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Abstract

Stark’s Conjectures for p-adic L-functions

by

Joseph W. Ferrara

We give a new definition of a p-adic L-function for a mixed signature character of a
real quadratic field and for a nontrivial ray class character of an imaginary quadratic
field. We then state a p-adic Stark conjecture for this p-adic L-function. We prove
our conjecture in the case when p is split in the imaginary quadratic field by relating
our construction to Katz’s p-adic L-function. We also prove our conjecture in the
real quadratic setting for one special case and give numerical evidence in one specific

example.
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Introduction

Let F' be a number field and let
x:Gp — C*

be a continuous one dimensional representation of the absolute Galois group of F'. Let
K be the fixed field of the kernel of x. Let p be an odd prime number and fix embeddings
(for the rest of this thesis) too : Q = C and ¢, : Q < C, so we may view any algebraic
number as a complex or p-adic number.

Via the Artin map, to xy we may associate the complex Hecke L-function,
L(x, s), defined by the series

L(x;s) = ﬁ(;)

aCOp

for Re(s) > 1. The function L(x,s) has a meromorphic continuation to the whole
complex plane. In the late 1970s, in a series of papers, Stark made precise conjectures
concerning the leading term of the Taylor series expansion at s = 0 of L(x, s) ([28], [29],
[30]). Stark’s conjectures relate the leading term of L(x,s) at s = 0 to the determinant

of a matrix of linear combinations of logarithms of units in K. His conjectures refine



Dirichlet’s class number formula. Stark proved his conjectures when the field F' is equal
to Q or to an imaginary quadratic field. In general the conjectures are open.

Around the same time that Stark made his conjectures, p-adic L-functions
were constructed interpolating the critical values of complex Hecke L-functions for gen-
eral number fields. This vastly generalized Kubota and Leopoldt’s work on the p-adic
Riemann zeta function. When F' is a totally real field and x : Gp — C* is a totally even
character, Cassou-Nogues, and Deligne-Ribet ([5], [10]) defined a p-adic meromorphic
function

Ly(x;8) : Zp — Cp

determined by the following interpolation property: for all n € Z<o, we have

Ly(x,n) = [ = xo" ' (p) Np~ ™) L(xw" ", n) (0.1)
plp

where w is the Teichmiiller character. Siegel and Klingen (][26]) showed that the values
L(xw" !, n) lie in the field obtained by adjoining the values of xw” ! to Q. The equality
(0.1) takes place in Q.

Now let F' be a CM field with maximal totally real subfield E. A prime p
is called ordinary for F' if every prime above p in E splits in F. For such primes
p, Katz ([17],[18]) defined a p-adic L-function associated to any ray class character
x : Gp — C*. Katz’s p-adic L-function interpolates the values of complex L-functions
of algebraic Hecke characters with nonzero infinity type. To specify the interpolation
property we specialize to the case that F' is imaginary quadratic. Let p be a rational

prime that is split in F'. Let A be a Hecke character of infinity type (1,0). Then Katz



constructed a p-adic meromorphic function
Ly(x,t,s) : Zy x Zy — C,,

determined by the following interpolation property: for all k,j € Z such that 1 < j <

k — 1, we have

LP(X7 kv.])

L1 5)
ot '

= Ep(x. K, ) QF1
In the formula above, E,(x, k, j) is an explicit complex number and €2, € C, Q € C*
are p-adic and complex periods that make both sides of the above equality algebraic.
In the two cases F' is totally real and F' is imaginary quadratic, p-adic Stark
conjectures have been made for L,(x,s) and Ly(x,t,s), and some progress has been
made on these conjectures. When F is totally real and y is totally odd Gross ([16])
stated a conjecture for the order of vanishing of L,(xw,s) at s = 0 and the leading
term of the Taylor series of L,(xw, s) at s = 0. Progress has been made on the order of
vanishing, and recently the formula for the leading term was proved in [8] building off
of earlier work in [7]. When F is totally real and x is totally even there is a conjecture
for the value Ly(x,1) known as the Serre-Solomon-Stark conjecture ([27], [31]). This
conjecture is open except in the cases when F' = QQ (when the formula is due to Leopoldt)
and when y is trivial (where Colmez has proven a p-adic class number formula ([6]).
When F' is imaginary quadratic and p is split in F', Katz stated and proved a p-adic
Stark conjecture for the value Ly(x,1,7) known as Katz’s p-adic Kronecker’s 2nd limit

formula ([17] and see section 4.1 of loc. cit.).

One of the original motivations for Stark’s conjectures is that when the order of



vanishing of L(x, s) at s = 0 is exactly one, then the conjectures shed light on Hilbert’s
12th problem about explicit class field theory. More precisely, when the order vanishing
is exactly one then Stark’s conjectures predict the existence of a unit v € €% such that

the relation

V0)=—2 3 (o) loglo(w) (0.2)

e
o€Gal(K/F)

holds for all characters of the Galois group Gal(K/F) and such that K(u'/¢) is an
abelian extension of F'. Here e is the number of roots of unity in K and the absolute
value is a particular absolute value on K. When F is real quadratic, ords—o(L(x,s)) = 1
if and only if y is mixed signature. In this case, we choose the absolute value on K to
correspond to one of the real places of K. Then by varying ¢ and exponentiating (0.2)
one can solve for the unit u from the L-values L'(1),0). In this way, Stark’s conjectures
give a way to construct units in abelian extensions of F'.

The goal of this thesis is to define a p-adic L-function and state a p-adic Stark
conjecture in the setting when F' is a quadratic field and ords—o(L(x, s)) = 1 (the rank

one setting). This is the case when
x:Gp — C*

is any nontrivial character if F' is imaginary quadratic, and when y is a mixed signature
character when F' is real quadratic. When F' is imaginary quadratic and p is split in F
our p-adic L-function is related to Katz’s. In the cases when F' is imaginary quadratic
and p is inert, as well as when F' is real quadratic and y is mixed signature, our p-adic

L-function is new. Our p-adic Stark conjecture has a similar shape to (0.2) above with



the complex logarithm replaced with the p-adic logarithm and the same units appearing.
One of the main issues with defining the p-adic L-function for xy when F' is quadratic
and ords—o(L(x,s)) = 1 is that the complex L-function L(x, s) has no critical values.
Therefore the p-adic L-function of y will not interpolate any of the special values of
L(x,s). In order to define the p-adic L-function in spite of the fact that L(x,s) has
no critical values we p-adically deform y into a family of p-adic representations where
complex L-functions in the family do have critical values to interpolate.

We now explain in more detail our definition, conjectures, and results. Let
— 1naCe .
p=Ind; : Gg — GL2(C)
be the induction of x from G'r to Gg. Then the g-expansion

F= x(a)g"*

aCOfp

is the g-expansion of a weight one modular form and p is the representation associated
to f. The modular form f has character € = det p and level N = |dp|Np/gm where dp

is the discriminant of F' and m is the conductor of x. Let

2? —ap(flz+e(p) = (z - a)(z — B)

be the Hecke polynomial of f at p. Then a and 3 are roots of unity, so f has two (possibly
equal) ordinary p-stabilizations. Let f,(2) = f(z) — Bf(pz) be a p-stabilization of f.
Under the assumption that o # 8, Bellaiche and Dmitrov ([2]) have shown that the
eigencurve is smooth at the point corresponding to f,. In order to use Bellaiche and

Dmitrov’s result we assume a # 8 and let V' be a neighborhood of f, on the eigencurve



such that the weight map is étale at all points of V' except perhaps f,. Furthermore,
let W be weight space. Using the constructions of [1] there exists a two-variable p-adic
rigid analytic function

Ly(fa,2,0): V xW — C,

such that for all classical points y € V, all finite order characters ¢¥» € W(C,), and all

integers j, 1 < 7 < k — 1 where k is the weight of y,

Lp(fa,y, 1 ()Y

L(gya wwjilaj)
07y |

Qggg(w)

= Ep(fony?waj)

Here E,(fa,y, %, j) is an explicit complex number and Q;y, Q;,t’y are p-adic and complex
periods respectively that make both sides of the equality algebraic. Conceptually, it

makes sense to define the p-adic L-function of x as
Ly(x,a,8):Zy, — C,

Lp(Xa Q, 8) = Lp(fOu z, <_>s—1)
where x € V is the point corresponding to f,. The problem with this definition is that

while the function L,(fa,z,0) is determined by the above interpolation property, the

+

triple of the function Ly(fa, z,0), the p-adic periods Q7 ,

and the complex periods Qoioyy
is not canonically defined. The choice of the function L,( fa, 2, 0) may be changed by an
invertible function (meaning having no zeros or poles) on V' and we would then obtain
a new function with new p-adic and complex periods satisfying the same interpolation
formula. We would like to state a p-adic Stark conjecture for the function L,(x, «,s),

but because the function is not canonically defined it does not make sense to specify its

value at any point with a precise conjecture.



To define a function that does not depend on any choices, we fix two finite
order Dirichlet characters 1,9 € W and define the p-adic L-function of x with the

auxiliary characters n and ¢ as

Ly(fa, 2,0~ ()¢
Lp(for 7 () ()*1)

LP(X7 Oé, 777 Q;b’ S) =

The function L, (x, a, 1,1, s) does not depend on the choices made to define L,(f,z,0),
and so L,(x, a, 1,1, s) is the p-adic L-function we make a Stark conjecture for.

Now assume that n and ¢ have orders p™ and p” respectively. Let M,, and
M, be the fixed fields of the kernels of the representations p ® n and p ® 1) respectively.

We conjecture the existence of units u, € & ﬁm and u, € O ]\X/[n such that

Z XW(U) logp ’J(um)‘l/a
ceGal(Mm/F)

S i) log, lo(un)la

o€Gal(My/F)

Lp(Xa «, Njw, ¢W7 0) = Ep(Xv «, 1], ¢7 O)

where Ep(x,an,,0) is an explicit p-adic number. The absolute value | - |1/, is a
projection that depends on the choice of p-stabilization. This projection is a key part
of the conjecture and the idea is from Greenberg and Vatsal ([14]). In [14], Greenberg
and Vatsal study Iwasawa theory for representations associated to weight one modular
forms. When the weight one modular form is the same as the ones we consider in this
thesis, the p-adic L-functions they study are very closely related to the ones we study
here.

We prove our conjecture in the case when F' is imaginary and p is split in
F by comparing the p-adic L-function L,(x, a, nw, ¢Yw, s) to Katz’s p-adic L-function.

In addition, we use Katz’s p-adic L-function to prove our conjecture in the following



additional case when F' is real quadratic. Assume F' real quadratic and x is a mixed
signature character of Gp. If there exists an imaginary quadratic field F” and a ray class
character x’ of G such that Indg% X = Indg% X' then our conjecture holds for y. We
also give numerical evidence for our conjecture in one particular example. Unfortunately
the example we give numerical evidence for falls into the setting just described for a real
quadratic field. In the future we hope to numerically verify the conjecture in at least
one more additional case.

We finish this introduction by giving a brief outline of each of the chapters in
this thesis. In chapter 1 we review the rank one abelian Stark conjecture for quadratic
fields. In the imaginary quadratic case when Stark’s conjecture is a theorem we state
the explicit definition of the Stark units. We end chapter 1 with an informal discussion
and outline of how we will define the p-adic L-function associated to x. In chapter
2 we give all the background needed to use the constructions of [1] to define p-adic
L-functions on the ordinary locus of the eigencurve. This includes using the language
of rigid analytic geometry to discuss overconvergent modular symbols and families of
overconvergent modular symbols. We include in chapter 2 the construction of the p-adic
L-function of an ordinary weight k£ > 2 modular form for comparison to the situation
that we consider in weight one.

In chapter 3 we give the definition of our p-adic L-function as well as the
statement of our conjectures. We state an integral conjecture at s = 0 and at s = 1 as
well as rational conjectures at s = 0 and s = 1. In chapter 4 we prove our conjecture

when F' is imaginary quadratic and p is split in F'. In this chapter we give an explanation



of Katz’s p-adic L-function drawing from many sources ([17],[9],[15],[3]). In chapter 5,
we use our result from chapter 4 to prove our conjecture for the case when F' is real
quadratic described above. In chapter 6 we give numerical evidence for our conjecture
in a specific example.

Chapter 7 is an appendix. The section on rigid analytic geometry was included
for the reader not familiar with the subject. We do not do any heavy rigid analytic
geometry in this thesis, but we do use it as a language to discuss p-adic L-functions.
The appendix has all the definitions and theorems used. The section on topological
rings, modules, and the completed tensor product is included for completeness to give
definitions that do not appear in the body of the thesis. The section on Hecke characters
is included to set language and conventions since many different conventions for Hecke
characters and their names is used in the literature. Finally the section on Hecke
L-functions is included for completeness and to have for comparison to the p-adic L-

functions considered in this thesis.



Chapter 1

The rank one abelian Stark

conjecture for quadratic fields

1.1 The archimedean conjecture

In this section we state the rank one abelian Stark conjecture for quadratic
fields and introduce notation that will be used in later sections. We state the conjecture
at s = 0 and at s = 1 since our p-adic conjecture will be stated at s =0 and s = 1. Let
F be a quadratic extension of Q and let K be a nontrivial finite abelian extension of
F. If F is real quadratic we assume that one infinite place of F' stays real in K and the
other becomes complex.

Let S be a finite set of places of F' that contains the infinite places and the
places that ramify in K, and such that |S| > 2. Let Sk denote the places of K above

those in S. Let v denote an infinite place of K such that v(K) C R if F' is real quadratic.

10



We also let v denote the infinite place of F' that is v|r, so v € S. Let U, g denote the

subgroup of K* defined by

{u e K*: |uly = 1,Vw' such that w'|p # v|p} if |S| >3
Ups =

)

{u € K*: |uly = |u]yr, V', w" | v and |ul, = 1,Vw € Sk} if S ={v,v'}.

Let e denote the number of roots of unity in K.

Conjecture 1.1.1. (Stark [30] at s = 0) There exists u € U, g such that for all char-
acters x of Gal(K/F),

1
Ls(x,0) = =~ Y. xl(o)loglo(u)]o.
c€Gal(K/F)

Remarks 1.1.2. 1. Stark conjectured the additional conclusion that the u € U, g

in the above conjecture is such that K (u!/¢) is an abelian extension of F.. For our

purposes we will not be considering this part of the conjecture, so we leave it out.

2. Stark proved the above conjecture when F' is imaginary quadratic ([30]). The

conjecture is open when F' is real quadratic.

3. If |S| > 3, then the element u € U, g has its absolute value specified at every
infinite place of K, so w if it exists is determined up to multiplication by a root of
unity. The element u € U, g which the conjecture predicts is called a Stark unit

of K/F.

4. In the real quadratic case, we can always take S to be the infinite places of F

union the places of F' that ramify in K. In this case, the conjectural u € U, g is

11



an actual unit in 0. Similarly in the imaginary quadratic case if at least two
primes of F' ramify in K and we take S to be the infinite place of F' union the

places of F' that ramify in K, then the Stark unit v € U, 5 is a unit in K.

5. If there exists a finite prime w in S such that x(w) = 1, then Ly(x,0) = 0 for all
x and we may take u = 1. Therefore the conjecture is somewhat trivial in this
case. When we state the conjecture at s = 1 will assume that y(w) # 1 for any

weS.

Proposition 1.1.3. Keeping the notation from above assume F' is real quadratic, |S| >
3, and let x be a character of Gal(K/F) that is totally even. Then L'y(x,0) =0 and if

u € Uys, then

3 x(0)loglo(u)], = 0.

c€Gal(K/F)

Proof. If x is totally even, the order vanishing at s = 0 of Lg(x,s) is at least two, so
Ls(x,0) =0.
Now let u € U, s and let w be an infinite place of K such that w|F # v|F.

Then w is above a complex place of K, so |u|, = 1. Let {1,0} be the decomposition

group of w. The condition |u|, = 1 is equivalent to w(u) = w(u)~!. Since w is a ring

homomorphism w(u)~! = w(u~!). By definition of §, w(u) = wod(u). Then §(u) = u~*

since w is injective. That is, the condition |u|,, = 1 is equivalent to d(u) = u~1.

12



On the other hand, since x is even, x(d) = 1. We then have

Y. x(o)loglo(u)l, = > x(0)log |o(u)ad(u)ly

c€Gal(K/F) ceGal(K/F)/{1,6}

= > X(o) log o (w)o(u™)l,

oeGal(K/F)/{1,6}

O

Remarks 1.1.4. 1. By the proposition, in the real quadratic case Conjecture 1.1.1
is equivalent to the statement that there exists u € U, s such that for all mixed

signature characters x of Gal(K/F')

o) =— 3 x(0)loglo(wl,

e
o€Gal(K/F)

2. Let x be a character of Gal(K/F') such that ords—o(L(x,s)) = 1. Let dr be the
discriminant of F, § the conductor of x, and N = |dp|Np/qf. In this setting, the

functional equation for the primitive L-function, L(y, s) is
L(1 —8)2(27)*'0(1 — s)NU=3)/2 = W (x) L(x, 5)2(2m) ~*T'(s) N*/?
where W (x) is the root number of .

Using the functional equation we state Stark’s conjecture also at s = 1. We
make the following assumption on S: for all finite w € S and all characters y of

Gal(K/F) such that ords—o(L(x, s)) = 1, x(w) # 1.

13



Conjecture 1.1.5. (Stark at s = 1) There ezists a u € U, g such that for all characters
X of Gal(K/F) that are of mized signature if F' is real quadratic and are nontrivial if

F is imaginary quadratic,

W0 N
¢ VIdrINF() e )UEGal(K/F)X(J )log|o(uk)ly

where §(x) is the conductor of x, dp is the discriminant of F', e is the number of roots

LS(X? 1) = -

of unity in K, and

Bt = 11 (1— >§$)) (1-X()™"

veES
finite
Remarks 1.1.6. By Proposition 1.1.3 and the functional equation, when |S| > 3 and

S is as above, Conjectures 1.1.1 and 1.1.5 are equivalent. The term E(y) appearing

comes from the functional equation for Lg(x, s).

Definition 1.1.7. Let K/F, S and v be as above. An element in U, g satisfying the
above conjecture is called a Stark unit for K/F and is denoted ug. If |S| > 3, then ug
is determined up to multiplication by a root of unity. When F' is imaginary quadratic

the units ug will be specified in section 1.2.

Remarks 1.1.8. It is important to note that if S is fixed, then the Stark unit ug in
the above definition depends on the choice of infinite place v of K. In the setting we
consider this will be particularly important. In our setting we have a nontrivial ray
class character

x:Gp — C*

14



that is of mixed signature if F' is real quadratic. We will then take K to be the fixed field

of the kernel of . Our conjecture will depend on the two-dimensional representation
p= Indgg X : Gg — GL2(C).

The representation p has the property that for any 7 € Gg — G the character x,
defined by

x-(0) = x(t71o7)
also satisfies p = Indg?; Xr- The fixed field of the kernel of y, is 7(K), and we will need
to consider the Stark unit for K/F and for 7(K)/F.

When F' is imaginary quadratic, K7(K) is the fixed field of the kernel of p,
and is an abelian extension of F', so there exists a Stark unit for K7(K)/F.

When F is real quadratic, 7(K)K is abelian over F', but both infinite places
of F' become complex in 7(K)K. Therefore the extension 7(K)K/F does not fall into
the setting of the rank one abelian Stark conjecture. For this reason, when F' is real
quadratic we consider the two extensions K /F and 7(K)/F separately. If v is an infinite
place of K such that v(K) C R if F is real quadratic, then v™ := v o 7~ ! is an infinite
place of 7(K) such that v"(7(K)) C R if F is real quadratic. If ug is the Stark unit for

K determined by v, then 7(ug) is the Stark unit for 7(K) determined by v.

One may also fix a character x of Gal(K/F') and state a rank one abelian Stark
conjecture for the one L-function Lg(x, s). This Stark conjecture for L(, s) is still open
in the real quadratic case for most x. We call this Stark conjecture the rational Stark

conjecture for y.

15



We keep the setting and notation as above for K/F, S, and v. Let x be a
character of Gal(K/F) such that ords—o(Ls(x,s)) = 1, and let k be the field obtained
by adjoining the values of x to Q. We extend log|-|,, from U, g to k®zU, s by k-linearity.
Let

(k®z U)X ={uck®zU,g:0(u)=x""(c)u,Vo € Gal(K/F)}
(k Xz UU,S)X = {u €k®z UU,S : (T(U) = X(O’)U,VO’ € Gal(K/F)}

be the x ! and ¥ isotypic components of k ®z U, s where Gal(K/F) acts via its action
on U, gs.

1

Conjecture 1.1.9. (Stark for x at s = 0). There exists an element u}, € (k®@zU, )X

such that

Lis(x,0) = log [u}]o.

Conjecture 1.1.10. (Stark for x at s =1). There exists an element uy, € (k®z U, g)X

such that
_2rW()E(x, 5)
[dp|NF(x)

Ls(x,1) = log |Ux’v-

Remarks 1.1.11. 1. Since we are assuming ords—o(Lg(x,s)) = 1, the k-dimension
of (k ®z UU,S)X_1 and (k ®z U, )X is one.
2. Conjecture 1.1.1 implies Conjecture 1.1.9 by taking

* 1 -
I S X)) ®o(u) € (kg Ups)®
ceGal(K/F)
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where u € U, g is the unit satisfying Conjecture 1.1.1. Conjecture 1.1.5 implies

conjecture 1.1.10 by taking

1
= Z xleHY®@ao(u) € (ko Uy,s)X
oceGal(K/F)

where u € U, g is the unit satisfying conjecture 1.1.5.

* 1

3. The x in the notation for uy

is to indicate that u, is in the x ™" component of

*

U,,s and not the x component. In some references uy

is denoted u, and in some

references it is u,—1. Since we will be state the conjectures at s =0 and s = 1, we

1

use a * to denote being in the x~* component and the absence of a * to denote

being in the xy component.

1.2 The imaginary quadratic case

In this section we define the Stark units that exist in the imaginary quadratic
case of the rank one abelian Stark conjecture. These units will be used in later sections.

We begin by introducing Robert’s units. They appear in Kronecker’s second
limit formula. A note on notation in this section is that depending on what looks better,
we may write exp(z) or e® for the exponential function.

Let L = Zw; + Zws C C be a lattice in C with ordered basis so that 7 = wj /ws
is in the upper half plane. Define the sigma and delta functions of a complex number z
and lattice L to be

o(zL) == ] (1-2) exp (i N % (5)2)

weL
w#0
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([ 2m 2 2rmiT ' 2minT 24
AL)=(=—) ™ JJ@-emn)*

Let

A(L) _ Wiwo — Wiwg

27

so A(L) the area of C/L divided by m. Further let

- Z Z (mwy + nw2)2

n€Z meZ,m#0

and
w2 ), D, —2
mEZ neZ,nA0 (mews + nws)
and define

n(z, L) = win2 — w2?71§ Wan1 — win2
’ 2miA(L) 2miA(L)

Then o(z, L) satisfies the following transformation law for all w € L
o(z4+w,L) = +o(z,L)exp(n(w, L)(z +w/2)).
Define the fundamental theta function by
0(z,L) = A(L) exp(—6n(z, L)z)o(z, L)'?

The function 6(z, L) satisfies the transformation law 0(cz,cL) = 6(z,L) for all ¢ €
C —{0}. As a function of z, 6(z, L) is not holomorphic. If L = Z7 + 7 where 7 is in the

upper half plane, then 6(z, L) has the product expansion

6

9(2, L) _ eA(L)Z(Zfz)GQWiT(eﬁiZ - —mz 12 H 27m m——l—z))(l _ 627ri(n7——z))]12.
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We now define Robert’s units associated to an integral ideal of an imaginary
quadratic field. Let F' be any imaginary quadratic field, let f be a non-trivial integral
ideal of F'. Let Gj = Gal(F(f)/F) and for a fractional ideal a coprime to f, let o € G}

be the image of a under the Artin map.

Definition 1.2.1. Let | be a nontrivial integral ideal of F' and let f be the least positive

integer in f N Z. Define for o € Gj, the Robert unit associated to o by
E(o) = 0(1,7c )/

where o, = o. The complex number E(c) is well defined and we have the following

proposition about its algebraic properties.

Proposition 1.2.2. (page 55 in [9]) Let f be a nontrivial integral ideal of F. Then for

all o € Gy, we have
(i) E(o) € F(f).
(ii) For all o’ € G}, 0'(E(0)) = E(d'0).
(iii) If f is divisible by two distinct primes then E(o) is a unit in F(f). If f = q™ for a
prime q of F, then E(0) is a q-unit.

The following theorem is known as Kronecker’s second limit formula. It relates
Robert units to special values of L-function associated to the imaginary quadratic field

F.

Theorem 1.2.3. (Kronecker’s second limit formula) Let § be a nontrivial ideal of F,

let f be the least positive integer in § N7, and let wy be the number of roots of unity in
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F congruent to 1 mod §. Furthermore, let S be the infinite place of F' and the places

dividing §, and let v be the infinite place of F(f) induced by to. Then for all characters

x of Gy,
Lis(x,0) = > log|E(o
12f fO'GGf
When Stark stated his conjectures, he recast this theorem using the following
lemma.

Lemma 1.2.4. (Lemma 9 on page 225 of [30]) Keeping the notation of the theorem,
let K C F(f) be a subfield of F(f) that is a nontrivial extension of F. Let J C Gj be the

subgroup such that G;/J = Gal(K/F), and define for oJ € Gj/J

H E(0") = Ny x(E(0)).

o'cad

Let e be the number of roots of unity in K. Then E(0J)¢ is a 12 fw; power in K.

Definition 1.2.5. Let f be a nontrivial ideal of F and let K C F(f) be a nontrivial
extension of F such that Gal(K/F') = Gy/J. Let e be the number of roots of unity in K,
f the least positive integer in § N7Z, and w; the number of roots of unity in F' congruent
to 1 mod §. Define the Stark unit of the extension K/F, denoted ug to be an element
of K such that

ud™ = B

where E(J) = [[,c;E(0). Such an element ug exists by the previous lemma and is

unique up to multiplication by a root of unity in K.
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Theorem 1.2.6. ([30]) Keeping the notation as in the previous definition, we have that

for all characters x of Gal(K/F),

1
Ls(x,0) = =~ Y. xl(o)loglo(ug)l,
c€Gal(K/F)

and K(u}(/e) is an abelian extension of F.

Remarks 1.2.7. 1. This theorem implies conjecture 1.1.1 when F' is imaginary

quadratic.

2. We could define a collection of Stark units, one for each oJ € Gj/J as

u(oJ) = H = Npg)/x (u(o))

o'eal
where u(o) the Robert unit defined in F(f). Then for the correct choice of the

12 fwsth roots we would have the reciprocity law

for all 0,0’ € Gal(K/F). In this case we would define ugx = w(J) and then
o(ug) =u(cJ).
1.3 Ideas for a p-adic L-function in this case

Let F' be a quadratic field and let x be a ray class character of F' such that
ords—o(L(x,s)) = 1. As stated in the introduction the goal of this thesis is to define a

p-adic L-function associated to x and to state a p-adic Stark conjecture. In this section
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we first explain the philosophy of how to define a p-adic L-function associated to y. We
then outline how we will rigorously carry out the philosophy in chapter 2.

The initial difficulty in defining a p-adic L-function associated to x is that
the complex L-function L(x,s) has no critical values. That is, L(x,n) = 0 for all
n € Z<o because of the poles in the gamma factors in the functional equation for
L(x,s). It follows then that any p-adic continuous function that is determined by an
interpolation formula involving the values of L(x, s) at negative integers would have to
be the zero function. Any meaningful p-adic L-function associated to x would therefore
not interpolate any of the values of L(x, s).

The idea to define a meaningful p-adic L-function associated to x is to use the
theory of p-adic families of automorphic forms. We will put y into a continuous family
V of a p-adic automorphic forms where there exists a dense subset X C V of “algebraic”
automorphic forms with p-adic L-functions defined. The p-adic L-function of x is then
defined to be the limit of the p-adic L-functions already defined for the points X in V.

A first attempt to put x into a p-adic family of automorphic forms would
be to deform x inside of the space of p-adic Hecke characters. When F' is imaginary
quadratic and p is split in F' one can deform y into a family of p-adic Hecke characters
that contains enough algebraic Hecke characters whose complex L-function have critical
values in order to define the p-adic L-function of x. This is what Katz does ([17],[18],
and see section 4.1 of loc. cit.). When F' is real quadratic one cannot deform x into a
family of p-adic Hecke characters where any of the algebraic Hecke characters’ complex

L-functions have critical values.
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A key idea of this thesis that allows us to deform y into a family where complex
L-functions of members of the family have critical values is to not view x as a Hecke
character of F', but to base change from F' to Q and view y as a modular form. Explicitly,
x becomes the weight one modular form f whose g-expansion is given by

F=> x(a)g™

aCOp

One can explicitly see that the complex L-function of f is the same as the complex
L-function of y, while philosophically it follows functorially. Using the theory of p-adic
families of modular forms we p-adically deform f into a family V' of modular forms. If
g is a newform of weight k € Z>9 (an “algebraic” modular form), then the complex L-
function of g has critical values at the integers j with 1 < j < k—1 and there is a p-adic
L-function of g defined interpolating these values. We define the p-adic L-function of f
to be the limit of the p-adic L-functions of the newforms ¢ in of weights k£ € Z>5 in the
family V.

Because the modular form f we are p-adically deforming into a family of mod-
ular forms is of weight one, the family of modular forms we consider will be a family of
ordinary modular forms, known as a Hida family. Even though it is not strictly neces-
sary to construct the eigencurve to talk about Hida families, we construct the ordinary
locus of the eigencurve because we are interested in the weight one point corresponding
to f. In [2], Bellaiche and Dmitrov do an analysis of the geometry of the eigencurve at
weight one points and give a sufficient condition for the eigencurve to be smooth at a

given weight one point. This smoothness condition allows one to define a two-variable
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p-adic L-function whose first variable is on the eigencurve parameterizing a p-adic fam-
ily of modular forms, and whose second variable is the usual cyclotomic variable on
weight space. In order to use Bellaiche and Dmitrov’s result we must introduce the
formalism originally created by Glenn Stevens and then developed by Bellaiche in [1]
to construct the the eigencurve using families of overconvergent modular symbols. This
uses the language of rigid analytic geometry and the p-adic L-functions we consider are
then p-adic rigid analytic functions.

In chapter 2, after giving our conventions for modular forms in section 2.1,
we introduce weight space, the rigid analytic space which will be part of the domain
of our p-adic L-function. We then introduce general modular symbols, which are used
to define the p-adic L-function of an ordinary weight & > 2 modular form. In order
to consider p-adic L-functions of p-adic modular forms of p-adic weights that are not
integers k € Z>2 we introduce overconvergent modular symbols. This in particular
will allow use to associate a p-adic L-function to an ordinary weight one modular form.
Finally at the end of chapter 2 we introduce families of overconvergent modular symbols
which we use to construct the ordinary locus of the eigencurve. This allows us to use
the result of Bellaiche and Dmitrov ([2]) and the constructions of Bellaiche in [1] to

construct two-variable p-adic L-functions.
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Chapter 2

Background for definition of the

p-adic L-function

2.1 Conventions for modular forms

In this section, we set some notation and conventions that will be fixed through-
out for modular forms. We also state some relevant definitions for later reference.

Fix a positive integer N such that p { N. The congruence subgroups we
consider will be I'1(N) and T'y(N) N To(p). Let T' denote either of these groups. Our
Hecke actions will come via double coset algebras following the conventions in [13] and
[25]. Let ¥ = GL2(Q)NM2(Z) and let D(I", ) be the double coset algebra of the double
cosets of I' in ¥. Given v € X, we let T'(y) € D(I', ¥) denote the element corresponding
to the double coset I'yI'. We define the Hecke operators as the following elements of

D(T',%):
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1. T, =T for £1 Np.
0 7/
10 10
2.U0,=T ifI'=T7(N)NTy(p) and T,=T if [ =T (N).
0 p 0 p
1 0
3..=T
0 -1

To define the diamond operators, when I' = I';(N), for a € (Z/NZ)*, let

r oy
x,y € Z be such that ax — Ny = 1 and 5 = € I'o(N). Then we define

Np" a
[a] € D(T',X) as [a] = T(Ba). WhenT' =T'1(N)NTo(p) for a € (Z/NZ)*, let x,y € Z be

Ty
such that ax — Npy =1 and 3, = € I'o(Np). Then we define [a] € D(T', X)

Np a
as [a] = T'(Ba).

Let the Hecke algebra be the algebra

Z[Ty, 0t Np,Uy,[d],a € (Z/NZ)*] € D(T,£) if I =T1(N)NTo(p)
H =

Z[Ty, 01 N,|a]l,a € (Z/NZ)*] C D(T,X) if ' =T4(N).
If ¥/ is a subsemigroup of ¥ containing the matrices needed to define H, then we also

consider H C D(T',%).

For k > 1, we let Sk(I', Q) denote the space of holomorphic weight k and level T’

cusp forms with algebraic g-expansions, and let Sy (N, e, Q) C Si(I'1(INV), Q) be the space
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of holomorphic cuspforms of level NV and nebentypus € with algebraic g-expansions. Let

Si(T,Cp) = Sk(I', Q) ®g C, and Si(I',C) = Si(T', Q) ®@C
and similarly let
Sk(N,e,Cp) = Si(N,¢,Q) @5 Cp and Sg(N,e,C) = Sp(N,e,Q) @ C.

It is a fact that Sg (T, C) is the space of holomorphic cusp forms of level T'.
Let F be the set of holomorphic functions f on the upper half plane such that
for all ¢ € PY(Q)

lim |f(z)| = 0.

zZ—C
To make sense of the limit, we view P!(Q) and the upper half place as a subsets of

PY(C). For k > 1, there is a weight-k action of GLJ (Q) on F defined as follows: for

a b
¥ = € GL] (Q), f € F,

c d

b
Flate) = (e + s (2250,

By definition the space of holomorphic cusp forms of weight k£ and level I' is the set of
invariants of I’ with respect to the weight-k action. Let ¥ = GLJ (Q) N My(Z) C X.
Since Sy (T", C) is the space of holomorphic cusp forms, the action of ¥ on F induces
an action of H on Si(T, C). This action leaves the space Si(I", Q) invariant defining an
action of # on Si(I', Q) which we extend by linearity to an action on S (T, C,). The
fact that H preserves Si(I', Q) can be seen by the explicit description of the action of

‘H on g-expansions.
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For the rest of this thesis, we adopt the notation I'g = I'1 (V) N Ty(p).

Definition 2.1.1. A Hecke eigenform (or just eigenform) of level N and character
e is an element f € Si(N,e,C,) which is an eigenvector for all the elements of H. A
normalized eigenform is a Hecke eigenform f € Sp(N,e,Cp) such that the leading
term of the q-expansion of f is 1. If f is a normalized eigenform, then f € Sp(N,e,Q)
and so we may also view f as an element of Si(N,e,C). If f € Sk(N,e,Q) is a

normalized eigenform that is new at level N, we call f a newform.

Definition 2.1.2. Let [ = ianq" € Si(N,e,Q) be a newform. Then the Hecke
=1
polynomial of f at p is the pog;nomial x? — apT + e(p)p*~1. Let a and B be the roots of
this polynomial, so
2% — apz +e(p)p" ™t = (x — a)(z — B).

Then fo(z) == f(2)—Bf(pz) and fg(z) := f(2) —af(pz) are called the p-stabilizations

of f.

We have that fq, f3 € Sk(I'0,Q) and are eigenvectors for the action of H.
The T} eigenvalues of f, (respectively fg) are the same as for f when ¢ # p, and the

Up-eigenvalue of f, (respectively fg) is a (respectively ).

Definition 2.1.3. Let S¢"4(N,e,C,) (respectively S¢™4(Tg, Cp)) denote the mazimal in-
variant subspace of Si(N,e,C,) (respectively Si(Ig, C,)) with respect to the action of T),
(respectively Uy ) such that the characteristic polynomial of T}, (respectively U,) restricted
to this subspace has roots which are p-adic units. We call the subspace S,;’Td(N, e,Cp) (re-
spectively S¢"4(To,C,) the ordinary subspace of Sk(N, e, Cp) (respectively Sk(To, Cp).
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A cuspform f € Si(N,e,C,) (respectively Si(I'y,C,)) is called p-ordinary if f is an

element of the subspace SY™ (N, e, Cp) (respectively S (To, Cp) ).

We remark that if f € S,‘;rd(N ,€,C,) is a newform and k > 2, then there is
a unique p-ordinary p-stabilization of f because the p-adic valuation of o + 5 = a,(f)
is 0 while the p-adic valuation of a8 = (p)p*~! is k —1 > 1. On the other hand, if
f e Si(N,e,C,) is a weight one newform, then there are two (possibly equal) p-ordinary
p-stabilizations of f. This is because when f is a weight one newform, there is an odd

irreducible Galois representation

ps: Gog — GL2(Q)

with finite image such that for all primes £ { N, py is unramified at ¢ and the charac-

teristic polynomial of a Frobenius element at £ is the Hecke polynomial of f at ¢:
2? — ag(f)x + £ (0).
In particular, when ¢ = p we see that the roots of the Hecke polynomial, o and 8 are

roots of unity because the image of a Frobenius at p has finite order. Therefore both of

the p-stabilizations f, and fg have Up-eigenvalue of p-adic unit.

Definition 2.1.4. Let f € Sp(Np",C) for k > 1 have g-expansion

[ee]
f= Zanqn
n=1
and let ¢ : (Z/MZ)* — C* be a primitive Dirichlet character. Then the complex

L-function of f twisted by v is defined by

k+1
> —.

L7 = 32 P Regs) > B
n=1
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Here 1(n) is defined to be 0 if (n, M) > 1. L(f,1,s) has an analytic continuation to
all of C and satisfies a functional equation. If the character o is trivial, then we omit

Y from the notation and write L(f,s).

If f € SL(N,e,Q) is a newform, then L(f,,s) has an Euler product repre-

sentation as

1 1
L(fﬂ/fa 5) = H 1_ w(f)aeﬂ_s g 1 — w(g)azg—s + QpQE(g)gk—l—?s

(N

where the two products are over primes ¢ | N and £ 1 N respectively. Furthermore, the

L-function of the p-stabilization of f, fo(z) = f(z) — Bf(pz) satisfies the relation

L(fa,,s) = (L =1(p)Bp~°)L(f, 1), 5).

2.2 Weight space

In this section we set our conventions for weight space.

Let W = Homcom(Z; , G,) denote weight space. As a rigid analytic space, W
is the disjoint union of p — 1 open unit disks. For any topological Z,-algebra R we have
W(R) = Homeont(Z, , ™). Let R denote the Qp-algebra of rigid analytic functions on
W.

Let D(0,7) denote the open unit disk of radius r around 0 in C,. If we fix a
topological generator v of 1 + pZ, then we identify WW(C,) with p — 1 copies of D(0, 1)

as follows: First, the decomposition Z; = pip—1 X 1+ pZ, gives a decomposition

W(C,) = Hom(pp—1,C) x Homeont (1 + pZy, C)
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K— (H|Mp—17 K/|1+I)Zp)
Then we have a bijection

Homeont (1 + pZy, C;) — D(0,1)
kK — K(y)—1

with inverse given by
D(0,1) — Homeont(1 + pZyp, C)
W o Yotz (14 w)o8 ()

Here log. () := log,(-)/ log,(v) and

(1+X)" = i <:>X”.

n=0

The sum converges in our case since a € Z;, and |X| < 1. Let
w: (Z/pZ)* = pp—1 — C,

be the Teichmiiller character. The p—1 open unit disks parameterizing W(C,) are given
by powers of w. Let w™ for 0 < m < p—2 be a power of w. For m with 0 <m < p—2, let
Wi C W denote the subset of W consisting of characters whose restriction to (Z/pZ)*

is equal to w™. Then we have a parameterization of all the elements of W, (C,):

D0,1) — W
W o Xmaw - sz — (C;

2 = Ww(2)(1 4 w)lesr

This identifies W(C,,) with the disjoint union of p — 1 open unit disks on C,,.
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For any topological Z,-algebra R,
Win(R) = {k € W(R) : Kly,_, =w™}.

Here we use the Z,-algebra structure on R to view p,—1 C R.
We give an explicit description of certain admissible open subsets of the Q-
points of W,,. For any x € W,,(Q,) and any r > 1, let W(k,1/p") denote the closed

disk of radius 1/p" in W,,, around x. Then

W (s, 1/p")(Cp) = {r" € Win(Cp) = [5'(7) — u(7)] < 1/p"},

and W (k,1/p") is an an admissible open subset of W,,. The ring of Q,-rigid analytic

functions on W (k, 1/p") is the Qp-algebra

R = {zzoan(w — (k(y) = 1))" € Qpllw — (k(v) = V)]] : lanp™| — 0 as n — oo}

and W(k,1/p") = Sp R C W. We remark that R is isomorphic to the Tate algebra

Qp(T) = {Z a,T" € Qp[[T]] : |lan| = 0 as n — oo}

n=0
via the map

QyIy — R

T — (z—=(s(y)-1/p"

The sets W (k,1/p") form a basis of admissible open neighborhoods of x in W,,.

2.3 Modular symbols

In this section we define modular symbols valued in general modules following

[20]. Let Ag = Div?(P1(Q)) be the set of degree zero divisors on P'(Q) and we view
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Ao as a GL2(Q)-module via the usual action of linear fractional transformations. Let
I' € SLy(Z) be a congruence subgroup and let V' be a right I' module. We define a right

action of I' on Hom(A, V) via the rule

(D) = e(vD)ly
for ¢ € Hom(Ap, V), vy €T, and D € Ay.

Definition 2.3.1. The set of V -valued modular symbols on T', denoted Symbrp(V),

is the set of all ¢ € Hom(Ao, V') that are invariant under the action of T

In the cases we consider, V has an action of a submonoid of GL2(Q) which
defines an action of H on Symbp (V') through a double coset algebra. When 2 acts
invertible on V' and ¢ acts on Symbp(V'), we get a decomposition of Symbp (V') into the

sum of the 1 and —1 eigenspaces of ¢, denoted
Symby (V), Symby (V) C Symbp (V).

If ¢ € Symbp(V), then we write p* for the projection of ¢ onto Symbi (V).

2.4 The p-adic L-function of an ordinary weight £ > 2 mod-

ular form

In this section, we review how to use modular symbols to define the p-adic
L-function of a weight k > 2 p-ordinary newform. For the rest of this thesis we let

I' = T'1(N) and recall that Ty = T'y1(IV) NTy(p). Let R be a commutative ring, and
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for k € Z>o, let Vi(R) = Sym*(R?) be the R-module of homogeneous polynomials of

degree k in two variables X and Y with coefficients in R. We have an action of GL2(R)

a b
on Vi(R) as follows: for v = € GLa(R) and P € Vi(R), define
c d

(PIy)(X,Y)=P((X,Y)yx) = P(dX — cY,—bX +aY)

d —b
where v* =

—C a

Given a modular form f € Sii2(N, €, C) (or Sk12(To, C) respectively) we define

the standard modular symbol associated to f, denoted ¢, to be the function
@D I Ao — Vk (C)

b
Yr({b} — {a}) = 2mi / f(2)(2X + Y)Fdz.

A calculation shows that ¢y € Symbp (V. (C)) (respectively Symbr (Vi(C))). The action
of GL2(C) on Vi (C) allows us to define an action of H on Symbp(Vi(C)) (respectively

Symbrp, (Vi(C))) and with these actions, the maps

Sk+2(N,€,C)  — Symbp(Vi(C)) and  Spi2(I'9,C) — Symbr, (Vi(C))
fo— vy [y
are Hecke equivariant.
If we now assume that f is a normalized eigenform on I' (or I'g), and let K (f)
be the field obtained by adjoining the Hecke eigenvalues of f to Q, then Shimura ([24])
showed that there exist complex periods ij € C* such that w}t / ijf € Symbp (Vi (K(f))-

He showed furthermore, that the Hecke eigenspaces in SymbZ (Vi (K (f)) (respectively
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Symbljf0 (Vi (K (f))) with the same eigenvalues as f are 1-dimensional over K (f). There-
fore the complex periods Q]jf are well defined up to K(f)*.

This algebraicity result of Shimura allows one to view the modular symbol
associated to f p-adically in order to define the p-adic L-function of f. Now assume f

is p-ordinary and let f, be the ordinary p-stabilization of f. Let

vy =y /9 € Symbr (Vi(K(fa)))-

Via ¢, we may view gpi as an element of Symbrp (Vi (Cp))).
Mazur-Tate and Teitelbaum ([19]) proved that the function ,u}ta defined by the

rule

_ a
:u]%a (CL + mep) =« m(pié ({pm} — {OO}) |X:0,Y:1

is a C, valued measure on Z,. Given a finite order character ¢ € W(C,,), we then define

the p-adic L-function of f, twisted by v to be the analytic function of s € Z, given by

Ly(far ), 5) /“w (£ L) ().

We record here the interpolation property of L,(fa, %, s) for future reference.

Theorem 2.4.1. ([19]) Let f, be the ordinary p-stabilization of a p-ordinary newform
of level N and weight k+2 > 2. Let p € W(C,) be a finite order character of conductor
p™. Then L,(fa, v, s) is a p-adic analytic function on Z, with the interpolation property

that for all integers j with 0 < j < k + 2,

Lp(fm%j) =

LWl (p)\ PG = DIl L(fay i )
— (1= — '
m apt—I (2ma)i =t Qj‘gn(w)

Here T(p " w!™7) is the Gauss sum associated to 11wl =7,
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Remarks 2.4.2. If f is a non-ordinary Hecke eigenform with Hecke polynomial

2 — ap(f)z + p)p* = (2 — )z~ )

then one may define the p-adic L-function of either p-stabilization f, or fz of f in the
same way as above but a little more care is needed because the distribution py, (or py,)
is not a measure. For the critical p-stabilization fz when f is p-ordinary, even more

care is needed. See [21] and [1] for more information about these cases.

When f is a weight 1 modular form there is no modular symbol associated
to f and so the above constructions do not work. We next introduce overconvergent
modular symbols, which allow one to make a definition of a p-adic L-function of either

p-stabilization of a weight one modular form.

2.5 Overconvergent modular symbols

In this section we introduce overconvergent modular symbols following the
notation and conventions of [1] and [20].

For each r € |C| = pQ, let
B[ZP,T] = {Z c (Cp :da € Zp, |Z — CL| < 'r}.

B[Zy,r] is the set of Cp-points of the Q,-rigid analytic space which is the union of the
closed unit balls of radius r around each point in Z,. Let A[r] be the Q,-algebra of

rigid analytic functions on B[Zy,r]. An element f € A[r] is the following data: for each
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a € Zy, a formal expansion

f(2) =) an(a)(z — a)" € Qy[lz — a]]
n=0

which converges on the closed ball centered at a with radius 7, such that the collection
of power series expansions agree on B[Zjy,r| as a varies. The sup norm on A[r] makes

A[r] a Q,-Banach space. Explicitly the norm is given for f € A[r] by

Ifll-="sup |f(z)].

2EB[Zp,r]
We remark that if » > 1, then B[Z,,r] is the closed disc in C, of radius r around 0 and

s0
Al = {f(z) = an2" € Qlla]] : fanl™ — 0} :
n=0
Let D[r] = Homg, (A[r],Qp) be the continuous Q,-dual of Afr]. The space D[r] is a

Qp-Banach space with norm given by

o= sup AT
seafr),r20 11l

for p € D[r]. For r > rg, restriction of functions gives a map A[rj] — A[rg]. This map
is injective, has dense image, and is compact. The dual map D[re] — D[ry] is injective

and compact. For any real number r > 0 define

We give Af[r] the inductive limit topology and D[r] the projective limit topology. For

the remainder of this thesis, we write A = AT[0] and D = Df[0]. We remark that D is
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the Qp-linear dual to A, and that A may be identified with the set of locally analytic
functions on Z, and D the set of locally analytic distributions.

We next explain how to associate a p-adic L-function to a distribution p € D.
By integrating, we may view p as a function on W(C,,). We associate p — 1 power series
in C,[[w]] to p. These power series represent the p-adic Mellin transform of u. Let w
be a power of the Teichmiiller character. Using the notation from section 2.2, define for

w € D(0,1) and v a toppological generator of 1 4 pZ,,

Py 0) = i) = [ X)),

ZP
We have
Psto) = [ ()

p

N / W' (2)(1 + w)" B D dp(2)
ZX
—Zw / (1 +w)**5 P dp(z)
+pr

_ZW / Z(log” > w"dp(z)

+pr n=0
—1

(] (1)

n=0 \a=1

so Py(p,w’, w) € Cp[[w]]. Furthermore, since (Og“f ?) € Zy, for z € 1+ pZ, and the above
series converges for any w € B(0,1), Py(u,w’, w) is a Qp-rigid analytic function on W.

Recall that R is the ring of rigid analytic functions on W. Because P (u, W, w)
is a Qp-rigid analytic function on W; integration defines a map from D to R. We denote
this map by L:

L:D—TR
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L(p) : W(Cp) — Cp

L(u)(0) = /Z X (2)duz)

b
for € D. Note that the element £(u) € R does not depend on the choice of ~, but to

represent £(u) with the power series P, (u,w’, w) requires the choice of .

We now define overconvergent modular symbols. Define
Yo(p) = € My(Zy) :pta,p|cand ad — bec # 0

For any integer k € Z, we define a weight k action of ¥¢(p) on A[r] for r < p as follows.

a b
For v = € Xo(p), f € Alr], let

c d

(vu F)2) = (a+c2)Ff <b+dz> ‘

a—+cz

This induces an action of ¥o(p) on D[r] on the right via

(k) () = (v % f)

for u € D[r]. These actions induce actions of ¥y(p) on A and D. When we consider A
and D with their weight k actions, we write k in the subscript, Ag, Dy.

Next we define the weight x action for elements x € W(Q)). Here we are
following the exposition in [11]. Let W,, C W,, be the subset of characters s such
that |k(y) — 1] < 1/p for any topological generator v of 1 + pZ,. That is, W, is the
closed disk of radius 1/p around 0 in W,,. We will define a weight s action for any
K € Win(Qp).
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To begin, let k € Wy(Q),) and define

= (log. (1+ =z
R =32 (7)o 17 = 1 (st) et
where as before, v is any topological generator of 1 + pZ,. Note that the definition
of F,.(z) does not depend on the choice of 4. We have ([11]) that Fj(z) converges on
D(0,p~/®=1)) and for all z € 1+ pZ,, Fy(z — 1) = x(z).

Now for a weight k € Wp,(Q,), write Kk = w™kg so kg € Wp(Qp). Let a €

Yo(p), a = . Define

a—+cz
Fialz) = Moy | ——— — 1.
ole) =0 Py (5 < 1)
p—2
Then ([11]) Fy o(z) converges for z € B(0,pr—1) and for x € Zy,

Fio(z) = k(a+ cx).

Finally, given k € W,,(Qp), f € Alr], and o € Ep(p) we define the weight-x

|
‘ V)

ya
action on A[r| for r < pr=1 as

(- [)(2) = Fan(2)f <b+dz> |

a—+cz
By the convergence properties of Fy. (2), a - f € A[r]. Dually we get an action on D[r]

where for p € D[r],
(ulse)(f) = ple - f).

These actions induce weight « actions on D and A. As before, when we want to empha-
size the weight x action we write A, or D,. The spaces of modular symbols of interest

are Symbrp, (D,). These space are Hecke modules via the action of ¥q(p) on D.
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Definition 2.5.1. Let k € W,,(Q),). The space of overconvergent modular symbols

of weight k is defined to be Symbr, (Dy).

Let ¢ € Symbp (D) be an overconvergent modular symbol of weight x. We
define the p-adic L-function of ¢ by composing the following two maps: first evaluation

at {0} — {oo} to obtain a locally analytic distribution and then the map £ from before.

Definition 2.5.2. We call the above composition the Mellin transform of ¢ and

denote it by Ay:

M) = [ x(2(e({0} = {12

for o € Symbp (D) and x € W(C,). By definition, A, is a Q,-linear map.

We end this section by stating the relationship between overconvergent modu-
lar symbols of nonnegative integral weight to the spaces of modular symbols introduced

in the previous section. Let k € Z>o and define the map
pr = Dy, — Vi(Qp)

o) = [ (¥ = 2X)Fdu(o).
ZP
The integration in the definition of pj takes place coefficient by coefficient. The map py

is 3o (p)-equivarient, so induces a Hecke equivariant map
P+ Symbp (D) — Symbp (Vi(Qp)).

Let Symbp, (Dz)<*™ and Symbp, (Vi(Q,))<*™! denote the subspaces of Symbr, (Dy)

and Symbr (Vi(Qp)) where U, acts with eigenvalue that has p-adic valuation less than
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k+1. Stevens control theorem ([20]) states that the restriction of pj to these subspaces

is an isomorphism of Hecke modules.
Theorem 2.5.3. ([20]) For k € Z>( the map

Pk + Symbr, (D) <51 — Symbr, (Vii(Q,)) <+
s an isomorphism of Hecke modules.

Remarks 2.5.4. Let k € Z>(, let f be a p-stabilized newform of weight k + 2. Let
go? € Symbff0 (V&(Qp)) be the modular symbol defined in the section 2.4. By Stevens
control theorem there exists unique &jf € Symbry, (D) such that p,*;(@jf) = go? We have

the following compatibility:

MA@ N W) = Ly(fas ¥, 9)

for all s € Z, and finite order characters ¥ € W(C,).

2.6 Families of overconvergent modular symbols

In this section, we introduce families of overconvergent modular symbols over
certain open subsets of weight space and use these families to construct the ordinary
locus of the eigencurve over these open subsets of weight space following [1] and [11].

Let k" € W, (Qp) and let W = W (x/,1/p") for some r € Z>;. Let R be the
ring of Q,-affinoid functions on W in the variable w (so we have fixed a topological

generator 7y of 1+ pZ, that induces w). Then
R= {Z an(w — (K'(7) = 1))" € Qpllw — (K'(7) = V]] : |anp™| — 0 as n — oo} .
n=0
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Given k € W(Qp) and F(w) € R, we define the evaluation at x map which we denote
by

evy : R — C,
evg(F) = F(k(v) — 1).

Define

for r € pQ. The evaluation maps induce maps

evy : A[r](R) — Alr]

for all r.

We define an action of ¥y(p) on A[r](R) that is compatible with the evaluation
maps and the action defined in the previous section. Note that A[1] is the Tate algebra.
Let z be the variable for A[1], so A[l] = Q,(z). For r <1 the injection A[1] — A[r]
induces an inclusion

A[1](R) — A[r](R).

a b
We then define for o = € ¥o(p), 0 < m < p—1 the element K, ,(z,w) €

Qpllz, wil:

0 atez aes
Ka,m(zv ’LU) = w(a)m Z <10g7( - )>’u)n = w(a)m(l + w)log,y( Uj(_“) )
We have that ([11]) Kqm(z, w) € A[1](R) and for all k € W(Q,),

eV (Kam(z,w)) = Fi o(2).

)
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—2
We use K, to define an action of ¥o(p) on A[r](R) for r < p%. To do this, we view
Ko m as an element of A[r](R) via the inclusion A[1](R) C A[r](R). We then use the

ring structure on A[r|(R) to multiply K, with elements of A[r](R). That is, define

a b
for f e Alr], FER, a = € Yo(p),

c d

o (f(2) ® F(w) = Ka(zw)(f (“ dz) © F(uw)).

a+cz

on simple tensors and extend this to an action on A[r](R) by linearity.

Define

We remark that D[r](R) is not the continuous Qp-dual to A[r](R). The map
D[r](R) — Homg, (A[r](R), Qp)

is injective but not surjective (see the appendix of [11]). We then define an action of

Yo(p) on D[r](R) as follows: Note that D[r] is an A[r]-module via

(g-w)(f)=pgf)

where f,g € Alr], u € D[r]. Then D[r|(R) is an A[r](R)-module. Define for p ® F €

a b
D[r](R), a = € Yo (p),

c d

(1@ F)la = Kom(z,w)(uloa @ F)
where plpa is the weight 0 action on D[r].
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Now let D(R) = l'ngO]D)[r] (R). The actions of ¥o(p) on D[r|(R) induce an

action on D(R). We have (lemma 3.2 of [1]) a natural isomorphism
D&g, R — D(R).

The map induced by evaluation at x from D(R) to Dy, will be called specialization to
weight x and denoted by spy:
spr : D(R) — Dy
pRF — ev (F)u
The map spy is Xo(p)-equivariant and induces a Hecke equivariant specialization map

which we denote by the same name
Pk - Symeo (D(R)) — SymbI‘o (D).

To end this section, we rephrase some results of Bellaiche ([1]) about the rela-

tion between Symbr (D(R)) and Symby (D) as Hecke modules.

Definition 2.6.1. Fiz a weight k € W(Q,). Let Symbljfo(]D),i)o C Symbljfo(ID),i) (re-
spectively Symb%0 (D(R))° C Symb%0 (D(R))) be the subspace where Uy, acts with slope

bounded by 0 in the sense of [1] section 3.2.4. Let Ty (respectively Ts,) be the Q,-

subalgebra of Endg, (Symbljfo (Dy)?) (respectively the R-subalgebra of EndR(SymbIjEO (D(R))?))

generated by the image of H. We call Symbljfo (D) (respectively Symb?0 (D(R))?) the
ordinary subspace of Symbi (Dy) (respectively SymbffO (D(R))).

We have ([1] section 3.2.4) that Symbljfo (D(R))? is a finite projective R-module.
Since Symbljfo (D(R))° is a finite projective R-module, Tﬁ, is a finite R-algebra and so an
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affinoid algebra (see theorem 7.1.11 of the appendix). Furthermore, lefv is torsion-free

as an R-module and since R is a principal ideal domain, ']I‘ijv is flat.

Theorem 2.6.2. (Bellaiche’s specialization theorem (Corollary 3.12 in [1])) Let k €

W(Qp). The specialization map restricted to the ordinary subspaces
spx 1 Symb: (D(R))° — Symby: (D,)° (2.1)
18 surjective.
Since spy, is an H-equivariant surjective map, it induces an H-equivariant map
SPg 'I[‘ﬁ, — Tf
which we use in the following definition.

Definition 2.6.3. Let z : ']I‘f — C, be a Qp-algebra homomorphism. The homo-
morphism x corresponds to a system of H-eigenvalues appearing in Symbljf0 (Dy)°. Let
Symb%0 (Dk) (@) denote the corresponding generalized eigenspace and let SymbljfO (D) ]

denote the eigenspace.

1. Let (']I‘f)(x) be the localization of TE ®q, Cp at the kernel of x. We have that

Symbf, (D)) = Symbg, (De)° Sz (T3) w)-

2. Through the specialization map, x induces a Qp-algebra homomorphism which we
also denote by x:

x:acosp,{:Tﬁ,—HCp.
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Let (Tﬁ,)(gj) be the rigid analytic localization of le/EV ®q, Cp at the kernel of x o spy,
and let

Symbi (D(R))(z) = Symbi, (D(R))° @ (T5)z)-

Let Ry be the rigid analytic localization of R®q, Cp at the kernel of evg,. We

can then localize the specialization map sps to get a map
+ +
8Pk * (TW)(:E) ®R(K)7li CP — (T/@ )(93)

In ([1]), Bellaiche following Stevens uses these spaces of families of overconver-
gent modular symbols to construct the eigencurve. Since ']I‘ﬁ/ is an affinoid algebra, we
can let C‘jfv =Sp ']I‘ijv. Then Cﬁ, is the ordinary locus of the eigencurve above the open

set W of weight space. The weight map
KT Cljfv — W

is the map of rigid analytic spaces induced by the Q,-algebra homomorphism R — TIJ/EV.
Since T%V is a finite, flat R-module, the map ¥ is finite and flat. Given a point
x € C’fv((Cp), we define the weight of x to be k*(x) € W(C,). It is a fact that every
point of C‘}—LV (C,) of weight & is the pullback of a homomorphism z : T — C,, from T

+
to 'IFW.

Theorem 2.6.4. ([1]) Let x € C‘j,EVm((Cp) be a smooth point on the eigencurve of weight

k € Win(Qp), and let e be the ramification index of (Tﬁ,m)(x) over R(.y. Then

1. The generalized eigenspace Symbffo(]D)H)(x) is free of rank one over the algebra

(TE) (), and the eigenspace Symb%o (Dy)[z] is dimension one over C,.
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2. The (T‘%Vm)(w)—module Symbljf0 (D(R))(x) is free of rank one over (Tﬁfm)(fﬂ)‘
3. The specialization map
spx : (T3, V(@) @Ry Co — (T (@) (2.2)

is an isomorphism of Cp-algebras.

4. There exits a uniformizer u € R,y and an isomorphism of R,)-algebras
Ro[t]/(t° = u) — (T3, )w)
sending t to a uniformizer of (le/tvm)(z)' It then follows that
Cplt]/(t) = (T3 )-
5. The tensor product of the two specialization maps from (1) and (2):
$Pr 1= 5Px ® spx : Symbi (D(R)) () — Symby, (D) s

18 surjective.

Proof. Statement (1) is Theorem 4.7 and Corollary 4.8 of [1]. Statement (2) is Propo-
sition 4.5 of [1]. Statement (3) is corollary 4.4 of [1]. Statement (4) is Proposition 4.6

and Theorem 4.7 of [1]. Statement (5) follows from the first four assertions. O]

With a little commutative algebra, we can use the theorem above to get the
following slightly cleaner statement. We introduce the following notation. For a Q,-

Banach space M and a field extension K/Q,, we let My := M @@pK .
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Proposition 2.6.5. Let z € Catvm (Cp) be a smooth point of weight k € Wi, (Qp). Then
there exists a neighborhood, W = W (k,1/p") of k such that the following hold. Let R be
the ring of rigid analytic functions on W. Let T be the direct factor of']I‘ijV corresponding
to the connected component of Catvm that x lies in. (Note that T may be defined over a

finite extension of Qp.)

1. For all points y € CiL,, except perhaps x, the algebra (T‘jfv)(y) is €tale over R+ (y))-

2. There exists u € Re, such that evg(u) = 0 and k is the only 0 of w on W and an

element t € T such that x(t) # 0 as well as an isomorphism
Tc, — Re, [X]/(X —u)
sending t to X.
3. The Tc,-module SymbljfO (D(R))° O Tc, is free of rank one.
4. For any point y € C‘j,EV((Cp) of weight k*(y) € W(Q,), the H-equivariant map
Symbf (D(R))° @y Te, — Symbi (D)) )

sends any generator ofSyrnbljf0 (D(R))O®T€EVTCP to a generator ofSyInble0 (D () () -

2.7 Two-variable p-adic L-function

We now explain how to use the previous proposition to construct a two-variable
p-adic L-function. We give three constructions and explain the interrelations between

them, fleshing out what is stated in Bellaiche ([1]).
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We begin by defining the Mellin transform of families of overconvergent mod-
ular symbols. Let W = W(x',1/p") = SpR for some ' € W,,(Q,) and r > 1. Let
M = SymbljfO (D(R))°. We define the R-linear map

A: M — R&qg,R
to be the composition of evaluation at {0} — {oo} and the map £ from before:
10} {0} idp®L

A M N RERD RS ROR.

Therefore A gives a map from M to rigid analytic functions on W x W. By construction

we then have the commutative diagram

M—2  RER
‘ SPr h [
+ o Ax

Symbi (D) R.

(2.3)

Hence for ® € M, the function A(®) interpolates the functions A, (sp.(P)) as k varies
over W(Qy).

We now put ourselves in the situation of the previous proposition and we extend
scalars to C,. Let z € Cécvm (Cp) be of weight k' € Wp,(Qp). Let W = W (x/,1/p") =

Sp R and T be as in the proposition. Let € € le/EV,Cp be such that
_ +
Ic, = 6TW,(CP'

Then

Symbf (D(R))° @z T, = e Symbf, (D(R))2, C Symbf, (D(R)),
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so we let

M = Symby, (D(R))° @ Te, = Symby, (D(R))Z,

We next give our first construction of a two-variable p-adic L-function. We
use this construction when the weight map x* : Cljfv — W is étale.

The module M is a rank one T¢,-module, so let ® be a generator of M as a
Tc,-module. Then let

A@,): W x W —C,

be the two-variable rigid analytic function that is the image of ® in R®R under A. By

the commutative diagram (3), we have for all o0 € W and k € W(Q,),
AP, k,0) = Ae(sp(P), 0).

We explain why in the non-étale case this is not the correct p-adic L-function. If the
weight map 7 : le/ — W has ramification index e > 1 at z, then for each weight
k € W with k # k' there are e points y € C‘jfv such that x*(y) = k. The element
spi(P) € Symbff0 (Dg)? is not in the eigenspace corresponding to y. We remark that,
while sp,(®) is not in the eigenspace corresponding to y we do have the commutative

diagram for each y € C;—LV of weight k € W(Q)):

SPk
M ——- Symbi (ID)N)%p —_— Symb%O (Dk) )

SPw

Symby, (D(R))(y) (2.4)

which does send the generator ® of M at a Tt,-module to a generator of Symbljf0 (Dk) ()
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asa (Tf)(y)—module. We want the p-adic L-function to interpolate the p-adic L-functions

of the image of ® in Syrnbljf0 (Dk)(y) under the composition of the two maps.

)
We now give the second construction which works in the non-étale case and
clearly gives the same construction as above in the étale case. This construction is due
to Bellaiche ([1]). Let
N =M ®r., Ic,
and let V = SpT. Define

A= A®Idp, : N — (Re,@Rc,) ©re, Te, = Te,®Re, .

Then for ® € N, the function Ap(®) € T¢, @R@p is a two-variable rigid analytic function
on Vg, x We,. For each y € V(C,) of weight x € W(Q,), we define a specialization
map
spy : N — Symbrp, (Dn)%p
as the natural map
N — N T,y Cp.

We view N @7, Cp as a subset of Symb%0 (Dy)g, via

N ®chp,y Cp, =M ®ch T(Cp) ®T<cp,y Cp

=M (X)ch,ev,.i (Cp — Symbﬁ] (]D)Ii)?cp'

By construction sp, is H-equivariant with respect to the action of H on the first com-

ponent of V.

Lemma 2.7.1. (/1)) If € N andy € V(C,) of weight kK € W(Q,), then

Ar(®)(y,0) = Ax(spy(®))(0)-
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Proof. This is lemma 4.12 of [1] O
We recall that we have an element ¢ € T, and u € R¢, and an isomorphism
Tc, — Re, [X]/(X° —u)

sending ¢ to X. Now let ¢ be a generator of M as a T¢, module and define (following
Bellaiche)

e—1
=0

Lemma 2.7.2. ([1]) Let Tt, ®Re, Tc, act on N with the first factor acting on M and

the second factor acting on Ic,. Then
(twl-1t)®=0.
Proof. This is lemma 4.13 of [1]. O
Proposition 2.7.3. Lety € CIj,EV((Cp) be a point of weight k € W(Q,). Then
spy(®) € Symbf, (Dy)[y].

We note that if y # x, then Symbljf0 (De)ly] = Sym‘b%0 (Dk)(y), while if y = = and the

ramification index is e, Symbljf0 (Dk)(y) is an e-dimensional vector space.
Proof. This is proposition 4.14 of [1]. O

We denote the p-adic L-function determined by the second construction as

Ar(®) : Ve, x W, — C,.
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To compare the second construction with the first construction when the ramification

index is 1, we note that Tc, = Rc,[X]/(X® —u) = Rc,, so
NZM@chTﬁcng

and
e—1

szti¢®t6_1_i:¢®l

1=0

so the second construction reduces to the first one when e = 1.

We now give the third construction. This construction appears as a remark in
[1]. We keep the same notation as before for T', M, and R. Let MY = Homp, (M, Rc,)
be the R, -dual of M. We view MV as a Tt,-module via the dual action. Now, T,
is regular at z, and for all y € Cviv((Cp) with y # z, Tc, is étale over Rc,, so T, is a
regular ring. Therefore T¢, is Gorenstein, so M being a rank one Tt ,-module implies

that MV is also a rank one Tt,-module. Fix an isomorphism
MY — Tg,

and note that this amounts to choosing a generator of M"Y as a Tj c,~module. We have

the R-linear map A from before
A:M — Re,®Rc,
which we view as an element of Homp, (M, ch®7€@p). We have

Homp, (M, RCPQA{JRCP) = Hompg, (M, Rc,) ®ORe, R(CPQA@RCP
= MV®Rc,

= T¢,&Re,

54



allowing us to view A as an element of T¢, @ch. Then this is exactly a two-variable

rigid analytic function on Vg, x W,
A Ve, x We, — G,
where for (y,0) € V(Cp,) x W(C,), A(y, o) is the image of A under the maps
T, 8Re, 2% T, /(kex(y) ¢, Re, /(kex(a) — €.

We show how evaluation of A at (y,0) is compatible with specialization. Let
y € V(Cp) be a point of weight k € W(Qp). Let My = M ®pg., x Cp. By Bellaiche’s

specialization theorem, we have that
M, C Symbljf0 (Dﬁ)(‘{:p,

and since the map M — M, is H-equivariant, we know that Syrnb%O (Dy)e, [yl © M.
We let M,[y] denote the one-dimensional eigenspace corresponding to y in M,. Let
M, = Homg, (M, Cp), px = ker(x), and p, = ker(y) = (t — y(t)). We have a map
MY — M)
e "

which is

MY — MY ®p, Rc,/ps
= Homp, (M, Re, /px)
= Homp,, (M @r., Re,/px: Re,/pr)
= Homg, (My;, Cp)

= MY
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since M is a finite, flat R¢,-module. Explicitly, if m feM, =M ®Re, Re,/pr and
© € MY, then

P(m® f) = evg(p(m))ev(f) € C,. (2.5)

Now MY ® Re, Be, /P =M V/peMV so the above maps induce an isomorphism
MY [p MY = MY

We note that

Ay Symbljf0 (Dx)e, — Rc,

and we may restrict A, to M, to view A, € M) ® Rc,. From (5), it is clear that

A€ MV@)T\’,CP maps to A, € M) ® Rc,- If we further quotient out by p,, then we have
MY [py MY = M) [(t —y(t))M" = Mly]"

since quotienting MY by ¢t — y(t) is the same as taking the dual of the kernel of ¢ — y().
Then the image of A in My[y]" ® Re, is Ay restricted to M[y]. To see the connection

with specialization, we have the following commutative diagram

o)

~ ~ (y,0)
MY®Rc, Tc,®Re, Cr oGy

\ \ (y,0)

MlylY ® Re, T(Cp/py ® Rc,

and since A maps to A, in the above diagram, we get that for all o,

Ay,0) = As(0).

In the following section we use the first and second constructions given here. The third

construction is included for completeness.
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Chapter 3

Definition of a p-adic L-function

and p-adic Stark Conjectures

We begin this chapter by introducing the objects we are working with and
setting notation that will be fixed throughout. We remind the reader that we have fixed
embeddings ¢, : Q < C,, and 1 : Q — C. Let F be a quadratic field of discriminant
dr, and let

X
x:Grp—Q
be a nontrivial ray class character of F' that is of mixed signature if F' is real quadratic.
Let K be the fixed field of the kernel of x and let § be the conductor of x. Assume that

loo(K) C R if F is real quadratic. Let

p= Indgg x : Gg — GL2(Q)

o7



be the induction of x and let M be the fixed field of the kernel of p. Let f be the weight
one modular form associated to p, so f has level N = Np/q(f) - |[dr| and character
¢ = det p. The g-expansion of f is

F=> x(a)g™

aCOp
(a,f)=1

and we have that
L(f,s) = L(x. s).
Let
2® —ap(flz +e(p) = (x — a)(z - B)

be the pth Hecke polynomial of f. We note that when p splits in F', say pOr = pp, then
a = x(p) and B = x(p), and if p is inert, then o = \/x(pOr) and B = —/Xx(pOF). Let
k be the field obtained by adjoining the values of y along with a and 3 to Q.

We now make some assumptions that will be fixed throughout. First we assume
that p t N, which implies in particular that p does not ramify in M. We further

assume that p 1 [M : Q], and we assume that o # . With these assumptions, we let

fa(2) = f(2) — Bf(pz) be a fixed p-stabilization of f.

3.1 Definition of one and two-variable p-adic L-functions

We use the constructions from the previous section to define our p-adic L-
function. In order to do that, we start with the following result of Bellaiche and Dmitrov

about the eigencurve at weight one points.
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Theorem 3.1.1. ([2]) Let g be a classical weight one newform of level M, whose Hecke
polynomial at p has distinct roots. Then the eigencurve is smooth at either p-stabilization
of g. Moreover, the eigencurve is smooth but not étale over weight space if and only
if the representation associated to g is obtained by induction from a mized signature

character of a real quadratic field in which p splits.

By our assumption that a # 5 the above theorem implies that the eigencurve
is smooth at the point corresponding to f,. We may break our situation into four cases,
the cases when F' is either imaginary or real quadratic and when p is either inert or split
in F. In the case when F'is real quadratic and p is split the eigencurve is smooth but
not étale at f,. In the other three cases the eigencurve is étale at f,. For this reason,
we use the second construction of the two-variable p-adic L-function in a neighborhood
of f,. In the étale cases this construction simplifies to the conceptually simplest first
construction. We adopt the notation from the previous section except that we base
change everything to C, so that we can drop all the subscripts. Therefore, let T' = It,,,
M C Symbi (D(R))¢,, N, and R = Rg, be as in section 2.7 where the point of interest
x is the point on the eigencurve corresponding to f,. Let ¢ be a generator of M as a
T-module and let

e—1

o =) "t et e N
=0

We note that in the étale cases, ®+ = ¢*. Let VE =SpT, W = We,, W = Sp(R), and

let A(®*) = Ap(®F) to make all the notation uniform. We then have our two-variable
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rigid analytic function

ADE): VEXW — C,.
We precisely state the interpolation formula of A(®¥). For each y € V of weight
k € Z>2, let g, be the p-stabilized newform corresponding to y. Let Qoio’gy € C* be the

complex period used to define the p-adic L-function associated to g, as in section 2.4.

Let
@jy = Symblj‘to (Dk—2) y)

be the unique (by Theorem 2.5.3) modular symbol specializing under pj to

Wy /U, € Symby (Via(Q)).
Let
Yy, €C;
be the p-adic period such that
Spy(‘bi)/gigy = @;ty-
Remarks 3.1.2. The complex periods Qfo g, Mmay be defined as a complex number such
that
Vg /D g, € Symbr (Via(Q)) € Symby, (Vi—2(C)).

Then Q;gy is determined up to multiplication by an element of @X. Once &% is fixed,
Q;fgy is determined by the choice of wfo,gy. On the other hand, we could choose ®* and

then choose the Qigy such that

spy(2F) /5, € p (Symbp, (Vi—2(Q))).
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This would then determine the Q% , € C* that satisfy the relation

00, gy

\ (spy@i)) _ Y,

Pk I = oF
vagy Qoovgy

in Symbff0 (Vk_2(Q)). Therefore, once ®* is chosen the pair of periods (fo QL Ve

7gy OO,gy

C,; x C* may be viewed as an element of C; x (CX/@X where we embed Q” into

C, x C* diagonally. To summarize, once ®* is chosen, for each y € V corresponding

to a p-stabilized newform g, of weight £ € Z>o, there is an element (Q;)t’gy,ﬂfqu) €

C, x C*/Q" such that

. (spy@f)) _ Y,

Pk T = Aot
vagy Qoo7gy
holds in SymbleO(Vk,g(@)) and the equation does not depend on the choice of represen-

tative in C¥ x C*/Q" for (QF, Q% ).

Theorem 3.1.3. The two-variable rigid analytic functions A(®F) on V x W are de-
termined by the following interpolation property. For all y € V corresponding to a
p-stabilized newform g, of weight k € Z>2, and all characters (-7~ € W(C,) where

Y 1s a finite order character of conductor p™ and 1 < j <k —1,

A(@597W)_y ap()i=L) 1 Y (p) \ prUI (G — Dl (')
sgn(v) - m 1= 1=j 2mg)i—1 8
Qp?gy ap(gy) ap(gy)p (27i)
x L(va llj_le_laj)
sgn (i) '
QOO,gy
(3.1)

This equality takes place in Q. Here T(1pw'~7) is the Gauss sum associated to Yw'=7.

Proof. With the way everything is set up, the interpolation property follows from the
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fact that

A@sgnw),y, ) B Ak(spy(q)sgn(w)), o)
Qs9n(¥) o Qs9n(¥)

P;9y P9y

= Lp(gya wd)

where Ly(gy, 1, s) is defined using that complex periods Q;gy. The fact that the inter-
polation property determines A(®%) follows from the Weierstrass preparation theorem.
By the Weierstrass preparation theorem, for each y corresponding to a p-stabilized new-
form g, of weight k € Z>2, A(y,-) : W — C,, is determined by its values of infinitely
many points on each connected component of YW. By the interpolation property we
see that 1 (-)7~1 varies through infinitely many points on each connected component of
weight space. Similarly by the Weierstrass preparation theorem in the other variable,
if we fix 0 = ¢(-)7~! and consider A(®*9"¥) . 5) : V — C,, then V is connected and
there are infinitely many points y € V' corresponding to p-stabilized newforms of weight

k € Z>y. Therefore, A(®¥) is determined by its values on these interpolation points. [

At this point, we would like to define the two-variable p-adic L-function asso-

ciated to x as

Ly(x,o,-,"): V xZ, — C, (3.)

LP(X’ @, Y, 5) = A((I>+’ Y, <‘>S_1)'

The p-adic L-function Ly(x, .y, s) is determined by the above interpolation formula.
The first variable is on the eigencurve varying through the p-adic family of modular
forms passing through f, and second variable is the usual cyclotomic variable. To get
the one variable p-adic L-function associated to xy we would plug the point x € V that

corresponds to f,. It is then natural to make conjectures for the values Ly(x, e, z,0)
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and L,(x, a, z, 1) that are analogous to Conjectures 1.1.1 and 1.1.5 (or Conjectures 1.1.9
and 1.1.10), replacing the complex logarithm with the p-adic logarithm.

For the purposes of this discussion we focus on the value L,(x, o, x,1). Let S
be the set of places of F' containing the infinite places of F' and the places of F' that
ramify in K. Let ug € K* be the (conjectural if F' is real quadratic) Stark unit for
the extension K /F with respect to S and the place of K induced by the embedding ¢«.
The p-adic Stark conjecture to make for the value Ly(x, o, x,1) would be that

Ly(x o7, 1) = Ep(a,z,1) Y x(07)log, |o(ux)|s (3-3)
o€Gal(K/F)

where Ep(a,x,1) is an explicit p-adic number consisting of Euler like factors and a
Gauss sum, and | - |g is a projection that depends on the choice of p-stabilization and
takes the place of the complex absolute value. Compare this formula with the formula
in Conjecture 1.1.5.

The issue with making the conjecture this way is that the p-adic number
L,(x,a,x,1) is not canonically defined because we made a choice for ¢T. The con-
dition on the choice of ¢ is that ¢T is a generator of M as a T-module. If we choose
a different generator of M as a T-module (changing ¢* by an element of T*) that
would change the value L,(x, o, z,1). Therefore as it stands now, we cannot precisely
conjecture the value L,(x, «,z,1) (or Ly(x, o, z,0)).

This issue of the value L,(x, @, z,1) not being canonically defined is a central
question of this thesis. One way to approach the question is to ask whether or not

there is a way to canonically choose the periods (Q;; gy Q;yy) so that they determine a
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two-variable modular symbol ¢+ which would in turn define the function L,(x, a, z, s)
canonically. It is possible to do this in the case when F' is imaginary quadratic and
p is split in F (see section 4.7). In this case when F is imaginary quadratic and p
is split in F' the two-variable p-adic L-function Ly(x, c,y,s) does not turn out to be
canonically defined (it depends on the choice of canonical periods), but the one-variable
p-adic L-function Ly(x,a,z,s) is. A goal for future research is to determine a way to
choose the periods canonically in the other cases when F' is real quadratic and when F
is imaginary quadratic with p inert in F, so that the function L,(x, «,z,s) is uniquely
defined independent of any choices.

To get around these issues and make a precise conjecture we exploit the fact
that in (3.1) the function A(®*,y, o) interpolates the values of the complex L-function
of g, twisted by p-power conductor Dirichlet characters. Let ¢» € W(C,) be a finite

order character of conductor p™+!

. We assume 9 has order p"*, so in particular ¢ is
even. We could then define generalizing (3.2) the p-adic L-function of y twisted by

to be

LP(X7 «, ¢7 Y, 3) = A(Q)+7 Y, 1/1_1 <'>S_1)7

and state a p-adic Stark conjecture for the value Ly (x, o, ¢, z,1). To determine what the
p-adic Stark conjecture should be in this case we make the following observation. The
value L,(x, o, v, z,1) is outside the range of interpolation for the function A(®T,y,0),
but if it was in the range of interpolation it would be related to complex L-value

L(fa,,1). Recalling that we have the relation of complex L-functions L(f, s) = L(x, s),
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then viewing 1 as a Galois character we have the relation L(f,1,s) = L(x¥, s). There-
fore a conjecture for the value L,(x, a,z,,1) should have the same shape as the con-
jecture for the value L(xw,1) with the complex logarithm replaced with the p-adic
logarithm. Since v is a Dirichlet character and ords—o(L(x,s)) = 1 we also have that
ords—o(L(x¥,s)) = 1, so we are also in the setting of the rank one abelian Stark con-
jecture for the character xv of Gp.

Let Ky be the fixed field of the kernel of x, let S be the set of places of I
containing the infinite places of F' and the places of I’ that ramify in Ky, let v be the
infinite place of Ky induced by too, and let ug, be the Stark unit corresponding to
this data. Then the p-adic Stark conjecture to make for L,(x, e, ¢, x,1) following (3.3)

would be

Ly(x,ont,,1) = Bp(o,m,0,1) Y xtp(o V) log, |o(ux,)|s (3.4)
o€Gal(Ky /F)

where Ej, (o, x,1,1) is an explicit p-adic number. Of course, the value L,(x, o, 1, z,1)
has the same issue of not being canonically defined as L,(x, @, 1), but now that we have
the flexibility of using finite order characters ) € W(C,) we can make a function that
is canonically defined.

To make a function that is canonically defined independent of any choices we
fix two finite order characters n,v9 € W(C,) and consider the ratio of the functions
L,(x,o,n,y,s) and L,(x,a,1,y,s). Let n,1 € W(C,) be two finite order characters of

the same sign + and define the function

A(@F,y,n ()
A@E,y, =) 1)

Ly(x,0,m,0,y,8) =
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Then L, (x, @, n,%,y, s) does not depend on the choice of ¢ because the indeterminacy
of the periods in the interpolation formula (3.1) cancel out. The value L,(x, o, n, %, z, 1)
is then canonically defined independent of any choices, and we conjecture this values by
taking the ratio of the right hand side of (3.4) for n and 1. We now make this discussion

formally precise with the following definitions and conjectures in the following section.

Definition 3.1.4. Let 1,19 € W(C,) be two finite order characters with the same sign
+. Define the two-variable p-adic L-function of f, with the auziliary characters n and
P as

Ly(fasn,,-,-) V. x Zp — Cp U {o0}

A @i, , —1/.\s—1
Lp(fa777>way7 8) = A((q)i737,z_1<<_>>3_1))'

The function Ly(fa,n,%,y,s) does not depend on the choice of o+,

Definition 3.1.5. Let 1,1 € W(C,) be two finite order characters that have the same

sign. Define the p-adic L-function of x with the auziliary characters n and ¥ as

Ly(x,0,n,v,-): Zy — CpU {oo}

LP(X7 a, 1, wa S) = Lp(fa, m, w, x, S).

We note here that we can give the definition of L, (x, a, 1,1, s) without making
reference to the two-variable p-adic L-function. The two-variable p-adic L-function is
introduced for two reasons. The first is that it satisfies an interpolation property, while

the one-variable function Ly(x, o, 1, %, s) does not. The second is that we will use the
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two-variable p-adic L-function to prove our conjectures when F' is imaginary quadratic
and p is split in F.

To define Ly(x, o, 1,1, s) without referencing the two-variable p-adic L-function,
we consider the space

Symb (D_;)°

of weight negative one overconvergent modular symbols. Since the eigencurve is smooth

at the point x corresponding to f, the eigenspace
Symby, (D_1)[x]

with the same eigenvalues as f, is one-dimensional. If cp}ta is a generator of this

eigenspace, then Ly(x, o, n,, s) may be defined as

Lp( ¥, s) -
X’ a7 ,,77 75 =
' A
Since A(®T,z,0) = A_1(sp.(®T),0) and
0 # sp.(®T) € Symbff0 (D_q)[z]

it is clear that this second definition is the same as the first definition.

3.2 p-adic Conjectures

For each n € Zx>¢, let Q, be the nth layer of the cyclotomic Z, extension of

Q, so

Cal(Q,/Q) = 1+ pZ,/1 + p"T'Z, = Z/p"Z.
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Let I'), = Gal(Q,,/Q). Let K, (respectively M,,) be the compositum of K (respectively
M) and Q,. Let A = Gal(M/Q), G = Gal(K/F), and H = Gal(M/F). Further,
for n > 0 let A, = Gal(M,/Q), G, = Gal(K,/F), and H, = Gal(M,/F). By our

assumption that p does not ramify in M and p t [M : Q] restriction gives isomorphisms

A, =AxT,, G,=GxTI,, H,=HxI,

Fix an element 7 € A — H. By the isomorphisms A,, = A xI';, we view 7 as the element
of A, that acts trivially on Q,, and as 7 on M.

It may be the case that H,, = G,, for all n. This happens if and only if K is
Galois over Q. When F is real quadratic, since y is mixed signature K is never Galois
over Q. When F' is imaginary quadratic a necessary condition for K to be Galois over
Q is that if f is the conductor of , then f = 7(f) = f. (When F is imaginary quadratic 7
induces complex conjugation on F.) When K is not Galois over Q, let K, = 7(K,,). The
field K,, does not depend on the choice of 7, and we have that M, is the compositum
of K,, and K,,. Furthermore, since K,, and K,, are abelian over F, M, /F' is an abelian
extension.

When F' is imaginary quadratic, M, /F is abelian so we are in the rank one
abelian Stark conjecture setting for the extension M, /F'. In this case, let S be the set
of infinite places of F, the places above p, and the set of places of F' that ramify in M.
When F is real quadratic, since M, is totally complex we are not in the setting of the
rank one abelian Stark conjecture for M, /F, but since Q,, is totally real the extension

K, /F is such that exactly one infinite place of F' splits completely in K, so we are in
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the rank one abelian Stark conjecture for K, /F. In this case let S be the set of infinite
places of F', the places above p, and the places of F' that ramify in K. Since only p
ramifies in Q,,, in both cases, S does not depend on n. Further, we have that |S| > 2.
When F' is real quadratic we are assuming that (o (K) C R. For any n > 0, we let v

denote the infinite place of M,, and K, induced by .

Definition 3.2.1. When F' is imaginary quadratic, let
Un = UM,

where uyy, is the Stark unit associated to the extension M, /F, the set S, and the place

v. When F is real quadratic, let
Un = uKnT(uKn>

where ug, is the conjectural Stark unit associated to the extension K, /F, the set S, and
place v. In this case, while u,, depends on the choice of T, the values in our conjectures
(the right hand sides of (3.5) and (3.6)) that depend on u, do not depend on the choice
of T (see Proposition 3.2.5). Therefore we leave T out of the notation for u,. We also
remark that the unit T(ug,,) is the Stark unit for K,/ F, the set 7(S), and the embedding

,UT

Let n be a character of I'y,, and let pn denote the representation p ® n of A,
and (pn)* denote the representation Indgg x '®@n~tof A,. Given a A, module A, we
let 7y, and 77, denote maps from A to the pn and (pn)* isotypic components of Qe A
given by

Ton: A— (Q AP
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(@) = Y Tr(pn(e™")) @ a(a)

UEAn

A — Qe AP’

(@)=Y Tr((pn)*(0)) ® o(a)

oceA,

where T'r denotes the trace. Because G'r is an index 2 subgroup in Gg and p is the

induction of a character from G the formulas simplify to

Ton(@) = D (xn(e™) + xen(e™") @ o(a)
o€eH,

To(m) = Y (xn(o) + xr(a) © o(a).

O'EHTL

We remark that the character y, does not depend on the choice of 7.
If ¢ is a character of a subgroup H of A,,, then we also consider the projections

to the 1 and ¥ ~! components of Q ® A:
Ty A— (Q® A)Y

my(a) = Y o) @o(a)

oc€eH

Tyt A— (@@A)w_1

mi(a) =Y Y(o) ®o(a).

oceH

We note that with this notation, 7r;; = my-1. We also note that in our situation,
Ton = Txn + Ty, and 7y, = w3, + 7} .

The following local projection is how « is incorporated into our conjectures.
It is an idea of Greenberg and Vatsal ([14]), and is a key aspect to the conjecture.

Let D, C A be the decomposition group at p determined by ¢, and let 6, be the
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arithmetic Frobenius. For a Dj,-module A, a root of unity ¢, and an element a € A, let
Im|c € C, ® M be the projection of a to the subspace of C, ® M on which 6, acts by
scaling by (. That is, if

5p:Dp—>@X

is the character €,(,) = ¢, then

1
‘a|C ‘D ‘ 5 ‘Dp‘ Z EP
0eDy

We will use the projection when ( is either a,3,1/a, or 1/5. Via the isomorphism
A, = Ax Ty, we view D, as a subgroup of A,, for any n. Then any A,-modules are
also D,-modules.

Let

log, : C; — C,

denote Iwasawa’s p-adic logarithm. On U = {u € C) : |1 —u| < 1}, log,, is given by the
usual power series, and then log, is extended to all of C)* by making log,(p) = 0 and
log,,(¢n) = 0 for any root of unity of order prime to p. We extend log, to C, ®z C by
Cp-linearity, and we may view log, as a function on C, ® Q" via Lp-

We can now state our conjectures. We first state integral conjectures at s = 0
and s = 1 using the units u,. Compare these conjectures with Conjectures 1.1.1 and

1.1.5.

Conjecture 3.2.2. Let ¢p,n € W(C,) be of orders p™ and p™, respectively. Then

(1000 (1= Z0%) 5 oy )l
(1= pn(p)) (1 - 15 12) ) 1oy Iy () o

ap p

LP(Xvavww777w70) - (35)
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Conjecture 3.2.3. Let o, € W(C,) be of orders p™ and p™, respectively. Then

v p) _v@B\  T()
_ (1_ a )(1 P )zp(N)an log,, | oy (un)|s

L 7a7 w? 71 - .
p06 ¥, 1) (1 B n*;(z))) (1 - n(p)ﬁ> 7 Tog, [ (w5

D N)pm+1

(3.6)

Remarks 3.2.4. There should be a functional equation relating the p-adic L-functions
L,(x,o,,n,s)and Ly(x, o, wp,wn, 1 —s) which makes these two conjectures equivalent.
In the future we hope to prove the existence of such a functional equation by relating the
construction of the two-variable p-adic L-function given in section 2.7 to the two-variable
p-adic L-function associated to a Hida family given in [13]. The two-variable p-adic L-
function defined in [13] does satisfy the necessary functional equation, so relating the

construction given here to the ones in [13] would give us the desired functional equation.

Proposition 3.2.5. When F' is real quadratic, the quantities

lng |7TP77(um)|B nd logp |7T;n(um)|1/a
log,, [mpy (un)|5 log,, ‘”;zp(un)h/a

do not depend on the choice of T.

log,, |7";n(um)|1/a log,, [Ton(um)lg . . .
Proof. We do the proof for Tog, 7o (@) 170 The proof for Tog, mpp (un )]s 15 similar. Let

We break it into two cases, when p is split in F' and when p is inert.

Assume p is split in F' as (p) = pp where p is picked out by ¢,. By definition
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we have

log,, |77, (um)1/a = Z (xn(o) + x+n(0)) log, ( Z ) ® 0 (U, )

oc€H, 6€D

O’GHm

(D | >0 ) ( > (XU(U)"‘XTTI(U))lng(J(um)))
0€Dy

Working with the sum over H,, we have by definition of u,,

> xn(o)log,(o(um)) = > xn(o)log,(o(uxk,,)) + Y xn(o)log,(or(uk,,))

oc€EH, oc€EH,, o€EH,
and

D xen(o)log,(o = > xen(o)logy(o(uk,)) + > xn(0)log,(o7(uk,,))
occH,, oc€H,, oc€H,,

Since Gal(M,,/K,) = ker(xn) and K,, # K., xn restricted to Gal(M,,/K,) is non-

trivial. Therefore

> xm)=o.

5€Gal(My /Knm)

Then since 7(ug,,) € K, by summing over the cosets of Gal(M,,/K,,) in H,, we see

that

Z xn(o) logp(J(T(uKm))) =0.

O'EHm

Similarly,

Z x+n(o)log,(o(uk,,)) = 0.
O’GH’m
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Therefore

> Gn(o) + xen(0) logy (o (um)) = D xn(o)log,(o(ur,,))+

G’GHm UGHm

+ Y xen(o) log, (o (T (u,))),
oc€Hy,

SO

log,, |75, (tm) |1 /0 = ( > a6 ) ( > xnlo) logp(a(uKm))> +

6€D c€EHm,

( > <0 )(Zw o) log, (0 <uKm>>>

6€D c€Hm,

The choice of o matters. Since p is split in F either o = x(p) or oo = x(p).
Since we are assuming « # [ this means x(p) # x(p). Then since 7 is a

nontrivial automorphism of F' and ¢, picks out p

xX(6p) = x(p) # x(P) = x+(0p),

SO X’Dp # XT|Dp'

If o = x(p), then € = x|p, so

D@0 =D xx (6) =

seD, seD,

because x|p, # X+|p,. Furthermore,

Y e(@)x7(0) = Dyl



because € = x|p,. Therefore

logp ’W;n(um)h/a = Z XW(U) logp(a(uKm))7
O'eHm
so log,, |75, (um)|1/o does not depend on 7. Hence the ratio

1ng ‘WZn(um) |1/a
log,, |75, (tn) |1 /a

does not depend on 7.
Now assume that o = x(p) = x+(p). By similar reasoning in this case we get

that

log,, |7Tpn U, |1/a = Z x+1(o logp (o7(uk,,))
O’EHm

which does depend on 7. Let 7/ € A — H be another choice of 7. Since H has index 2
in A, 7/ = hr for some h € H. Note that x, = x,~. We claim that changing 7 to 7’/

scales the sum by x-1(h). Indeed

> xen(o)log, (o7’ (uk,,)) = D x+n(0)log,(ohT(uk,,))
O'GHm UEHm

h) Y xen(o)log,(o7(ux,,)).
oc€H,,

The scalar x;!(h) is independent of m and 7 so in the ratio

logp ‘T‘—Zn (um) ’1/04
logp |7TZ¢; (Un)‘l/a

it will cancel out. Hence the ratio does not depend on the choice of 7.
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Now assume p is inert in F. By definition
logp ’Tr;n(um)h/a = Z X"?(U) ]ng ‘U(Um)h/a + Z XTn(U) logp |0—(um)’1/o¢'
O'GHm O'eHm
Just as in the p-split case these sums will simplify as
> xn(0)log, lo(un)liya = > xn(o)log, o (ur, )1/
UEH’m O'GHm

and

D xen(o)log, lo(um)lija = > xen(o)logloT(ux,, )| /a-
oc€eH,, oc€H,

Rearranging the second we have

S om0 log, lor(ur)lje = 3 xn(rtor)log, | S (0) @ dor(ux,)

o€Hm, o€Hm s€D,

= > xnlo)log, [ > =(6) ® oro(ux,,)

oc€Hm 6€Dy

Since p is inert in F, 6, € A — H. Therefore there exists h € H such that 7 = §,h.
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Then

Z xn(o)log, Z e(d) ®oto(ugk,) | =

oc€Hm 0eDy

= Z Xn(a) logp Z 6(5) ® 55phU(UKm)

oc€Hm, 6€Dy

=x"'(We 1 (8) Y xn(0)logy lo(ur,,)|1/a-
oc€Hm

Hence

108, [, ()10 = (1+ X" (W)™ (8p)) D xn(o)log, o (usk,,)|1/a-
oc€EH,
Since 1+ x1(h)e1(8,) does not depend on m or 7, in the ratio

1ng ‘ﬂ-;n(um) |1/oc

logy, [m5, (un)[1/a

it will cancel out. Therefore the ratio does not depend on 7. O

In the proof of the previous proposition we simplified the ratio

1ng ‘ﬂ-;r](um) |1/a

log,, |75, (un)l1/a

so that only the Stark unit ug, appears. We record these simplifications in the following
corollary. This corollary shows that Conjectures 3.2.2 and 3.2.3 do have the shape

described by equation 3.4 in the discussion preceding the definition of L,(x, &, n,, s).
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Corollary 3.2.6. Letn and 1 be p-power order Dirichlet characters of conductors p™+?

and p"t1t.

Assume F is imaginary quadratic and (p) = pp in F with v, picking out the

prime p. If a = x(p), then
) > xn(o)log,((un,,))
logp |7Tpn(um)|1/a __ 0€Hp

logp |7T;1/,(Un)|1/o¢ Z XI/} logp (UMn)) ‘
O'EHn

If a = x(p), then
) > xen(o)log, (o (un,,))
logp |7Tpn(um)|1/a __ 0€Hm

log, [, (un)l1ija Y xr4b(0) logy (o (uns,))

ocH,

If p is inert in F', then
* S (nlo) + xon(@)) log, lo(uar, )l /a
logp |7Tp77(um)|1/a _ 0€Hp

log,, [75, (un)li/e 37 (xtb(0) + xr1h(0)) og, o (unr, )1 ja

oc€H,

Assume F is real quadratic and (p) = pp in F with v, picking out the prime p.
If o= x(p), then
* S (o) logy (o (u,,)
lng |7Tpn(um)|1/a __ o€Hp

log,, [7%,(un)|1/a Z (o) logp(a(uKn)).

ocH,

Ifa = x(p), then
* S xen(o) logy (o (r(ur,)
logp |7Tp77(um)|1/a __o€Hp,

log, [Ty (un)lija 3" xr4h(0) log, (0(r(ux,)))

O’EHn

and the ratio does not depend on T.
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If p is inert in F, then

* S (o) o, lo(urc, lija
Ing |7Tpn(um)|1/oz _ o€Hp

log, |77, (un)l1/a B Z X (o) logp|a(uKn)|1/a.
oceH,

Proof. When F is real quadratic these formulas follow from the proof of the previous
proposition. When F' is imaginary quadratic, the formulas follow from the definitions

of my, and | - [y /q- O

We next state rational conjectures at s = 0 and s = 1 using the units that
appear in Conjectures 1.1.9 and 1.1.10. Compare these two conjectures with Conjectures

1.1.9 and 1.1.10.

Conjecture 3.2.7. Let ¢,n € W(C,) be of order p™ and p™ respectively. Let k be a

finite extension of Q containing the values of x, v, and n. Let u;“(w, U;de,u;‘m and uy,_,

be the Stark units from Conjecture 1.1.9. Then

—1 T —1
(1= 8v@) (1- 52) o tog, uty, + 41/

(1= Bn(p)) (1 — 25 2) ) Jogy ety + w5yl

LP(X? a? ¢w7 nw70) = (3.7)

where ul,, +uy_ ., and ul, + uy_, are viewed as elements of (k @ Un, )P and (k@

U, )P respectively.

Conjecture 3.2.8. Let ¢,n € W(C,) be of order p™ and p™ respectively. Let k be a
finite extension of Q containing the values of x,1%, and 1. Let Uy, Uy, g Uyy, and uy g

be the Stark units from Conjecture 1.1.10. Then

v~ (p) Y(p)B (1)
Ly(x, a,1h,m,1) = <1 o« ) (1 o ) ST logy [uxy + Uy yls
PG AT (1 _ ”T(”)) (1 n(p)ﬂ) _ ) log, [ty + Uy,

T p ) n(N)pmt

(3.8)
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WheTe Uny + Uy .y and Uy +uy, ., are viewed as elements of (k@Upy, )P¥ and (k@Uy,, )?"

respectively.

If we assume the archimedean rank one abelian Stark conjecture is true, then
Conjecture 3.2.2 implies Conjecture 3.2.7 and Conjecture 3.2.3 implies Conjecture 3.2.8.
We explain why Conjecture 3.2.2 implies Conjecture 3.2.7. The explanation for why
Conjecture 3.2.3 implies 3.2.8 is similar.

Assume Conjecture 1.1.1 for the fields K,,/F and K, /F for n > 0 and assume

Conjecture 3.2.2. In point (2) of Remarks 1.1.11, u}, and u} _, are defined assuming

n

Conjecture 1.1.1. Then by our choice of u,,, we have that

Unn = Ty (Um) and wy = 3 (U )

By the fact that

* o,k
ﬂpn—ﬂxn+7r

*
X1

and the following proposition about the ratios

Ing ’u;m + u;m‘l/a

logy |uhy + U, yli/a

in the real quadratic case, we have that

log,, [uly +uy ylija  log, [y, (Uum)l1/a

logp ’u;‘;w + u;_wh/a B 1ng ‘ﬂ—;qp(un)‘l/a

so Conjecture 3.2.7 is true.

Proposition 3.2.9. Let n and i be p-power order Dirichlet characters of conductors

Pt and p"tl. Let uy, € (k @z Ou,, )X and uyy € (k ®g Ong,) X" When F s
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real quadratic the ratio

log,, [ty + Uxsnl1/a

log, |u},, + U} _yl1/a

does not depend on 7. Assume p = pp in F with v, picking our the prime p. If a = x(p),

then

10gp |Ux17 + uxm’l/a 10gp(uxn)

Ing ’wa + “x7w|1/a B Ing(uxTn)'

If a = x(p), then
log,, |tuyn + UX7—77|1/a B 10gp(ux7n)

log,, |uxy + uxfw‘l/a B Ing(uxTw) .

If F is real quadratic and p is inert in F', then

log,, |ty + U’XT"]’]«/OL log,, ‘“xn’l/oc

log,, [uxy + tx,yl1/a a log,, [tyyli/a

If F is imaginary quadratic and p is inert in F, then there is no major simplification.

Proof. The proof is similar to and simpler than the proof of Proposition 3.2.5. O
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Chapter 4

Proof of the conjecture when F' is
imaginary quadratic and p splits

in F

4.1 Katz’s p-adic L-function

In this section we state relevant facts that are needed about Katz’s two variable
p-adic L-function. Let F' be an imaginary quadratic field of discriminant dg, and let
p > 5 be a prime that splits in F. Let p factor in F' as (p) = pp where p is the prime
induced by the embedding ¢,. Let 0, = {z € C, : |z| < 1} be the closed unit ball in
C,. Let f be an integral ideal of F' such that (f,p) = 1.

The domain of Katz’s p-adic L-function is the set of all p-adic Hecke characters
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of modulus f. Let

G(ip™) = Ap/F* Uy

where e
T, > 0 if v is real

. Ty =1 mod f, if v | f
F -, € Op ifvffpand is finite
xy=1ifv|p

Um; = (l'v)v €A

See the appendix for our conventions on Hecke characters. The set of all p-adic Hecke
characters of modulus f is

Homeont (G (fp™), (C; ).

Let
(o.9]
F(ip™) = | F(p™)
n=1
where F(fp™) is the ray class field of conductor fp". By class field theory G(fp™) is
isomorphic to the Galois group of F'(fp>°) over F'. We normalize the Artin map so that
for a finite place v such that (v,fp) = 1, a uniformizer m, at v is sent to an arithmetic
Frobenius.
Order the two embeddings, o1, 09 of F into Q so the first one is how we view
F as a subfield of Q. If 1 is an algebraic Hecke character of infinity type T = aoy + bos
(see the appendix for the definition of an infinity type) then we say that v is of infinity
type (a,b).
Let 1 be an algebraic Hecke character of infinity type (a,b) and conductor
fp?p® where ' divides f. We may view v as a p-adic Hecke character of modulus § or

as a complex Hecke character

(O G(jp>™) — C;
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oo : ASJF* — C*.

For ease of notation we drop the subscripts p and co on v, and ¥«. It will be clear
from context when we are referring to 1, or ¥.

Define the p-adic local root number associated to ¥ to be the complex number

W) = WW@;U

= p(my ™) Z (4.1)

s Wy (u) exp(—2mi(T7F, g, (u/m,"))
uE(Ory 50)

where W (1), 1) is the local root number at p (as defined in the appendix) and 1y denotes
1) restricted to pr and mp is a uniformizer for F,. We note that F, = Q, and so we
could take m, = p.

Let S be the set of places containing the infinite places of F' and the places of

F dividing f§.

Theorem 4.1.1. (/17], [9]) There exists an Op-valued measure jn = p; on G(fjp™) and
complex and p-adic periods Qs € C*, ), € C; such that for any algebraic Hecke
character ¢ of conductor f'p®p® where f divides § and infinity type (a,b) with a > 0

and b < 0 we have

/ () dp(z) .
G(f >ng Y F(Q(Tr)b ) W (1) <1 B w;m

LS(w_lv 0)
Qs?

) (1o (5)) (42)

Once the p-adic and complex periods €y, and s are chosen, u is uniquely determined

by the above interpolation property.

Remarks 4.1.2. 1. Let Q)" denote the maximal unramified extension of Q, and let
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@;T denote its completion. Let 0" = {z € @;T : |x| < 1}. The measure p in the

theorem is valued in ﬁ’;““.

2. Katz originally proved this theorem in [17] for imaginary quadratic fields and then
a similar theorem in [18] for CM fields. The above statement is taken from [9] with
the correction from [3] and with a slight modifications in order to state everything

adelically.

Definition 4.1.3. Define Katz’s p-adic L-function with respect to F', p, and f to be
the function

Lp = Lp,Katz : Homcont(G(fpoo)a Cz);) — (CP

= Lz x
L) = [ e @

where w is the measure from the preceding theorem. Depending on the context we may
or may not have the subscript Katz. For the rest of this section we drop the subscript.
In following sections when we compare different p-adic L-functions we will have the

subscript.
We record the rephrasing of (4.2) for L, in the following theorem.

Theorem 4.1.4. The function L, is uniquely determined by the interpolation property
that for all algebraic Hecke characters 1 of conductor fp™p® where § divides § and

infinity type (a,b) with a <0 and b > 0, we have

Ly(¥)  (—a—1)!(2m)° _m L Ls(,0)
S Wp() (1 » >(1 ¥(p)) qie (4.3)
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We now state Katz’s p-adic Kronecker’s second limit theorem. Fix a nontrivial
integral ideal of F' and let L, be Katz’s p-adic L-function associated to F', p, and f. Let
Cn = 131 (e2™/™) € Q be a collection of primitive nth roots of unity in Q.

For our purposes we will consider Katz’s theorem for algebraic Hecke characters
of the form x% where x has conductor § and trivial infinity type, and ¢ is a p-power
conductor Dirichlet character. We recall how to view a Dirichlet character adelically.

Let

X

U (Z/p"2) —Q
be a Dirichlet character of conductor p™. Then 1 as an algebraic Hecke character is the

unique character

by —Q
such that for all primes £ # p, MZZX =1 and ¥(mp) = ¢ (¢) where 7y is a uniformizer in
Zy, and (Q*) = 1. Define the Gauss sum of v as the element of Q:

W)= Y, wa)g.

a€(Z/p"Z)*
Then viewing 7(1~1) as an element of C via (o, 7(1)~1) satisfies the following relation

to Wy(¢) from (4.1):

Theorem 4.1.5. ([17], [9]) Let x be an algebraic Hecke character of conductor § and
trivial infinity type and let Y be a Dirichlet character of conductor p™. Let K be the

fized field of the kernel of xy when x is viewed as a Galois character via the Artin
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isomorphism G(fp>°) = Gal(F(fp>*°)/F). Let ug be the Stark unit for K/F, G =

Gal(K/F), and e be the number of roots of unity in K. Then

1w (G )
() = PR (12 WO e D 5 (o) oy o)

Remarks 4.1.6. A version of this was proved in Katz’s original paper. The formulas
for this theorem are taken from [9] with a minor correction so the 1 — x1(p) factor is

correct (see [15]).

4.2 Definition of the period ()

Let E be an elliptic curve with CM by O defined over K, where K is a finite
extension of F' (K necessarily contains the Hilbert class field of F). Let w € Q' (E/K)

be a nonzero element. The period lattice of F is by definition
A 1 / € Hi(E(C),Z)
= _— w . .
ori )T = ’
Let wi,ws be a Z-basis of .Z. Since E has CM by O, vdrZ C £ so in particular
dpwe = awi + bwo

for some a,b € Z. Hence

ﬂ_\/dp—b

w9 a

e F.

It follows then that Z + Zg—; C F C Cis a fractional ideal of F. Let f = Z + Zi—; and
Qo = wo. Then

L = Quf
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and € is defined to be “the” complex period associated to . The reason that the
word, the, is in quotation marks is because obviously ()., depends on some choices.
The choice of wy can be any element of .Z that may be extended to a Z-basis of .Z. A
different choice of ws would scale 2o, by an element of F. We could also change the
choice of w. A different choice of w would be a nonzero K-scaler of w because Q' (E/K)
is a rank one K-vector space. Changing w would then scale .Z by that element of K
which in turn scales (). The different choices all scale 2o, by elements of @X, S0 Qo
is a well defined element of C*/Q".

If we tensor everything with QQ then that simplifies the choice of wy for then if
we let

H1(E(C),Q) = Hi(E(C),Z) @z Q.

we have that
{/w 1y € Hl(E(C),Q)} = Qo F
.
where Qo = 5= -, w for any o € H(E(C),Q).

The complex period 2, has the property that for all algebraic Hecke characters

¢ of F' with infinity type (a,b) where a < 0 and b > 0 the ratio

(2mi)°L(1), 0)

is algebraic. This ratio being algebraic obviously does not depend on the choice of
) since different choices scale (2, by an algebraic number. Furthermore, after taking
into account the functional equation of L(1),s), these L-values account for all critical

L-values of algebraic Hecke characters of F'.
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4.3 Definition of the period pair ({2, (2,)

Let K be a finite extension of F' that contains the Hilbert class field of F. Let
B be the prime of K determined by ¢,. Let E be an elliptic curve with CM by ' defined
over K and with good reduction at 8. Let w € Q'(E/K) be an invariant differential
of E defined over K. Attached to the pair (E,w), we let  and y be coordinates on F

such that

L E — P?
P — (z,y,1)
is an embedding defined over K, which embeds E as the zero set of y? = 43— gox+g3 and
such that L*(df) = w. Let E,, denote the image of E under ¢. Let E,,(C) C P?(C) denote

the complex manifold which consists of the complex points of E,,. Let v € Hi(FE,(C),Q)

1
211 y

In the previous section we defined €2, directly from E without the consideration of E,,.

and define the complex period

The reason for considering E, is that in defining 2, we consider the formal group and
FE and it will be important to keep track of the coordinates on E used to define the
formal group.

We now explain how to define €2, from Q. Let

£ = {;m/nw 1€ Hl(Ew((C)’Z)}
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be the period lattice of E,,. Then we have the complex uniformization
¢:C/¥ — ELC)
z — (P(Z,2),P(ZL,2),1)

were & is the Welerstrass function. We consider the element

(P " Qoo )y € @(p_”QwF/QwF) = (mp_"f/j) ® Qp

which is in the Tate module of C/.& tensored with Q. Let V,E,, = T, E, ® Q,, and let

€ = (£,)52; be the image of (p7"€)5 ; under the composition

i p " Qe F/ Qe F VB, — VB,

n
where the second map is the projection corresponding to T, Ey, = Ty E, X TiE,,.

The coordinates z and y on E,, determine a formal group of F, Ew, which we
view as a formal group over K. Let Vpﬁw = Tpﬁw ® Q. Since p splits in F' and p is
the prime of F' determined by ¢,, we have that Tpﬁw = TyE,. Let £ now denote the
corresponding elemet of VPEW. Since VpE is a rank one Qp-module, £ is a basis element.

Let
¢ = (Gr)nty = (1 (exp(2mi/p")) )y
so ( is a basis element of Vp@m = Tp@m ® Qp. Define
©Pp : V;,E\w — Vp@m
by ¢p(§) = (. It is a result of Tate in his p-divisible groups paper that the map
Homg,, (B, Gum) — Homy, (TpEy, T,Gy)
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is a bijection. We note that
Homg, (VpEw, VpGim) = Homg, (T, .y, T,Gm) © Q,

and let ¢ € Homﬁcp(ﬁ,@m) ® @, be the element corresponding to ¢,. Define €2, by
the rule

w= Q" (dT/(1+T)).

The definition of the pair (2, 2,) depends on the choice of E, w, and v. We
will examine the dependence on this choice and show that as an element of C* x C; /@X,
(oo, €2p) does not depend on E, w or v but only on the imaginary quadratic field F.

Let the pair (F,w) be given and suppose we have two choices v,~7" € Hy(E,(C), Q).

Since

we have that

1
Q’oo:./w:)\Qoo
21 ~

for some A € F. Define &’ and ¢, corresponding to €, as we did for Q.. Note that I,
acts on VpEw via the action of & F, On E’w as a Lubin-Tate formal group. We denote the
action of a € OF, on Ew as [a] as in the previous secion. With respect to this action,

we have the relation ¢’ = [A]p§. Then

(p o NTp)(E) = wp(€) = ¢
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so ¢ = ¢ o [A7!]. Then

MY (dT/(1+T)) = A\ (dT/(1+T))

by definition of €, and since [A7!]*(w) = A7'w. Therefore Qf, = A, s0 (2, ) =
(92, 2;,) mod Q~.
Now suppose we have two pairs (F,w) and (E,w’). Then o’ = Aw for some

A€ K*. Let

and

&= {1/w' in € Hl(Ew/((C),Z)}

211 n

be the respective period lattices of E,, and E_,. We have the .’ = A% and so multipli-
cation by A defines an isomorphism from C/.Z to C/.Z". Let Ay4 be the corresponding

isogeny from E,, to E, s such that the diagram

C/¥ —2— E,(C) c P%(C)

X)\h /\algh

¢/ ¥ E,(C)c P(C)

commutes. With respect to the coordinates on P2, Ay, sends (z,y,1) to (A2z, A3y, 1).

Therefore Ay4 is defined over K. Let v € H{(E,(C),Q) and define



Since we've already checked to dependence of the period pair on changing ~, we may

use any v € Hi(E,/(C),Q) to define Q. Let 7 then be the image of y under Ay, and

define
1
Q. =—— !
& 211 [}// w
By the change of variables formula we have that
1 1 1 . 1
Y AalgOy Ty Ty

Let &, ¢p and &', ¢, be used to define €2, and €}, respectively. Then we have the following

commutative diagram

Vo By = VG

)‘alg,ph h:
¢/

VB ——— VG

because Aaigp(§) = € and ), ¢, are defined by sending & to ¢ and £’ to ( respectively.
The commutative diegram then gives the relation
w =" (%)
= (9" 0 Aatg)” (#)
= Qe ()
= Q0 TN (W)
= QPQ;’l/\w
so 2, = A, Hence (Qoo, ) = (2, 2;,) mod Q".
Finally we see what happens if we change E to E’ where both E and E’ have

CM by OF. By enlarging K, we may assume K is the same for both F and E’. Let w
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and v be choices for E that define Qo and Q. Let ' € Q'(E’'/K) be any choice. Let
£ and .2’ be the period lattices for E, and E/,. Since E and E’ both have CM by

O, there exists o € F* such that a.Z C .Z’. We then get a commutative diagram

C/¥ —2— E,(C) c P*(C)

Xah Aqlg h
(b/

c/2' —2 E,(C) C P(C)

which is similar to the one we have before. We define 7/ = aq4(7) and

!/ ]' /

& 27 ~!

Then the same calculations as before show that 2, = aQ and ), = af), 50 (Qeo, Q) =

(Q, ).

4.4 The CM Hida family

For the remainder of chapter 4, fix a nontrivial ray class character y of con-
ductor § such that (f,p) = 1, and let

F= x(a)g™*

aCﬁF

be the weight one modular form associated to x. The goal of this section is to explicitly
describe the rigid analytic function T} for £ { Np and U, on a neighborhood of the point
corresponding to f, on the eigencurve.

We recall that the level of f is N = |dp|Ng/qf and the character is e :
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(Z/NZ)* — Q determined by the rule
e(l) = x({OF)
for primes ¢t Np. Let f, be a p-stabilization of f, so « is either x(p) of x(p).
We embed Z into weight space as
Z — W(Qp)

k — vt th2

By Bellaiche and Dmitrov’s theorem about the eigencurve at weight one points (Theo-
rem 3.1.1), the eigencurve is étale at the point corresponding to f,. Let w = v1 € W(Q,)
and let W = W(w,1/p") = Sp R be a neighborhood of w such that the weight map
C’ViV — W is étale at all points in the connected component containing the point
corresponding to f,. Let = € CSEV((CP) be the point corresponding to f, and let

Ve, = Splg, C C%,}Cp be the connected component of Cﬁ,’(cp containing x. Then

P

Ve, — W, is étale, and we take W to be as in Proposition 2.6.5. Then the weight map
on the level of rings

R(cp — T@p

is an isomorphism, which we use this map to identify T, with Rc,.

We have that
W(Cp) ={k: Z) = C; i Kly,_, =w ' |k(y) —w(7)| < 1/p"}

where « is an topological generator of 1 + pZ,. Fix a choice of topological generator

of 1+ pZ,. Then
R= {3 an(t = (w(7) = )" € @it = (w(7) = DI : [anp™| = 0 as 0 — 00}
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Let z =t — (w(y) — 1) so R is the set of all F|(z) € Qp[[z]] that converge on the closed

around 0 disk of radius 1/p" in C,. Recall that for F|(z) € R and K € W

at the integers k € Z such that v, € W. We record here that for and integer k,
v, € W =W (w,1/p") if and only if k =1 mod p"~1(p — 1).
Since O3 is the eigencurve the Hecke operators Ty for £ Np, U, and [a] for

a € (Z/NZ)* that generate Rc, are are the unique elements of Rc, such that

1. At the weight w we have

x(a) +x(@) ifLOp =qq
evy(Ty) = ap(fa) =

0 if ¢ is inert in F

evy(Up) = «, and evy([a]) = e(a) for all a € (Z/NZ)*.

2. For all k € Z>5 such that v, € W, ev,, (1), ev,, (Up) are the T; and U, Hecke
eigenvalues of an eigenform g of weight k, level I'g, and character £ which is new
at level N. This condition implies that the rigid analytic functions [a] € Rc, are

the constant functions [a] = €(a).

We now exhibit explicit elements of Rc, with the above two properties which

must then be T} for £{ Np and U,,.
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To begin we define an algebraic Hecke character of F'. Since p > 5, the only
root of unity congruent to 1 mod p or 1 mod p in F' is 1. Therefore the groups P;(p)

and P;(p) are subgroups of F'*:
Pi(p) ={a € F*:((a),p) =1, =1mod p}

Pi(p)={ae F*:((«),p) =1, =1mod p}.

We must consider the two cases of when a = x(p) and when o = x(p) somewhat

separately. If o = x(p), define Ao (viewing Pj(p) as a subgroup of F*) as
Xo: Pi(p) — F* cQ
Ao(a@) = a.
If @ = x(p) define Ay (viewing P;(p) as a subgroup of F'*) as
Xo: Pi(p) — F* cQ
Xo(a) =@

We may extend Ao to I(p) or I(p) to define an algebraic Hecke character A of infinity
type (1,0) and modulus p when a = x(p) (respectively infinity type (0,1) and modulus
p when o = x(p)). (Remarks 7.3.5 of the appendix on Hecke characters explains how
to extend Ay to A.) After extending A\g to A we may change A by any character of
I(p)/Pi(p) (respectively I(p)/Pi(p)) and get another extension of Ag. We impose a

condition on the extension A\ we choose. Recall that C; may be written as

(C;:prWxU
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where W is the group of roots of unity of order prime to p and
U={ueC; [l —ul <1}

By construction, after composing with ¢, the image of A\g is contained in U. Since
U is a divisible group, we may choose our extension A so that the image of \ after
composing with ¢, is also contained in U. We assume that we have done this. Since the
only torsion in U is the p-power roots of unity, any two extensions A\ and X of \g that
have image in U differ by a character of I(p)/Pi(p)[p™] (respectively I(p)/P1(p)[p>])
where the [p™] denotes the maximal quotient of I(p)/Pi(p) (respectively I(p)/Pi(p))
with p-power order. This quotient is isomorphic to the subgroup of p-power torsion.

Let p™ = [I(p)/Pr(p)[p™]| (respectively [I(p)/P1(p)[p>]|). If p" < p", then we
shrink W so that W = W (w, pn—lﬂ) We may do this without changing anything we
have assumed previously, and the reason for doing this will become clear momentarily.

Now we begin defining elements of R¢, that are related to the Hecke operators.
Let M = |I(p)/P1(p)| (respectively |I(p)/P1(p)|) and note that |M| = 1/p™. For each
prime q of F' such that q # p if & = x(p) (respectively q # p if @ = x(p)) define the
power series

= 2" log, (A(q))"™
Gq(z) = exp,(zlog,(A(q))) = Z 2" log, (A(a))"

|
n:
n=0

as an element of C,[[z]]. The power series G4(2) converges if

1
< :
p!/ =1 log,(A(q))|

2|
We bound |log,,(A(q))| independent of q. We have that qM = (q) for some q € O such
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that ¢ =1 mod p (respectively 1 mod p). Hence by definition of Ao
A@)™ = M(g)) =1 mod p

so [1—=X(q)M| < p~Y/®=1_ Then by properties of the p-adic logarithm we get the string

of inequalities

pl/(lp—n > 1= Ma)M| = [log,(A(@)")| = [M]|[log,(A(a))| = “ng;:(q))‘

SO

1 1
— < :
p*  p!/@=log,(A(q))|

Therefore Gq(z) converges for |z| < 1% which is independent of q.

Now recall that

 log,(2)
 log,(7)

log, () :
and define
Fy(2) = Ggolog, (1 +72).
We claim that if |z] < zﬁ the Fy(z) converges. Indeed, assume |z| < zﬁ' Then

[log,(1+72)]  |yz| 2] 1
[log, (1 +vz)| = —= = == < —
K | log,(7)] | Ip| T p"

so log. (1 + ~vz) is in the radius of convergence for G4(2). Because we made the change

of W so that W C W (w,1/p"*!) we then have that Fy(z) € Rc, since Fy(z) € Cpl[z]]

and Fy(z) converges for all z € C, with |z| < pnlﬂ. The function Fy(z) is the unique
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element of Rc, with the property that for all k € Z such that v, € W,

vy, (Fy(2)) = Fy(v*2 —~7h)

= Gyllog, (")

Furthermore, since k € Z is such that v, € W if and only if k = 1 mod p"~*(p — 1)
and 7 > n, Fy(z) does not depend on the choice of extension A of Ay since p™ divides
k — 1 so the exponent k — 1 will kill any character of I(p)/Pi(p)[p>°] (respectively
I(p)/Pr(p)[p™])-

Now let a C OF be a nontrivial ideal of OF such that (a,p) = 1 if o = x(p)
(respectively (a,p) =1 if o = x(p)), and define

HFq (z)?%a(@) if (a,p) = 1 (respectively (a,p) = 1)
Fu(z) =< @

0 else.

Further, define A;(z) =1 and for n > 2 define

An(z) = Y x(@)Fu(2).

aCﬁF
NF/QGZH

Define the formal g-expansion

F=>"An(2)q" € R, llq]]-
n=1

This formal ¢g-expansion is the CM Hida family specializing to f, in weight one.

100



Proposition 4.4.1. For allk € Z>1, vy, € W

Fi= Y vy (An(2))q" = D XA (a)g™®
n=1

aCOp

is the g-expansion of a weight-k cusp form with level I'g and character € that is new at

level N.

Proof. By definition of A,,(z) we have that

S et (An(2))g" = 3 A (@)ge.
n=1

ClC(ﬁF

Shimura ([25]) showed that

> x @)V

ﬂCﬁF

is the g-expansion of a weight-k cusp form of level I'y which is new at level N and has

character defined by

{— = /

XN ((0)) MO

OPZ) oy (A0

for ¢ € (Z/NZ)* a prime not equal to p. We just need to show that this character is
the character €. To do this let Ig(p) be the group of fractional ideals of Q prime to p,

and we note that the function

X

A I@(p) — @
A((a)) = AMaOF)

is a Hecke character of Q of infinity type 1 (where 1 has the meaning of the power of

the embedding of Q into Q). The norm character

N:I@—>QX
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N((a)) = |a|

~

also has infinity type 1. Therefore the quotient A\/N factors through Ig(p)/Pg,1(p)

(Z/pZ)*. Hence for primes ¢ # p,

SO

Hence the character of

> A @)

UCﬁF

is the character defined for ¢ € (Z/NZ)* prime ¢ # p

£ x((£)).
This is the character ¢. O

By the proposition, the functions Ay(2) € Rg, for £ { Np and A,(z) € Rc,
satisfy the two properties that uniquely determine 7j,U, € Rc,. Hence T, = Ay for

¢{ Np and U, = A,.

4.5 Two-variable p-adic L-function of the CM family

In this section we define and state the interpolation property of the two-variable

p-adic L-function associated to F.
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Keeping the notation of the previous section, let ®* be generators for the rank
one T¢,-module

Symby: (D(R))° ®rz Te, C Symby: (D(R))°.
The two-variable p-adic L-functions
ADE, )W x W — C,

are defined using the second construction of section 2.7. We assume we have chosen
periods Qi,{ and ngm for K € W for A(®*,-,-). More will be said about these periods
later. In order to prove conjecture 3.2.2 we restrict A(q)i, -,+) to a particular subset of
W x W. Let ¢ = nw where 7 is a p-power order character of conductor pm/. Let p™ be

the conductor of v, so m = m/ if ) is nontrivial and m = 1 if 7 is trivial. Let
U={t€Z,:t=1modp '}
Define the two-variable p-adic L-function
Ly(xnw, e, -,-) : U x Zy
Ly(xnw, a,t, ) = M@, w ™ ()72, (qw) 71 ()* ™)
so Ly(xnw,a,t,s) is a two-variable extension of the numerator of the function
Ly(x; , pw, nw, s)

that our conjecture is about.
The function L,(xnw, o, t, s) is a two-variable p-adic analytic function of ¢ and

s. It is determined by the interpolation property (which comes from the interpolation
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property of A(®~,-,-)) that for all k € Z>o, k=1mod p" !, and j € Z, 1 < j <k —1,

j=1mod2(p—1)

Ly(xnw, a, k,j) M@, vg, (qw) "' ()71)

prllk Qp7yk

L(Fk,?’]&),j)

Q(;O,I/k

= Ep(Oé, "7Wa km])

L(xX~1nw, 5)

ngﬂjk

= Ep(av 77007 k7])

where

1 ()P 1Y
() <1 WV L(p) )
p"UD (G = D7 ((pw) ™)
2my1
1 () )P
() <1 N I(p) )
PPUTVG = D ()
\ (27T)j71

if o = x(p)
X

Ep(a’ 77% kaj) =

if a = x(p).

These k and j are dense in U X Zj, so this interpolation formula determines L, (xnw, o, t, s)

by continuity. To simplify notation, since the sign of the periods ngl,k, Qoiowk is fixed

r—1

as — and since the periods are indexed by integers, for k € Z>o, k =1 mod p" " we let

Qp,k: =~ and Qoo,k =QZ

p,Vg oo,V *

4.6 Two-variable specialization of L, ru.

In this section we define a two-variable specialization of Katz’s p-adic L-

function that we compare to the two-variable p-adic L-function defined in the previous
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section.
Observe that the complex L-value appearing the interpolation formula in the
previous section is

L(xN" 'w, j) = LOA'qwN 7, 0).

By our choice of ), the algebraic Hecke character xA*~1nwN~7 has infinity type

(=i k—=1—7)if a = x(p).

If @ = x(p), then xA¥~'nwN~J has infinity type in the range of interpolation for Katz’s
p-adic L-function. If a = x(p) we need to make a slight modification.

From here on, let ¢ denote complex conjugation, so ¢ is an automorphism of C.
Via our embedding oo, ¢ acts on ideals of F. We also have that ¢ acts on A} and c acts
on G via conjugation. These three actions are compatible with our conventions for
the Artin map and our definitions of Hecke characters. There is a tautological relation

of complex L-functions
LN IwN ™ s) = LA 1nwN 7 o ¢, s)

that changes the infinity type. When a = x(p), xA* 'qwN~7 o ¢ has infinity type
(—j,k — 1 — j) which is in the range of interpolation of Katz’s p-adic L-function. With

these observations in hand we now specify a restriction of L, kat--
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Let k1 be the algebraic Hecke character

Aoc if a=x(p)

K1 =
A ifa=x(p)

so by our choice of A, k1 has infinity type (0,1) and modulus p. Further when we view
k1 as a p-adic Hecke character, since A takes values in U = {u € C : [1 —u| <1} C C)
we may consider the p-adic Hecke character xj' for any p-adic number s; € Z,,.

Let kg be the algebraic Hecke character ko = w™'N. We then view ks as a
p-adic Hecke character and a Galois character. As a Galois character, ko cuts our the
cyclotomic Z,-extension of F'. We say a few words about k2. If we consider the norm
character N as a p-adic Hecke character and then as a Galois character the fixed field

of the kernel of N is

F(Cp‘”) = U F(Cp”)

n=1

and the map

N : Gal(F (e ) /F) — 7S C CX

is an isomorphism. That is, N when viewed as a p-adic Hecke character is the cyclotomic
character. To get the cyclotomic Z,-extension of F' we need to make p1,-1 C Z; in the
kernel of N, and multiplying by w™' does this. Since the image of ks in C, is 1+ pZy,
it makes sense to consider k3’ as a p-adic Hecke character for any sp € Z,,.

Now define

xoc ifa=x(p)

X:
X if @ = x(p)
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so X has conductor § if & = x(p) and conductor f if a = x(p).

Let Ly rat- be Katz’s p-adic L-function with respect to the ideal m where as
in the notation of section 3.1, m is the conductor of M/F. The ideal m is divisible by
all the primes that divide f and f. Let Q, €1, be the periods used to define L, gqt.-

Define

Ly katz-(Xn,0,-,-) : U X Z, — C,,
Lp,Katz(Xna «Q, 81, 52) = Lp,KatZ(%n’{ililﬁgﬁ)'

Proposition 4.6.1. L, ka:. (X7, @, S1, 52) is determined by the following interpolation

property: forallkEZZQ,kzlmodefl,jeZ, 1<j<k-1,7j=1modp-—1,

—(2m)F 2 LA w1 )
\/%kqu QFT

Lp,Katz (X777 a, k, ])
Qk*l
P

= Ep(a7 nw, ka j)
where E,(a,nw, k, j) is defined as in the previous section.

Proof. That Ly kat-(X7, v, 51, 52) is determined by the interpolation property follows
from the continuity of L, rar.(X7), @, 51, 52) and that the set of k’s and j’s is dense in
U X Zp. LetkeZZg,l<:51modp"_1 and j€7Z,1<j7<k—-1,j=1modp—1. The

first thing we need to observe is that the character plugged into L, gqs-(-) is

i ‘ WA TINTT o e if a = x(p)
Xy ey = (4.4)
XnwAFTINTT i a = x(p)
which has infinity type (—j,k —1—j) so is in the range of interpolation for L, kq:.. We

do the two cases of a = x(p) and o = x(p) separately.

107



Assume o = x(p). By the interpolation formula for L, k4., we have (using
that c(p) = F,c(p) = p, and L(x’ o ¢, 0) = L(x',0) for any x)

Lp kat=(xn, . k,5)  Lp gatz(xnwA* 1N o ¢)

k—1 k—1
QP QP

= : W, (xnwAF TN 0 ¢)x

y (1 ~ (enw) TIATENT ()

- ) (1 = xmoA T NI (p))

L(xnw\F~1N=70)
X Qk*l
o0

To simplify this we first observe that since A has modulus p, 1 — xnwA* I N=I(p) = 1.

We also have that (nw)™1(p) = (nw)~1(p), N/(p) = p’, and by the following lemma,

Wo(xnwA\* "IN oc) =

Therefore the formula becomes

Ly, katz (X1, 00, 5) _ (G = DI@m)* 179 —p™U- D7 ()t

(nw) "1 (p)p" 1\ LA 1w, j)
><<1_ XA () ) Ok

—(2m)F 2 LOA " Tpwd ™1, )
\/@k—l—j QF-T

= Ep(av 7700, kv])
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When a = x(p) we have

Lp,KatZ(XWa a, ka]) Lp,Katz(XnW)‘k_lN_j)

k—1 k—1
QP QP

(j — DlEm)—1

- W (xnwA* " N )
N

<1 (o)™ NN (p)
p

) (1 — X N (F)) x

L(xnwA*"'N~,0)
X
Okt

Similar to the other case, since A modulus p, 1 — xnwA*"'N—J(p) = 1. We also have
that (nw)~1(p) = (nw)~1(p), N/ (p) = p’, and by the following lemma

D7) ™)

Wp(xnwAF T IN7) =
s I

Therefore the formula becomes

Ly cat= (O a0k, 5) _ (G = DN2m)* 179 —pm U D () )

Ql;)}—l Mk_l_] X)\k‘—l(p)m

y (1 B (nw)‘l(p)pj‘1> LA 'nw, j)

k—1
928

—(2m)"% LOA w1 j)
\/@k—l—j QF-1

= Ep(a,nw, k, j)
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Lemma 4.6.2. When a = x(p) we have

D))

14% Ne=INTT o ¢) = 2
p(xnw oc) NI (pym

When o = x(p) we have

D7) ™)

W, (xnwA* N7y =
px ) XA (p)m

Proof. By definition for an algebraic Hecke character x’ we view x’ as a complex Hecke

character and define

Xp(mp") . o
W) = =5 Y Xp(w)exp(=2miTrp, g, (u/m"))
uE(Op, /p™P)*

where ay is the power of p in the conductor of x" and , is a uniformizer for F,. Assume
a = x(p). Then of the characters we need to consider, yoc,nwoc = nw,Aoc,Noc =N,
only nw is ramified at p so nw is only character that will contribute to the sum in the
formula for W,(x’). Since nw has conductor p™ with m > 1, a, = m. We calculated
before Theorem 4.1.5 that the sum becomes nw(—1)7((nw)™!) = —7((nw)~!). For the
constant in front of the sum we calculate for each of the characters separately. For nw,

we have nwy(m,) = 1. Then for the rest of the characters we have
XN TINTT o e(my) = XA (p)p .

Therefore putting it all together we get

"I ((g) )

W, Ne=INTT o) =
p(XUW oc) X/\k—l(ﬁ)m

Now assume o = x(p). The calculation is similar. The character nw con-
tributes —7((nw)~!) and
XATINT o (mp) = XA (p)p™
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SO we get

—p"U D7 ((qw) ™)
XAF=L(p)m

W, (xnwAFIN7) =

4.7 Choice of periods and comparison

Let Sc, be the fraction field of T¢, = Rc,.

Proposition 4.7.1. There exists ¥ € Symbp (D(R)) B Sc, such that the p-adic
L-function

LP(anv a,t, 3) = A(\Ilv w_1<'>t_2a (UW)_1<'>8_1)

1s calculated with the p-adic and complex periods

k—2
_ _1 (Vd
(Qp,k; Qoo,lc) = (Q]; 1; Ql;o ! <2WF> )

where €, Qoo are the periods used to define Katz’s p-adic L-function. We note that the

domain of L,(xnw,a,t,s) is as in the previous section.

Proof. Let L,(xnw,a,t,s) = A(@~,w 1{-)72 (nw)~1(-)*71) be as in section 4.5. We
determine a meromorphic function P(¢) on U such that P(t)L,(xnw, a,t,s) has inter-

polation formula with the periods

k—2
Vd
Qk—l Qk:—l F )
( L 2
Let

P:U xZ, — C,U {oc}
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be the p-adic meromorphic function defined by the ratio

P(t,s) = Loz 01 5)
LP(XT/wa «, tv 8)
Then P(t,s) has the interpolation property:

P(k,j)vak Qoo,k —(27T)k_2
91571 = QF1 \/%kqu

for k’s and j’s as in the previous section.

When choosing the periods for L,(xnw, o, t,s) one way to choose them is to
choose the {1y ; and ®, and then this determines the €2, ;. The only condition on
the choice of the {1y ; is that the values in the interpolation formula for the p-adic

L-function of the modular form Fj, are algebraic. These values are

LON 1?1 )
(27T>j_1Qoo’k

Calg(aa k?])

for all odd finite order characters ¢ € W(C,), k € Z>2, 1 < j < k — 1 where

PO DTt ) () Tl Y L

Caglo, k,j) = YAE=1(p)m <1 YNL(p)pi— ]) P if a = x(p)
prUTIG = DTt ) (e ) Y 1

AR~ (p)m <1 YN (p)pl—i )zj i if a = x(p)

and m is the power of p in the conductor of .

We claim that we may take

k:f
Qoo = Q1 <dF> 2

2
Indeed, then the values in question are

(2m)* I LOA pw? )
/dekuQ]éo_1
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which by the interpolation property for Katz’s p-adic L-function are algebraic. Therefore
we can and do make this choice for the Q0 .

If we consider P(t,s) with this choice of complex periods, then P(t, s) satisfies
the interpolation formula for k € Zso k = 1modp™ !, j € Z, 1 < j < k-1, j =
1 mod 2(p — 1)

Pk, j) .k _ i

Qk—l
p
We separate variables for the function P(t,s). Since p splits in F, \/dr € Q, = F,.

Then define the analytic function Q(s) as

Qs) = —(Vdp)",

and let P(t) = P(t,s)/Q(s). The function P(t) is a p-adic meromorphic function on U

satisfying the relation that for all k € Z>9, k = 1 mod p" 1,
P(k)Qpy =

Since P(t) is a p-adic meromorphic function on U, there exists an element Pe Sc,, such

that for all t € U

If we define ¥ = P®~ and redefine the function

LP(ana a,t, 8) = A(\Ila w_1<'>t_27 (77‘*‘-))_1<'>S_1)

then L,(xnw, a,t, s) satisfies the interpolation property that for all &, j as above,

LP(XT]W7 Oé, t, S)

2m)F 2L g )
Qk*l :
P

= Ep(a,nkaaj) \/d—k72Qk—1
r 0o
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That is, L,(xnw, a,t, s) is calculated with the periods (€2, Q). O

Remarks 4.7.2. If P(t) in the proof of the previous proposition does not have any zeros
or poles, then W is a generator for the free rank one T, -module Symbp, (D(R))° @+ T,
w

and so ¥ would be a valid choice to define the p-adic L-function as in section 2.7.

We record the precise comparison of the p-adic L-function defined in the pre-

vious two sections that appeared in the proof of the previous proposition.

Corollary 4.7.3. Let Ly, kat-(X1, @, t, 8) and Ly(xnw, o, t, s) be defined as in the previ-

ous two sections, so
Ly(xnw, e, t,8) = M@, w™ ()72, (qw) 71 ()* ™)
where @~ is a generator of Symbr, (D(R))° S Tc, as a Tc,-module. Then
Ly rkat=(xn, o, t,s) = P(n,t,s)Ly(xnw, i, t, s)

where P(n,t,s) is a p-adic meromorphic function determined by the interpolation prop-

erty that for allk € Zso, k=1mod p"™ !, j€Z,1<j<k—1,j=1mod2(p—1),

P(n7k7.j)ﬂp,k o Qoo,lc _(277)1672
ngl - Q]égl \/@k*l*j'

Remarks 4.7.4. We remark that P(n,t,s) a priori depends on 7 and «, but as is clear
from the interpolation formula does not actually depend on 7 or «. The reason for

putting 77 in the notation will become clear in the next section.
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4.8 Proof of the conjecture in this case

In this section we prove Conjecture 3.2.2 for x. To this end we begin by recall-
ing some notation. Let n € Z>¢ and let Q,,/Q denote the nth layer of the cyclotomic
Zp-extension of Q. Let I';, = Gal(Q,,/Q). Let K be the fixed field of the kernel of x
and let M be the Galois closure of K over Q. Let A = Gal(M/Q), H = Gal(M/F),
and G = Gal(K/F). We note that ¢ € A — H, and we choose ¢ as our choice of 7. Let
K, = QuK, Gy = Gal(K,/F) = G x T'n, M, = Q,M, H,, = Gal(M,,/F) = H x T,
K, =c(K,), and G, = Gal(K,,/F). Let u, = uy;, € M) be the Stark unit for M, /F.

Let 1,9 € W be finite order characters of conductors p™*+! and p"*! and
orders p™ and p" respectively. Let L,(xnw,a,t,s) and L,(xyw,a,t,s) be as defined
two sections ago.

The function Conjecture 3.2.2 is about is Ly (x, &, nw, Yw, s), and by construc-

tion

Lp(anv Of, 17 S)
LP(wa) a, 17 8) '

LP<X7 Oé, T/wa ¢w7 S) =

Theorem 4.8.1. Conjecture 3.2.2 holds for x,n, and ¥. That s,

T(n~ 1 !
p(gm) (1 _n a}g”) (1 - pn(p)) log,, |77, (um)|1/a

HD (11— 220 (1 py(p)) 108 I (anl

pn+1 ap

LP(X7 Ct, 77(-*)7 wwu 0) =
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Proof. We have that

Lp(xnw, e, 1, 5)
Lp(Xa@ﬂ?wawWaS) = Lp(wa a1 S)
P y Gy by

_ P(n7 17 S)LILK(H:Z(X”W: O[, 17 8)
P(¢) 17 S)Lp,KatZ(wav «, ]-a S) ‘

Then by Corollary 4.7.3 P(n,1,s) = P(1,1,s), so

Ly, iatz(x1w, o, 1, 5)
I _ LpKatz , Gy 4y ]
p(X7 I ww? S) Lp,KatZ(wau «, 17 S)

By definition

L Katz(anv «, ]-7 0)
L 0) = 2
p(XO‘UW» TIZ)LL), ) Lp,Katz(waa a, 1, 0)

p,Katz (Xn © C) . —
if =
p,Katz(Xw © c) X<p)

p,K atz (X”) .
e PAY if @ = x(p).
Lp,Ka,tz (X¢)
We now use Katz’s Kronecker’s second limit formula. We consider the two cases of «

separately.

Assume « = x(p). Then by Katz’s Kronecker’s second limit formula (Theorem

4.1.5),
T(n~") _ M _ o) log, (o(u
Lp,Katz(Xﬁoc) _ pmtl <1 p >(1 XU(P))Ug{:m(Xn)C( ! gp( )
Prsasletee) IO (1 OO (1)) S (el oy o, )
b p occH,

Using the formula from corollary 3.2.6 for log, |77, (um)|1/a and log, |77, (un)]1/a we
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have
) > xen(o)log, (o (u,,))
1ng |7rp77(um)’1/a _ 0€Hn,

log,, ’WZ¢<“n)‘1/a Z X+¥(0)log,(o(un,))
occH,

In our case, c is the choice for 7, and since 1) and 7 are even Dirichlet character, we

1 and 1. = n. Therefore

have ¥, =
> (xn)e(0) log, (o (uns,,)
1ng |7r;n(um)‘1/a _ oc€Hm, .
log) |y (Un)lija > (xth)e(0) log, (o (uar,))
oceH,
Hence

(1 1w
O (1= D) (1 o) tog, [

1 /= .
(1= D0 (1= o) tog, e

Ly kat-(xnoc)

Lp,Katz(Xw o C) B T(lﬁ*l)
pn+1

To finish, we just note that since o = x(p), 5 = x(p) so

“'(p)/a and (xy) M (p) = v (p)/a

(xm) ™ () =n

as well as

xn(p) = Bn(p) and x(p) = B (p).

Therefore

o Lp,Katz (Xﬁ o C)
Lp(XvaaUWﬂ/MaO) - Lp,Katz(X'(/] o C)

U] ( nfl(p)) (1= pBn(p)) logp ’W;n(um)h/a

. pm+1 ap
o) (1 222 (1 - By (p) 108 I (a1
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Now we assume « = x(p). Then by Katz’s Kronecker’s second limit formula

(Theorem 4.1.5),

—1 —1
T(n™") <1 _ M) (1 —xn(p)) Z xn(o) logp(U(UMm))

Ly ratz(xn) Pt P 7€ Hm
Lp kar=(x¥) — 7(3p~! ¥) M (p '
p,Kat T]()n+l) <1 _ w> ]_ — Xq/} oezl;n Xi/} logp UMn))

Using the formula from corollary 3.2.6 for log, |77, (um)|1/o and log, |7r;¢(un)]1/a we

have
N Z XTT, logp (U’Mm))
logp ‘an(um)‘l/a __ 0€Hpm
1ng|7r;'¢)(un)|l/a Z X (o logp (o(un,))

ccHy,
Therefore
T(n~t -1 B .
Lp,Katz(Xﬁ) _ p(:ZLH) (1 B (Xn)p (p)> (1- Xﬁ(p))logp ‘an(um)h/a
T (! —1 .
Lp kat=(x?) ]()@:H) (1 () (p)) (1= xv(p)) logy, |75y (un)|1/a

p
To finish, we just note that since o = x(p), we have that 5 = x(p), so

(xm) ' (p) =" (p)/a and (x¥) "' (p) =¥ (p)/

as well as

xn(p) = Bn(p) and x(p) = BY(p).

Hence

Ly katz(Xn
LP(Xvaanwad}waO) = LpKazzéxw))
p,Katz

T (1 T2 (1= B0(0)) log, [ ()1

. pm+1 ap
o) (1 222 (1 - By (p) 108 1T () 1o
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Chapter 5

Conjecture 3.2.7 when F' is real
quadratic, y is a mixed signature
character, and Ind y = Indy for ¢ a
character of an imaginary

quadratic field in which p splits

Let F' be a real quadratic field and let y be a mixed signature character. In this
section, we prove that if there exists an imaginary quadratic field K such that p splits
in K and such that there exists a ray class character 1) of K such that Ind y = Ind y/,

then conjectures 1.1.9 and 3.2.7 are true for x.
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We make some remarks about when an imaginary quadratic K and 1 exist for

a given real quadratic F' and x. Let p = Ind x, so p: Gg = GL2(Q), and we consider
p: GQ — GLQ(@) — PGLQ(@)

Then there exists another quadratic field K and a ray class character ¢ of K such that
p = Ind ¢ if and only if the image of p in PGL2(Q) is isomorphic to Z/2Z x Z/27Z. In
fact, if the image of p is isomorphic to Z/2Z x 7 /27 then for each of the three subgroups
of Z/2Z x Z/27Z of index 2 we get a quadratic field and a ray class character such that
p is the induction of that ray class character. In this chapter we assume that starting
with a mixed signature character y of a real quadratic field F' such that the projective

image of Ind x is isomorphic to Z/27Z x Z /27 then one of the other quadratic fields is

imaginary quadratic and has p split.

5.1 Notation

For the next two sections, fix x a mixed signature character of a real quadratic
F and 1 a ray class character of an imaginary quadratic field K such that p is split in
K with Ind y = Ind . We let p = Ind y = Ind+ and p* = Ind x~! = Ind+~!. Further,
let M,, Ey, and L, be the fixed fields of the kernels of p, x, and v respectively, and let
G, = Gal(M,/Q), H, = Gal(M,/F), and Hy, = Gal(M,/K). Fixat € G,—(H,UHy).
Fix a character n € W of order p™, and let x1 = xn, x2 = ¢¥n. Let M, E, and

L be the fixed fields of the kernels of pn, x1, and x» respectively, and let

G = Gal(M/Q) = G, x T,
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Hy = Gal(M/F) = Hy, x T\,
H2 = Gal(M/K) = H¢ X Fm.

We view x1 and yo as characters of the groups H; and Hs respectively. We have the
relations

Indx2 =Ind¢v ® n = Ind x ® n = Ind 1.
Note that since H; and Hs are not equal and have index 2 in G,

|Hy || Ha|

G| = H1H| = —/——

so the index of H1NH> in G is 4. Since 7 € G/, we may view 7 € G. Since 7 ¢ H, U Hy,

7 ¢ HiUHs. Then

Ind x1|m, = x1 + x1,- and Ind x2|m, = X2 + X2,

This implies that

XilHinH, = X1,7|HinH: = X2|HinHy = X2,7| HinHa-

We will use this fact many times.

Let w be the infinite place of M induced by ¢+, and note that we are assuming
that w(E) C R. Let {1,d,} be the decomposition group of w in G. Note that {1,d,,} C
G, s0 0,y does not depend on 7. Let D, be the decomposition group of p in G, induced
by ¢, and let J,, be the arithmetic Frobenius. We view D, as a subgroup of G.

Let k be a finite extension of Q containing the values of x; and ya.
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5.2 Archimedean Stark conjecture

We note that in this section we do not need to assume that p is split in K. We
just need to assume that Ind y = Ind .

Let ups € M* be the Stark unit for M/ K, and let ug = Ny guyr. We consider
the rank one abelian Stark conjecture for the extension E/F, and prove a weaker version
of Conjecture 1.1.1 with ug. We will prove Conjecture 1.1.9 for y;. We begin with a

lemma.

Lemma 5.2.1. The representations Ind x{ and Ind x§ are isomorphic if and only if a

s odd.
Proof. To check whether or not Ind x§ = Ind x4 it suffices to check that for all o € G,
Tr(Ind x{(0)) = Tr(Ind x5(0)).
The left coset decomposition of H; N Hy in G is
G=H NHyU(Hy— (HiNHy))U(Hy— (HNHy)UG — (Hy U H»)

and we check the value of Tr(Ind x{) and T'r(Ind x§) on each coset of H; N Hy in G
separately. For o € Hy N Ha, x1(0) = x2(0), so Tr(Ind x{(c)) = Tr(Ind x5(c)). For
o€ G—(H1UH>3), Tr(Ind x{(c)) = 0 and Tr(Ind x§(c)) = 0 since ¢ ¢ Hy and o ¢ Ho.

For the other two cosets, we need to consider Ind x; and Ind x2. Since Ind x; =
Ind x3, for all o € G,

Tr(Ind x1(0)) = Tr(Ind x2(0)).
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This gives the following relations: for o € Hy — H; N Ho,

0 =Tr(Ind x2(0)) = Tr(Ind x1(0)) = x1(0) + x1,-(0)

so x1(c) = —x1,+(0), and for 0 € Hy — Hy N Hy,

0 =Tr(Ind x1(0)) = Tr(Ind x2(0)) = x2(0) + Xx2,7(0)

so x2(0) = —x2,(0). Therefore for ¢ € Hy — Hy N Ho,

Tr(Indx5(c)) =0

and
Tr(Ind x{(o)) = x1(o) + (=1)*x{ (o).

These are equal if and only if @ is odd. Similarly, if 0 € Hy — H1 N Ho,

Tr(Ind x{(c)) =0

and

Tr(Ind x3(0)) = x3(0) + (=1)“x5(0)
which are equal if and only if a is odd. O
Remarks 5.2.2. The lemma is true for any two characters y; and xs of index two
subgroups Hy and Hs of G such that H; # Hs and Ind x; = Ind x2. In our case, we

can see that if a is even Ind x{ # Ind x§ since x{ is a totally even character of G, so

Ind x{ is an even representation of Gg while Ind x§ is an odd representation of G.
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Proposition 5.2.3. Let X be a mized signature character of Gal(E/F). Then

1 ~ _ i
“Zenr Y X(o)loglo(up)lw = L'(X,0)
oc€Gal(E/F)

where ey is the number of roots of unity in M.

Proof. Since X is mixed signature and E is the fixed field of the kernel of x1, ¥ = x{

for some odd integer a. Then by the Lemma 5.2.1, Ind x{ = Ind x§, so

> Tr(Ind x{(0)loglo(uar)lw = Y Tr(Ind x5(0)) log o (uar)|u-
oelG oelG

Then since wuys is the Stark unit for M /K, we have

ZTT Ind x5 (o Z X5 (o) log |o( UM)’w‘i‘XQT( )log|o(unr) |w
oeG occ€H>

= —EML/(X%, 0) - eML/(Xg,‘m O)

= _2€ML/(X3¢ O)

= —2€ML/(%, 0)

Let {1,60,} be the decomposition group of w in G. Since x{ is a mixed signature

character of Gal(E/F) we have that x{(d,) =1 and x{ .(dw) = —1. Then

Yo XA loglo()lw = Y (X{(0) +xi,(600)) loglo(unr)lw =0,

ocH; oe{1,6uw }\H1
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SO

> Tr(Ind x§(0))log lo(uar)fw = Y X1(0)log |o(uar)|w + X () log [ (tar)
oceG o€H,

= > xHo)loglo(Nuyp(uar))lw +0
o€Gal(E/F)

= Y W) oslon)h

c€Gal(E/F)

Hence

1 . ~
5. > X(0)logo(up)|w = L'(X, 0).
em
o€Gal(E/F)

O
Remarks 5.2.4. By the Remarks 1.1.4, in order to prove Conjecture 1.1.1 we would
need to show that the absolute value of ug at the complex places of E is 1 and that ug

is a eps/epth power in E where eg is the number of roots of unity in E.

Define
* 1 -
Ua T o Y xlo)@o(up) € (k@ o)
o€Gal(E/F)
and
u;k(l,‘r = T(U;I)

Corollary 5.2.5. (Archimedean Stark Conjecture for x1 and x1,) We have that

log [u}, | = L'(x1,0) and log|u}, ;|wr = L'(x1,0)
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*
so urX and uxl

Y are the units in Conjecture 1.1.9.

T

Proof. We first remark that |- |, on E is the square root of |- |, on M since w is a real
place of E. Similarly for | - |~ on 7(E). Then this corollary follows immediately from

Proposition 5.2.3 and the fact that

L(Xl) 8) = L(XI,TJ S)

and

log IU;LT’W = log |u} [w-

O]

Before we prove the p-adic conjecture for y we have a proposition regarding

the Stark unit u;Q

Proposition 5.2.6. We have that u}, == dy(u},).

Proof. Since uyy is the Stark unit for M /K, by definition, we have that

uy, = Z x2(0) @ o(up) € (k® OF)%2
oc€H»

and

-1
ul, = Y x2.(0) ®o(un) € (k® OF)%.
o€H>

Since 6, € G — Hz, dy(uy,) € (k@ﬁX)XQT 0 Oy (u

uy,) is a k*-multiple of u,,  since

—1
(k® O);)X>~ is one dimensional as a k-vector space. We show u}

X = 5w(u;2). To do

this consider the map
M Cooy; — CX
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Ma®u) =« Z log |ulyv

where X is Y modulo the vector (1,1,...,1), and Y is the free abelian group generated
by the infinite places of M. By Dirichlet’s equivariant unit theorem, A is a G-module

isomorphism. Let
exs = Y xa(o)u? € (CXP
oc€H>
and
-1
exsr = D Xas(o)uw’ € (CX)Xar,
oc€H>

Since the character x2 r does not depend on 7, we may calculate e, by taking 7 = 4.

1)

Then since w°* = w we have

eXQ,T = Z X277—(U)'LUU

o€H>

Z X2 (00 0y ) w?

ocE€H>

> xalo)wwt

o€H>

=Y xelo)u’™?

oc€H>

- 5w(6X2)'
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At the same time, we have
AMuy,) = log |uy, lwey, = L'(x2,0)ey,
and
)\(u;l'r) = log |u;<(2,7' ’weXQ,T = L/(X27T7 0)6X2,7‘ = L/(X27 0)6)(2,-,-'

Then since A is a G-equivariant isomorphism,

)‘(510 (UX2)) = L/(X2> O>5w(€X2) = L/(X% 0)6X2,r

implies u}, == du(uy,). O

5.3 p-adic Stark conjecture

In this section we are again assuming that p = pp in K with ¢, picking out the

prime p. We also let

F=> x@g" = > v(a)g"*

aCOp aCOk

be our usually weight one modular form along with everything that is associated to f.
We fix a p-stabilization f, of f. Since p splits in K, « is either ¥ (p) or ¢)(p). Let € be

the character

Note that if o = 1)(p), then € = x2|p, and if a = 1)(p), then € = x2,+|p, -

We begin this section with a couple lemmas.
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Lemma 5.3.1. The prime p is inert in F'.

Proof. We first make the observation that we are assuming the roots of the Hecke

polynomial of f at p are distinct. Since the two roots of the polynomial are

b(p) = ¥(dp) and ¥ (p) = ¢ (dp)

we have 1(0),) # 17 (0p).
Now, p is inert in F' if and only if §, € H,. Since p splits in K, D, C Hy.
Suppose 0, € H,. Then 9, € H, N Hy. All four of the characters v,1,x, and x, are

equal on H, N Hy, so ¢(d,) = ¢(6p), which is a contradiction. O

Lemma 5.3.2. We have that

log, (uy,) if a =1(p)

*

log,, |uy, |1/ = log, ‘U;Q + U;Q,Th/a =

log,(uy, ) if o =1(p)
Proof. The second equality follows from Proposition 3.2.9.

We use the facts that x1(0,) = 1 and that x1|m,nH, = X2|HinH, = X7 | HiNHS
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to see that

eM

> vle) @ olup)

cE€Gal(E/F)

> xi(0) @ o(ua,)

oc€H>

> xalo) @ o(un,) + x1(06w) @ 00w (uar,)
occeH{NH>

Y. xelo)@o(um,) + x2(0) © odu(un,).
ccH1NH>

Now we note that since p is inert in F, §, € Hy — (H; N Hy). We also have

that D, NHyN Hy C D, is index 2, and ¢|D, N Hi N Hy = x1 = X1, = X2 = X2,r- Then

|u;k(1|1/a is

* 1 *
|ux’1/a = Di Z 5(5)5(71’)()
| p| éer

= S, +2(,)5(u,)).

We now break the proof into the two choices of a. Assume first that o =

¥(p) = x2(dp). Then using

up = —— Z x2(0) ® o(unr) + x2(0) ® 06y (unr)

occeH{NHo
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and (8,) = x2(dp), we get that

Lo, *
[ 170 = 5 (U, +e(3p)dp(uy, )

1
=—5— Z x2(0)o(unr) + x2(0)oéw (unr)+
M oc€H1NH>
1
5o O X2(0,0)8,0 (ur) + X2(5,0)8,08u (unr)
M cc€H1NH>
1
= —5— | 22 xe(@)o(unr) + x2(0)78u (unr)
€M oc€Ho
We have
! (0)o(ur) =
M o€Ho 2

By rearranging the sum and using Proposition 5.2.6 we have
1 1 . .
e Z (x2(0)odw(ur) = Ten Z X2,7(0)0wo(upr) = 5w(UX2J) = Uyy-
oE€Ho o€Ho

Hence

1
|u;1|1/a = i(uiz + uicz) = u;kcz

*

so log,, [u}, |1/a = log,(uy,).

Now assume that a = 9 (p) = x2,-(p). Since x2|H,nH, = X2,7|HiNH,, We have

Wy == > Xr(0) @ 0(un) + X2 (0) ® 00 (un).
oc€H1NH>
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Using €(6p) = x2,-(0p) we get

Lo *
W3 170 = 5 (uy, +€(3p)0p(uy, )

1

LS o) + e ot
eM oc€H1NH2
1

" 2en Z X2,7(0p0)0p0 (unr) + X2,7(8p0)0podus (unr)

M oc€H1NH2
1

T 2em Y x2r(0)a(unr) + x2,r(0) 00w (unr)

oc€H,

We have

1
S Y nero)otun) =,
M o€H>

By rearranging the sum and using Proposition 5.2.6 we have
1 1 * *
e Z (X2,r(0)00w(un) = T en Z x2(0)dwo(urr) = 5w(UX2) = Uy,
oE€Ho oc€Ho

Hence

1
|u;<<1 |1/Of = i(u;zr + u;zf) = U;Q,T

so log,, ‘U;I‘l/a = logp(u’;mﬁ).

Theorem 5.3.3. Conjecture 3.2.7 holds for x.

Proof. Let n,n7" € W(C,) be of order p™ and p™ respectively. We need to show that
-t T(n~?! * *
(1= Bn(p)) (1 - 52 ) S log, [y, + w1/

/—1 (n'—1 % * :
(1 - ﬁn/(p)) (1 - nTp(p)> % logp |ux77’ + UXTU/|1/01

LP(Xv «, )W, ?7/00; 0) =
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By the assumption that Ind x = Ind v, we have

Lp(¢> a, nw, 77/("}7 S) = Lp(Xa «, Njw, n/wa 8)

5o Lp(¥, a,nw,n'w,0) = Ly(x, o, nw,n'w,0). By theorem 12

-1 U * *
(1= Bn(p)) (1 - o2 ) 2D log, ug,, + w1/

Ly(¢, o, nw, n'w, 0) =

/—1 T(n'—1 « « .
(1= 87() (1 - T2 LD tog, g, + w1/

Therefore we need to show that

logy, |uyy + Uy nl/a logy, [y + Uy 4l1/a

logp |u;<<77/ + U;Tn/ |1/a B lng |u22;77’ + u:;;_,_n/‘l/a '

Since p is inert in F', by Proposition 3.2.9,

1ng ‘u;n + u;7n|1/a o logp |u;k<77’1/o¢
1ng |'LL;<<,,7/ + U;T'r]’h/a 1ng ‘u;k('r]/h/a

Then by Lemma 5.3.2

logp ‘u;nll/a B logp |u:/;77 + u;k/;Tn|1/a

*

1ng ’uxr]’|l/a B 1ng |u;kpn’ + UZTn/h/a ‘
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Chapter 6

Numerical evidence

6.1 F:Q(\/l_?)aK:Q( 4+\/1_7)7p:5

In this section, we give numerical evidence of an example of Conjecture 3.2.3.
Unfortunately this example falls into the setting for which we proved our conjecture in
chapter 5. We hope to compute an example in a case where we have not proved our
conjecture in the future. We do note though that our numerical evidence is for the
conjecture at s = 1, while we proved the conjecture in chapter 5 at s = 0. We also
note that we numerically verified the integral conjecture while in chapter 5 we prove
the rational conjecture.

To begin we introduce the field extensions, modular forms, and Stark unit. Let
p = 5, fix an algebraic closure Q of Q and embeddings Lp Q= Cp and 1o : Q< C.
Let F' = Q(a) where a is a root of 22 —17 and K = Q(b) where b is a root of 2% — (a —4).

Then K is a degree 2 extension of F' which is cut out by a quadratic character of G
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of mixed signature. Let x : Gp — {1} C @X be this quadratic character, so K is the
fixed field of the kernel of x. Let p = Indg% X be the induction of x. Let M be the fixed

field of the kernel of p. The field M is the Galois closure of K over Q. Explicitly
M = Q(b,b) where b =—a+4

The Galois group of M over Q is Dg, the dihedral group with 8 elements. Let

F=Y x(a)g"*

aCﬁF

be the weight one modular form associated to p. The level of f is 68 and the character
of f is the quadratic character of (Z/687Z)* of conductor 68. Because p = 5 is inert in

F and then splits in K, the Hecke polynomial of f at p is
22 —1=(z—1)(z+1).
Let o« = +1 be one of the roots of 22 — 1 and let § = —a be the other root. Let

fa(2) = f(2) = Bf(pz)

be the p-stabilization of f with Up-eigenvalue «.
Let (e = (25 € Q be the 25th root of unity which is mapped to exp(2mi/25)

under to. Let (5 = (35 and let ¢ be the character

X

Y (Z)25Z2) — Q

¥(2) = G-
We simultaneously view ¢ as an element of weight space (so a character of Z valued in

C,) and a Galois character. Let K7 be the fixed field of the kernel of x¢. Then K is a
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degree p = 5 extension of K (so degree 10 over F'). It is the first layer of the cyclotomic
Zs extension of K. We also use the characters 12,1, and 9* in the same role as 1.
Let uy € 0 IX(1 be the Stark unit for the extension K;/F which has positive sign under

the embedding . Stark’s conjecture for K /F asserts that for 1 <i <4,

DOt 0) =3 Y (o) loglo(u)l

o€Gal(K1 /F)

Let My = K1 M be the compositum of K7 and M and let Q1 be the fixed field of ¥ as a
character of Gg, so Q;/Q is the first layer of the cyclotomic Z, extension of Q and M;

is the first layer of the cyclotomic Z, extension of M. Restriction gives an isomorphism

Gal(M; /Q) = Gal(Q;/Q) x Gal(M/Q).

Let §, € Gal(M;/Q) be the lift of the arithmetic Frobenius at p (with respect to ¢p) in

Gal(M/Q) which acts trivially on Q;. Then 6, has order 2. Let
|18 Oh, — Oy

be the projection onto the subspace of & ]\X/h where 0, acts with eigenvalue S (so if 5 =1,
|z|g = xdp(x), if B =—1, |z|g = x/0p(x)).

Now we describe the overconvergent modular forms we need. Let D be the
space of locally analytic Z,-valued distributions on Z,. Let ID_; denote D with the
weight —1 action of ¥o(p). Let N =68, I'o = I't(IV) N T'g(p), and W = Symby (D_1),
so W is the space of overconvergent modular symbols of weight —1. Let W* Cc W be
the +-subspace of W. The Hecke eigensubspace of W+ with the same eigenvalues as f,

is a rank one Zjp-module. Let ©E € W* be a generator for this rank one subspace, and
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let po = ©a({0} — {o0}). We consider the analytic functions

. . + '
Lp(x,a,¢z,¢3,s) = igig—:z Ji; i

for 1 < i,j < 4. Note that for 1 < i < 4, ¥*(68) = 1 and the Euler like factors in

Conjecture 3.2.8 are 1. Therefore the formula we verify is that for 1 <4,j <4,

ST (o) log, lo(un)]s

7(¢¥™%) ceGal(K:/F)

TN xwi (oY) log, lo(un)ls

oceGal(K1/F)

LP(Xv 047 wia ¢j> 1) =

Now we give the numerical data. We begin with the Stark units. The Stark

unit w7 has minimal polynomial over F' given by
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_2268731445425b24—279293603945

h = 10
z +*( 5 5

)294*

(50907762634208956600b24—6267031967879656645)z&+

<—908489137763713280149684575b2__ 111840123671250926011540715

7
5 5 )2+

(

1212779745101402982169172133826675bQ+ 149300009257135106668401653656195

( 2 2

—51814142160111896449580114635979570875

b2 —
( 2

+6378612386462976617500247911470582079

2 )"+

(1212779745101402982169172133826675b2+_149300009257135106668401653656195
2 2

<—908489137763713280149684575b2__ 111840123671250926011540715

3
5 5 )27+

(

(509077626342089566006% + 6267031967879656645) 2%+

—2268731445425 5 279293603945
( 5 b — 5 )z + 1.
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Over K, h factors as h = hihs, where

(—796009073655b3 B 226873144542562 _ 97993194995b B 279293603945)24
4 4 4 4

1772522746965065725

b2
5 +

(3109431520627351306% +

218207521 45 .
+38278851266210370b + 32075 26866686 5)23‘1‘

1772522746965065725

b2
5 +

(310943152062735130b% —

218207521686668645
+38278851266210370b — > )22+

—796009073655 5 2268731445425 , 97993194995 279293603945
( 1 b° + 1 b° — 1 b+ 1 )z
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and

hg = Z5+

796009073655b3 2268731445425 B 97993194995b 279293603945

4
( 1 1 1 1 )z

1772522746965065725 B2

(—3109431520627351306% + 5

218207521686668645
+38278851266210370b + 5 )23+

1772522746965065725
2

(—3109431520627351300% — b’ —

218207521 4
+38278851266210370b — 82075 26866686 5)22+

796009073655, 5 2268731445425 5 97993194995 279293603945
b’ + b° + b+

( 4 4 4 1 )z

-1

We computed the spaces W+ and elements ¢ with the precision of 60 5-adic

digits. For 1 < 14,7 <4, the p-adic numbers

LP<X7 Oé, ’l/}i7 wja 1)
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and

S xwi(o Y log, lo(u)ls

o€Gal(K, /F)

Y (o) log, lo(u)ls

o€Gal(K, /F)

were computed with the precision of 60 5-adic digits. These ratios lie in the field Qs5((25).
This field has ramification index 20 and was represented on the computer with respect
to the uniformizer m = (25 — 1. We note that 60 5-adic digits in Q5((25) is 6020 = 1200
m-adic digits. We can compute the Gauss sum ratio to as high of a precision as we like.

We then computed the m-adic valuation of the difference

S (o) log, lo(w)ls

7(¢™%) veGal(K:/F)

TS (o) log, lo(w)s

o€Gal(K1/F)

Lp(X’Oﬂ/)Z"wj,l) - (61)

and recorded the valuations in the following table:
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a | (i,j) | m-adic valuation of (6.1)
1| (1,2) | 1135
1| (1,3) | 1136
1| (14) | 1135
1| (23) | 1135
1| (24) | 1135
1| (3,4) | 1135
1] (L,2) | 1142
-1 (1,3) | 1140
1] (1,4) | 1141
1] (2,3) | 1140
1] (24) | 1141
1| (3.4) | 1140

Considering the precision we are working at, a number in our computer repre-
sentation of Q5((25) is 0 if it has w-adic valuation 1200. Therefore the table says that
the value of (6.1) is extremely close to 0. A certain amount of rounding error is expected
because we have done somewhat complicated calculations in Q5((25). The discrepancy
between the third column in the table and 1200 is most likely from rounding error. With

our original precision of 60 5-adic digits, the third column of the table is less than 4

5-adic digits away from 0.
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Chapter 7

Appendix

7.1 Rigid analytic geometry

Rigid analytic geometry is used in this thesis to give a precise account of the
results of Bellaiche and Dmitrov’s work on the eigencurve at weight one points ([2]),
and how to use their results to construct p-adic L-functions on the eigencurve following
Bellaiche ([1]). Every rigid analytic space we consider will be an affinoid space except
for the open unit disk. In this appendix, we introduce the relevant notions that are used
in the thesis. The main reference for this appendix is the book [4].

Let k be a field that is complete with respect to a nonarchimidean absolute
value. The two main cases we consider are when k is Q, or C, with normalized absolute

value | - | so that |p| = 1/p.

Definition 7.1.1. The Tate algebra in m variables over k is the subalgebra k{z1,. .., Ty)
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of k[[z1,...,xn]] consisting of formal power series whose coefficients tend to 0:

k<$1,...,xm):{f: Z aaz® : lag| — 0 as |04]—>OO}

aeN™

QOn

where if o = (o, ..., o), ¥ means x7* - - 28" and |a| = a1 + - oy,

Proposition 7.1.2. k(x1,...,x,) is Noetherian, Jacobson, a unique factorization do-

main, and has Krull dimension n.

Proof. For Noetherian and unique factorization domain, theorem 1 on page 207 of [4].
For Jacobson, theorem 3 on page 208 of [4]. For Krull dimension see the following

proposition. O
Corollary 7.1.3. k(z) is a principal ideal domain.

Definition 7.1.4. An affinoid algebra is a k-algebra isomorphic to k(x1,...,xm)/1
for some m and some ideal I. By the proposition an affinoid algebra is Noetherian and

Jacobson. For an affinoid algebra A, let M(A) denote the set of maximal ideals of A.

Proposition 7.1.5. (Noether normalization) Let A be an affinoid algebra. Then there
exists for some d, an injective map k{x1,...,xq) — A that makes A a finite k(zx1, ..., xq)-

module. The number d is the Krull dimension of A.
Proof. Theorem 1, corollary 2, and remark after corollary 2 page 227 of [4]. O

By the proposition, for an affinoid algebra, A, the nullstellensatz holds. That

is, for each maximal ideal m € M(A), A/m is a finite extension of k. Let X = M (A)
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and for a finite extension L of k, let X (L) = Homy_q4(A, L). We define

LCk
finite

and we have an action of the absolute Galois group Gy on X (k). The map

X(k) — X
v — ker(yp)
is surjective by the nulltellensatz, and G} acts transitively on each fiber. There is
therefor a bijection

X(k)/Gr = X.
We note that when k& = C,, then X = X(C,).

Definition 7.1.6. If A is a k-algebra, a k-algebra norm on A is a non-archimedean
norm | - | : A — Rxqg such that |Az| = |N|z| for all X € k, v € A, and such that
lzy| < |x|ly| for all x,y € A. If A is complete for | -| we say that | - | is a Banach-

algebra norm and that A is a Banach space.
Definition 7.1.7. For f =) aqx® € k(x1,...,z,) define its Gauss norm to be
|f| = sup|aal.
«
The Gauss norm makes k(z1,...,x,) a Banach space (proposition 1, page 192 [4]).

Definition 7.1.8. Let A be an affinoid algebra and let X = M(A). For a € A and

x € X it makes sense to define |a(x)| as the absolute value of the image of a in A/x
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since Ajx is a finite extension of k so there is a unique extension of the absolute value
on k. Fora € A, define

|a|sup = sup |a(z)].
reX

The next two propositions will show that |-| is finite and defines a Banach-algebra norm

on A.

Proposition 7.1.9. Any ideal of the Tate algebra is closed with respect to the topology
induced by the Gauss norm. Therefore any affinoid algebra is a Banach space as well

once we choose a presentation as a quotient of a Tate-algebra.

Proof. Corollary 2, page 208 of [4]. O

Proposition 7.1.10. Any two Banach-algebra norms on an affinoid algebra are equiva-
lent. Furthermore, any k-algebra morphism between two affinoid algebras is continuous.

For a reduced affinoid algebra, | - |sup makes the affinoid algebra a Banach space.

Proof. Theorem 1 and proposition 2 page 229 of [4] for first two assertions. Theorem 1,

page 242 of [4] for third assertion. O

Theorem 7.1.11. Let A be an affinoid algebra and B an A-algebra of finite type as an

A-module. Then B is an affinoid algebra.
Proof. Proposition 5, page 223 of [4]. O
Now given an affinoid algebra, A we give the construction of the rigid analytic

space Sp(A).
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Definition 7.1.12. Let A be an affinoid algebra and let X = M(A). A subset U C X
is called an affinoid subdomain, if there exists an affinoid algebra A’ and a k-algebra
morphism g : A — A’ such that the following holds: For any affinoid algebra B and
k-algebra homomorphism f : A — B, we have that M(f)(M(B)) C U if and only if
there exists k-algebra homomorphism h : A' — B such that f = ho g.

If U is an affinoid subdomain, then the A’ is unique and we define the ring of
rigid analytic functions on U to be Ox(U) = A’.

A subset U C X is called an admissible open if it has a set-theoretic covering
by affinoid subdomains {Uys} of X such that the following holds: For any f : A — B
with M(f)(M(B)) C U, the covering {M(f)(Uqa)} of M(B) has a finite subcover.

A collection {Uy} of admissible open subsets of X is an admissible covering
of its union U = |, Ua, if the following holds: For any f : A — B with M(f)(M(B)) C
U, the covering {M(f)(Uas)} of M(B) admits a refinement which is a finite covering of
M (B) by affinoid subdomians.

The definitions of admissible opens and admissible coverings define a Grothendieck

topology on X, which we will call the Tate topology on X.

Theorem 7.1.13. (Tate’s acyclicity theorem) Let A be an affinoid algebra and X =
M(A). The function U — Ox(U) from affinoid subdomains to k-algebras extends
uniquely to a sheaf with respect to the Tate topology. In particular, if U is an affi-

noid subdomain and U = UU, is a covering of U by affinoid subdomains, then the
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Sequence

0— Ox(U) — [[ Ox(Us) — [] O0x (U N Up)

o a,B

18 exact.
Proof. Section 8.2 of [4]. O

Definition 7.1.14. Let A be an affinoid algebra. Then the affinoid (or affinoid
variety or k-affinoid variety if we want to make k explicit) Sp(A) is defined to be the
pair (X, Ox) where X = M(A) with its Tate topology and Ox is the sheaf of k-algebras

on X just defined.

Definition 7.1.15. Let X = Sp(A) be an affinoid. Then for x € X, we define the stalk

of X at x to be

Ox o = lim Ox(U)
zelU

where the direct limit is over admissible opens. For an affinoid algebra A and a maximal
ideal m of A we define the rigid analytic localization of A at m to be the stalk of
Sp(A) at the point corresponding to m.

The k-algebra Ox , is a local ring.

Proposition 7.1.16. Let X = Sp A be an affinoid, let x € X and let m C A be the
mazimal ideal corresponding to x. Then the canonical map A — Ox , factors through
an injective map An — Ox , and this injective map induces an isomorphism

~

Am

I

ﬁX,m
between the m-adic completion of A and the mazximal-adic completion of Ox ,.
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Proof. [4] page 298. O

To make the definition of a rigid analytic space we work in the category of
locally ringed G-spaces. A locally ringed G-space is a pair (X, Ox) where X is a set
with a mild Grothendieck topology (so all the sets in the Grothendieck topology are
subsets of X) and Ox is a sheaf on the Grothendieck topology whose stalks are all
local rings. A morphism from a locally ringed G-space (Y, Oy) to another locally ringed
G-space (X, Ox) is a pair (f, f7) where f : Y — X is a continuous map with respect to
the Grothendieck topologies and f# : Ox — f.0y is a sheaf morphism which induces
homomorphisms of local rings on the stalks. For more details on the category of locally

ringed G-spaces we refer the reader to ([4]).

Definition 7.1.17. A rigid analytic variety (or rigid analytic space) is a locally
ringed G-space (X, Ox) admitting a covering {U,} such that for each «, (Uy, O|y,)
is isomorphic to an affinoid variety. A morphism X — Y between two rigid analytic

spaces is a morphism between the associated locally ring G-spaces.

We remark that the category of affinoid varieties is a subcategory of the cate-
gory of rigid analytic varieties, and that any morphism f : Y = Sp(B) — X = Sp(A4) of
affinoid varieties is induced by a morphism of k-algebras from A to B. More precisely,
the category of affinoid varieties is the opposite category to the category of affinoid

algebras where morphisms of affinoid algebras are k-algebra homomorphisms.
Definition 7.1.18. Given affinoid varieties X = Sp(A), Y = Sp(B) and Z = Sp(C)
with morphisms X — Z and Y — Z, then the fiber product of X and Y over Z is
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given by the completed tensor product of A and B over C':
X Xz Y = Sp(A@CB)

Furthermore, this definition glues to define fiber products in the category of rigid analytic

spaces.

Definition 7.1.19. A rigid-analytic space X is disconnected if there exists an ad-
missible open covering {U,V} of X with U,V # 0 and UNV = 0. We say that X is

connected if X is not disconnected.
We record some facts about connectedness.

Proposition 7.1.20. 1. Let X = Sp(A) be an affinoid. Then X is connected if and

only if M(A) is connected with respect to the Zariski topology.

2. Let X1,...,X, be the connected components of M(A) with respect to the Zariski
topology. Then the X; are affinoid subdomains of X and there exist affinoid sub-

algebras A; of A such that X; = M(A) and
A=A1 x Ay x - x A,.
The X; are called the connected components of X.
Proof. [4] page 345. O

Definition 7.1.21. Let X be a rigid analytic space. We say that X s reduced, nor-
mal, or smooth at a point x € X if the local ring Ox , is reduced, normal, or regular

respectively.
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Proposition 7.1.22. Let X = Sp A be an affinoid and let x € X be a point correspond-
ing to the mazimal ideal m C A. If one of the rings Aw, Ox g, or /Tm = Ox 5 15 reduced,

normal, or reqular, then all three rings satisfy this property.
Proof. [4] page 301. O

Definition 7.1.23. Let X and Y be rigid analytic spaces. A morphism f:Y — X is

called étale at y € Y, if the induced morphism on the stalks:
Ox,5y) — Ovy

is flat and unramified. We recall that unramified means Oy, /my(,) Oy, is a finite sep-
arable extension of Ox f.)/myy) where my,) is the mazimal ideal of Ox y(,. The
morphism f Y — X is called étale if f is étale aty for ally €Y.

Assume X,Y are rigid analytic spaces over an algebraically closed field. For
f:Y = X a morphism and y € Y, the ramification index of f at y € Y is defined

to be the length of the Ox f(,) /™ y(,)-module Oy y/mp Oy,

Definition 7.1.24. Let A be an affinoid algebra. We define the relative Tate algebra

to be
Az, ..., xn) = {f = Zaawo‘ € Allx1,...,zy]] : aq — Oas|a| — oo}.
If A2 k(y1,...ym)/I, then the obvious map
EWis - s Yms @1, .-y Tp) — Az, ..., Tp)

is surjective giving A(x1,...,xy) the structure of an affinoid algebra.
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Proposition 7.1.25. Let Y = Sp(B) and X = Sp(A) be affinoids and let f : Y — X
be a morphism from'Y to X. Then f is étale if and only if B has a presentation of the

form

B=A{xy,...,zn)/(f1, f2,- -, [n)

such that the determinant of the n X n matriz (%) 1s 1nvertible in B.
Proof. Proposition 8.1.1 of [12]. O

Proposition 7.1.26. Let A be a k-affinoid algebra. The canonical k-algebra homomor-

phism

s an tsomorphism.
Proof. Proposition 7, page 224 of [4] O

For the next two corollaries, let k' be a field extension of k that is complete
with respect to an absolute value that extends the absolute value on k (for example

k=Qpand k' = Cp).
Corollary 7.1.27. There are canonical isomorphisms
E(xy, .. 20) @k, - ym) k{21, Znim)

and

EQupklxy, ... xn) 2K (z1,...,x,).

Proof. Corollary 8, page 224 of [4]. O
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Corollary 7.1.28. Let A and B be k-affinoid algebras. Then ARQyB is a k-affinoid
algebra and kK'®@B is a k' -affinoid algebra. The canonical homomorphism B — k'Q,B

18 injective.
Proof. Corollary 9, page 224 of [4]. O

In this thesis, we consider Q, and C,, rigid analytic varieties, and we repeat-
edly do the following construction. Given a Qp-affinoid X = Sp(A), we consider
the base change to C,, Xc, = Sp(Ac,) where Ac, := Cp@)QPA. Define X(C,) =

Homg, —a1¢(A, Cp). Then we have the relation
X(Cp) = Home,alg(A, Cp) = Hom(cp,alg(A(cp, Cp) = X(cp((Cp) = M(AC,,)-

We will be concerned with rigid analytic functions on X¢,, which are the elements of
Ac,. We view A as a subring of Ac, via the natural map A — Ac,, and call elements

of Ain Ac,, Qp-rigid analytic functions on Xc,.

Example 7.1.29. 1. The closed disk (of dimension one) and radius r with r € p@:
We start with the affinoid closed disk of radius p" with r € Z. This is given by
Sp(A), where

A=Qpp'z)
or more explicitly we have that
A= {f = Zanx” € Qpllz]] : lanp™| =p "|an] — 0 as n — oo} :
We define the affinoid closed disk of radius p=®/°, where ged(a,b) = 1 to be Sp(A)
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where
A= Qplz,y)/(0°z — ).
More explicitly we may view A as a subring of Q,[[z]] as
A= {f: Zanx" : p™a,| — 0 asn—>oo}.
We remark that letting X = Sp(A), then we have,

X(Cp) = Home*alg(Aa Cp) = {z € Cp: 2| < pa/b}-

In the case when a/b = —1/m, for m € Z>¢ we write down the isomorphism of

the two rings explicitly. Let R C Qp[[x]] be the subring

oo
R= {Zanl‘" P an| = 0 as n — oo}
n=0

where we view p"'™a,, € Cp. Also set

A= Qplz,y)/(py — ™).

We have an isomorphism A = R given by the following relation. Let

Y aasy®e” € Qply, )/ (yp — 2™).
a,B

Then in A we have

Z aagyo‘xﬁ = Z aag(xm/p)axﬁ
a?ﬂ

a,B

-3 [ dema )
p(k—ﬁ)/m

k=0 \ 8=0

where we set ag,_g)/m,3 = 0 if m 1 (k—fB). This defines a map from A to R which

is an isomorphism for affinoid algebras.

154



2. Union of affinoids. Let X,, n > 1 be a collection of affinoids, and assumed we
have morphisms X, — Xp+1 for all n such that X, is an affinoid subdomain
of Xpn+1- Then there is a unique rigid analytic space X which is the admissible
increasing union of the X,,. Furthermore, for such an X, the ring of rigid analytic

functions on X is the inverse limit of the rings of analytic functions on the X,
O(X)=1lmd0(X,).
iy

3. The open unit disk (of dimension one). We make use of the previous construction

where X, is the closed unit disk of radius 1/p"/™ around 0. Let

R, = {f = Zanx" e Q] : [PV an| = 0 asn — oo}

be the ring of Qp-rigid analytic functions on X,,, so X,, = Sp Ry,. For k < m,
we have maps X — X, induced by the inclusions R, — Ri. Then we define the

open unit disk to be

X = U X = Sp(lim Ryy).
m=1 m

Since the maps Ry, — Ry are inclusions the ring of analytic functions on X is

Ry, = {f = Zanxn : |p"/man| — 0 asn— oo,Vm e ZZI}-
1

R::yLan:

m

DY

To finish, we note that Zy[[z]] C R so we may view elements of Zy[[z]] as rigid
analytic functions on the open unit disk. We call these rigid analytic functions the
Qp-bounded rigid analytic function on the open unit disk. We have that Zy[[z]] is

the closed unit disk in R:
Zypllx]] = {f = Zanx" € R:supla,| < 1} ,
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7.2 Topological rings, modules, and completed tensor prod-

uct

In this section for completeness, we record the notion of completed tensor
product.

Let R be a topological ring and let M, N be topological R-modules whose
topologies are determined by basis of open submodules or 0, say {Ma}aer, {Ng}pes-

Then we define the completed tensor product to be

Then M®pzN is the completion of the usual tensor product M @ N with respect to

the topology determined by the basis of open submodules of M ®r N given by
MQ®RN—|-M®RN5 CM@RN

as « and 8 run through I and J.
If A and B are continuous R algebras where the topology of A and B are given
by a family of open submodules, then A®rB as a topological R-algebra is defined by

viewing A and B as topological R-modules and using the above construction.

7.3 Hecke characters

In this appendix, we record our definition and conventions for Hecke characters

following [23]. Let F' be a number field and let Ap denote the adeles of F. Given an
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integral ideal f of F' that factors as f = Hv‘ffv, we define the subgroups Uj, Ujp, Uj,oo C

A% as
Ty > 0if v is.real
U = < ()0 € A : xy =1 mod f, if v | f
x, € O, if v{f and is finite
T, > 0 if v is real
' z, = 1 mod f, if v | f
"xy € O if v{fp and is finite
xy,=1ifv|p

UM) = (l'v)v € A;

xy=11ifv | o0
Upoo =4 (1)y €A% zp=1modf, ifv|f
z, € O if v{f and is finite

Definition 7.3.1. An element

T = Z Ng0 € Z[HOHI(F, @)]
o€Hom(F,Q)

is called an infinity type of F'. An infinity type T induces a group homomorphism
T:F* — E*
T(e) = [[ola)™
where E is any extension of Q that contains the values [ [, o(a)"™ for all « € F.

Definition 7.3.2. 1. Let E be a finite extension of Q, f C Of an ideal, and T an
infinity type of F'. An FE-valued algebraic Hecke character of infinity type

T and modulus | is a group homomorphism
x: Ay — E*

such that Uy C ker(x) and x|px = T. The smallest § with respect to divisibility

such that Uy C ker(x) is called the conductor of x.
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Let x is an algebraic Hecke character of modulus § and a an ideal of F' such that

(a,f) =1 and that factors as

a= H pr

(p,a)=1

then we define x(a) to be

H X ()

(p,f)=1

where m, denotes a uniformizer of Fy.
2. A p-adic Hecke character is a continuous group homomorphism
X :Ap/F* —Cj.

By continuity, there exists an integral ideal § of F' such that (f,p) =1 and U, C
ker(x). Any f for which this is true is called a modulus of x and we say that x is
a p-adic Hecke character of modulus f. The smallest f with respect to divisibility

such that Uy, C ker(x) is called the tame conductor of x.
3. A complex Hecke character is a continuous group homomorphism
x:AR/F* — C*.

By continuity, there exists an integral ideal § of F' such that Uj C ker(x). Any
f for which this is true is called o modulus of x and we say x is a complex
Hecke character of modulus f. The smallest § with respect to divisibility such that
Us,co C ker(x) is called the conductor of x.

If x is an algebraic, p-adic, or complexr Hecke character and v is a place of F,

then we let x, denote x restricted to F* C Aj.
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Example 7.3.3. An example of an algebraic Hecke character that appears multiple
times in this thesis is the norm character, which we denote by N. The norm character
is defined as

N:AfF — Q¥

N((z)o) = ] Izl T son(laolo)

v-finite v-real

It is clear that N is a group homomorphism and

H Op Cker(x)
v-finite

so N has conductor (1). By construction, N has the property that for all nonzero ideals

aC Op,
N(a) = |0OFp/a].

Furthermore, for a € Op — {0},

N(a) = |0r/(a)] T] son(lal.)

v-real

= [Nesg(@)] T sgn(lal)

v-real
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so N has infinity type T = Z .
0:F—=Q

Remarks 7.3.4. The notion of an algebraic Hecke characters was introduced and stud-
ied by Weil, who called them characters of type Ag. Complex Hecke characters are also
known as grossencharacters or idele class characters, while p-adic Hecke characters are
known as p-adic idele class characters. Since we need all three notions of algebraic, p-
adic, and complex Hecke characters we introduce and use the definitions given to avoid

confusion.

We give a second definition of an algebraic Hecke character that will be used
in section 4.4.
Let f be an ideal of OF and let & € F* be an element such that ((«),m) =1
and say that f factors as
m
f= H pii~
i=1
We define o = 1 mod § to mean that o = 1 mod p{i in ﬁppi for all . When « € OF this
agrees with the usual definition of congruence.

Let I(f) denote the group of fractional ideals of F' that are coprime with f. Let
Pi(f) ={(a) € I(f) : @ = 1 mod f and « is totally positive}

The second definition of an algebraic Hecke character is the following. An F-valued
algebraic Hecke character of modulus f and infinity type 7' = ) ny,0 is a group
homomorphism

x:I(f) — E*
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such that for all a € P;(f) such that a = (o) with o = 1 mod f and « totally positive

X(@) = T(a) = [[o(a)™.

Given an FE-valued algebraic Hecke character of modulus § and infinity type T, x us-
ing the second definition, we get an algebraic Hecke character of the same modulus
and infinity type, xa using the first definition by defining x4 to be the unique group
homomorphism

Xa:Ap — E”
such that
(i) For all primes p € I(f), XM@?,@ =1 and xa(mp) = x(p) for any uniformizer in Fj,.
(i) xalpx =T.

(ili) U C ker(xa). This gives a one-to-one correspondence between E-valued algebraic
Hecke characters of modulus f and infinity type T using the first and second

definitions.

Remarks 7.3.5. We make a remark about defining algebraic Hecke characters using the

second definition. Let f be an integral ideal of F' and let x¢ be a group homomorphism
X

xo:Pi(f) — Q

such that for all a = («) € Pi(f) where a = 1 mod f and « totally positive
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for some infinity type T. We claim that we can always extend xo to an E-valued Hecke
character of modulus f and infinity type T where E is some finite extension of Q. Indeed,

we consider the short exact sequence
L— P(f) — I(f) — I())/P(f) — 1
Applying Hom(-,@x) to this short exact sequence the long exact sequence becomes
1 — Hom(I(7)/P1(f),Q") — Hom(I(§), Q") — Hom(P1(f), Q") — 1

since Q" is divisible so Ext!(., @X) = 0. Hence the there exists a group homomorphism
x € Hom(I (f,@x) such that x|p, () = xo. Furthermore we see that any two extensions

of xo from P (f) to I(f) differ by a character of the ray class group I(f)/Pi(f).

Given an E-valued Hecke character, x of infinity type T" and modulus f as well
as embeddings ¢, : Q <= C, and 1 : Q < C we obtain p-adic and complex Hecke
characters x;, and xoo which are defined as follows. Let E, be the completion of the
image of £ in C, and E, be the completion of £ in C under the embeddings ¢, and
leo. Define

Xp: Ap/F* — Ef CC)

at places v of F' not dividing p as x, so x| Fx = X R At places above p we define x,,

to be the group homomorphism
Xp: (F®Qy)* — Ef CCy

xpla @ 1) = x(@)/1p(T ().
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Since the image of F* in (F' ® Q)™ is dense this defines x, on (F ® Q,)*. We do

something similar for y,. Define
Xoo : AR /F* — EX C C*

at the places v of F' not dividing oo as x, S0 Yool X = X px- At places above co we

define y to be the group homomorphism
Xoo : (FQR)* — EX C C*

Xoo(a ®@ 1) = x(a) /oo (T()).

Since the image of F* in (F ® R)* is dense this defines xoo on (F ® R)*.

Given an algebraic Hecke character x when it is clear from context when we
are considering x;, or xoo, we may drop the subscripts p and co. Given a p-adic (or
complex) Hecke character ¢ we may say by abuse of language that 1 is an algebraic
Hecke character of infinity type T if there exists an algebraic Hecke character x of
infinity type T" such that ¢ = x, (or ¢ = x0)-

If ¢ is a complex Hecke character such that ¢ = y, for a algebraic Hecke
character then the conductor of 1) and x are the same. If ¢ is a p-adic Hecke character
of tame conductor m such that ¢ = x,, for an algebraic Hecke character of conductor f,
then f and m will agree at the primes of F' not dividing p. By definition no primes of F'

above p will divide m, while f may be divisible by primes above p.
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7.4 Hecke L-functions

In this appendix, we record the functional equation of the complex L-function
associated to a complex Hecke character. A reference for this section is [22].
Let

x:Ap/F* — C*

be a complex Hecke character of infinity type T" and conductor f = H pov. For each
v-finite
finite place v of F' fix a uniformizer 7, of OF,. Let 0 = H pov be the different of F//Q

v-finite

and let dp be the discriminant of F.

Definition 7.4.1. We define (primitive) complex L-function of x for Re(s) > 1,

by the Fuler product

L(x,s) = [] Lo(x:9)

vfoo

where the product is over all finite places of F' and

(1= x(m)Nv=*)~" ifvif
Ly(x,s) =

1 else.

We note that for v 1 f, Xv’ﬁ; =1 so Ly(x,s) does not depend on the choice of uni-

formizer m,.

We will state the functional equation of L(y,s). To do this, we define the
Euler factors of x at the infinite places of F' and the local root numbers of x at all the

places of F'.
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Let v be a real place of F. Then y, : R* — C* must be of the form
Xolt) = [t/ [E)™
for some sy € C and m € {0,1}. We define the Euler factor of x at v to be
Ly(x,s) = 7~ CH0t™D((s 4 50 +m) /2)
and the local root number of y at v to be
Wxe) =i™™.

Let v be a complex place of F. We then identify F, with C* (there are two
ways to do this) and view y, as a character of C*: x, : C* — C*. Then x, is of the
form ., (z) = |2]?%0(2/|z])™ for some sy € C and m € Z. We define the Euler factor of

x at v to be

Lo(x, 8) = 2(2m) T2 (s 5 + ml /2)
and the local root number of y at v to be
W(xv) = i,

The root number and Euler facts, W(x,) and L,(x,s) do not depend on the choice of
identification of F,, with C*.

At finite places v 1 f of F', define the local root number to be

so W(xy) = 1if v { dfoo.

165



Define the local root number of x at a place v | f to be

W) = 2085 L S ) expl@niTr g, (a/70 )
v | (ﬂ.av-f-du” Nopav/2 v Fy/Qp v
vl uE(Or, [v0)*

where T'rp, /g, (u/ r2v+dv) is viewed as an element of Q/Z via the maps Q, — Q,/Z, =
Q/Z. Define the local root number of x at a place v t f to be 1 (we are following
Rohrlich).

Let ¢ be the real number such that we have the relation x/|x| = N¢ where N
is the norm character (see example above) viewed as a complex Hecke character, and
define k = 2c + 1.

Define the completed L-function of y for Re(s) > 1 to be

A(x:5) = (|deINkof)** L0 9) [ ] Lo(x, 5)

v]oo

and the global root number to be

W) =W

Then A(y, s) has a meromorphic (analytic if x # 1) continuation to all of C and satisfies

the functional equation

A(Xv k— 3) = W(X)A(Ya 8)'
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