpositions. Since each si is odd, we have si ⌘ 1
mod 2. Adding these r congruences yields s ⌘ r mod 2. Further, by Lemma 6.12(d), we have
N(�) ⌘ s mod 2. Thus N(�) ⌘ s ⌘ r mod 2.

6.14 Definition Let n 2 N. We denote the set of even permutations in Sym(n) by Alt(n). By
the following corollary, this is a subgroup of Sym(n), called the alternating group on {1, . . . , n}.

6.15 Corollary The product of two even permutations is even, the product of two odd permu-
tations is even, and the product of two permutations of mixed signs is odd. The inverse of an
even permutation is even and the inverse of an odd permutation is odd. In particular, Alt(n) is
a subgroup of Sym(n) and the function sgn: Sym(n) ! {1,�1} is a homomorphism.

Proof Let � and ⌧ be elements of Sym(n). Write � and ⌧ as products of s and t transpositions,
respectively, then �⌧ can be written as a product of s+ t transpositions. Now the first sentence
in the corollary follows from Theorem 6.13. Since transpositions are their own inverses, the
inverse of � is again a product of s transpositions and the second sentence follows. Finally,
Theorem 6.13 implies

sgn(�⌧) = (�1)N(�⌧) = (�1)s+t = (�1)s(�1)t = (�1)N(�)(�1)N(⌧) = sgn(�)sgn(⌧) .
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6.16 Remark Let n be a positive integer and let � be a permutation in Sym(n). The number
N(�), of inversions of �, has the following interesting property: N(�) is the smallest possible
number of factors that are needed to express � as a product of simple transposition. This can
be proved using Lemma 6.12(c). The proof is left as an exercise (see Exercise 5).
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Exercises for §6

1. (a) Show that the order of a k-cycle in Sym(n) is equal to k.

(b) Compute the order of (1, 2, 3)(4, 5, 6, 7) in Sym(7).

2. Let n 2 N, let � 2 Sym(n) and let (a1, . . . , ak) be a k-cycle in Sym(n). Show that
� � (a1, a2, . . . , ak) � ��1 = (�(a1), . . . ,�(ak)).

3. Let 2 6 n 2 N and set � := (1, 2, 3, . . . , n) and ⌧ := (1, 2). Show that Sym(n) = h�, ⌧i.

4. Let 2 6 n 2 N. Show that there exists precisely one element ! in Sym(n) such that
every pair (i, j) with 1 6 i < j 6 n is an inversion of !. Show that ! has order 2.

5. Let n > 2. For � 2 Sym(n), define the length of � (notation l(�)) as the smallest l 2 N0

such that � can be written as a product of l simple transpositions. Show that l(�) = N(�).

6. In the tableau
2 1 3 4
5 6 7 8
9 10 11 12
13 14 15

one is allowed to shift any square bordering the empty slot to the empty slot. Find out if it is
possible to obtain the constellation

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

from the first one by a sequence of the above moves.

7. Assume that � is a k-cycle. Show that if k is even then � is odd and if k is odd then �
is even.
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7 Symmetry groups

7.1 Remark (a) Recall that an orthogonal transformation of Rn is a linear function f : Rn ! Rn

with the property
hf(x), f(y)i = hx, yi for all x, y 2 Rn. (7.1.a)

Here hx, yi = x1y1 + · · · + xnyn is the standard euclidean inner product. Thus, an orthogonal
transformation is a linear map that preserves angles and lengths. Recall also that every linear
function f : Rn ! Rn is of the form x 7! Ax for a uniquely determined n ⇥ n-matrix A. An
n⇥ n-matrix A is called orthogonal if it has the property corresponding to (7.1.a):

hAx,Ayi = hx, yi for all x, y 2 Rn. (7.1.b)

The equation in (7.1.b) is equivalent to requiring AtA = In, where At denotes the transposed
of A and In denotes the identity matrix. Thus, every orthogonal matrix A is invertible and its
inverse is At. The orthogonal matrices form a subgroup of GLn(R), called the orthogonal group.
It is denoted by On(R). Note that since det(A) = det(At), the equation AtA = In implies that
det(A)2 = 1. Thus, every orthogonal matrix has determinant ±1. An orthogonal matrix with
determinant +1 is called a special orthogonal matrix. The special orthogonal matrices form a
subgroup of On(R), called the special orthogonal group. It is denoted by SOn(R).

(b) If n = 2, then every orthogonal transformation is either a reflection about a line through
0 or a rotation about 0. The rotations are the ones with determinant 1 and the reflections have
determinant �1. For example, ✓

cos(�) � sin(�)
sin(�) cos(�)

◆

is a counterclockwise rotation with angle � and

✓
0 1
1 0

◆

is a reflection about the diagonal of the first and third quadrants.

(c) If n = 3 then every special orthogonal transformation is a rotation about an axis through
the origin with some angle �. For instance,

0

@
1 0 0
0 cos(�) � sin(�)
0 sin(�) cos(�)

1

A

is such a rotation about the x-axis. Every reflection about a two-dimensional subspace is again an
orthogonal transformation with determinant �1, but there are more orthogonal transformations
with determinant �1. This is why, in Rn, for n > 3, we will later only consider special orthogonal
transformations.
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7.2 Definition (a) Let S ⇢ R2 be a subset of R2. The symmetry group of S, ⌃(S), is the set
of orthogonal transformations, i.e., rotations and reflections, which map S onto itself. This is
clearly a group under composition.

(b) Let S ⇢ R3 be a subset of R3. The rotational symmetry group of S, ⌃r(S), is the set of
all special orthogonal transformations (i.e., rotations) which map S onto itself. This is clearly a
group under composition.

7.3 Example (a) Consider a square with its center in the origin. It has 8 symmetries: The
four counterclockwise rotations with angles 0�, 90�, 180�, and 270�, and the four reflections. We
number the vertices of the square in counterclockwise orientation by 1, 2, 3 and 4. We denote
the counterclockwise rotation with angle 90� by � and the reflection about the line that passes
through the mid point of the edge connecting 1 and 4 by ⌧ . Then the four rotations are given
by id,�,�2,�3 and the four reflections are given by ⌧,�⌧,�2⌧,�3⌧ . Clearly one has �4 = id and
⌧2 = id. But one also has ⌧� = �3⌧ , which allows one to bring products of arbitrary length into
the form of the above 8 elements. For instance, ��⌧��⌧� = ��⌧���3⌧ = ��⌧�⌧ = ���3⌧⌧ = �.

(b) More generally, one can consider a regular n-gon Pn (for n > 3) with center located in
the origin. Again we number the vertices in counterclockwise orientation by 1, 2, . . ., n and
denote the counterclockwise rotation with angle 360�/n by � and the reflection about the line
that passes through the midpoint of the edge connecting 1 and n by ⌧ . The symmetry group of
the n-gon consists of n rotations, namely id, �, �2, . . ., �n�1, and n reflections, namely ⌧ , �⌧ ,
�2⌧ , . . ., �n�1⌧ . In particular, {�, ⌧} is a generating set of the symmetry group of the regular
n-gon. One can again easily verify that these elements satisfy the relations �n = 1, ⌧2 = 1 and
⌧� = �n�1⌧ = ��1⌧ which allow us to carry out any computation in this group. The symmetry
group of the regular n-gon is called the dihedral group of order 2n. It is denoted by D2n.

7.4 Proposition Assume the notation from Example 7.3(b). There exists an injective group
homomorphism ↵ : ⌃(Pn) ! Sym(n) with

↵(�) = (1, 2, . . . , n) and ↵(⌧) = (1, n)(2, n� 1)(3, n� 2) · · · .

In particular, D2n = ⌃(Pn) is isomorphic to the subgroup h(1, 2, . . . , n), (1, n)(2, n � 1) · · · i of
Sym(n).

Proof We number the vertices of Pn the same way as in Example 7.3(b). Then we define the
function

↵ : ⌃(Pn) ! Sym(n) , f 7! f |{1,...,n} .

Since every vertex of Pn is mapped under a symmetry to a vertex, the map f |{1,...,n} (the
restriction of f to {1, . . . , n}) is a function from {1, . . . , n} to {1, . . . , n}. Since f is injective,
also f |{1,...,n} is injective. But this implies that f |{1,...,n} is an element of Sym(n). Also, for
f, g 2 ⌃(Pn) one has (g �f)|{1,...,n} = (g|{1,...,n})� (f |{1,...,n}). Thus, ↵ is a group homomorphism.
Moreover, ↵ is injective. In fact, assume that f and g are elements of ⌃(Pn) whose restrictions
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to {1, . . . , n} coincide. Then f(1) = g(1) and f(2) = g(2). Since the vectors 1 and 2 generate the
vector space R2, this implies f = g. Thus, ↵ is injective and defines an isomorphism ↵ : ⌃(Pn) !
↵(⌃(Pn)). Clearly, ↵(�) = (1, . . . , n) and ↵(⌧) = (1, n)(2, n � 1) · · · . Since ⌃(Pn) = h�, ⌧i, we
have ↵(⌃(Pn)) = h(1, 2, . . . , n), (1, n)(2, n� 1) · · · i.

7.5 Example (a) The rotational symmetry group of the tetrahedron is isomorphic to Alt(4)
(left as exercise).

(b) The rotational symmetry group of the cube consists of

• 9 rotations about an axis through the centers of opposite squares (6 of them have order
4, and 3 of them have order 2),

• 6 rotations of order 2 about an axis through the centers of opposite edges,

• 8 rotations of order 3 about an axis through opposite vertices, and

• the identity.

Compare this to the 24 elements of Sym(4): 6 4-cycles, 3 double transpositions, 6 transpositions,
8 3-cycles, and the identity. In fact, one can show that the rotational symmetry group of the
cube is isomorphic to Sym(4), see Exercise 3.

(c) The rotational symmetry group of the dodecahedron consists of

• 24 rotations of order 5 about an axis that passes through the centers of opposite pentagons,

• 30 rotations of order 3 about an axis that passes through opposite vertices,

• 15 rotations of order 2 about an axis that passes through the centers of opposite edges,

• and the identity element.

Note that also the group Alt(5) has, besides the identity, 24 elements of order 5 (the 5-cycles), 30
elements of order 3 (the 3-cycles), and 15 elements of order 2 (the double transpositions). And
in fact, one can prove that the rotational symmetry group of the dodecahedron is isomorphic to
Alt(5).
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Exercises for §7

1. (a) Let � be the elements of the dihedral group D2n given as the rotation with 360�/n,
and let ⇢ 2 D2n be any reflection. Show that ⇢� = ��1⇢, and show that �⇢ and ⇢ are elements
of order 2 which generate D2n.

(b) Assume that G = ht1, t2i is a finite group which is generated by two involutions t1, t2,
i.e., elements of order 2 and assume that n := o(t1t2) > 3. Show that G ⇠= D2n.

2. Show that the rotational symmetry group of a tetrahedron is isomorphic to Alt(4), by
considering the four vertices of the tetrahedron.

3. Show that the rotational symmetry group of a cube is isomorphic to Sym(4), by consid-
ering the four diagonals of the cube.
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8 Cosets and Lagrange’s Theorem

8.1 Notation For a group G and subsets X and Y of G we set

XY := {xy | x 2 X, y 2 Y } .

Note that if also Z is a subset of G then (XY )Z = X(Y Z).

8.2 Definition Let G be a group and let H be a subgroup of G. A left coset of H in G is a
subset of G of the form aH = {ah | h 2 H} for some a 2 G. Similarly, a right coset of H in G
is a subset of G of the form Ha = {ha | h 2 H} for some a 2 G. Note that a 2 aH and a 2 Ha.

8.3 Proposition Let G be a group and let H be a subgroup of G. Furthermore, let a and b be
element of G.

(a) One has aH = H if and only if a 2 H.

(b) One has either aH = bH or aH \ bH = ;. Moreover,

aH = bH () b�1a 2 H () a�1b 2 H .

(c) One has Ha = H if and only if a 2 H.

(d) One has either Ha = Hb or Ha \Hb = ;. Moreover,

Ha = Hb () ab�1 2 H () ba�1 2 H .

Proof (a) If aH = H then a = a · 1G 2 aH = H. Conversely, if a 2 H then aH ✓ H, since H
is closed. Moreover, H = 1G ·H = (aa�1)H = a(a�1H) ✓ aH, since also a�1H ✓ H.

(b) For the first statement it su�ces to show that if aH and bH have an element in common
then aH = bH. So assume that ah = bh0 for some elements h, h0 2 H. Then aH = bh0h�1H =
bH, since h0h�1H = H by Part (a). For the second statement note that aH = bH if and only
if b�1aH = H and also if and only if H = a�1bH. Now the second statement follows from
Part (a).

(c) This is proved in the same way as Part (a).

(d) This is proved in the same way as Part (b).
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Proposition 8.3(b) implies that G is the disjoint union of the
left cosets of H. The corresponding equivalence relation of
this partitioning of G is given by

a ⇠L b : () a�1b 2 H .

Similarly, G is the disjoint union of the right cosets of H,
and the corresponding equivalence relation is given by

a ⇠R b : () ab�1 2 H .

In general, the partitioning of G into left cosets of H is
di↵erent from the partitioning of G into right cosets of H,
as the following example shows.

8.4 Example Let G = Sym(3).

(a) Let H = {1, (1, 2)} 6 G then the left cosets of H are the three subsets

H ={1, (1, 2)}
(1, 2, 3)H ={(1, 2, 3), (1, 3)}
(1, 3, 2)H ={(1, 3, 2), (2, 3)} ,

and the right cosets of H are the three subsets

H ={1, (1, 2)}
H(1, 2, 3) ={(1, 2, 3), (2, 3)}
H(1, 3, 2) ={(1, 3, 2), (1, 3)} .

The left coset (1, 2, 3)H that contains (1, 2, 3) is di↵erent from the right coset H(1, 2, 3) that
contains (1, 2, 3). Thus, the left coset (1, 2, 3)H of H is not equal to a right coset of H.

(b) Let K = h(1, 2, 3)i = {1, (1, 2, 3), (1, 3, 2)} 6 G. Then the left cosets of K are given by

K ={1, (1, 2, 3), (1, 3, 2)}
(1, 2)K ={(1, 2), (2, 3), (1, 3)} .

The right cosets of K are given by

K = {1, (1, 2, 3), (1, 3, 2)}
K(1, 2) = {(1, 2), (1, 3), (2, 3)} .

Therefore, the left cosets of K are also right cosets.
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8.5 Definition Let G be a group and let H be a subgroup of G. We denote the set of left
cosets of H in G by G/H and the set of right cosets of H in G by H\G.

8.6 Example With the notation in Example 8.4, we have

G/H = {H, (1, 2, 3)H, (1, 3, 2)H} , H\G = {H,H(1, 2, 3), H(1, 3, 2)}

and
G/K = {K, (1, 2)K} , K\G = {K,K(1, 2)} .

Therefore, G/H 6= H\G, but G/K = K\G, cf. Example 8.4

8.7 Notation If X is a subset of a group G we define

X�1 := {x�1 | x 2 X} .

Note that if also Y is a subset of G then (XY )�1 = Y �1X�1. Moreover note that if H is a
subgroup of G then H�1 = H. In particular, if aH is a left coset of H in G then (aH)�1 =
H�1a�1 = Ha�1 is a right coset of H in G. Similarly, if Ha is a right coset of H in G then
(Ha)�1 = a�1H is a left coset of H in G.

8.8 Proposition Let G be a group and let H 6 G.

(a) For every a 2 G, the function la : H ! aH, h 7! ah, is bijective.

(b) For every a 2 G the function ra : H ! Ha, h 7! ha, is bijective.

(c) The function G/H ! H\G, aH 7! (aH)�1 = Ha�1, is a bijection. In particular
|G/H| = |H\G|.

Proof (a) Clearly, la is surjective. To see that la is injective, note that ah1 = ah2 implies
h1 = h2 for all h1, h2 2 H.

(b) This is proved in a similar way as Part (a).

(c) The function is bijective, since H\G ! G/H, Ha 7! (Ha)�1 = a�1H, is an inverse to
the given function.

Assume that G is a finite group and that H 6 G. Part (a)
(resp. Part (b)) of Proposition 8.8 shows that all the left
cosets (reps. right cosets) of H in G have the same cardinal-
ity, namely the order of H.

8.9 Definition Let G be a group and let H be a subgroup of G. By Proposition 8.8(c), the
number of left cosets of H in G is equal to the number of right cosets of H in G. This number,
|G/H| = |H\G|, is called the index of H in G and it is denoted by [G : H]. It can be equal to
infinity.
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8.10 Theorem (Lagrange) Let G be a group and let H be a subgroup of G. Then

|G| = |H| · [G : H]

(with the usual rules of arithmetic for 1). In particular, if G is a finite group then |H| divides
|G|.

Proof By Proposition 8.3(b), the set G is the disjoint union of the left cosets of G. By
Proposition 8.8(a), each left coset of H has the same number of elements as H. Thus, |G| =
|G/H| · |H| = [G : H] · |H|. This equation is even true when one allows the values 1 for |G|,
|H|, or [G : H].

8.11 Corollary Let G be a finite group and let a 2 G. Then o(a) divides |G|.

Proof By Corollary 5.10 we have o(a) = |hai|. By Lagrange’s Theorem, |hai| divides |G|. This
proves the corollary.

8.12 Corollary Let p be a prime number. Every group G of order p is cyclic. In particular,
G ⇠= (Zp,+p), and there exists only one group of order p (up to isomorphism).

Proof Let a 2 G be an element that is di↵erent from the identity element. Then o(a) 6= 1, and
o(a) divides |G| = p by Corollary 8.11. Thus o(a) = p, and |hai| = o(a) = p by Corollary 5.10.
This implies that hai = G.

8.13 Examples (a) For n > 2, he subgroup Alt(n) of Sym(n) has two left cosets and two
right cosets in Sym, namely Alt(n) and ⌧Alt(n) = Alt(n)⌧ , where ⌧ is any odd permutation.
In fact the even permutations form the left and right coset Alt(n). Moreover, any two odd
permutations ↵ and � lie in the same left coset and also in the same right coset, since ↵�1� 2
Alt(n) and ↵��1 2 Alt(n). Thus, ⌧Alt(n) and Alt(n)⌧ is the set of odd permutations. We
obtain, that |Alt(n)| has index 2 in Sym(n) and by Lagrange we obtain that |Alt(n)| = n!/2.
Proposition 8.8 implies that |Alt(n)| = |⌧Alt(n)|, so that there are as many even permutations
as odd permutations.

(b) Let n 2 N and consider the subgroup nZ of (Z,+). Since Z is abelian, one has a+nZ =
nZ+ a, i.e., left and right cosets coincide. For arbitrary a, b 2 Z one has

a+ nZ = b+ nZ () a� b 2 nZ () a ⌘ b mod n .

Thus, nZ has precisely n cosets in Z, namely

0 + nZ, 1 + nZ, 2 + nZ, . . . , (n� 1) + nZ

and therefore [Z : nZ] = n, i.e., nZ has index n in Z.
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Exercises for §8

1. Show that V := {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is a subgroup of Alt(4) and com-
pute its left and right cosets. Do the left and right cosets of V yield the same partitioning of
Alt(4)?

2. Let p be prime and let G be a group of order pn for some n 2 N. Show that G has an
element of order p. (Hint: Choose an element 1 6= a 2 G and consider the group hai. Then find
an element of order p in this group.)

3. Let H and K be subgroups of a group G and assume that gcd(|H|, |K|) = 1. Show that
H \K = {1G}.

4. Find all the subgroups of Alt(4) of order 1, 2, 3, and 4. Does Alt(4) have a subgroup of
order 6?

5. Let G be a finite group and let H be a subgroups of G. Elements a1, . . . , an of G are
called left coset representatives of H in G if each left coset of H in G can be written as aiH for
a unique i = 1, . . . , n (in other words, if G is the disjoint union of the subsets aiH, i = 1, . . . , n).
Note that in this case n = [G : H].

(a) Show that if a1, . . . , an are left coset representatives of H in G then a�1
i are right coset

representatives of H in G.

(b) Assume that H and K are subgroups of G with H \K = {1} and HK = G. Show that
K is a set of left and right coset representatives of H in G.

(c) Let K 6 H 6 G, let a1, . . . , an 2 G be left coset representatives of H in G and let
b1, . . . , bm 2 H be left coset representatives of K in H. Show that aibj (i = 1, . . . , n, j =
1, . . . ,m) are left coset representatives of K in G. Conclude that [G : K] = [G : H] · [H : K].
Can the last statement be shown in a shorter way?
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9 Normal subgroups and factor groups

9.1 Definition Let f : G ! H be a homomorphism between groups. The kernel of f is defined
as the set of all a 2 G with f(a) = 1H . We denote the kernel of f by ker(f). In other words,
ker(f) = f�1(1H). Since {1H} is a subgroup of H, Proposition 4.14(b) implies that ker(f) is a
subgroup of G.

9.2 Proposition Let f : G ! H be a homomorphism between groups G and H, let a be an
element of G and set b := f(a). Then

f�1(b) = a ker(f) = ker(f)a .

Proof First assume that a0 2 f�1(b). Then f(a0) = b and f(a�1a0) = f(a�1)f(a0) =
f(a)�1f(a0) = b�1b = 1H . Thus, a�1a0 2 ker(f) and a0 = (aa�1)a0 = a(a�1a0) 2 a ker(f).
Conversely, let ax 2 a ker(f) with an element x 2 ker(f). Then f(ax) = f(a)f(x) = b1H = b
and therefore, ax 2 f�1(b). This shows that f�1(b) = a ker(f).

Similarly one shows that f�1(b) = ker(f)a.

9.3 Corollary A group homomorphisms f : G ! H is injective if and only if ker(f) = {1G}.

Proof If f is injective then ker(f) = {1G}. In fact, if ker(f) has more than one element then
these elements are all mapped to 1H , contradicting the injectivity of f . Conversely, assume
that ker(f) = {1G}. In order to show that f is injective let a, a0 2 G with f(a) = f(a0)
and set b := f(a) = f(a0). Then a, a0 2 f�1(b) and, by Propositions 9.2 and 8.8, we have
|f�1(b)| = | ker(f)| = 1. Thus, a = a0, and f is injective.

9.4 Definition A subgroup N of a group G is called a normal subgroup of G if aN = Na for
every a 2 G. If N is a normal subgroup of G we write N E G. If N is a normal subgroup of G
and N 6= G we write N /G.

One always has {1G} E G and G E G. Moreover, if
G is abelian then every subgroup of G is normal in G.
Proposition 9.2 shows that for every group homomorphism
f : G ! H one has ker(f) E G.

9.5 Proposition Let G be a group and let N be a subgroup of G. The following are equivalent:
(i) aN = Na for all a 2 G, i.e. N is normal in G.
(ii) aNa�1 = N for all a 2 G.
(iii) aNa�1 ✓ N for all a 2 G.
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Proof (i))(ii): Let a 2 G. By (i) we have aN = Na. We multiply this equation from the
right with a�1 and obtain aNa�1 = N .

(ii))(iii): This is trivial.
(iii))(i): Let a 2 G. We will show that aN = Na. By (iii) we have aNa�1 ✓ N and

a�1Na ✓ N . Multiplying the first inclusion with a from the right yields aN ✓ Na and multi-
plying the second inclusion from the left with a yields Na ✓ aN .

9.6 Theorem Assume that N is a normal subgroup of G.
(a) For any a, b 2 G one has (with the multiplication of subsets of G defined in 8.1):

(aN)(bN) = (ab)N = N(ab) = (Na)(Nb) .

(b) The set of left (or right) cosets G/N is a group under the binary operation in (a). The
element 1GN = N is the identity element. For each a 2 G, the inverse of aN is equal to a�1N .

(c) The function ⌫ : G ! G/N , a 7! aN , is a surjective group homomorphism with ker(⌫) =
N .

Proof (a) Since N is normal in G one has bN = Nb. Thus,

(aN)(bN) = a(Nb)N = a(bN)N = (ab)(NN) = (ab)N ,

since NN = N . Similiarly one obtains (Na)(Nb) = N(ab). Since N is normal one has (ab)N =
N(ab).

(b) By Part (a), the multiplication of left cosets ofN defines a binary operation onG/N . This
binary operation is associative, since (XY )Z = X(Y Z) for any three subsets X,Y, Z of G. The
multiplication formula in Part (a) gives (1GN)(aN) = (1Ga)N = aN = (a1G)N = (aN)(1GN).
Thus, N = 1GN is an identity element. The multiplication rule in Part (a) also implies that
(aN)(a�1N) = (aa�1)N = 1GN = (a�1a)N = (a�1N)(aN). Therefore, the element a�1N is an
inverse of the element aN .

(c) For a, b 2 G we have ⌫(ab) = abN and ⌫(a)⌫(b) = (aN)(bN) = abN . This shows that ⌫
is a homomorphism. For a 2 G we have

a 2 ker(⌫) () aN = N () a 2 N .

Thus, ker(⌫) = N . Finally, ⌫ is clearly surjective, since every left coset of N in G is of the form
aN = ⌫(a) for some a 2 G.

9.7 Definition Let N be a normal subgroup of G. The group G/N from Theorem 9.6 is called
the factor group of G with respect to N , or short G modulo N . Its order is equal to [G : N ]. If
G is finite, this is equal to |G|/|N |, by Lagrange’s Theorem. The epimorphism ⌫ : G ! G/N ,
g 7! gN , is called the natural epimorphism.
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9.8 Proposition If N is a subgroup of G of index 2 then N is normal in G.

Proof Let a 2 G. If a 2 N then aN = N = Na. If a /2 N then aN = G r N , since G has
precisely two left cosets and since G is the disjoint union of the two left cosets of N , N being
one of them. But similarly, if a /2 N , one sees that Na = G rN . Therefore, aN = Na also in
this case.

9.9 Examples (a) For any group G, one has {1G} E G and G E G. The natural epimor-
mophism ⌫ : G 7! G/{1G} is an isomorphism, since ker(⌫) = {1G}. The factor group G/G is a
trivial group.

(b) If G is an abelian group then every subgroup N of G is normal in G, since aN = Na for
all a 2 G.

(c) If f : G ! H is a group homomorphism then ker(f) is a normal subgroup of G. In
fact, by Proposition 9.2 we have a ker(f) = f�1(f(a)) = ker(f)a for all a 2 G. On the other
hand, every normal subgroup N of G is the kernel of the corresponding natural epimorphism
⌫ : G ! G/N by Theorem 9.6(c). Thus, the normal subgroups of G are precisely the kernels of
all homomorphisms from G to H, where H can be any group.

(d) For every n > 2 one has [Sym(n) : Alt(n)] = 2, cf. Examples 8.13(a). Therefore,
Sym(n)/Alt(n) is a group of order 2. Its two elements are given by the set of even permu-
tations and the set of odd permutations.

(e) For every n 2 N we obtain a factor group Z/nZ of Z. By Example 8.13(b) it has the n
elements 0 + nZ, 1 + nZ, . . . , (n� 1) + nZ. It is now clear that the function

f : Zn ! Z/nZ , i 7! i+ nZ ,

is bijective. It is also a group homomorphism. In fact, for i, j 2 {0, 1, . . . , n� 1} one has: i+n j
is the unique element r 2 {0, 1, . . . , n� 1} such that i+ j ⌘ r mod n, and f(i+n j) = r + nZ.
On the other hand we have f(i)+f(j) = (i+nZ)+(j+nZ) = (i+j)+nZ = r+nZ. Altogether,
f is an isomorphism.

(f) The center of a group G is defined by

Z(G) := {a 2 G | ax = xa for all x 2 G} .

It is easy to see that Z(G) is a normal subgroup of G.
(g) The normalizer of a subgroup H of a group G is defined as

NG(H) := {a 2 G | aHa�1 = H} .

It is easy to see that H E NG(H) 6 G.
(h) The centralizer of a subset X of a group G is defined by

CG(X) := {a 2 G | ax = xa for all x 2 X} .
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It is straightforward to prove that CG(X) is a subgroup of G. It is also an easy exercise to show
that if H is a subgroup of G then CG(H) E NG(H).

9.10 Definition A group G ia called simple if |G| > 1 and if G has no normal subgroups other
than G and {1G}.

9.11 Remark (a) If 1 < N / G we think of G being constructed from the two groups N and
G/N . We also can think of G/N as an approximation of G such that N describes the error
terms that are allowed. The smaller N is, the better is the approximation.

(b) For every prime p the group (Zp,+p) is a finite abelian simple group. In fact, by
Lagrange’s Theorem, Zp has no normal subgroups other than {0} and Zp. It is not di�cult to
see that every finite simple group which is abelian is isomorphic to one of the groups Zp, for a
prime p, see Exercise 7.

(c) The finite simple groups are known. They consist of a finite number of infinite families
together with a finite number of groups which do not belong to any of these families. One of
the families is the family of alternating groups Alt(n), n > 5. There are 26 groups that do not
belong to any of the infinite families. They are called the sporadic simple groups. The largest
one among them is called the Monster group M . Its order is equal to

|M | = 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ,

a number with 54 digits. It is mysterious that only very small primes occur in the factorization
of this order. This phenomenon also occurs for the other 25 sporadic simple groups.
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Exercises for §9

1. Let N be a subgroup of a group G. Show that the following are equivalent:

(i) Every left coset of N in G is equal to a right coset of N in G.

(ii) Every right coset of N in G is equal to a left coset of N in G.

(iii) N is normal in G.

2. Assume that M and N are normal subgroups of a group G.

(a) Show that M \N is a normal subgroup of G.

(b) Show that MN is a normal subgroup of G.

3. Let G be a group.

(a) Show that Z(G) is an abelian and normal subgroup of G.

(b) Show that G is abelian if and only if Z(G) = G.

(c) Show that if f : G ! H is a group isomorphism then f(Z(G)) = Z(H).

4. Let H be a subgroup of a group G.

(a) Show that H E NG(H) 6 G.

(b) Show that CG(H) is a subgroup of G and that CG(H) E NG(H).

(c) Let V := h(1, 2)(3, 4), (1, 3)(2, 4)i 6 Sym(4) =: G. Compute NG(V ) and CG(V ).

5. (a) Compute Z(D8) and Z(D10).

(b) Compute Z(Q8).

6. Show that Z(Sym(n)) = 1 for all n > 3.

7. Assume that G is a simple abelian group. Show that G is cyclic and that the order of
G is a prime.

8. Show again that Alt(4) has no subgroup of order 6, see also Exercise 8.4. (Hint: Assume
H is a subgroup of order 6. Show first that H is normal in Alt(4). Then show that for every
� 2 Alt(4), the element �2 must be contained in H, by using the factor group Alt(4)/H. Finally,
check how many elements are of the form �2.)
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10 Isomorphism Theorems

If f : G ! H is a group homomorphism, we denote by im(f) its image, i.e., the subset f(G) of
H. By Proposition 4.14(a), this is a subgroup of H.

10.1 Theorem (Fundamental Theorem of Homomorphisms (FTH)) Let f : G ! H be
a group homomorphism and let N be a normal subgroup of G which is contained in ker(f).
Then there exists a unique group homomorphism f : G/N ! H such that f � ⌫ = f . Here
⌫ : G ! G/N denotes the natural epimorphism. In other words, f(aN) = f(a) for all a 2 G.
Moreover, im(f) = im(f) and ker(f) = {aN 2 G/N | a 2 ker(f)} = ker(f)/N .

Proof Note that if aN = bN for a, b 2 G then a�1b 2 N 6 ker(f), f(a)�1f(b) = f(a�1b) = 1H
and therefore f(a) = f(b). Thus, we can define a function f : G/N ! H by f(aN) := f(a).
This is a homomorphism, since

f((aN)(bN)) = f(abN) = f(ab) = f(a)f(b) = f(aN)f(bN) ,

and it clearly satisfies f(⌫(a)) = f(aN) = f(a) for all a 2 G. Thus, f � ⌫ = f . If g : G/N ! H
is also a homomorphism with g � ⌫ = f then g(aN) = g(⌫(a)) = f(a) = f(aN) for all a 2 G.
Thus, g = f . Next we determine im(f) and ker(f). Since f(aN) = f(a) for all a 2 G, we obtain
im(f) = im(f). Moreover, for a 2 G we have f(aN) = 1H if and only if f(a) = 1H . This in
turn is equivalent to a 2 ker(f). Thus, ker(f) = {aN 2 G/N | a 2 ker(f)} = ker(f)/N .

10.2 Corollary (1st Isomorphism Theorem) Let f : G ! H be a group homomorphism.
Then G/ ker(f) is isomorphic to im(f).

Proof We apply the FTH to f : G ! H and N := ker(f). This yields a homomorphism
f : G/ ker(f) ! H with ker(f) = {a ker(f) 2 G/ ker(f) | a 2 ker(f)} = {ker(f)} = {1G/ ker(f)}.
Thus, f is injective. Moreover, we know from the FTH that im(f) = im(f). Therefore, f defines
an injective and surjective homomorphism from G/ ker(f) to im(f) = im(f).

10.3 Examples In this example we try to determine factor groups G/N in various situations.

(a) For n > 2, the sign homomorphism sgn: Sym(n) ! {1,�1} is a surjective group homo-
morphism with ker(sgn) = Alt(n). The Fundamental Theorem of Homomorphims induces an
isomorphism Sym(n)/Alt(n) ⇠= {1,�1}.

(b) The set R⇥ := R r {0} is a group under multiplication and det : GLn(R) ! R⇥ is
a surjective homomorphism with ker(det) = SLn(R). Thus, SLn(R) is a normal subgroup of
GLn(R) and, by the 1st Isomorphism Theorem, we have GLn(R)/SLn(R) ⇠= R⇥.

(c) The center of D8 is equal to {1,�2} =: Z, where � denotes the counterclockwise rotation
of 90�. Therefore, D8/Z is a group of order 4, and it must be isomorphic to the cyclic group of
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order 4, Z4, or to the Klein Four-Group, Z2 ⇥ Z2. Which one is it? This time we don’t have a
homomorphism f : D8 ! H at hand that has kernel {1,�2}, and we will have to determine the
factor group D8/Z di↵erently. Recall that a cyclic group of order 4 has an element of order 4,
but the Klein 4-group doesn’t. We compute the elements of D8/Z. If ⌧ 2 D8 denotes a reflection
then ⌧� = ��1⌧ and we obtain D8/Z = {Z,�Z, ⌧Z,�⌧Z}. It follows that (aZ)2 = a2Z = Z for
each of the 4 cosets aZ 2 D8/Z. Therefore D8/Z is isomorphic to Z2 ⇥ Z2.

10.4 Theorem (Correspondence Theorem) Let G be a group, let N be a normal subgroup
of G and let ⌫ : G ! G/N , a 7! aN , denote the natural epimorphism. Then the function

� : {N 6 H 6 G} ! {X 6 G/N} , H 7! ⌫(H) = H/N ,

is a bijection between the set of all subgroups H of G which contain N and the set of all
subgroups X of G/N . Its inverse is given by

 : {X 6 G/N} ! {N 6 H 6 G} , X 7! ⌫�1(X) .

Moreover, the bijection � preserves inclusion and normality. That is, for subgroups N 6 H 6 G
and N 6 K 6 G one has

H 6 K () H/N 6 K/N

and
H E G () H/N E G/N .

Proof If H is a subgroup of G with N 6 H then ⌫(H) = {aN | a 2 H} = H/N is a subgroup of
G/N by Proposition 4.14(a). Also, if X is a subgroup of G/N then ⌫�1(X) is a subgroup of G by
Proposition 4.14(b). Moreover, since 1G/N 2 X, we have N = ker(⌫) = ⌫�1({1G/N}) 6 ⌫�1(X).
Thus, the maps � and  take their values in the indicated sets.

Next we show that  � � is the identity, i.e., that ⌫�1(⌫(H)) = H. Clearly, H is contained
in ⌫�1(⌫(H)) by the definition of the preimage of ⌫(H). Conversely, if g 2 ⌫�1(⌫(H)) then
⌫(g) 2 ⌫(H). Thus, there exists h 2 H such that ⌫(g) = ⌫(h). This implies that ⌫(gh�1) =
⌫(g)⌫(h)�1 = 1G/N and gh�1 2 ker(⌫) = N . Thus, g 2 Nh ✓ H, since N 6 H.

Next we show that � � is the identity, i.e., that ⌫(⌫�1(X)) = X. But this holds in general
for every surjective function ⌫ as one easily verifies.

If N 6 H 6 K 6 G then clearly ⌫(H) 6 ⌫(K) and if X 6 Y 6 G/N then clearly
⌫�1(X) 6 ⌫�1(Y ). This shows the second to last statement (monotonicity).

Finally, if H is normal in G then gHg�1 ✓ H for all g 2 G. Applying ⌫ to this containment
and using that ⌫ is a homomorphism, we obtain that ⌫(g)⌫(H)⌫(g)�1 ✓ ⌫(H) for all g 2 G.
Since ⌫ is surjective, this implies that ⌫(H) is normal in G/N . Conversely, if X is normal in
G/N and X = ⌫(H) then ⌫(gHg�1) = ⌫(g)⌫(H)⌫(g)�1 ✓ ⌫(H) for all g 2 G. Applying ⌫�1

to this inclusion, we obtain gHg�1 6 H by the monotonicity statement and since � and  are
inverses. This shows that H is normal in G, and the proof is complete.
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In general, if H and K are subgroups of a group G, the sub-
set HK is not necessarily a subgroup of G. We will investi-
gate under what additional conditions HK is a subgroup of
G. It is easy to see that if H and K are normal then HK
is again a normal subgroup, see Exercise 9.2(b). The next
proposition gives a formula for the number of elements in
HK, and the subsequent proposition gives conditions under
which HK is again a subgroup.

The proof of the next proposition uses the following useful
counting principle: If f : A ! B is a surjective function
between finite sets A and B then |A| =

P
b2B |f�1(b)|.

10.5 Proposition Let G be a group and let H and K be finite subgroups of G. Then

|HK| = |H| · |K|
|H \K| = |KH| .

Proof Consider the function f : H ⇥ K ! HK, (h, k) 7! hk. This is a surjective function.
Therefore,

|H ⇥K| =
X

b2HK

|f�1(b)| . (10.5.a)

Next we fix b 2 HK and determine |f�1(b)|. We can write b = hk with some h 2 H and k 2 K
which we fix. Then every element of the form (hx, x�1k), with x 2 H \ K, is contained in
f�1(b), since (hx, x�1k) 2 H ⇥K and f(hx, x�1k) = hxx�1k = hk = b. On the other hand, if
(h0, k0) 2 H⇥K and f(h0, k0) = b then h0k0 = hk and x := h�1h0 = kk0�1 2 H \K. This implies
that (h0, k0) = (hx, x�1k). Therefore, we have proved that f�1(b) = {(hx, x�1k) | x 2 H \K}.
But the latter set has precisely |H \K| elements, since (hx, x�1k) = (hy, y�1k) implies x = y
for x, y 2 H \K. Substituting this in Equation (10.5.a) yields

|H| · |K| = |H ⇥K| =
X

b2HK

|f�1(b)| =
X

b2HK

|H \K| = |HK| · |H \K| ,

and the first equation in the proposition follows. The second equation can be shown in a similar
way, or by noting that HK ! KH, b 7! b�1, is a bijective function with inverse KH ! HK,
a 7! a�1.

10.6 Example Let G = Sym(3), H = {id, (1, 2)} and K = {id, (2, 3)}. Then |HK| = |H| ·
|K|/|H \K| = 4. By Lagrange’s Theorem, HK cannot be a subgroup of G. Note that HK =
{1, (1, 2), (2, 3), (1, 2, 3)} and KH = {1, (1, 2), (2, 3), (1, 3, 2)}. Thus, HK 6= KH, in accordance
with the statement of the next proposition.
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10.7 Proposition Let G be a group and let H and K be subgroups of G.

(a) The following are equivalent:

(i) HK is a subgroup of G.

(ii) KH is a subgroup of G.

(iii) HK = KH.

(b) If K 6 NG(H) or H 6 NG(K) then HK = KH and HK is a subgroup of G. In
particular, if one of the subgroups H and K is normal then HK = KH and HK is a subgroup
of G.

Proof (a) Assume that HK is a subgroup of G. Then HK = (HK)�1 = K�1H�1 = KH. So
(i) implies (iii). Similarly, (ii) implies (iii). Next assume that HK = KH. We will show that
HK is a subgroup of G. First we have 1G = 1G1G 2 HK. Secondly, if a 2 HK then a = hk for
some h 2 H and k 2 K and a�1 = k�1h�1 2 KH = HK. Finally, if a 2 HK and b 2 HK then
ab 2 HKHK = HHKK = HK. Thus, HK 6 G and also KH = HK 6 G. This shows that
(iii) implies (i) and (ii).

(b) Assume first that K 6 NG(H). By Part (a) it su�ces to show that HK = KH.
Let h 2 H and k 2 K. Then khk�1 2 H and k�1hk 2 H, since K 6 NG(H). Therefore,
hk = kk�1hk 2 KH and kh = khk�1k 2 HK. This shows that HK = KH. By symmetry, also
the condition H 6 NG(K) implies that HK = KH.

10.8 Theorem (2nd Isomorphism Theorem) Let G be a group, let H 6 G and N E G.
Then N is normal in HN = NH, H \N is normal in H, and there exists an isomorphism

� : H/(H \N) ! HN/N

with the property that �(a(H \N)) = aN for all a 2 H.

Proof First, NH = HN is a subgroup of G by Proposition 10.7(b). Moreover, since N is
normal in G, N is also normal in HN .

Next let f denote the composition of the group homomorphisms H ! NH, a 7! a, and
NH 7! NH/N , a 7! aN . Then f : H ! HN/N is a homomorphism and f(a) = aN . We show
that f is surjective. In fact, let a 2 H and n 2 N then anN = aN = f(a).

Finally we show that ker(f) = H \ N . This will also imply that H \ N is normal in H.
Clearly, if a 2 H \ N then f(a) = aN = N and if a 2 H such that f(a) = 1HN/N = N then
aN = N and a 2 N , so that a 2 H \N .

Now, by the Fundamental Theorem of Homomorphisms, there exists a group homomorphism
f : H/H \N ! HN/N with f(a(H \N)) = f(a) = aN . This homomorphism is injective, since
ker(f) = H \N and it is surjective, since f was surjective.
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The following theorem is often used to simplify expressions
that involve factor groups of factor groups. By the Corre-
spondence Theorem, a normal subgroup of a factor group
G/N is of the form H/N with N 6 H E G. In this sit-
uation one can consider the factor group (G/N)/(H/N) of
G/N . As for fractions of numbers, the two ”denominators”
N can be ”canceled” by the following theorem.

10.9 Theorem (3rd Isomorphism Theorem) Let G be a group, let N and H be normal
subgroups of G and assume that N is contained in H . Then

(G/N)/(H/N) ⇠= G/H .

Proof By the Correspondence Theorem, the subgroup H/N is normal in G/N . Let ⌫N : G !
G/N and ⌫H/N : G/N ! (G/N)/(H/N) denote the canonical epimorphisms. Then their compo-

sition f : G ! (G/N)/(H/N) is a surjective group homomorphism with ker(f) = ⌫�1
N (ker(⌫H/N )).

But ker(⌫H/N ) = H/N and ⌫�1
N (H/N) = H, again by the Correspondence Theorem. By the

First Isomorphism Theorem we obtain G/H ⇠= (G/N)/(H/N).
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Exercises for §10

1. Assume that G is a group.

(a) Let N E G and let N 6 H 6 G. Show that N E H.

(b) Let N E G, let ⌫N : G ! G/N denote the natural epimorphism, and let H 6 G. Show
that ⌫N (H) = HN/N = NH/N .

(c) Let H and K be subgroups of G and assume that HK ✓ H. Show that K 6 H.

2. Normality is not transitive: Find an example of a group G and subgroups K and H of
G such that K /H /G but K is not normal in G.

3. Let M and N be normal subgroups of a group G and assume that M \N = 1.

(a) Show that ab = ba for all a 2 N and all b 2 M .

(b) Assume additionally that MN = G. Show that the function f : M⇥N ! G, (a, b) 7! ab,
is an isomorphism. Here M ⇥ N denotes the direct product group formed from the groups M
and N .

4. (a) Show that a factor group of an abelian group is abelian.

(b) Show that a factor group of a cyclic group is cyclic.

5. Let V := h(1, 2)(3, 4), (1, 3)(2, 4)i. Then V is normal in Sym(4) according to Exercise
9.4(c). What is the isomorphism type of Sym(4)/V ? (Hint: Consider Sym(3) as a subgroup of
Sym(4) and use the 2nd Isomorphism Theorem.)

6. Find an example of two finite groups G and H with normal subgroups N /G and M /H
such that N ⇠= M and G/N ⇠= H/M , but G 6⇠= H.

7. Let G be a group and assume that {1} < N /G such that N and G/N are simple (we
think of G being made up as a molecule from the atoms N and G/N). Assume that also M is
a normal subgroup of G such that M and G/M are simple. Show that

(i) M ⇠= N and G/M ⇠= G/N

or

(ii) M ⇠= G/N and G/M ⇠= N .

(Hint: Start by distinguishing the cases M = N and M 6= N . The first case should lead to (i)
and the second case to (ii). Use appropriate isomorphism theorems.)

8. Let M and N be normal subgroups of a group G such that G/M and G/N are abelian.
Show that G/(M \N) is abelian. (Hint: Show that f : G ! G/M ⇥G/N , a 7! (aM, aN), is a
homomorphism. Determine its kernel and use the first Isomorphism Theorem.)
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11 Group action on a set

One often thinks of a group G as a group of movements of the elements of some set X. This
was the case with symmetry groups, where every group element moves the points of a geometric
object. The axiomatic mathematical notion covering this point of view is the notion of a group
action on a set. A group G can act on any set X. However, it can also act on sets that
arise internally from G: For instance, on G itself, or the set of subgroups of G, or on the set
G/H of cosets for a subgroup H 6 G. In this section we introduce the necessary terminology
and basic results on group actions, see Theorem 11.10 and Corollary 11.12 on Burnside’s orbit
equation and its consequence for a group G of prime power order. We apply this to obtain two
fundamental results in group theory: Theorem 11.15 stating that a non-trivial group of prime
power order has non-trivial center, and Cauchy’s Theorem (Theorem 11.18) stating that if a
prime p divides the order of a finite group G then G has an element of order p. In the following
section we will continue to apply the notion of group actions to prove Sylow’s Theorems on
subgroups of p-power order in a group G.

11.1 Definition An action of a group G on a set X is a function

⇤ : G⇥X ! X , (g, x) 7! g ⇤ x ,

satisfying the following two conditions:

(i) 1G ⇤ x = x for all x 2 X.

(ii) g ⇤ (h ⇤ x) = (gh) ⇤ x for all g, h 2 G and all x 2 X.

In this case one says that G acts on X via ⇤, or that X is a G-set via ⇤.

11.2 Examples (a) Every groupG acts on itself by left-multiplication: G⇥G ! G, (g, x) 7! gx.

(b) The group G = GL2(R) acts on the set X = R2 of column vectors of length 2 by the
usual matrix multiplication:

A ⇤
✓
x1
x2

◆
= A

✓
x2
x2

◆
=

✓
ax1 + bx2
cx1 + dx2

◆
, if A =

✓
a b
c d

◆
.

In fact, for all x 2 R2 and all A,B 2 GL2(R), one has

✓
1 0
0 1

◆
x = x and (AB)x = A(Bx) .

(c) LetX be any set, and letG 6 Sym(X) be a subgroup. ThenG acts onX via �⇤x := �(x).
In fact, idX(x) = x and (�⌧) ⇤ x = (� � ⌧)(x) = �(⌧(x)) = � ⇤ (⌧ ⇤ x) for all x 2 X and all
�, ⌧ 2 Sym(X).
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(d) The dihedral group D8 (symmetry group of a square, viewed as subgroup of O2(R)) acts
on the 4 vertices (numbered v1, v2, v3, v4) of the square with center in the origin by f ⇤vi := f(vi),
for f 2 D8 and i 2 {1, 2, 3, 4}. In fact, idO2(R)(vi) = vi and (f � g) ⇤ vi = (f � g)(vi) = f(g(vi)) =
f ⇤ (g ⇤ vi) for all i 2 {1, 2, 3, 4} and all f, g 2 D8.

11.3 Proposition Assume that G acts on the set X via ⇤. For every g 2 G, the function

�g : X ! X , x 7! g ⇤ x ,

is bijective. The resulting function

⇢ : G ! Sym(X) , g 7! �g ,

is a group homomorphism and it is called the permutation representation of the action of G on
X.

Proof First let g 2 G. We want to show that �g is bijective. For the injectivity part assume
that �g(x) = �g(y) for elements x, y 2 X. This means that g ⇤ x = g ⇤ y and it implies
that g�1 ⇤ (g ⇤ x) = g�1 ⇤ (g ⇤ y). But by the second axiom for group actions this means
(g�1g) ⇤ x = (g�1g) ⇤ y or equivalently 1G ⇤ x = 1G ⇤ y. Now by the first axiom of group actions
we obtain x = y, and �g is injective. In order to see that �g is surjective, let x 2 X. Then
�g(g�1 ⇤ x) = g ⇤ (g�1 ⇤ x) = (gg�1) ⇤ x = 1G ⇤ x = x and x is contained in the image of �g.
Thus, �g is surjective. Altogether, �g is bijective.

Next we show that ⇢ : G ! Sym(X), g 7! �g, is a group homomorphism. So let g, h 2 G.
We need to show that ⇢(gh) = ⇢(g) � ⇢(h), or in other words that �gh = �g � �h. To show the
latter equality, let x 2 X. We need to show that �gh(x) = �g(�h(x)). But this is equivalent to
the equation (gh) ⇤ x = g ⇤ (h ⇤ x), which holds by the second axiom for group actions.

11.4 Proposition Let G be a group and let X be a set. Furthermore, let ⇢ : G ! Sym(X) be
a group homomorphism. Then the function

⇤ : G⇥X ! X , (g, x) 7! (⇢(g))(x)

defines an action of G on X.

Proof In order to verify the first group action axiom we need to show that (⇢(1G))(x) = x
for all x 2 X. But, since ⇢ is a homomorphism, we have ⇢(1G) = idX and the first axiom is
verified. Next we verify the second axiom. So let g, h 2 G and let x 2 X. Then g ⇤ (h ⇤ x) =
g ⇤ (⇢(h)(x)) = ⇢(g)(⇢(h)(x)) = (⇢(g) � ⇢(h))(x) = ⇢(gh)(x) = (gh) ⇤ x.

11.5 Remark It is straightforward to verify that the two constructions in Propositiions 11.3
and 11.4 are inverse to each other.
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11.6 Proposition Assume that the group G acts on the set X via ⇤. The relation on X defined
by

x ⇠ y : () There exists g 2 G such that g ⇤ x = y

is an equivalence relation. Its equivalence classes are called the orbits of G on X or the G-orbits
of X.

Proof To verify reflexivity, let x 2 X. Then x ⇠ x, since 1G ⇤ x = x. To verify symmetry, let
x, y be elements in X such that x ⇠ y. Then there exists g 2 G such that g ⇤x = y. This implies
that g�1⇤(g⇤x) = g�1⇤y and further that 1G⇤x = g�1⇤y and g�1⇤y = x. Thus y ⇠ x. Finally,
to verify transitivity, let x, y, z be elements of X and assume that x ⇠ y and y ⇠ z. Then there
exist g, h 2 G such that g⇤x = y and h⇤y = z. This implies that (hg)⇤x = h⇤(g⇤x) = h⇤y = z
and therefore x ⇠ z.

11.7 Remark/Definition Assume that X is a G-set via ⇤.
(a) For every x 2 X we denote the G-orbit of X which contains x by Ox. Thus,

Ox = {g ⇤ x | g 2 G} .

Since ⇠ is an equivalence relation on X, cf. Proposition 11.6, X is the disjoint union of its
G-orbits. Every G-orbit of X is again a G-set in its own right. The G-set X is called transitive

if X has only one orbit, i.e., if for any two elements x, y 2 X there exists g 2 G such that
g ⇤ x = y. In general, every G-orbit of X is a transitive G-set, and this way, X is a disjoint
union of transitive G-sets.

(b) For x 2 X we define the stabilizer of x in G by

stabG(x) := {g 2 G | g ⇤ x = x} .

It is easy to see that stabG(x) is a subgroup of G. It is not di�cult to verify that, for g 2 G,
one has stab(g ⇤ x) = g stabG(x)g�1 and that the kernel of the permutation representation
⇢ : G ! Sym(X) associated to the G-set X is given by

ker(⇢) =
\

x2X
stabG(x) .

(c) An element x 2 X is called a G-fixed point if g ⇤ x = x, for all g 2 G. The set of G-fixed
points of X is denoted by XG. Note that for every x 2 X one has:

x 2 XG () stabG(x) = G () Ox = {x} .
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11.8 Example (a) G acts on X = G via left multiplication: g ⇤ x = gx for g 2 G and x 2 G.

(b) More generally, let H be a subgroup of G. Then X := G/H, the set of left cosets of H
in G, is a G-set via left multiplication

g ⇤ (aH) = gaH .

(Note that if H = {1G} then we recover the example in part (a) if we identify a{1G} with a.)
This action is transitive, since for every a, b 2 G, one has (ba�1)⇤(aH) = bH. The stabilizer ofH
in G is stabG(H) = H and, by Remark 11.7(b), stabG(aH) = stabG(a ⇤H) = a stabG(H)a�1 =
aHa�1. In particular, aHa�1 is again a subgroup of G. The kernel of the corresponding
permutation representation ⇢ is equal to

T
a2G aHa�1. This group is also called the core of H

in G and it is denoted by coreG(H). As the kernel of the homomorphism ⇢ : G ! Sym(G/H),
the subgroup coreG(H) is normal in G.

The following theorem seems striking at first, but it does
not have as many applications as one might think.

11.9 Theorem (Cayley’s Theorem) Let G be a finite group of order n. Then G is isomor-
phic to a subgroup of Sym(n).

Proof Let ⇢ : G ! Sym(G) denote the permutation representation associated to the left mul-
tiplication action of G on itself. Then ⇢ is injective. In fact, if g and h are elements of G
such that ga = ha for all a 2 G then g = h. Moreover Sym(G) is isomorphic to Sym(n) by
Proposition 6.1. Composing ⇢ with such an isomorphism, we obtain an injective homomorphism
⇢0 : G ! Sym(n). Thus, G is isomorphic to the subgroup ⇢0(G) of Sym(n).

The following theorem will give an important counting prin-
ciple. If a finite group G acts on a finite set X then one
can count the number of elements in X from knowledge of
the orbits and stabilizers. A set of representatives of the G-
orbits of X is a subset R of X such that R contains precisely
one element from each G-orbit of X.

11.10 Theorem (Burnside’s orbit equation) Assume that X is a G-set.

(a) If G acts transitively on X and x 2 X then [G : stabG(x)] = |X|.
(b) If R ✓ X is a set of representatives of the G-orbits of X then

|X| =
X

x2R
[G : stabG(x)] .
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Proof (a) Set H := stabG(x) and consider the function f : G/H ! X defined by gH 7! g ⇤ x.
This function is well-defined, since if gH = g0H then there exists h 2 H such that g0 = gh
and we obtain g0 ⇤ x = (gh) ⇤ x = g ⇤ (h ⇤ x) = g ⇤ x. It is surjective, since G acts transitively
on X: For any y 2 X there exists g 2 G such that y = g ⇤ x = f(gH). The function f is
also injective: Assume that f(gH) = f(g0H) for g, g0 2 G. Then g ⇤ x = g0 ⇤ x, which implies
x = g�1 ⇤ (g0 ⇤ x) = (g�1g0) ⇤ x. This further implies g�1g0 2 stabG(x) = H and gH = g0H.
Altogether, we have proved that f is bijective and the result follows.

(b) We know that X is the disjoint union of its G-orbits, which implies |X| =
P

x2R |Ox|.
By Part (a), and since Ox is a transitive G-set containing x, we obtain |Ox| = [G : stabG(x)].
Now the result follows.

Assume that G is finite. From the proof of Burnside’s orbit
equation we see that |Ox| = [G : stabG(x)], for every element
x 2 X. This implies |G| = |Ox| · |stabG(x)|. Therefore, the
orbit length |Ox| divides |G|.

11.11 Definition Let p be a prime. A p-group is a finite group G whose order is a power of p:
|G| = pa for some a 2 N0. Note that every subgroup and every factor group of a p-group G is
again a p-group and that every element of G has an order of the form pb with 0 6 b 6 a.

11.12 Corollary Let G be a p-group and let X be a finite G-set. Then

|XG| ⌘ |X| mod p .

Proof Let R ✓ X be a set of representatives of the G-orbits of X. By Burnside’s orbit equation
we have

|X| =
X

x2R
[G : stabG(x)] .

If x 2 R satisfies x 2 XG then stabG(x) = G, Ox = {x} and the corresponding summand
[G : stabG(x)] is equal to 1. On the other hand if x 2 R satisfies x /2 XG then stabG(x) < G,
and the corresponding summand [G : stabG(x)] is a power of p which is greater than 1. In this
case we have [G : stabG(x)] ⌘ 0 mod p. Altogether we obtain

|X| =
X

x2R
[G : stabG(x)] ⌘

X

x2R
x2XG

1 =
X

x2XG

1 = |XG|

and the theorem is proven.
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11.13 Remark/Definition (Conjugation) Let G be a group and let a 2 G. The function

ca : G ! G , x 7! axa�1 ,

is called conjugation with a. It is a homomorphism, since ca(x)ca(y) = axa�1aya�1 = axya�1 =
ca(xy), for all x, y 2 G. Moreover, for a, b, x 2 G, one has ca(cb(x)) = ca(bxb�1) = ca(bxb�1) =
abxb�1a�1 = abx(ab)�1 = cab(x). Thus,

ca � cb = cab . (11.13.a)

Note also that c1(x) = x so that
c1 = idG . (11.13.b)

This implies that ca is an isomorphism for all a 2 G with inverse ca�1 , since ca � ca�1 = idG =
ca�1 � ca by Equations (11.13.a) and (11.13.b).

An isomorphism f : G ! G is also called an automorphism of G. The set Aut(G) of auto-
morphisms of G is a group under composition, the automorphism group of G. Note that Aut(G)
is a subgroup of Sym(G). An automorphism f of G is called inner if f = ca for some a 2 G. By
Equation (11.13.a), the function

c : G ! Aut(G) , a 7! ca ,

is a homomorphim. Its kernel is equal to Z(G) and its image is equal to the set Inn(G) of
inner automorphims of G. In particular, Inn(G) is a subgroup of Aut(G), called the inner

automorphism group of G. By the 1st Isomorphism Theorem we have

Inn(G) ⇠= G/Z(G) .

It is easy to verify that, for f 2 Aut(G) and a 2 G, one has

f � ca � f�1 = cf(a) .

This shows that Inn(G) is a normal subgroup of Aut(G). The factor group Aut(G)/Inn(G) is
denoted by Out(G) and it is called the outer automorphism group of G.

11.14 Examples Let G be a group.

(a) G acts on itself, i.e., on X = G, by conjugation: a ⇤ x := ca(x) = axa�1 for a 2 G and
x 2 G. In fact, 1⇤x = c1(x) = x, and a⇤(b⇤x) = ca(cb(x)) = (ca�cb)(x) = cab(x) = (ab)⇤x for all
x, a, b 2 G. The orbits under this action are called the conjugacy classes of G, and two elements
x and y of G are called conjugate if they belong to the same orbit, i.e., if there exists a 2 G such
that y = axa�1. Under this action we have stabG(x) = {a 2 G | axa�1 = x} = CG(x). The
fixed points under this action are precisely the elements of Z(G).
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(b) G also acts by conjugation on the set S(G) of subgroups of G: a⇤H := ca(H) = aHa�1.
In fact, we already observed in Example 11.8(b) that aHa�1 is again a subgroup of G. Moreover,
1 ⇤H = c1(H) = H and a ⇤ (b ⇤H) = ca(cb(H)) = abHb�1a�1 = (ab) ⇤H. The orbits under the
conjugation action are called the conjugacy classes of subgroups of G and two subgroups H and
K of G are called conjugate in G if they belong to the same orbit, i.e., if there exists a 2 G such
that H = aKa�1. For H 6 G we have stabG(H) = {a 2 G | aHa�1 = H} = NG(H). Moreover,
the set of fixed points, S(G)G, consists precisely of the normal subgroups of G.

(c) Let G = Sym(3). Then the conjugacy classes of elements are given by

{1G} , {(1, 2), (2, 3), (1, 3)} , {(1, 2, 3), (1, 3, 2)}

as a quick computation shows. In fact, 1G is not conjugate to any other element. To compute the
conjugacy class of (1, 2), note that c(2,3)((1, 2)) = (1, 3) and c(1,3)((1, 2)) = (2, 3), showing that
the conjugacy class of (1, 2) has at least 3 elements. On the other hand, h(1, 2)i 6 CG((1, 2)),
showing that CG(x) has at least 2 elements. By Burnside’s orbit equation, the conjugacy class
of (1, 2) has |G|/|CG(x)| 6 3 elements. Thus, we have found the conjugacy class of (1, 2). To
compute the conjugacy class of (1, 2, 3), note that CG((1, 2, 3)) contains at least the 3 elements
in h(1, 2, 3)i. Thus, by Burnside orbit equation, the conjugacy class of (1, 2, 3) has at most 2
elements. On the other hand c(1,2)((1, 2, 3)) = (1, 2, 3) and therefore we have computed the
conjugacy class of (1, 2, 3).

Next we determine the conjugacy classes of subgroups of G = Sym(3). We already know
that

S(G) = {{1G}, h(1, 2)i, h(2, 3)i, h(1, 3)i, h(1, 2, 3)i, G} .

Since {1G}, G, and h(1, 2, 3)i are normal in G (the latter because it has index 2 in G), they are
alone in their respective conjugacy class. Moreover, by the computations above we also see that
the three subgroups h(1, 2)i, h(2, 3)i, and h(1, 3)i are conjugate in G. Thus the conjugacy classes
of subgroups of G are

{{1G}} , {h(1, 2)i, h(2, 3)i, h(1, 3)i} , {h(1, 2, 3)i} , {G} .

11.15 Theorem Let G be a non-trivial p-group for a prime p. Then Z(G) > {1}.

Proof We use the action of G on itself, i.e., on X = G, by conjugation (as in Example 11.14(a))
and apply Corollary 11.12. Note that XG = Z(G). Thus, we obtain |Z(G)| ⌘ |X| = |G| ⌘ 0
mod p. This implies that p divides |Z(G)| and therefore |Z(G)| > p.

11.16 Lemma If G is a group such that G/Z(G) is cyclic then G is abelian.

Proof Since G/Z(G) is cyclic, there exists x 2 G such that hxZ(G)i = G/Z(G). If g 2 G
is an arbitrary element then gZ(G) = (xZ(G))i = xiZ(G) for some i 2 Z. This implies that
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g = xiz for some i 2 Z and some z 2 Z(G). If also h is an element of G then for the
same reason it can be written as h = xjy with j 2 Z and y 2 Z(G). Altogether we obtain
gh = xizxjy = xixjzy = xi+jyz and hg = xjyxiz = xjxiyz = xi+jyz. Therefore, gh = hg for
all g, h 2 G and G is abelian.

11.17 Corollary Assume that p is a prime and that G is a group of order p2. Then G is
abelian.

Proof By Theorem 11.15 we have Z(G) > {1}. This implies that |Z(G)| = p or |Z(G)| = p2.
But then G/Z(G) has order p or 1. In either case, G/Z(G) is cyclic (by Corollary 8.12), and
Lemma 11.16 implies that G is abelian.

11.18 Theorem (Cauchy’s Theorem) Let G be a finite group and let p be a prime which
divides |G|. Then G has an element of order p and a subgroup of order p.

Proof It su�ces to show that G has an element of order p. Then the subgroup generated by
this element has order p as well. Consider the set

X := {(x1, . . . , xp) 2 G⇥ · · ·⇥G | x1x2 · · ·xp = 1} .

The group A := (Zp,+p) acts on X by

i ⇤ (x1, . . . , xp) := (xi+1, . . . , xp, x1, . . . , xi) .

In fact, the last element is in X, since

xi+1 · · ·xpx1 · · ·xi = (x1 · · ·xi)�1(x1 · · ·xixi+1 · · ·xp)(x1 · · ·xi)
= (x1 · · ·xi)�11G(x1 · · ·xi) = 1 .

It is also easy to verify the two axioms of group actions. Now Corollary 11.12 implies that
|XA| ⌘ |X| mod p. But |X| = |G|p�1 ⌘ 0 mod p and XA = {(x, x, . . . , x) | x 2 G and xp =
1}. Thus, |XA| is equal to the number of elements x 2 G with xp = 1. Since x = 1 has this
property, this number is at least 1. On the other hand, by the above, this number is also divisible
by p. Therefore, there exists an element x 6= 1 such that xp = 1. This implies that o(x) = p.
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Exercises for §11

1. Let X be a G-set via ⇤.
(a) Show that stabG(x) := {g 2 G | g ⇤ x = x}, the stabilizer of x in G, is a subgroup of G.

(b) Show that for g 2 G and x 2 X one has stabG(g ⇤ x) = g stabG(x)g�1.

(c) Let ⇢ : G ! Sym(X) denote the permutation representation of the G-set X. Show that
ker(⇢) =

T
x2X stabG(x).

(d) Show that for every x 2 X one has: x 2 XG () stabG(x) = G.

2. Let H 6 G and set C := coreG(H) =
T

a2G aHa�1.

(a) Show that C is normal in G and C 6 H.

(b) Assume that also N E G and N 6 H. Show that N 6 C. (In other words, coreG(H) is
the largest normal subgroup of G that is contained in H).

3. Show that Inn(G) is normal in Aut(G).

4. Let G be a non-trivial p-group and let N be a non-trivial normal subgroup of G. Show
that |N \ Z(G)| > 1. (Hint: Show that G acts on N via conjugation and use the congruence
corollary to Burnside’s orbit equation.)

5. (a) Compute the conjugacy classes of elements of Alt(4).

(b) Compute the conjugacy classes of subgroups of Alt(4).

6. Let n 2 N. The cycle type of a permutation � 2 Sym(n) is defined as follows: Write
� = �1 · · · �l with disjoint cycles �i, including the cycles of length 1 (so that every element from
{1, . . . , n} occurs in precisely one of the cycles �i) and assume that the elements �i are already
ordered according to their cycle lengths ki, i.e., k1 > k2 > · · · > kl and k1 + · · · + kl = n. For
instance, (1, 3, 7)(2, 8)(4, 6)(5) 2 Sym(8) has cycle type (3, 2, 2, 1).

(a) Show that two permutations in Sym(n) are conjugate if and only if they have the same
cycle type.

(b) How may conjugacy classes are there in Sym(5)? What are their sizes?

7. The goal of this problems is to show that Alt(5) is a simple group. This is done in four
steps:

(a) Show that Alt(5) has 24 elements of cycle type (5), 20 elements of cycle type (3, 1, 1),
15 elements of cycle type (2, 2, 1), and 1 element of cycle type (1, 1, 1, 1, 1). (For instance, the
elements (1, 2, 3, 4, 5), (1, 2, 3), (1, 2)(3, 4) and id have these cycle types.)
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(b) Show that the 20 3-cycles form a conjugacy class and that the 15 double transpositions
form a conjugacy class in Alt(5). (Hint: Any two 3-cycles ⇡1 and ⇡2 are conjugate by an element
� 2 Sym(5), by Exercise 6. If � happens to be in Alt(5) you are done, if not, multiply � by an
appropriate odd permutation ⌧ such that ⌧⇡1⌧�1 = ⇡1.)

(c) Show that the 24 5-cycles in Alt(5) form 2 conjugacy classes, each of size 12. (Hint: First
show that for every 5-cycle � one has |CSym(5)(�)| = 5 (use Exercise 6 and the orbit equation)
and conclude that CSym(5)(�) = h�i. From there conclude that CAlt(5)(�) = h�i and that the
Alt(5)-conjugacy class of � has size 12.)

(d) Assume that G is a group of order 60 and that its conjugacy classes have size 1, 12, 12,
15 and 20. Show that G is a simple group. (Hint: Use that every normal subgroup is a union of
conjugacy classes of elements of G.)
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12 The Sylow Theorems

In this section we will apply the notion of group actions to prove the Sylow Theorems. By
Lagrange, we know that if H is a subgroup of a finite group G then |H| divides |G|. One can
ask if a kind of converse is true: if G is a finite group and d is a divisor of |G|, does there always
exist a subgroup H of G with |H| = d. The answer in general is ”no”. For instance, we have
seen in a homework problem that Alt(4), a group of order 12, does not have a subgroup of order
6. However, for certain types of divisors d of |G|, the answer is always ”yes”. For instance if d
is a prime (see Cauchy’s Theorem). Part of the content of the Sylow Theorems is that if d is a
prime power, then the answer is always ”yes”. The Sylow Theorems shed much more light on
such p-subgroups than just saying that they exist.

Throughout this section p denotes a prime number.

12.1 Remark Assume that the groupG acts on the setX via ⇤ : G⇥X ! X. IfH is a subgroup
of G, one can restrict this function to the subset H ⇥X to obtain a function ⇤ : H ⇥X ! X.
This function satisfies clearly the axioms of an action of H on X. This action is called the
restriction to H of the action of G on X. For every x 2 X one has stabH(x) = stabG(x) \H.
Every G-orbit decomposes into a union of H-orbits.

12.2 Lemma Let G be a finite group and let P be a p-subgroup of G, i.e., a subgroup of G
which is a p-group. Then

[NG(P ) : P ] ⌘ [G : P ] mod p .

Proof Consider the action of G on X = G/P by left multiplication: a ⇤ gP = agP . We restrict
this action to an action of P on G/P . For this action we have (G/P )P = NG(P )/P . In fact, for
gP 2 G/P one has

gP 2 (G/P )P () agP = gP for all a 2 P () g�1ag 2 P for all a 2 P

() a 2 gPg�1 for all a 2 P () P 6 gPg�1 () P = gPg�1

() g 2 NG(P ) () gP 2 NG(P )/P .

Now, Corollary 11.12 implies the result.

12.3 Corollary Let G be a finite group and let P be a p-subgroup of G such that p divides
[G : P ]. Then p divides [NG(P ) : P ].

Proof This follows immediately from Lemma 12.2.
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12.4 Theorem (Sylow’s First Theorem) Let G be a finite group of order n and let p be a
prime. Write n = pam with a 2 N0 and m 2 N such that p does not divide m.

(a) If P is a subgroup of G of order pb with 0 6 b < a then there exists a subgroup P̃ of G
of order pb+1 such that P / P̃ .

(b) For every b 2 {0, . . . , a} there exists a subgroup P of G with |P | = pb.

Proof (a) Assume that P is a subgroup of G of order pb with 1 6 b < a. Then p divides
[G : P ] and, by Corollary 12.3, p also divides [NG(P ) : P ] = |NG(P )/P |. By Cauchy’s Theorem,
the group NG(P )/P has a subgroup of order p. By the Correspondence Theorem this subgroup
must be of the form P̃ /P with P 6 P̃ 6 NG(P ). This implies that P E P̃ and that |P̃ | =
|P | · |P̃ /P | = pb · p = pb+1 as desired.

(b) This follows immediately from Part (a) by induction on b.

12.5 Definition Let G be a group of order n and let p be a prime. Write n = pam with a 2 N0

and m 2 N such that p does not divide m. Every subgroup of G of order pa is called a Sylow

p-subgroup of G. The set of Sylow p-subgroups of G is denoted by Sylp(G). By the First Sylow
Theorem, the set Sylp(G) is not empty, i.e., G has at least one Sylow p-subgroup. Note that
G acts on Sylp(G) by conjugation. In fact, if S 2 Sylp(G) and g 2 G then |gSg�1| = |S| and
therefore gSg�1 2 Sylp(G).

Note: If a = 0, i.e., if p does not divide |G|, then {1G} 2 Sylp(G) and the trivial subgroup
is the only Sylow p-subgroup of G.

For instance, for G = Sym(3) we have

Syl2(G) = {h(1, 2)i, h(2, 3)i, h(1, 3)i} ,
Syl3(G) = {h(1, 2, 3)i} ,
Sylp(G) = { {1G} } if p > 5.

12.6 Theorem (Sylow’s Second Theorem) Let G be a finite group.

(a) Every p-subgroup of G is contained in a Sylow p-subgroup of G.

(b) Any two Sylow p-subgroups of G are conjugate.

Proof (a) This follows immediately by repeated application of Part (a) of Sylow’s First Theo-
rem.

(b) Assume that S1, S2 2 Sylp(G). Consider the action of S2 on X = G/S1 by left multi-

plication. By Corollary 11.12 we have |XS2 | ⌘ |X| = [G : S1] mod p. Since [G : S1] is not
divisible by p, the set XS2 is not empty. So let gS1 2 XS2 . Then agS1 = gS1 for all a 2 S2.
This implies that g�1agS1 = S1 and that g�1ag 2 S1 for all a 2 S2. Consequently, a 2 gS1g�1
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for all a 2 S2, i.e., S2 6 gS1g�1. But S2 and gS1g�1 have the same order. This implies that
S2 = gS1g�1 so that S1 and S2 are conjugate subgroups of G.

Part (b) of Sylow’s Second Theorem implies that any two
Sylow p-subgroups of a finite group G are isomorphic. Sy-
low’s Third Theorem will say something about the number
|Sylp(G)|.

12.7 Theorem (Sylow’s Third Theorem) Let G be a finite group of order n and let p be a
prime. Write n = pam with a 2 N0 and m 2 N such that p does not divide m. Then the number
np(G) = |Sylp(G)| of Sylow p-subgroups of G satisfies:

np(G) ⌘ 1 mod p and np(G) | m.

Proof Let S 2 Sylp(G).
By Sylow’s Second Theorem, the conjugation action of G on Sylp(G) is transitive. This

implies that np(G) = |Sylp(G)| = [G : stabG(S)] = [G : NG(S)]. But [G : NG(S)] · [NG(S) : S] =
[G : S] = m. Thus, np(G) divides m.

In order to show that np(G) ⌘ 1 mod p, we consider the conjugation action of S on X =
Sylp(G). By Corollary 11.12 we have np(G) = |X| ⌘ |XS | mod p. So it su�ces to show that

|XS | = {S}. So let T 2 Sylp(G)S . Then aTa�1 = T for all a 2 S. This implies that S 6 NG(T ),
and by Proposition 10.7(b) the subset ST of G is a subgroup of G. By Proposition 10.5 we have
|ST | = |S| · |T |/|S \ T |. This implies that |ST | is a power of p. Since S 6 ST 6 G, pa divides
|ST | and |ST | divides pam. This implies |ST | = pa and S = ST . Thus, T 6 S. But since
|S| = |T |, we obtain S = T . This shows that Sylp(G)S = {S} and the congruence is proved.

12.8 Remark Let G be a finite group and let S be a Sylow p-subgroup of G. Then

Sylp(G) = {S} () S E G .

In fact, if S is the only Sylow p-subgroup of G then aSa�1 = S for all a 2 G, since |aSa�1| = |S|.
Thus, S is normal in G. Conversely, if S is normal in G then, by Sylow’s Second Theorem, S is
the only Sylow p-subgroup of G.

12.9 Example Let G be a group of order 100 and let S be a Sylow 5-subgroup of G. Then
S has order 25. We will show that S is normal. By the above remark it su�ces to show that
n5(G) = 1. By Sylow’s Third Theorem we know that n5(G) divides 4 and that n5(G) ⌘ 1
mod p. This implies n5(G) = 1 and S /G. Since S is a group of order 52 and G/S is a group of
order 22, both groups are abelian by Corollary 11.17. Thus, G is ”composed” of the two abelian
group S and G/S. Thus, with the vocabulary from the next section, G is solvable.
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Exercises for §12

1. Let p be a prime, let P be a p-group and let Q < P .

(a) Show that NP (Q) > Q.

(b) Show that if [P : Q] = p then Q / P .

2. Let G be a group of order 1000. Show that G is not simple.

3. (a) For G = Alt(4) and p = 2, 3, determine a Sylow p-subgroup S of G, the normalizer of
S in G and the number |Sylp(G)|.

(b) For G = Alt(5) and p = 2, 3, 5, do the same as in Part (a).

4. Assume thatG is a finite group of order n = p1 · · · pr for pairwise distinct prime numbers.
Assume further that, for each prime pi, G has only one Sylow pi-subgroup Si. Show that G is
cyclic.
(Hint: Let ai be a generator of Si, and set a := a1 · · · ar. First show that aiaj = ajai for all
i, j 2 {1, . . . , r}. Then show that G = hai by showing that Si 6 hai for every i = 1, . . . , r.)

5. (a) Show that every group of order 15 is cyclic.

(b) Show that every group of order 1001 is cyclic.

6. (a) Find a Sylow 2-subgroup of Sym(4). How many Sylow 2-subgroups are there?

(b) Find a Sylow 2-subgroup of Sym(5). How many Sylow 2-subgroups are there?
(Hint: Consider the conjugation action of Sym(5) on its Sylow 2-subgroups. Show that Syl2(Sym(4)) ✓
Syl2(Sym(5)), choose S 2 Syl2(Sym(4)), and show that NSym(5)(S) 6 Sym(4). Then use Part
(a) and the orbit equation.)
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13 Solvable groups

In this section we introduce the notion of a solvable group and show, often by applying the Sylow
Theorems, that groups of certain orders are always solvable. Vaguely speaking, solvable groups
are groups that are built from abelian groups. For this reason their structure is less complicated
than that of arbitrary groups. The class of solvable groups contains the class of abelian groups
and also the class of p-groups. The class of solvable groups has also the convenient property
that it is closed under taking subgroups and forming factor groups. The name ”solvable” has
to do with a connection to solving polynomial equations. This connection is explained using
Galois Theory (but not in these notes).

13.1 Definition Let G be a group.

(a) A subnormal series of G is a finite sequence of subgroups of the form

1 = G0 E G1 E · · · E Gn = G ,

i.e., every subgroup is normal in the following one. It is not required that Gi is normal in G.
The factor groups Gi/Gi�1, i = 1, . . . , n, are called the factors of the subnormal series.

(b) The group G is called solvable if it has a subnormal series with abelian factors.

This definition is motivated by the following. Let f(x) de-
note a polynomial of degree n with coe�cients in Q. Galois
associated (through a complex process) to this polynomial a
finite group Gf(x), called the Galois group of the polynomial.
This group is isomorphic to a subgroup of Sym(n). In fact, if
one picks a “random” polynomial f(x) of degree n, chances
are very high that Gf(x) is isomorphic to Sym(n). This was
probably the first occurrence of the notion of a group. Abel
proved that the solutions of the equation f(x) = 0 can be
expressed in terms of the coe�cients of f(x) and the usual
operations +, �, ·, /, together with higher roots, if and
only if Gf(x) is solvable. It was known that such formulas
existed for polynomials of degrees 1, 2, 3, and 4. For in-
stance, the solutions of the equation ax2 + bx + c = 0 are
(�b ±

p
b2 � 4ac)/2a. Abel’s Theorem therefore explains

why nobody was able to find a general formula for solutions
of polynomial equations of degree 5 and higher: The groups
Sym(n), for n > 5, are not solvable (see Exercise 5) while
Sym(n), for n 6 4, and its subgroups are solvable (as we
will see later in this section).
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13.2 Remark (a) If G is an abelian group then G is solvable, because the sequence {1G} E G
is a subnormal series with abelian factor.

(b) If G is a p-group then Part (a) of Sylow’s First Theorem guarantees a subnormal series

{1} = G0 /G1 / · · · /Gn = G

with factors Gi/Gi�1 of order p. for i = 1, . . . , n. Since every group of order p is cyclic (and
therefore abelian), we have shown that every p-group is solvable.

13.3 Examples (a) Sym(3) is solvable, since {id} / h(1, 2, 3)i / Sym(3) is a subnormal series
with abelian factors.

(b) Alt(4) is solvable, since {id}/V4/Alt(4) is a subnormal series with abelian factors, where
V4 = h(1, 2)(3, 4), (1, 3)(2, 4)i.

(c) Sym(4) is solvable, since {id} / V4 / Alt(4) / Sym(4) is a subnormal series with abelian
factors.

(d) Alt(5) is not solvable, because Alt(5) is simple (see Exercise 11.7) and non-abelian.

13.4 Proposition Every group G of order pq, where p and q are primes, is solvable.

Proof If p = q then G is a p-group and solvable by Remark 13.2(b). So we can assume from
now on, without loss of generality, that p < q. By Sylow’s Third Theorem we know that nq(G)
divides p and that nq(G) ⌘ 1 mod q. This implies that nq(G) = 1 and that G has a normal
Sylow q-subgroup S. This leads to a subnormal series {1G} / S /G with factors of order q and
of order p. This implies that the factors are abelian, and that G is solvable.

13.5 Proposition Let p and q be primes and let G be a group of order p2q. Then G is solvable.

Proof If p = q then G is a p-group and we are done by Remark 13.2(b). So we assume from
now on that p 6= q. By Sylow’s Third Theorem we have np(G) 2 {1, q} and nq(G) 2 {1, p, p2}.
If np(G) = 1 or nq(G) = 1 we are done, since then we obtain a subnormal series with factor
groups that are of order p2 and order q and therefore abelian.

So we assume from now on that np(G) = q and that nq(G) 2 {p, p2}. We will see that this
case cannot occur by deriving a contradiction. By Sylow’s Third Theorem we have q = np(G) ⌘ 1
mod p. This implies that p 6 q � 1 < q and then that p 6⌘ 1 mod q. Thus, again by Sylow’s
Third Theorem, nq(G) 6= p, and therefore we have nq(G) = p2. This means G has p2 di↵erent
subgroups of order q. Each of them has precisely q � 1 elements of order q, and each element
of order q belongs to precisely one subgroup of order q. Thus, the number of elements of G
of order q is equal to p2(q � 1), and G has at most p2q � p2(q � 1) = p2 elements whose
order divides p2. Now let S be a Sylow p-subgroup of G. Then S has p2 elements whose
order divides p2. If there existed two di↵erent Sylow p-subgroups of G, say S 6= T , then
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|S \ T | = |S| + |T | � |S \ T | > p2 + p2 � p > p2 and G would contain more than p2 elements
of order dividing p2. Thus, G has only one Sylow p-subgroup. This is a contradiction to our
assumption that np(G) = q.

13.6 Theorem Let G be a group.

(a) If G is solvable and H is a subgroup of G then H is solvable.

(b) If G is solvable and N is a normal subgroup of G then G/N is solvable.

(c) If N is a normal subgroup of G such that N and G/N are solvable, then G is solvable.

Proof (a) Let
1 = G0 E G1 E · · · E Gn = G

be a subnormal series of G with abelian factors. We claim that then

1 = G0 \H E G1 \H E · · · E Gn \H = H

is again a subnormal series with abelian factors. We set Hi := Gi \ H for i = 0, . . . , n. First
we show that Hi�1 is normal in Hi for i = 1, . . . , n. This follows from the Second Isomorphism
Theorem applied to the group Gi and the subgroups Gi�1 and Gi \H. In fact, Gi�1 is normal
in Gi and therefore Hi�1 = Gi�1 \ (Gi \ H) is normal in Gi \ H = Hi. Next we show that
Hi/Hi�1 is abelian. Again by the Second Isomorphism Theorem, there exists an isomorphism

Hi/Hi�1 = (Gi \H)/(Gi \H) \Gi�1
⇠= (Gi \H)Gi�1/Gi�1 .

But the latter group is a subgroup of the abelian group Gi/Gi�1 and therefore abelian. This
shows that also Hi/Hi�1 is abelian.

(b) Again, let
1 = G0 E G1 E · · · E Gn = G

be a subnormal series of G with abelian factors. We claim that

1 = G0N/N E G1N/N E · · · E GnN/N = G/N

is a subnormal series of G/N with abelian factors. First of all, GiN is a subgroup of G for
all i = 0, . . . , n, since N is normal in G. Secondly, GiN/N is a subgroup of G/N for all
i = 0, . . . , n, by the Correspondence Theorem. Also, clearly Gi�1N/N is a subgroup of GiN/N
for all i = 1, . . . , n. Next we show that Gi�1N/N is normal in GiN/N for all i = 1, . . . , n.
By the Correspondence Theorem applied to the group GiN and the normal subgroup N , it
su�ces to show that Gi�1N is normal in GiN , or equivalently that Gi 6 NG(Gi�1N) and
N 6 NG(Gi�1N). But, clearly N 6 NG(Gi�1N), since N 6 Gi�1N , and for a 2 Gi we have
aGi�1N = Gi�1aN = Gi�1Na, since N is normal in G and Gi�1 is normal in Gi. Finally, we
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need to show that the factors (GiN/N)/(Gi�1N/N) are abelian. By the Third Isomorphism
Theorem, we have

(GiN/N)/(Gi�1N/N) ⇠= (GiN)/(Gi�1N) .

By the Second Isomorphism Theorem applied to the group GiN and the normal subgroup Gi�1N
and the subgroup Gi we obtain further that

GiN/Gi�1N = Gi(Gi�1N)/Gi�1N ⇠= Gi/(Gi \Gi�1N) .

And finally, using again the Third Isomorphism Theorem, applied to the group Gi and the
normal subgroups Gi \Gi�1N and Gi�1, we obtain

Gi/(Gi \Gi�1N) ⇠= (Gi/Gi�1)/((Gi \Gi�1N)/Gi�1) .

Altogether we obtain that (GiN/N)/(Gi�1N/N) is isomorphic to a factor group of the abelian
group Gi/Gi�1. Therefore, (GiN/N)/(Gi�1N/N) is abelian.

(c) Since N is solvable there exists a subnormal series

{1G} = N0 E N1 E · · · E Nk = N

with abelian factors Ni/Ni�1, for i = 1, . . . , k. And since G/N is solvable there exists a subnor-
mal series

{1G/N} = X0 E X1 E · · · E Xl = G/N

with abelian factors. By the Correspondence Theorem, there exist subgroups Hi of G with N 6
Hi, for i = 0, . . . , l, such that Xi = Hi/N . It follows also by the Correspondence Theorem that
H0 = N , that Hl = G and that Hi�1 is normal in Hi (the latter follows from the Correspondence
Theorem applied to the group Hi). Therefore, we obtain a subnormal series

{1G} = N0 E N1 E · · · E Nk = N = H0 E H1 E · · · E Hl = G .

We claim that this subnormal series has abelian factors. In fact Ni/Ni�1 (for i = 1, . . . , k)
is abelian by our assumption from the beginning of the proof of Part (c), and Hi/Hi�1 (for
i = 1, . . . , l) is isomorphic to (Hi/N)/(Hi�1/N) = Xi/Xi�1 by the Third Isomorphism Theorem.
But the latter groups are also abelian by our assumption.

13.7 Example Every group G of order 36 is solvable. In fact, if n3(G) = 1 then G has a
normal Sylow 3-subgroup S (by Remark 12.8) and we obtain a subnormal series {1G} / P /G.
(The factors are abelian, because they have order p2 for a prime p, cf. Corollary 11.17.) So
assume that n3(G) > 1 and let S 6= T be two Sylow 3-subgroups. We claim that P := S \ T
has order 3 and that P is normal in G. Once we have proved this we see from Proposition 13.5
that G/P , which has order 12, is solvable, and together with P being solvable, Theorem 13.6(c)
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implies that G is solvable. Next we prove the claim. First, note that, by Proposition 10.5, we
have |ST | = |S| · |T |/|S \ T | = 81/|S \ T |. This implies that |S \ T | 6= 1. But S \ T is a
subgroup of S and not equal to S (since otherwise we obtain S = T ). Now, by Lagrange, we
obtain |S \ T | = 3. Therefore, by the above equation we obtain |ST | = 27. Since S and T are
abelian (since of order 32), P = S \ T is normal in S and normal in T . In other words, S and
T are subgroups of NG(P ). But then also the subset ST is contained in NG(P ). This means
that 27 6 |NG(P )|. But, by Lagrange’s Theorem, |NG(P )| is a divisor of 36. This implies that
NG(P ) = G and P is normal in G.

The solvability of groups of order 36 would also follow with
a shorter proof from the following proposition. However, the
arguments in the above example still go through for every
group of order p2q2 with primes p 6= q (see Exercise 4), while
the proposition below cannot be applied in the general case.

13.8 Proposition Let G be a finite group and let H be a subgroup of index n in G.

(a) G/coreG(H) is isomorphic to a subgroup of Sym(n).

(b) If n 6 4 and if coreG(H) is solvable then G is solvable.

Proof (a) Consider the action of G on X = G/H by left multiplication. The associated permu-
tation representation is a homomorphism ⇢ : G ! Sym(X) with kernel coreG(H) =

T
a2G aHa�1,

by Example 11.8(b). Now the First Isomorphism Theorem implies that G/coreG(H) is isomor-
phic to a subgroup of Sym(X) and therefore also to a subgroup of Sym(n), by Proposition 6.1.

(b) We know that coreH(G) is normal inG. Moreover, by Part (a), we know thatG/coreH(G)
is isomorphic to a subgroup of Sym(n) with n 6 4. But Sym(n) is solvable for n 6 4, by
Examples 13.3. Theorem 13.6(a) implies that G/coreG(H) is solvable. Now Theorem 13.6(c)
implies that G is solvable.

13.9 Example Every group of order 48 is solvable. Since 48 = 24 · 3, there exists a subgroup S
of order 16 by Sylow’s First Theorem. The group coreG(S) is a subgroup of S. Therefore, it is
a 2-group and is solvable. Moreover, the index of S in G is equal to 3. Now Proposition 13.8(b)
applies and shows that G is solvable.

13.10 Remark (a) A famous theorem by Feit and Thompson states that every finite group of
odd order is solvable. This is usually referred to as the “Odd Order Theorem”. It was proved
in 1963. The proof is about 250 pages long.

(b) Another famous theorem is “Burnside’s paqb-Theorem”. It states that every group of
order paqb, where p and q are primes and a, b are natural numbers, is solvable. The proof of this
theorem is not very long, but it uses methods from character theory, which arises from studying
how groups can act on vector spaces.
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Exercises for §13

1. Let G be a group of order 80.

(a) Show that G has a normal Sylow 5-subgroup or a normal Sylow 2-subgroup.

(b) Show that G is solvable.

2. Show that every group of order 500 is solvable.

3. Show that all groups of order smaller than 60 are solvable.

4. Show that all groups of order p2q2 (with primes p and q) are solvable. (Hint: Generalize
the proof in Example 13.7, where p = 2 and q = 3.)

5. Let G be a finite group. Show that the following are equivalent:

(i) G is solvable.

(ii) G has a subnormal series with cyclic factors.

(iii) G has a subnormal series with cyclic factors of prime order.

(Hint: Refine a given subnormal series using the Correspondence Theorem.)

6. Show that Sym(n), for n > 5, is not solvable. (Hint: Use that Alt(5) is simple, see
Exercise 11.7, and show that Alt(5) is isomorphic to a subgroup of Sym(n).)

7. Show that every group of order 72 is solvable. (Hint: Use the third Sylow Theorem to
see that |Syl3(G)| 2 {1, 4} and treat these two cases separately.)
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14 The structure of finite abelian groups

The goal of this section is to prove the following theorem about finite abelian groups. It says
that there are no new surprise finite abelian groups: They are all isomorphic to direct products
of cyclic groups of the form Zpe , where p is a prime and e 2 N.

14.1 Theorem Let G be a non-trivial finite abelian group. Then there exist unique prime
powers pe11 , . . . , perr (ei > 1 for i = 1, . . . , r) such that

G ⇠= Zp
e1
1

⇥ · · ·⇥ Zperr .

The natural numbers pe11 , . . . , perr are called the elementary divisors of G.

In the above theorem, repetitions are allowed. For instance,
the elementary divisors could be 4, 4, 8, 3, 9.

14.2 Examples (a) According to the above theorem, there exist precisely 5 isomorphism classes
of abelian groups of order 16, represented by the following groups:

Z16 , Z8 ⇥ Z2 , Z4 ⇥ Z4 , Z4 ⇥ Z2 ⇥ Z2 , Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 .

(b) The isomorphism classes of abelian groups of order 36 = 22 · 32 are represented by

Z4 ⇥ Z9 , Z4 ⇥ Z3 ⇥ Z3 , Z2 ⇥ Z2 ⇥ Z9 , Z2 ⇥ Z2 ⇥ Z3 ⇥ Z3 .

(c) For every prime p there exist precisely two isomorphism types of groups of order p2,
namely Zp2 and Zp ⇥ Zp. In fact, by Corollary 11.17, every group of order p2 is abelian and
Theorem 14.1 applies.

For the proof of Theorem 14.1 we need to prove a few auxiliary results.

14.3 Proposition Let G be a non-trivial finite abelian group and let p1, . . . , ps denote the
distinct prime divisors of |G|. For i = 1, . . . , s, let Pi be the Sylow pi-subgroup. Then the
function

f : P1 ⇥ · · ·⇥ Ps ! G , (a1, . . . , as) 7! a1 · · · as ,

is an isomorphism.

Proof The function f is a homomorphism, since

f((a1, . . . , as)(b1, . . . , bs)) = f((a1b1, . . . , asbs)) = a1b1a2b2 · · · asbs
= a1 · · · asb1 · · · bs = f((a1, . . . , as))f((b1, . . . , bs)) .

Next we show that f is surjective. For this purpose write |G| = pe11 · · · pess . Then |Pi| = peii
for all i = 1, . . . , s. For every i = 1, . . . , s, the subgroup Pi of G is contained in the image of f .
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Therefore, |im(f)| is divisible by peii for all i = 1, . . . , s. But this implies that |im(f)| is divisible
by pe11 · · · pess = |G|. Thus, |G| = |im(f)| and im(f) = G.

Finally, since |P1 ⇥ · · ·⇥ Ps| = pe11 · · · pess = |G|, the function f is also injective.

14.4 Corollary Let n > 1 be an integer and let n = pe11 · · · pesr be its prime factorization. Then

Zn
⇠= Zp

e1
1

⇥ · · ·⇥ Zpess .

Proof Since every subgroup of a cyclic group is cyclic, the Sylow pi-subgroup Pi of Zn is
isomorphic to Zp

ei
i

for all i = 1, . . . , s. This together with Proposition 14.3 yields isomorphisms

Zp
e1
1

⇥ · · ·⇥ Zpess
⇠= P1 ⇥ · · ·⇥ Ps

⇠= Zn .

14.5 Remark If f : G ! H is an isomorphism between two finite groups and if S is a Sylow
p-subgroup of G for some prime p then f(S) is a Sylow p-subgroup of H (since |G| = |H| and
|f(S)| = |S|). Moreover, S is isomorphic to f(S).

Proposition 14.3 and the above remark now show that, in order to prove Theorem 14.1, it
su�ces to prove it in the special case of a p-group. More precisely, the general existence of an
isomorphism as in Theorem 14.1 follows from Proposition 14.3 and the existence statement in
Theorem 14.6. And the uniqueness of the prime powers follows from the above remark together
with the uniqueness statement in Theorem 14.6.

14.6 Theorem Let p be a prime and let G be a non-trivial finite abelian p-group. Then there
exist unique positive integers e1 > e2 > · · · > er such that

G ⇠= Zpe1 ⇥ · · ·⇥ Zper . (14.6.a)

Before we can start proving Theorem 14.6, we need one more lemma.

14.7 Lemma Assume that G is a finite non-cyclic abelian p-group and that a 2 G is an element
whose order is maximal among the orders of all elements of G. Then there exists b 2 G of order
p with hai \ hbi = {1G}.

Proof Since G is not cyclic, the group G/hai is not trivial. By Cauchy’s Theorem, there
exists an element chai 2 G/hai of order p. This implies that cphai = (chai)p = hai, and therefore
cp 2 hai. Thus, there exists k 2 Z such that cp = ak. If p does not divide k, then gcd(k, o(a)) = 1
and therefore o(ak) = o(a) (by Proposition 5.12). This implies that o(c) = p · o(ak) = p · o(a)
(again by Proposition 5.12, this time applied to c and cp), contradicting the maximality of o(a)
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among all elements of G. Thus, p divides k and we can write k = pl for some l 2 Z. Now, the
element b := c�1al satisfies bp = c�pak = 1 and b 6= 1, since otherwise c 2 hai, contradicting
o(chai) = p. Thus, b has order p. Moreover, hbi\hai = {1}, since otherwise this intersection is a
non-trivial subgroup of hbi and therefore equal to hbi (because |hbi| = p), which implies b 2 hai
and c = alb�1 2 hai which we just ruled out. Now the proof is complete.

Proof of Thm 14.6.
(a) First we prove by induction on |G| that there exist positive integers e1 > e2 > · · · > er

and an isomorphism as in (14.6.a).
If |G| = p, then G ⇠= Zp and we are done. Now assume that |G| > p and that the existence

part of the statement in the theorem holds for all finite non-trivial abelian p-groups of order
smaller than |G|. If G is cyclic, we are done. So asume that G is not cyclic. Let a 2 G be an
element with maximal order. Among all subgroups H of G satisfying H \ hai = {1} pick one
with maximal order.

We claim that Hhai = G. Assume that Hhai is a proper subgroup of G. It is easy to see
that the order of the element aH 2 G/H is equal to the order of the element a 2 G. In fact,
(aH)k = H if and only if ak 2 H, and this happens if and only if ak = 1, since hai \H = {1G}.
But then o(aH) is the maximal possible order of elements in G/H, since in general o(gH) 6 o(g),
for g 2 G. Since G/H > haiH/H = haHi, this implies that G/H is not cyclic. By Lemma 14.7,
there exists an element bH 2 G/H of order p with bH /2 haHi. Thus, b is not inH and hbiH > H.
But also hbiH \ hai = {1G}. In fact, let x 2 hbiH \ hai. Then we can write x = bih = aj with
i, j 2 Z and h 2 H. This implies (bH)i = biH = ajH 2 haHi. Since bH has order p and is not
contained in haHi, this implies that p divides i (since otherwise hbHi = hbiHi ✓ haHi). But if
p divides i then bi 2 H, since bH has order p. This implies that x = aj = bih 2 H \ hai = {1G}.
Thus, we have proved that hbiH \ hai = {1G}. But this contradicts the maximality of H with
respect to H \ hai = {1G}. Therefore the claim is proved.

Now we have haiH = G and hai \H = {1G}. This implies that the function

� : hai ⇥H ! G , (ai, h) 7! aih ,

is an isomorphism. In fact, it is easy to see that it is a homomorphism, since G is abelian. It is
surjective, since haiH = G, and it is injective, since

|G| = |haiH| = |hai| · |H|
|hai \H| = |hai| · |H| = |hai ⇥H| .

By induction, there exist positive integers e2 > · · · > er and an isomorphism

 : H ! Zpe2 ⇥ · · ·⇥ Zper .

If we denote by e1 the positive integer with o(a) = pe1 then e1 > e2, since a has maximal possible
order in G. Since Zpei and hai are both cyclic groups of order pe1 , there exists an isomorphism
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! : hai ! Zpe1 and we obtain an isomorphism

hai ⇥H ⇠= Zpe1 ⇥ (Zpe2 ⇥ · · ·⇥ Zper ) , (x, y) 7! (!(x), (y)) .

Altogether we obtain an isomorphism as in (14.6.a).

(b) Now we prove the uniqueness part of the theorem. Assume that e1 > e2 > · · · > er and
f1 > f2 > · · · > fs are positive integers and that

Zpe1 ⇥ · · ·⇥ Zper
⇠= Zpf1 ⇥ · · ·⇥ Zpfs .

We will show that r = s and that ei = fi for all i = 1, . . . , r.
For every k 2 N, let E(k) denote the number of elements (a1, . . . , ar) 2 Zpe1 ⇥ · · · ⇥ Zrer ,

satisfying pk(a1, . . . , ar) = (0, . . . , 0), i.e., E(k) counts the elements whose order divides pk.
Similarly, we define F (k) as the number of elements (b1, . . . , bs) 2 Zpe1 ⇥ · · · ⇥ Zpes , satisfying
pk(b1, . . . , bs) = (0, . . . , 0). Since f is an isomorphism, we clearly have E(k) = F (k), for all
k 2 N. But, pk(a1, . . . , ar) = (0, . . . , 0) if and only if pkai = 0 in Zpei for every i = 1, . . . , r. If
ei > k then Zpei has precisely pk elements with this property, namely the subgroup generated
by pei�k. If ei < k then every element of Zpei has this property. Let t := max{e1, f1}. Then, if
we denote by mk (k = 1, . . . , t) the number of exponents ei with ei = k, and by nk (k = 1, . . . , t)
the number of exponents fj with fj = k, we obtain

E(k) = pm1+2m2+3m3+···+k(mk+mk+1+···+mt)

and
F (k) = pn1+2n2+3n3+···+k(nk+nk+1+···+nt)

Since F (1) = E(1), we obtain

r = m1 +m2 + · · ·+mt = n1 + n2 + · · ·+ nt = s .

Since F (2) = E(2), we obtain

m1 + 2(m2 + · · ·+mt) = n1 + 2(n2 + · · ·+ nt) .

Together with the previous equation this implies m1 = n1 and m2 + · · · +mt = n2 + · · · + nt.
Since F (3) = E(3), we obtain

m1 + 2m2 + 3(m3 + · · ·+mt) = n1 + 2n2 + 3(n3 + · · ·+ nt) .

Using m1 = n1 and m2 + · · · + mt = n2 + · · · + nt, we obtain m2 = n2 and m3 + · · · + mt =
n3 + · · · + nt. Continuing in this way we obtain mi = ni for all i = 1, . . . , t. This implies that
ei = fi for all i = 1, . . . , r.

By the paragraph preceding Theorem 14.6 now also Theorem 14.1 is proved.

81



Exercises for §14

1. Write down a set of representatives of the isomorphism classes of all abelian groups of
order up to 20.

2. How many isomorphism types of abelian groups of order 10, 000 are there?

3. Let G be a group and let H and K be subgroups of G. Show that the following are
equivalent:

(i) H \K = 1, HK = G and for every h 2 H and k 2 K one has hk = kh.

(ii) H E G, K E G, H \K = 1, and HK = G.

(iii) For every h 2 H and k 2 K one has hk = kh and for every element g 2 G there exist
unique elements h 2 H and k 2 K such that g = hk.

(iv) The function H ⇥K ! G, (h, k) 7! hk, from the direct product group H ⇥K to G is
an isomorphism.

If the above conditions are satisfied then G is called the internal direct product of the subgroups
H and K, and one writes G = H ⇥K. By (iv), this notation is justified.
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