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Abstract

We give a new definition of a p-adic L-function for a mixed signature character of a real
quadratic field and for a nontrivial ray class character of an imaginary quadratic field. We then
state a p-adic Stark conjecture for this p-adic L-function. We prove our conjecture in the case
when p is split in the imaginary quadratic field by relating our construction to Katz’s p-adic
L-function. We also provide numerical evidence for our conjecture in three examples.
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1 Introduction

Let F be a number field and let
χ : GF −→ C×

be a continuous one dimensional representation of the absolute Galois group of F . Let K be the
fixed field of the kernel of χ. For the rest of this article, let p be an odd prime number, let Q be an
algebraic closure of Q, and fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Cp.

Via the Artin map, to χ we may associate the complex Hecke L-function, L(χ, s), defined by
the series

L(χ, s) =
∑
a⊂OF

χ(a)

N as

for Re(s) > 1. The function L(χ, s) has a meromorphic continuation to the whole complex plane.
In the late 1970s, in a series of papers, Stark made precise conjectures concerning the leading term
of the Taylor series expansion at s = 0 of L(χ, s) ([28], [29], [31]). Stark’s conjectures relate the
leading term of L(χ, s) at s = 0 to the determinant of a matrix of linear combinations of logarithms
of units in K. His conjectures refine Dirichlet’s class number formula. Stark proved his conjectures
when the field F is equal to Q or to an imaginary quadratic field. In general the conjectures are
open.

Around the same time that Stark made his conjectures, p-adic L-functions were constructed
interpolating the critical values of complex Hecke L-functions for general number fields. This vastly
generalized Kubota and Leopoldt’s work on the p-adic Riemann zeta function. When F is a totally
real field and χ : GF → C× is a totally even character, Cassou-Nogues ([5]), and then Deligne and
Ribet ([10]) defined a p-adic meromorphic function

Lp(χ, s) : Zp −→ Cp
determined by the following interpolation property: for all n ∈ Z≤0,

Lp(χ, n) =
∏
p|p

(1− χωn−1(p) N p−n)L(χωn−1, n) (1)

where ω is the Teichmüller character. Siegel and Klingen ([26]) showed that the values L(χωn−1, n)
lie in the field obtained by adjoining the values of χωn−1 to Q. The equality (1) takes place in Q.

Now let F be a CM field with maximal totally real subfield E. A prime p is called ordinary for
F if every prime above p in E splits in F . For such primes p, Katz ([18],[19]) defined a p-adic L-
function associated to any ray class character χ : GF → C×. Katz’s p-adic L-function interpolates
the values of complex L-functions of algebraic Hecke characters with nonzero infinity type. To
specify the interpolation property we specialize to the case that F is imaginary quadratic. Let p
be a rational prime that is split in F . Let λ be a Hecke character of infinity type (1, 0). Then Katz
constructed a p-adic meromorphic function

Lp(χ, t, s) : Zp × Zp −→ Cp
determined by the following interpolation property: for all k, j ∈ Z such that 1 ≤ j ≤ k − 1,

Lp(χ, k, j)

Ωk−1
p

= Ep(χ, k, j)
L(χλk−1, j)

Ωk−1
∞

. (2)

Here Ep(χ, k, j) is an explicit complex number and Ωp ∈ C×p , Ω∞ ∈ C× are p-adic and complex
periods that make both sides of (2) algebraic.

In these two cases, F totally real and F imaginary quadratic with p split, p-adic Stark con-
jectures have been made for Lp(χ, s) and Lp(χ, t, s), and some progress has been made on these
conjectures. When F is totally real and χ is totally odd Gross ([17]) stated a conjecture for the
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order of vanishing of Lp(χω, s) at s = 0 and the leading term of the Taylor series of Lp(χω, s) at
s = 0. Progress has been made on the order of vanishing, and recently the formula for the leading
term was proved in [8] building off of earlier work in [7]. When F is totally real and χ is totally
even there is a conjecture for the value Lp(χ, 1) known as the Serre-Solomon-Stark conjecture ([27],
[32]). This conjecture is open except in the cases when F = Q, when the formula is due to Leopoldt,
and when χ is trivial, where Colmez has proven a p-adic class number formula ([6]). When F is
imaginary quadratic and p is split in F , Katz stated and proved a p-adic Stark conjecture for the
value Lp(χ, 1, j) known as Katz’s p-adic Kronecker’s 2nd limit formula ([18] and see Section 5.1).

One of the original motivations for Stark’s conjectures is that when the order of vanishing of
L(χ, s) at s = 0 is exactly one, then the conjectures shed light on Hilbert’s 12th problem about
explicit class field theory. More precisely, when the order vanishing is exactly one then Stark’s
conjectures predict the existence of a unit u ∈ O×K such that the relation

L′(ψ, 0) = −1

e

∑
σ∈Gal(K/F )

ψ(σ) log |σ(u)| (3)

holds for all characters of the Galois group Gal(K/F ) and such that K(u1/e) is an abelian extension
of F . Here e is the number of roots of unity in K and the absolute value is a particular absolute
value on K. When F is real quadratic, ords=0(L(χ, s)) = 1 if and only if χ is mixed signature. In
this case, we choose the absolute value on K to correspond to one of the real places of K. Then by
varying ψ and exponentiating (3) one can solve for the unit u from the L-values L′(ψ, 0). In this
way, Stark’s conjectures give a way to construct units in abelian extensions of F . In Section 2, we
review the rank one abelian Stark conjecture when F is a quadratic field.

The goal of this article is to define a p-adic L-function and state a p-adic Stark conjecture in the
setting when F is a quadratic field and ords=0(L(χ, s)) = 1 (the rank one setting). This is the case
when χ is any nontrivial character if F is imaginary quadratic, and when χ is a mixed signature
character when F is real quadratic. When F is imaginary quadratic and p is split in F our p-adic
L-function is related to Katz’s. In the cases when F is imaginary quadratic and p is inert, as well
as when F is real quadratic and χ is mixed signature, our p-adic L-function is new. One of the
main issues with defining the p-adic L-function for χ when F is quadratic and ords=0(L(χ, s)) = 1
is that the complex L-function L(χ, s) has no critical values. Therefore the p-adic L-function of χ
will not interpolate any of the special values of L(χ, s). In order to define the p-adic L-function
in lieu of the fact that L(χ, s) has no critical values we p-adically deform χ into a family of p-adic
representations where complex L-functions in the family do have critical values to interpolate.

We now explain in more detail our definition, conjectures, and results. Let

ρ = Ind
GQ
GF

: GQ −→ GL2(C)

be the induction of χ from GF to GQ. Then the q-expansion

f =
∑
a⊂OF

χ(a)qNa

is the q-expansion of a weight one modular form and ρ is the representation associated to f . The
modular form f has character ε = det ρ and level N = |dF |NF/Qm where dF is the discriminant of
F and m is the conductor of χ. Let

x2 − ap(f)x+ ε(p) = (x− α)(x− β)

be the Hecke polynomial of f at p. Then α and β are roots of unity, so f has two (possibly equal)
ordinary p-stabilizations. Let fα(z) = f(z)−βf(pz) be a p-stabilization of f . Under the assumption
that α 6= β, Belläıche and Dmitrov ([2]) have shown that the eigencurve is smooth at the point
corresponding to fα. We will use Belläıche and Dmitrov’s result, so we assume α 6= β and let V be
a neighborhood of fα on the eigencurve such that the weight map is étale at all points of V except
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perhaps fα. LetW be weight space. Using the constructions of [1] there exists a two-variable p-adic
rigid analytic function

Lp(fα, z, σ) : V ×W −→ Cp

such that for all classical points y ∈ V , all finite order characters ψ ∈ W(Cp), and all integers j,
1 ≤ j ≤ k − 1 where k is the weight of y,

Lp(fα, y, ψ
−1(·)〈·〉j−1)

Ω
sgn(ψ)
p,y

= Ep(fα, y, ψ, j)
L(gy, ψω

j−1, j)

Ω
sgn(ψ)
∞,y

. (4)

Here gy is the modular form corresponding to the point y ∈ V , L(gy, ψω
j−1, j) is the complex

L-function of the modular form gy twisted by the Dirichlet character ψωj−1, Ep(fα, y, ψ, j) is an
explicit complex number, and Ω±∞,y,Ω

±
p,y are p-adic and complex periods respectively that make

both sides of the equality algebraic. In Section 3, we give the background needed in order to define
Lp(fα, z, σ).

Conceptually, it makes sense to define the p-adic L-function of χ as

Lp(χ, α, s) : Zp −→ Cp
Lp(χ, α, s) = Lp(fα, x, 〈·〉s−1)

where x ∈ V is the point corresponding to fα. The problem with this definition is that while the
function Lp(fα, z, σ) is determined by the above interpolation property, the triple of the function
Lp(fα, z, σ), the p-adic periods Ω±p,y, and the complex periods Ω±∞,y is not canonically defined. The
choice of the function Lp(fα, z, σ) may be changed by a p-adic analytic function on V for which we
would obtain a new function with new p-adic and complex periods satisfying the same interpolation
formula. We would like to state a p-adic Stark conjecture for the function Lp(χ, α, s), but because
the function is not canonically defined it does not make sense to specify its value at any point with
a precise conjecture.

To define a function that does not depend on any choices, we fix two finite order Dirichlet
characters η, ψ ∈ W(Cp) and define the p-adic L-function of χ with the auxiliary characters η and
ψ as

Lp(χ, α, ψω, ηω, s) =
Lp(fα, x, ψ

−1ω−1(·)〈·〉s−1)

Lp(fα, x, η−1ω−1(·)〈·〉s−1)
.

The function Lp(χ, α, ψω, ηω, s) does not depend on the choices made to define Lp(fα, x, σ). In
Section 4, we make the following conjecture for Lp(χ, α, ψω, ηω, s).

Conjecture 1.1. Let η, ψ ∈ W(Cp) be of orders pm and pn respectively. Let Mm and Mn be the
fixed fields of the kernels of the representations ρ⊗ η and ρ⊗ ψ respectively. Let km and kn be the
fields obtained by adjoining the values of χ, α, and ζpm+1 and ζpn+1 respectively to Q. Then there
exists units u∗χη,α ∈ km ⊗ O×Mm

and u∗χψ,α ∈ kn ⊗ O×Mn
such that

Lp(χ, α, ψω, ηω, 0) =
(1− βψ(p))

(
1− ψ−1(p)

αp

)
τ(ψ−1)
pn+1

(1− βη(p))
(

1− η−1(p)
αp

)
τ(η−1)
pm+1

logp(u
∗
χψ,α)

logp(u
∗
χη,α)

where τ(ψ−1) and τ(η−1) are the Gauss sums associated to ψ−1 and η−1 respectively.

In Section 5, we prove our conjecture when F is imaginary quadratic and p is split in F by
comparing Lp(χ, α, ψω, ηω, s) to Katz’s p-adic L-function (Theorem 5.13). We also show in Section
5 that in this case, it is possible to choose the periods in (4) in such a way as to make Lp(χ, α, s)
canonically defined. It is a goal of future research to explore whether or not this is possible in the
other cases.
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At the outset of this project, we believed that the units u∗χη,α, u
∗
χψ,α would be related to the

units appearing in (3) for the characters χη and χψ (see [13] for the precise relation we expected).
This is the case when F is imaginary quadratic and p is split (see Section 5.7). In the other cases
it is not clear what the precise relation is or if there is a relation. In Section 6, we give evidence
for our conjecture exploring the relation between u∗χη,α and u∗χψ,α and the units that would appear
in (3).

Acknowledgments: I thank my adviser Samit Dasgupta for giving my the ideas that form the
basis of this material. This article is based off the work I did in my thesis ([13]). I greatly thank
Ralph Greenberg for sharing his work with Nike Vatsal ([15]) with me, and for reading and helping
with an earlier version of this paper. His input was essential in finishing this project. I thank Rob
Pollack and Rob Harron for letting me use their SAGE code for computing overconvergent modular
symbols. I also thank the anonymous referee whose comments helped improve the quality of this
paper.

2 The rank one abelian Stark conjecture for quadratic fields

In this section we state the rank one abelian Stark conjecture for quadratic fields, and introduce
notation that will be used in later sections. Let F be a quadratic extension of Q and let K be a
nontrivial finite abelian extension of F . If F is real quadratic assume that one infinite place of F
stays real in K and the other becomes complex.

Let S be a finite set of places of F that contains the infinite places and the places that ramify in
K. Assume that |S| ≥ 2. Let SK denote the places of K above those in S. Let v denote an infinite
place of K such that v(K) ⊂ R if F is real quadratic. We also let v denote the infinite place of F
that is v|F , so v ∈ S. Let Uv,S denote the subgroup of K× defined by

Uv,S =

{
{u ∈ K× : |u|w′ = 1, ∀w′ such that w′|F 6= v|F } if |S| ≥ 3

{u ∈ K× : |u|w′ = |u|w′′ , ∀w′, w′′ | v′ and |u|w = 1,∀w 6∈ SK} if S = {v, v′}.
Let e denote the number of roots of unity in K. Let LS(χ, s) be the complex L-function associated
to χ with the Euler factors at the primes in S removed.

Conjecture 2.1. (Stark [31] at s = 0) There exists u ∈ Uv,S such that for all characters χ of
Gal(K/F ),

L′S(χ, 0) = −1

e

∑
σ∈Gal(K/F )

χ(σ) log |σ(u)|v.

Remark 2.2. 1. Stark conjectured the additional conclusion that K(u1/e) is an abelian extension
of F . For our purposes we will not be considering this part of the conjecture.

2. Stark proved the above conjecture when F is imaginary quadratic ([31]). The conjecture is
open when F is real quadratic.

3. If |S| ≥ 3, then the element u ∈ Uv,S has its absolute value specified at every infinite place of
K, so u if it exists is determined up to multiplication by a root of unity.

4. In the real quadratic case, we can always take S to be the infinite places of F union the
places of F that ramify in K. In this case, the conjectural u ∈ Uv,S is an actual unit in OK .
Similarly in the imaginary quadratic case if at least two primes of F ramify in K and we take
S to be the infinite place of F union the places of F that ramify in K, then the Stark unit
u ∈ Uv,S is a unit in OK .

Definition 2.3. Let K/F , S and v be as above. An element in Uv,S satisfying the above conjecture
is called a Stark unit for K/F and is denoted uK . If |S| ≥ 3, then uK is determined up to
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multiplication by a root of unity. When F is imaginary quadratic the units uK will be specified in
Section 2.1.

Now fix a character χ of Gal(K/F ). We state the rank one abelian Stark conjecture for the one
L-function LS(χ, s).

We keep the setting and notation as above for K/F , S, and v. Let χ be a character of Gal(K/F )
such that ords=0(LS(χ, s)) = 1, and let k be the field obtained by adjoining the values of χ to Q.
Extend log | · |v from Uv,S to k ⊗Z Uv,S by k-linearity. Let

(k ⊗Z Uv,S)χ
−1

= {u ∈ k ⊗Z Uv,S : σ(u) = χ−1(σ)u,∀σ ∈ Gal(K/F )}
be the χ−1 isotypic component of k ⊗Z Uv,S where Gal(K/F ) acts via its action on Uv,S .

Conjecture 2.4. (Rational Stark for χ at s = 0). There exists an element uχ ∈ (k ⊗Z Uv,S)χ
−1

such that
L′S(χ, 0) = log |uχ|v.

Remark 2.5. 1. As it happens with Conjecture 2.1, Conjecture 2.4 is open when F is real
quadratic and χ is mixed signature.

2. Since we are assuming ords=0(LS(χ, s)) = 1, the k-dimension of (k ⊗Z Uv,S)χ
−1

is one.
3. Conjecture 2.1 implies Conjecture 2.4 by taking

uχ = −1

e

∑
σ∈Gal(K/F )

χ(σ)⊗ σ(u) ∈ (k ⊗Z Uv,S)χ
−1

where u ∈ Uv,S is the unit satisfying Conjecture 2.1.

2.1 The imaginary quadratic case

In this section we define the Stark units that exist in the imaginary quadratic case of the rank one
abelian Stark conjecture. These units will be used in later sections.

Let L = Zω1 + Zω2 ⊂ C be a lattice in C with ordered basis so that τ = ω1/ω2 is in the upper
half plane. Define the sigma and delta functions of a complex number z and lattice L to be

σ(z, L) = z
∏
ω∈L
ω 6=0

(
1− z

ω

)
e
z
ω

+ 1
2( zω )

2

∆(L) =

(
2πi

ω2

)12

e2πiτ
∞∏
n=1

(1− e2πinτ )24.

Let

A(L) =
ω1ω2 − ω1ω2

2πi

so A(L) the area of C/L divided by π. Further let

η1(L) = ω1

∑
n∈Z

∑
m∈Z,m 6=0

1

(mω1 + nω2)2

and

η2(L) = ω2

∑
m∈Z

∑
n∈Z,n 6=0

1

(mω1 + nω2)2

and define

η(z, L) =
ω1η2 − ω2η1

2πiA(L)
z +

ω2η1 − ω1η2

2πiA(L)
z.
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Define the fundamental theta function by

θ(z, L) = ∆(L) exp(−6η(z, L)z)σ(z, L)12.

We now define Robert’s units associated to an integral ideal of an imaginary quadratic field
([23]). For the rest of this section we fix the following notation. Let F be any imaginary quadratic
field, f a non-trivial integral ideal of F , F (f) the ray class field of F of conductor f, Gf = Gal(F (f)/F ),
f the least positive integer in f∩Z, and wf the number of roots of unity in F congruent to 1 mod f.
For a fractional ideal a coprime to f, let σa ∈ Gf be the image of a under the Artin map. Let S be
the set consisting of the infinite place of F and the places dividing f, and let v be the infinite place
of F (f) induced by ι∞.

Definition 2.6. Define for σ ∈ Gf, the Robert unit associated to σ by

E(σ) = θ(1, fc−1)f

where σc = σ.

Proposition 2.7. ([14]) For all σ ∈ Gf,
(i) E(σ) ∈ F (f).

(ii) For all σ′ ∈ Gf, σ
′(E(σ)) = E(σ′σ).

(iii) If f is divisible by two distinct primes then E(σ) is a unit in F (f). If f = qn for a prime q of
F , then E(σ) is a q-unit.

Theorem 2.8. (Kronecker’s second limit formula) For all characters χ of Gf,

L′S(χ, 0) = − 1

12fwf

∑
σ∈Gf

log |E(σ)|v.

When Stark stated his conjectures, he recast this theorem using the following lemma.

Lemma 2.9. (Lemma 9 on page 225 of [31]) Let K ⊂ F (f) be a subfield of F (f) that is a nontrivial
extension of F . Let J ⊂ Gf be the subgroup such that Gf/J = Gal(K/F ), and define for σJ ∈ Gf/J

E(σJ) =
∏
σ′∈σJ

E(σ′) = NF (f)/K(E(σ)).

Let e be the number of roots of unity in K. Then E(σJ)e is a 12fwf power in K.

Definition 2.10. Let K ⊂ F (f) be a nontrivial extension of F such that Gal(K/F ) = Gf/J . Let
e be the number of roots of unity in K. Define the Stark unit of the extension K/F , denoted uK
to be an element of K such that

u
12fwf

K = E(J)e

where E(J) =
∏
σ∈J E(σ). Such an element uK exists by the previous lemma and is unique up to

multiplication by a root of unity in K.

Theorem 2.11. ([31] Stark’s Conjecture when F is imaginary quadratic) Keeping the notation as
in the previous definition, for all characters χ of Gal(K/F ),

L′S(χ, 0) = −1

e

∑
σ∈Gal(K/F )

χ(σ) log |σ(uK)|v

and K(u
1/e
K ) is an abelian extension of F .

7



3 Background for definition of the p-adic L-function

3.1 Conventions for modular forms and modular symbols

In this section, we set some notation and conventions that will be fixed throughout for modular
forms and modular symbols. We also state some relevant definitions for later reference.

Fix a positive integer N such that p - N and let Γ be either Γ1(N) or Γ1(N)∩Γ0(p). Our Hecke
actions are defined via the double coset algebra of Γ in GL2(Q). Let T` denote the Hecke operator
at ` for ` - Np. If Γ = Γ1(N), let Tp denote the Hecke operator at p, while if Γ = Γ1(N)∩Γ0(p), let
Up denote the Hecke operator at p. Let ι denote the operator for the double coset corresponding

to

(
1 0
0 −1

)
. For a ∈ (Z/NZ)×, let [a] denote the diamond operators. Define the Hecke algebra to

be the algebra

H =

{
Z[T`, ` - Np,Up, [a], a ∈ (Z/NZ)×] if Γ = Γ1(N) ∩ Γ0(p)

Z[T`, ` - N, [a], a ∈ (Z/NZ)×] if Γ = Γ1(N).

If Σ is a subsemigroup of GL2(Q) containing the matrices needed to define H, then we also consider
H as a subalgebra of the double coset algebra of Γ in Σ.

For k ≥ 1, let Sk(Γ,Q) denote the space of holomorphic weight k and level Γ cusp forms with
algebraic q-expansions, and let Sk(N, ε,Q) ⊂ Sk(Γ1(N),Q) be the space of holomorphic cuspforms
of level N and nebentypus ε with algebraic q-expansions. Let

Sk(Γ,Cp) = Sk(Γ,Q)⊗Q Cp and Sk(Γ,C) = Sk(Γ,Q)⊗Q C
and similarly let

Sk(N, ε,Cp) = Sk(N, ε,Q)⊗Q Cp and Sk(N, ε,C) = Sk(N, ε,Q)⊗Q C.
Let F be the set of holomorphic functions f on the upper half plane such that for all c ∈ P1(Q),

limz→c |f(z)| = 0, where to make sense of the limit, we view P1(Q) and the upper half plane
as subsets of P1(C). For k ≥ 1, we define the following weight-k action of GL+

2 (Q) on F : for

γ =

(
a b
c d

)
∈ GL+

2 (Q), f ∈ F ,

f |γ,k(z) = (cz + d)kf

(
az + b

cz + d

)
.

The space Sk(Γ,C), of holomorphic cusp forms of weight k and level Γ is the set of invariants of Γ
with respect to this weight-k action. Let Σ+ = GL+

2 (Q) ∩M2(Z) ⊂ GL2(Q). The action of Σ+ on
F induces an action of H on Sk(Γ,C) which leaves the space Sk(Γ,Q) invariant, defining an action
of H on Sk(Γ,Q). We extend this action to Sk(Γ,Cp) by linearity.

For the rest of this article, we adopt the notation that Γ = Γ1(N) and Γ0 = Γ1(N) ∩ Γ0(p).

Definition 3.1. A Hecke eigenform (or just eigenform) of level N and character ε is an element
f ∈ Sk(N, ε,Cp) which is an eigenvector for all the elements of H. A normalized eigenform is a
Hecke eigenform f ∈ Sk(N, ε,Cp) such that the leading term of the q-expansion of f is 1. If f is a
normalized eigenform, then f ∈ Sk(N, ε,Q) and so we may also view f as an element of Sk(N, ε,C).
If f ∈ Sk(N, ε,Q) is a normalized eigenform that is new at level N , we call f a newform.

Definition 3.2. Let f =
∞∑
n=1

anq
n ∈ Sk(N, ε,Q) be a newform. Then the Hecke polynomial of f

at p is the polynomial x2 − apx + ε(p)pk−1. Let α and β be the roots of this polynomial. Define
the p-stabilizations of f to be fα(z) := f(z)− βf(pz) and fβ(z) := f(z)− αf(pz).
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The p-stabilizations fα, fβ are elements of Sk(Γ0,Q), and are eigenvectors for the action of H.
The T` eigenvalues of fα (respectively fβ) are the same as for f when ` 6= p, and the Up-eigenvalue
of fα (respectively fβ) is α (respectively β).

Definition 3.3. Let Sordk (N, ε,Cp) (respectively Sordk (Γ0,Cp)) denote the maximal invariant sub-
space of Sk(N, ε,Cp) (respectively Sk(Γ0,Cp)) with respect to the action of Tp (respectively Up)
such that the characteristic polynomial of Tp (respectively Up) restricted to this subspace has roots
which are p-adic units. We call the subspace Sordk (N, ε,Cp) (respectively Sordk (Γ0,Cp)) the ordi-
nary subspace of Sk(N, ε,Cp) (respectively Sk(Γ0,Cp)). A cuspform f ∈ Sk(N, ε,Cp) (respec-
tively Sk(Γ0,Cp)) is called p-ordinary if f is an element of the subspace Sordk (N, ε,Cp) (respectively
Sordk (Γ0,Cp)).

We remark that if f ∈ Sordk (N, ε,Cp) is a newform and k ≥ 2, then there is a unique p-ordinary
p-stabilization of f , while if f ∈ S1(N, ε,Cp) is a weight one newform, then there are two (possibly
equal) p-ordinary p-stabilizations of f .

We now introduce modular symbols. Let40 = Div0(P1(Q)) be the set of degree zero divisors on
P1(Q) and view 40 as a GL2(Q)-module via the action of linear fractional transformations. Let V
be a right Γ module. We define a right action of Γ on Hom(40, V ) via the rule for ϕ ∈ Hom(40, V ),
γ ∈ Γ, and D ∈ 40:

(ϕ|γ)(D) = ϕ(γD)|γ.

Definition 3.4. The set of V -valued modular symbols on Γ, denoted SymbΓ(V ), is the set of
all ϕ ∈ Hom(40, V ) that are invariant under the action of Γ.

In the cases we consider, V has an action of a submonoid of GL2(Q) which defines an action
of H on SymbΓ(V ) through a double coset algebra. When 2 acts invertibly on V and ι acts on
SymbΓ(V ), we get a decomposition of SymbΓ(V ) into the direct sum of the 1 and −1 eigenspaces
of ι, denoted Symb+

Γ (V ), Symb−Γ (V ) ⊂ SymbΓ(V ). If ϕ ∈ SymbΓ(V ), then we write ϕ± for the
projection of ϕ onto Symb±Γ (V ).

3.2 Overconvergent modular symbols

In this section we introduce overconvergent modular symbols following the notation and conventions
of [1] and [21].

Let W = Homcont(Z×p ,Gm) denote weight space as a Qp-rigid analytic space, and let R denote
the ring of Qp-rigid analytic functions on W. Let ω ∈ W be the Teichmüller character. For m with
0 ≤ m ≤ p − 2, let Wm ⊂ W denote the subset of W consisting of characters whose restriction to
µp−1 ⊂ Z×p is equal to ωm.

We give an explicit description of certain admissible open subsets of the Qp-points of Wm. For
any κ ∈ Wm(Qp) and any r ≥ 1, let W (κ, 1/pr) denote the closed disk of radius 1/pr inWm around
κ. Then

W (κ, 1/pr)(Cp) = {κ′ ∈ Wm(Cp) : |κ′(γ)− κ(γ)| ≤ 1/pr},
and W (κ, 1/pr) is an an admissible open subset of Wm. The ring of Qp-rigid analytic functions on
W (κ, 1/pr) is the Qp-algebra

R =

{ ∞∑
n=0

an(w − (κ(γ)− 1))n ∈ Qp[[w − (κ(γ)− 1)]] : |anprn| → 0 as n→∞

}
and W (κ, 1/pr) = SpR ⊂ W. We remark that R is isomorphic to the Tate algebra

Qp〈T 〉 =

{ ∞∑
n=0

anT
n ∈ Qp[[T ]] : |an| → 0 as n→∞

}
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by setting T = (x−(κ(γ)−1)/pr. The setsW (κ, 1/pr) form a basis of admissible open neighborhoods
of κ in Wm.

For each r ∈ |C×p | = pQ, let

B[Zp, r] = {z ∈ Cp : ∃a ∈ Zp, |z − a| ≤ r}.
B[Zp, r] is the set of Cp-points of the Qp-rigid analytic space which is the union of the closed unit
balls of radius r around each point in Zp. Let A[r] be the Qp-algebra of rigid analytic functions on
B[Zp, r]. The sup norm on A[r] makes A[r] a Qp-Banach space. Explicitly the norm is given for
f ∈ A[r] by

‖f‖r = sup
z∈B[Zp,r]

|f(z)|.

Let D[r] = HomQp(A[r],Qp) be the continuous Qp-dual of A[r]. The space D[r] is a Qp-Banach
space with norm given by

‖µ‖r = sup
f∈A[r],f 6=0

|µ(f)|
‖f‖r

for µ ∈ D[r]. For r1 > r2, restriction of functions gives a map A[r1]→ A[r2]. This map is injective,
has dense image, and is compact. The dual map D[r2] → D[r1] is injective and compact. For any
real number r ≥ 0 define

A†[r] = lim−→
s>r

A[s] and D†[r] = lim←−
s>r

D[s].

We give A†[r] the inductive limit topology and D†[r] the projective limit topology. For the remainder
of this article, we write A = A†[0] and D = D†[0]. We remark that D is the continuous Qp-linear
dual to A, and that A may be identified with the set of locally analytic functions on Zp and D the
set of locally analytic distributions.

Given µ ∈ D, via integration µ determines a Qp-rigid analytic function on W, which we call the
p-adic Mellin transform of µ. We denote the map corresponding to the p-adic Mellin transform

L : D −→ R.
For µ ∈ D and χ ∈ W(Cp), we use the integration symbol for µ evaluated at χ:

L(µ)(χ) =

∫
Z×p
χ(z)dµ(z).

We now define overconvergent modular symbols. Let

Σ0(p) =

{(
a b
c d

)
∈M2(Zp) : p - a, p | c and ad− bc 6= 0

}
.

For any integer k ∈ Z, we define a weight k action of Σ0(p) on A[r] for r < p as follows. For

γ =

(
a b
c d

)
∈ Σ0(p), f ∈ A[r], let

(γ ·k f)(z) = (a+ cz)kf

(
b+ dz

a+ cz

)
.

This induces an action of Σ0(p) on D[r] on the right via

(µ|kγ)(f) = µ(γ ·k f)

for µ ∈ D[r]. These actions induce actions of Σ0(p) on A and D. When we consider A and D with
their weight k actions, we write k in the subscript, Ak, Dk. The spaces of modular symbols of
interest are SymbΓ0

(Dk). These space are Hecke modules via the action of Σ0(p) on Dk.

Definition 3.5. Let k ∈ Z. The space of overconvergent modular symbols of weight k is
defined to be SymbΓ0

(Dk).
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Definition 3.6. Let ϕ ∈ SymbΓ0
(Dk) be an overconvergent modular symbol of weight k. We define

the p-adic L-function of ϕ by composing the following two maps: first evaluation at {0}−{∞}, and
then the map L from before. The composition is called the Mellin transform of ϕ and denoted
by Λk:

Λk : SymbΓ0
(Dk)→ R.

For ϕ ∈ SymbΓ0
(Dk) and χ ∈ W(Cp),

Λk(ϕ)(χ) =

∫
Z×p
χ(z)d(ϕ({0} − {∞}))(z).

By definition, Λk is a Qp-linear map.

3.3 The p-adic L-function of an ordinary weight k ≥ 2 modular form

In this section, we review how to use classical and overconvergent modular symbols to define the
p-adic L-function of a weight k + 2 ≥ 2 p-ordinary newform.

Let R be a Q-algebra, and for k ∈ Z≥0, let Vk(R) = Symk(R2) be the R-module of homogeneous
polynomials of degree k in two variables X and Y with coefficients in R. Define an action of GL2(R)

on Vk(R) as follows: for γ =

(
a b
c d

)
∈ GL2(R) and P ∈ Vk(R), define

(P |γ)(X,Y ) = P ((X,Y )γ∗) = P (dX − cY,−bX + aY )

where γ∗ =

(
d −b
−c a

)
. Since R is a Q-algebra, the space of modular symbols, SymbΓ0

(Vk(R)),

obtains an action of GL2(Q), which determines a Hecke action of H.
Let g ∈ Sk+2(Γ0,C). Define the standard modular symbol associated to g, denoted ψg, to be

the function
ψg : 40 −→ Vk(C)

ψg({b} − {a}) = 2πi

∫ b

a
g(z)(zX + Y )kdz.

It follows that ψg ∈ SymbΓ0
(Vk(C)) and the map

Sk+2(Γ0,C) −→ SymbΓ0
(Vk(C))

g 7−→ ψg

is Hecke equivariant.
Let f ∈ Sordk+2(N, ε,C) be a p-ordinary newform, and let fα ∈ Sordk+2(Γ0,C) be its p-ordinary

p-stabilization. Shimura ([24]) showed that there exist complex periods Ω±fα ∈ C× such that

ψ±fα/Ω
±
fα
∈ Symb±Γ0

(Vk(Q)), and that the Hecke eigenspaces in Symb±Γ0
(Vk(Q)) with the same

eigenvalues as fα are one-dimensional over Q.
The algebraicity result of Shimura allows one to view the modular symbol associated to fα

p-adically in order to define the p-adic L-function of fα. Let ϕ±fα = ψ±fα/Ω
±
fα
∈ SymbΓ0

(Vk(Q)) for

some choice of complex periods Ω±fα . (Each choice of period is determined up to a scalar in Q×.)

Via ιp, view ϕ±fα as an element of SymbΓ0
(Vk(Cp)).

Mazur-Tate and Teitelbaum ([20]) proved that the function µ±fα defined by the rule

µ±fα(a+ pmZp) = α−mϕ±fα

({
a

pm

}
− {∞}

)
|X=0,Y=1

11



is a Cp valued measure on Z×p . Given a finite order character ψ ∈ W(Cp), we then define the p-adic
L-function of fα twisted by ψ to be the analytic function of s ∈ Zp given by the formula

Lp(fα, ψ, s) =

∫
Z×p
ψ−1(t)〈t〉s−1dµ

sgn(ψ)
fα

(t).

We record here the interpolation property of Lp(fα, ψ, s) for future reference.

Theorem 3.7. ([20]) Let fα be the ordinary p-stabilization of a p-ordinary newform of level N and
weight k + 2 ≥ 2. Let ψ ∈ W(Cp) be a finite order character of conductor pm. Then Lp(fα, ψ, s)
is a p-adic analytic function on Zp with the interpolation property that for all integers j with
0 < j < k + 2,

Lp(fα, ψ, j) =
1

αm

(
1− ψ−1ω1−j(p)

αp1−j

)
pm(j−1)(j − 1)!τ(ψ−1ω1−j)

(2πi)j−1

L(fα, ψω
j−1, j)

Ω
sgn(ψ)
fα

.

Here τ(ψ−1ω1−j) is the Gauss sum associated to ψ−1ω1−j.

Remark 3.8. If f is a non-ordinary newform with Hecke polynomial

x2 − ap(f)x+ ε(p)pk+1 = (x− α)(x− β)

then one may define the p-adic L-function of either p-stabilization fα or fβ of f in the same way
as above but a little more care is needed because the distribution µfα (or µfβ ) is not a measure.
For the critical p-stabilization fβ when f is p-ordinary, even more care is needed. See [22] and [1]
for more information about these cases.

When f is a weight one modular form there is no modular symbol associated to f and so the
above constructions do not work. It is for this reason that we consider overconvergent modular
symbols of arbitrary integer weight k ∈ Z. We now explain the connection between overconvergent
modular symbols of weight k ∈ Z≥0 and the modular symbols just considered.

Let k ∈ Z≥0 and define the map

ρk : Dk −→ Vk(Qp)

ρk(µ) =

∫
Zp

(Y − zX)kdµ(z).

The integration in the definition of ρk takes place coefficient by coefficient. The map ρk is Σ0(p)-
equivarient, so induces a Hecke equivariant map

ρ∗k : SymbΓ0
(Dk) −→ SymbΓ0

(Vk(Qp)).

Let SymbΓ0
(Dk)<k+1 (respectively SymbΓ0

(Vk(Qp))
<k+1) denote the subspace of SymbΓ0

(Dk) (re-
spectively SymbΓ0

(Vk(Qp))) which is the span of the set of eigenvectors of Up with eigenvalue that
has p-adic valuation less than k + 1.

Theorem 3.9. (Stevens’ control theorem [21]) For k ∈ Z≥0 the map

ρ∗k : SymbΓ0
(Dk)<k+1 −→ SymbΓ0

(Vk(Qp))
<k+1

is an isomorphism of Hecke modules.

Remark 3.10. By Theorem 3.9, there exists unique ϕ̃±fα ∈ SymbΓ0
(Dk) such that ρ∗k(ϕ̃

±
f ) = ϕ±f , and

we have the compatibility of p-adic L-function:

Λk(ϕ̃
sgn(ψ))(ψ−1〈·〉s−1) = Lp(fα, ψ, s)

for all s ∈ Zp and finite order characters ψ ∈ W(Cp).
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3.4 Families of overconvergent modular symbols

In this section we introduce families of overconvergent modular symbols, and construct the ordinary
locus of the eigencurve over certain open subsets of weight space following [1] and [12].

Embed Z into W(Qp) by identifying k ∈ Z with the map x 7→ xk in W(Qp). Let k′ ∈ Z and let
W = W (k′, 1/pd) ⊂ W for some d ∈ Z≥1. We will construct the ordinary locus of the eigencurve
over the open set W .

Let γ be a topological generator of 1 + pZp. Let R be the ring of Qp-affinoid functions on W in
the variable w induced by the choice γ. Given k ∈ Z∩W (Qp) and F (w) ∈ R, define the evaluation
at k map:

evk : R −→ Cp
evk(F ) = F (γk − 1).

For r ∈ pQ, define
A[r](R) := A[r]⊗̂QpR

The evaluation maps induce maps

evk : A[r](R) −→ A[r]

for all r.
We define an action of Σ0(p) on A[r](R) that is compatible with the evaluation maps and the

action defined in the previous section. Note that A[1] is the Tate algebra. Let z be the variable for
A[1], so A[1] = Qp〈z〉. For r ≤ 1 the inclusion A[1] ↪→ A[r] induces an inclusion A[1](R) ↪→ A[r](R).

Let logγ(u) =
logp(u)

logp(γ) . Define for α =

(
a b
c d

)
∈ Σ0(p), 0 ≤ m ≤ p− 1,

Kα,m(z, w) = ω(a)m
∞∑
n=0

(
logγ(a+cz

ω(a) )

n

)
wn = ω(a)m(1 + w)

logγ(a+cz
ω(a)

) ∈ Qp[[z, w]].

By Lemma 2.6 of [12], Kα,m(z, w) ∈ A[1](R). By construction, for all k ∈ Z ∩W (Qp),

evk(Kα,m(z, w)) = (a+ cz)k.

Let r be such that r < p
p−2
p−1 . View Kα,m as an element of A[r](R) via the inclusion A[1](R) ⊂

A[r](R). Define, using the ring structure of A[r](R), for f ∈ A[r], F ∈ R, α =

(
a b
c d

)
∈ Σ0(p),

α · (f(z)⊗ F (w)) = Kα,m(z, w)(f

(
b+ dz

a+ cz

)
⊗ F (w))

on simple tensors and extend this to an action on A[r](R) by linearity.
Define

D[r](R) := D[r]⊗̂QpR,

and define an action of Σ0(p) on D[r](R) as follows: D[r] is an A[r]-module via

(g · µ)(f) = µ(gf)

where f, g ∈ A[r], µ ∈ D[r]. Then D[r](R) is an A[r](R)-module. Define for µ ⊗ F ∈ D[r](R),

α =

(
a b
c d

)
∈ Σ0(p),

(µ⊗ F )|α = Kα,m(z, w)(µ|0α⊗ F )

where µ|0α is the weight 0 action on D[r].
Now let D(R) = lim←−r>0

D[r](R). The actions of Σ0(p) on D[r](R) induce an action on D(R). By

Lemma 3.2 of [1], there’s a natural isomorphism

D⊗̂QpR −→ D(R).
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The map induced by evaluation at k from D(R) to Dk, will be called specialization to weight k and
denoted by spk:

spk : D(R) −→ Dk
µ⊗ F 7−→ evk(F )µ

.

The map spk is Σ0(p)-equivariant and induces a Hecke equivariant specialization map which we
denote by the same name

spk : SymbΓ0
(D(R)) −→ SymbΓ0

(Dk).

To end this section, we summarize some results of Belläıche ([1]) about the relation between
SymbΓ0

(D(R)) and SymbΓ0
(Dk) as Hecke modules.

Definition 3.11. Fix a weight k ∈ Z ∩W (Qp). Let Symb±Γ0
(Dk)o ⊂ Symb±Γ0

(Dk) (respectively

Symb±Γ0
(D(R))o ⊂ Symb±Γ0

(D(R))) be the subspace where Up acts with slope bounded by 0 in the

sense of [1] Section 3.2.4. Let T±k (respectively T±W ) be the Qp-subalgebra of EndQp(Symb±Γ0
(Dk)o)

(respectively the R-subalgebra of EndR(Symb±Γ0
(D(R))o)) generated by the image of H. We call

Symb±Γ0
(Dk)o (respectively Symb±Γ0

(D(R))o) the ordinary subspace of Symb±Γ0
(Dk) (respectively

Symb±Γ0
(D(R))).

We have ([1] Section 3.2.4) that Symb±Γ0
(D(R))o is a finite projective R-module. Then since T±W

is a finite R-algebra, T±W is an affinoid algebra. Furthermore, T±W is torsion-free as an R-module
and since R is a principal ideal domain, T±W is flat.

Theorem 3.12. (Belläıche’s specialization theorem (Corollary 3.12 in [1])) Let k ∈ Z ∩W (Qp).
The specialization map restricted to the ordinary subspaces

spk : Symb±Γ0
(D(R))o −→ Symb±Γ0

(Dk)o (5)

is surjective.

Since spk is an H-equivariant surjective map, it induces an H-equivariant map spk : T±W → T±k ,
which we use in the following definition.

Definition 3.13. Let x : T±k → Cp be a Qp-algebra homomorphism. The homomorphism x
corresponds to a system of H-eigenvalues appearing in Symb±Γ0

(Dk)o. Let Symb±Γ0
(Dk)(x) denote

the corresponding generalized eigenspace and let Symb±Γ0
(Dk)[x] denote the eigenspace.

1. Let (T±k )(x) be the localization of T±k ⊗Qp Cp at the kernel of x. We have that

Symb±Γ0
(Dk)(x) = Symb±Γ0

(Dk)o ⊗T±k
(T±k )(x).

2. Through the specialization map, x induces a Qp-algebra homomorphism which we also denote
by x:

x = x ◦ spk : T±W −→ Cp.

Let (T±W )(x) be the rigid analytic localization of T±W ⊗Qp Cp at the kernel of x ◦ spk, and let

Symb±Γ0
(D(R))(x) = Symb±Γ0

(D(R))o ⊗T±W
(T±W )(x).

Let R(k) be the rigid analytic localization of R⊗Qp Cp at the kernel of evk. We can then localize
the specialization map spk to get a map

spk : (T±W )(x) ⊗R(k),k Cp −→ (T±k )(x).

In ([1]), Belläıche following Stevens uses these spaces of families of overconvergent modular
symbols to construct the eigencurve. Let C±W = SpT±W . Then C±W is the ordinary locus of the
eigencurve above the open set W of weight space. The weight map

κ± : C±W −→W
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is the map of rigid analytic spaces induced by the Qp-algebra homomorphism R→ T±W . Since T±W
is a finite, flat R-module, the map κ± is finite and flat. Given a point x ∈ C±W (Cp), we define the
weight of x to be κ±(x) ∈W (Cp). For any κ ∈W (Cp) we may consider the evaluation at κ map

evκ : R −→ Cp
evκ(F ) = F (κ(γ)− 1).

Define R(κ) to be the rigid analytic localization of R at the kernel of evκ.

Theorem 3.14. ([1]) Let U = W (k′, 1/pd) for some k′, d ∈ Z, d ≥ 1, and let x ∈ C±U (Cp) be a
smooth point of weight k′. Then there exists a neighborhood, W = W (k′, 1/pr) of k′ with r ≥ d,
such that the following hold. Let R be the ring of rigid analytic functions on W . Let T be the direct
factor of T±W corresponding to the connected component of C±W that x lies in. (Note that T may be
defined over a finite extension of Qp.) Let TCp = T ⊗̂Cp and RCp = R⊗̂Cp.

1. The generalized eigenspace Symb±Γ0
(Dk′)(x) is free of rank one over the algebra (T±k′)(x), and

the eigenspace Symb±Γ0
(Dk′)[x] is dimension one over Cp.

2. For all points y ∈ C±W , except perhaps x, the algebra (T±W )(y) is étale over R(κ±(y)).
3. There exists u ∈ RCp such that evκ(u) = 0 and κ is the only 0 of u on W and an element

t ∈ T such that x(t) 6= 0 as well as an isomorphism

TCp −→ RCp [X]/(Xe − u)

sending t to X.
4. The TCp-module Symb±Γ0

(D(R))o ⊗T±W
TCp is free of rank one.

5. For any point y ∈ C±W (Cp) of weight κ±(y) ∈ Z, the H-equivariant map

Symb±Γ0
(D(R))o ⊗T±W

TCp −→ Symb±Γ0
(Dκ±(y))(y)

sends any generator of Symb±Γ0
(D(R))o ⊗T±W

TCp to a generator of Symb±Γ0
(Dκ±(y))(y).

Proof. This theorem is a combination of results from Section 4 of [1].

Remark 3.15. If k ∈ Z≥0, then the eigencurve is étale over weight space at any weight k-point. The
point that we are interested in is when k = −1, which corresponds to weight one modular forms.
At weight k = −1 points, the eigencurve may not be étale over weight space, and this is the case
in which we will use the above proposition.

3.5 Two-variable p-adic L-functions

In this section we explain how to use Theorem 3.14 to construct a two-variable p-adic L-function.
Let W = W (k′, 1/pr) = SpR for some k′ ∈ Z and r ≥ 1. Let M = Symb±Γ0

(D(R))o. Define the
R-linear map

Λ : M −→ R⊗̂QpR

to be the composition of evaluation at {0} − {∞} and the map L from before. By construction,
for all k ∈ Z ∩W (Qp) we have the commutative diagram

M R⊗̂R

Symb±Γ0
(Dk)o R.

Λ

spk

Λk

evk

(6)

which shows that for Φ ∈M , Λ(Φ) interpolates the functions Λk(spk(Φ)).
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We now put ourselves in the situation of Theorem 3.14, and we extend scalars to Cp. A Cp
in the subscript means completed tensor product over Qp with Cp. Let x ∈ C±U (Cp) be a smooth
point of weight k′ ∈ Z for some U = W (k′, 1/pd). Let W = W (k′, 1/pr) = SpR and T be as in the
proposition. Let ε ∈ T±W,Cp be such that TCp = εT±W,Cp . Then

Symb±Γ0
(D(R))o ⊗T±W

TCp = εSymb±Γ0
(D(R))oCp ⊂ Symb±Γ0

(D(R))oCp ,

so we let
M = Symb±Γ0

(D(R))o ⊗T±W
TCp = εSymb±Γ0

(D(R))oCp .

We first give a construction of a two-variable p-adic L-function, that we use when the weight
map κ± : C±W →W is étale. Assume κ± : C±W →W is étale.

The module M is a rank one TCp-module, so let Φ be a generator. Let

Λ(Φ, ·, ·) : W ×W −→ Cp
be the two-variable rigid analytic function that is the image of Φ in R⊗̂R under Λ. By the
commutative diagram (3), for all σ ∈ W and k ∈ Z,

Λ(Φ, k, σ) = Λk(spk(Φ), σ).

We now consider the non-étale case. In the non-étale case, if y ∈ C±W is of weight k 6= k′, then
spk(Φ) ∈ Symb±Γ0

(Dk)o is not in the eigenspace corresponding to y. The construction that follows
is due to Belläıche ([1]). Let N = M ⊗RCp TCp and let V = SpT . Define

ΛT := Λ⊗ IdTCp : N −→ (RCp⊗̂CpRCp)⊗RCp TCp
∼= TCp⊗̂CpRCp .

Then for Φ ∈ N , the function ΛT (Φ) ∈ TCp⊗̂RCp is a two-variable rigid analytic function on
VCp ×WCp . For each y ∈ V (Cp) of weight κ ∈W (Qp), define the specialization map

spy : N −→ SymbΓ0
(Dκ)oCp

as the natural map
N −→ N ⊗TCp ,y Cp.

We view N ⊗TCp ,y Cp as a subset of Symb±Γ0
(Dκ)oCp via

N ⊗TCp ,y Cp = (M ⊗RCp TCp)⊗TCp ,y Cp
= M ⊗RCp ,evκ Cp ↪→ Symb±Γ0

(Dκ)oCp .

By construction spy is H-equivariant with respect to the action of H on the first component of N .
Furthermore, if φ ∈ N and y ∈ V (Cp) is of weight k ∈ Z, then ([1] Lemma 4.12)

ΛT (Φ)(y, σ) = Λk(spy(Φ))(σ).

We recall that we have an element t ∈ TCp and u ∈ RCp and an isomorphism

TCp −→ RCp [X]/(Xe − u)

sending t to X. Now let φ be a generator of M as a TCp module, and define

Φ =

e−1∑
i=0

tiφ⊗ te−1−i ∈ N.

Proposition 3.16. 1. Let TCp ⊗RCp TCp act on N with the first factor acting on M and the
second factor acting on TCp. Then

(t⊗ 1− 1⊗ t)Φ = 0.

2. Let y ∈ C±W (Cp) be a point of weight κ ∈W (Qp). Then

spy(Φ) ∈ Symb±Γ0
(Dκ)[y].

We note that if y 6= x, then Symb±Γ0
(Dκ)[y] = Symb±Γ0

(Dκ)(y), while if y = x and the ramifi-

cation index is e, Symb±Γ0
(Dκ)(y) is an e-dimensional vector space.
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Proof. The first part of the proposition is Lemma 4.13 of [1] and the second part is Proposition
4.14 of [1].

Define the two-variable p-adic L-function to be

ΛT (Φ) : VCp ×WCp −→ Cp.
To compare this second construction with the first construction when the ramification index is 1,
we note that TCp

∼= RCp [X]/(Xe − u) = RCp , so

N = M ⊗RCp TCp
∼= M

and

Φ =

e−1∑
i=0

tiφ⊗ te−1−i = φ⊗ 1

so the second construction reduces to the first one when e = 1.

4 Definition of p-adic L-functions and p-adic Stark Conjecture

We begin this section by introducing the objects we are working with and setting notation. Let F
be a quadratic field of discriminant dF , and let χ : GF → Q× be a nontrivial ray class character
of F that is of mixed signature if F is real quadratic. Let K be the fixed field of the kernel of χ
and let f be the conductor of K/F . Assume that ι∞(K) ⊂ R if F is real quadratic. Let v denote

the infinite place of K determined by ι∞. Let ρ = Ind
GQ
GF

χ : GQ −→ GL2(Q) be the induction of χ
and let M be the fixed field of the kernel of ρ. Let f be the weight one modular form associated to
ρ, so f has level N = NF/Q(f) · |dF | and character ε = det ρ. The q-expansion of f is

f =
∑
a⊂OF
(a,f)=1

χ(a)qNa

and we have that L(f, s) = L(χ, s). Let

x2 − ap(f)x+ ε(p) = (x− α)(x− β)

be the Hecke polynomial of f at p. We note that when p splits in F , say pOF = pp, then α = χ(p)
and β = χ(p), and if p is inert, then α =

√
χ(pOF ) and β = −

√
χ(pOF ). Let k be the field

obtained by adjoining the values of χ along with α and β to Q.
We make some assumptions that will be fixed throughout. First we assume that p - N , which

implies in particular that p does not ramify in M . We further assume that p - [M : Q], and we
assume that α 6= β. With these assumptions, let fα(z) = f(z) − βf(pz) be a fixed p-stabilization
of f .

4.1 Definition of p-adic L-function

We use the constructions from the previous section to define our p-adic L-function. In order to do
that, we start with the following result of Belläıche and Dmitrov about the eigencurve at weight
one points.

Theorem 4.1. ([2]) Let g be a classical weight one newform of level N , whose Hecke polynomial
at p has distinct roots. Then the eigencurve is smooth at either p-stabilization of g. Moreover, the
eigencurve is smooth but not étale over weight space if and only if the representation associated to g
is obtained by induction from a mixed signature character of a real quadratic field in which p splits.
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By our assumption that α 6= β the above theorem implies that the eigencurve is smooth at the
point corresponding to fα. We may break our situation into four cases, the cases when F is either
imaginary or real quadratic and when p is either inert or split in F . In the case when F is real
quadratic and p is split the eigencurve is smooth but not étale at fα. In the other three cases the
eigencurve is étale at fα. We adopt the notation from the previous section except that we base
change everything to Cp and we drop all the Cp subscripts. Since we will conjecture the value at
s = 0, we consider the minus subspace of modular symbols. Let T = TCp , M ⊂ Symb−Γ0

(D(R))oCp ,
N , and R = RCp be as in Section 3.5 where the point of interest x is the point on the eigencurve
corresponding to fα. Let φ be a generator of M as a T -module and let

Φ =
e−1∑
i=0

tiφ⊗ te−1−i ∈ N.

Let V = SpT , W =WCp , W = Sp(R), and let Λ(Φ) = ΛT (Φ) to make all the notation uniform.
We record the interpolation formulas for our two-variable rigid analytic function

Λ(Φ, ·, ·) : V ×W −→ Cp.
For each classical point y ∈ V , let gy be the weight k ∈ Z≥2 p-stabilized newform corresponding to
y. Let Ω∞,gy ∈ C× be the complex period used to define the p-adic L-function associated to gy as
in Section 3.3. Let

ϕgy ∈ Symb−Γ0
(Dk−2)(y)

be the unique (by Theorem 3.9) modular symbol specializing under ρ∗k to

ψ−gy/Ω∞,gy ∈ Symb−Γ0
(Vk−2(Q)).

Let Ωp,gy ∈ C×p be the p-adic period such that spy(Φ)/Ωp,gy = ϕgy . For each y, the period pair

(Ω∞,gy ,Ωp,gy) viewed as an element of C× × C×p /Q
×

, where Q× is embedded diagonally, does not
depend on any choices.

Proposition 4.2. The two-variable rigid analytic function Λ(Φ) on V × W is determined by
the following two interpolation properties. First, for all y ∈ V and all even characters σ ∈ W,
Λ(Φ, y, σ) = 0. Second, for all y ∈ V corresponding to a p-stabilized newform gy of weight k ∈ Z≥2,
and all odd characters ψ〈·〉j−1 ∈ W(Cp) where ψ is a finite order character of conductor pm and
1 ≤ j ≤ k − 1,

Λ(Φ, y, ψ〈·〉j−1)

Ωp,gy

=
1

ap(gy)m

(
1− ψω1−j(p)

ap(gy)p1−j

)
pm(j−1)(j − 1)!τ(ψω1−j)

(2πi)j−1
×

×L(gy, ψ
−1ωj−1, j)

Ω∞,gy
.

(7)

This equality takes place in Q. Here τ(ψω1−j) is the Gauss sum associated to ψω1−j.

Proof. The first interpolation property follows from the fact that Φ is in the minus subspace for
the action of ι. For the second interpolation property, with the way everything is set up, it follows
from the fact that

Λ(Φ, y, σ)

Ωp,gy

=
Λk(spy(Φ), σ)

Ωp,gy

= Lp(gy, ψ, j)

where Lp(gy, ψ, s) is defined using that complex period Ω∞,gy .

Remark 4.3. At this point, we would like to define the two-variable p-adic L-function associated to
χ as

Lp(χ, α, ·, ·) : V × Zp −→ Cp
Lp(χ, α, y, s) = Λ(Φ, y, ω−1〈·〉s−1).

(8)
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The p-adic L-function Lp(χ, α, y, s) is determined by the above interpolation formula. The first
variable is on the eigencurve varying through the p-adic family of modular forms passing through
fα and the second variable is the usual cyclotomic variable. To get the one variable p-adic L-function
associated to χ we would plug the point x ∈ V that corresponds to fα. It is then natural to make
a conjecture for the value Lp(χ, α, x, 0) that is analogous to Conjectures 2.1 and 2.4, replacing the
complex logarithm with the p-adic logarithm.

The issue with making the conjecture this way is that the p-adic number Lp(χ, α, x, 0) is not
canonically defined because we made a choice for φ. The condition on the choice of φ is that φ is
a generator of M as a T -module. If we choose a different generator of M as a T -module (changing
φ by an element of T×) that would change the value Lp(χ, α, x, 0). Therefore as it stands now, we
cannot precisely conjecture the value Lp(χ, α, x, 0).

This issue of the value Lp(χ, α, x, 0) not being canonically defined is a question for further
research. One way to approach the problem is to ask whether or not there is a way to canonically
choose the periods (Ωp,gy ,Ω∞,gy) so that they determine a two-variable modular symbol φ which
would in turn define the function Lp(χ, α, x, s) canonically. It is possible to do this in the case when
F is imaginary quadratic and p is split in F (see Section 5.6). In this case when F is imaginary
quadratic and p is split in F the two-variable p-adic L-function Lp(χ, α, y, s) is not canonically
defined (it depends on the choice of canonical periods), but the one-variable p-adic L-function
Lp(χ, α, x, s) is.

To get around these issues and make a precise conjecture we exploit the fact that in (7) the
function Λ(Φ, y, σ) interpolates the values of the complex L-function of gy twisted by p-power
conductor Dirichlet characters. Let ψ ∈ W(Cp) be a p-power order character. We could then
define, generalizing (8), the p-adic L-function of χ twisted by ψ to be

Lp(χ, α, ψω, y, s) = Λ(Φ, y, ψ−1ω−1〈·〉s−1),

and state a p-adic Stark conjecture for the value Lp(χ, α, ψω, x, 0). The value Lp(χ, α, ψω, x, 0)
is outside the range of interpolation for the function Λ(Φ, y, σ), but if it was in the range of
interpolation it would be related to L(fα, ψ, 0) at the point s = 0. We have the relation L(f, ψ, s) =
L(χψ, s), and so a conjecture for the value Lp(χ, α, ψω, x, 0) should have the same shape as the
conjecture for the value L′(χψ, 0) with the complex logarithm replaced with the p-adic logarithm.

Of course, the value Lp(χ, α, ψω, x, 0) has the same issue of not being canonically defined as
Lp(χ, α, x, 0), but since we have the flexibility of using finite order characters ψ ∈ W(Cp) we can
make a function that is canonically defined. Fix two p-power order characters η, ψ ∈ W(Cp) and
define the function

Lp(χ, α, ηω, ψω, y, s) =
Λ(Φ, y, η−1ω−1〈·〉s−1)

Λ(Φ, y, ψ−1ω−1〈·〉s−1)
.

Then Lp(χ, α, ηω, ψω, y, s) does not depend on the choice of φ because the indeterminacy of the
periods in the interpolation formula (7) cancels out. The value Lp(χ, α, ηω, ψω, x, 0) is then canon-
ically defined independent of any choices, and we formulate a conjecture for this value.

Definition 4.4. Let η, ψ ∈ W(Cp) be two p-power order characters. Define the two-variable p-adic
L-function of χ with the auxiliary characters η and ψ as

Lp(χ, α, ηω, ψω, ·, ·) : V × Zp −→ Cp ∪ {∞}

Lp(χ, α, ηω, ψω, y, s) =
Λ(Φ, y, η−1ω−1〈·〉s−1)

Λ(Φ, y, ψ−1ω−1〈·〉s−1)
.

The function Lp(χ, α, ηω, ψω, y, s) does not depend on the choice of Φ.
Define the p-adic L-function of χ with the auxiliary characters η and ψ as

Lp(χ, α, ηω, ψω, s) = Lp(χ, α, ηω, ψω, x, s).
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Remark 4.5. We may give the definition of Lp(χ, α, ηω, ψω, s) without making reference to the two-
variable p-adic L-function. The two-variable p-adic L-function is introduced for two reasons. The
first is that it satisfies an interpolation property, while the one-variable function Lp(χ, α, ηω, ψω, s)
does not. The second is that we will use the two-variable p-adic L-function to prove our conjectures
when F is imaginary quadratic and p is split in F .

To define Lp(χ, α, ηω, ψω, s) without referencing the two-variable p-adic L-function, we consider
the space, Symb±Γ0

(D−1)o, of weight negative one overconvergent modular symbols. Since the

eigencurve is smooth at the point x corresponding to fα the eigenspace Symb±Γ0
(D−1)[x] with

the same eigenvalues as fα is one-dimensional. If ϕ±fα is a generator of this eigenspace, then
Lp(χ, α, ηω, ψω, s) may be defined as

Lp(χ, α, ηω, ψω, s) =
Λ−1(ϕ−fα , η

−1ω−1〈·〉s−1)

Λ−1(ϕ−fα , ψ
−1ω−1〈·〉s−1)

.

Since Λ(Φ−, x, σ) = Λ−1(spx(Φ−), σ) and 0 6= spx(Φ−), this definition is the same as the first
definition.

4.2 p-adic Conjecture

For each n ∈ Z≥0, let Qn be the nth layer of the cyclotomic Zp extension of Q, so

Gal(Qn/Q) = 1 + pZp/1 + pn+1Zp ∼= Z/pnZ.
Let Γn = Gal(Qn/Q). Let Mn be the compositum of M and Qn. Let ∆ = Gal(M/Q), and for
n ≥ 0 let ∆n = Gal(Mn/Q). By our assumption that p does not ramify in M and p - [M : Q],
restriction gives an isomorphism ∆n

∼= ∆×Γn. For any n ≥ 0, let v denote the infinite place of Mn

induced by ι∞. Let Un = OMn ⊂M×n if M0 is not the Hilbert class field of F when F is imaginary
quadratic. If F is imaginary quadratic and M0 is the Hilbert class field of F , let

Un = {u ∈M×n : |u|w′ = |u|w′′ ,∀w′, w′′ | p, |u|w = 1,∀w - p, v}.
Let kn be the field obtained by adjoining the pn+1st roots of unity to k. For a character η of Γn, let

(ρη)∗ be the representation Ind
GQ
GF

χ−1 ⊗ η−1 of ∆n. Given a kn[∆n]-module A, let A(ρ,η)∗ denote
the (ρη)∗-isotypic component of A.

The following is how α is incorporated into our conjectures. It is an idea of Greenberg and
Vatsal ([15]), and is a key aspect to the conjecture. Let Dp ⊂ ∆ be the decomposition group at p
determined by ιp and let δp be the geometric Frobenius. For a k[Dp]-module A, let Aδp=α be the
subspace where δp acts with eigenvalue α. Via the isomorphism ∆n = ∆ × Γn, we view Dp as a
subgroup of ∆n for any n. Then the ∆n-modules Un are also Dp-modules.

Let logp : C×p → Cp denote Iwasawa’s p-adic logarithm. Extend logp to Q⊗ZC×p by Q-linearity.

Conjecture 4.6. Let ψ, η ∈ W(Cp) be of orders pn and pm respectively with m,n ≥ 1. Then there
exists units u∗χψ,α ∈ (kn ⊗ Un)(ρψ)∗,δp=α and u∗χη,α ∈ (km ⊗ Um)(ρη)∗,δp=α such that

Lp(χ, α, ψω, ηω, 0) =
(1− βψ(p))

(
1− ψ−1(p)

αp

)
τ(ψ−1)
pn+1

(1− βη(p))
(

1− η−1(p)
αp

)
τ(η−1)
pm+1

logp(u
∗
χψ,α)

logp(u
∗
χη,α)

. (9)

Remark 4.7. 1. This conjecture should be compared with Conjecture 2.4. We are relating the
p-adic L-value Lp(χ, α, ψω, ηω, 0) to the spaces (kn ⊗ Un)(ψρ)∗,δp=α and (km ⊗ Um)(ηρ)∗,δp=α

via the p-adic logarithm. The spaces (kn ⊗ Un)(ψρ)∗,δp=α and (km ⊗ Um)(ηρ)∗,δp=α have kn-
and km-dimension one respectively.
Let Kn be the fixed field of the kernel of χψ. At the outset of this project, it was expected
that the unit u∗χη,α would be the projection of the unit uKn from definition 2.3 to the space
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(kn ⊗ Un)(ψρ)∗,δp=α ([13]). This is the case when F is imaginary and p is split in F (see
Section 5), while the numerical evidence suggests that this is not the case when F is imaginary
quadratic and p is inert in F (see Sections 6.2, 6.3). We do think that this is the case when
F is real quadratic as we verify in the example in Section 6.1, but we do not have enough
evidence to conjecture it.

2. It is also possible to state a conjecture for the p-adic value at s = 1 (see [13]), and there
should be a functional equation relating the two conjectures.

3. In ([15]), Greenberg and Vatsal define a Selmer group associated to the representation ρ and
prove that the characteristic ideal of the Selmer satisfies an interpolation property that is
similar to the statement of our conjecture. Proving a main conjecture relating the character-
istic ideal of the Selmer group associated to ρ to the analytic p-adic L-functions defined here
would allow one to prove this conjecture using Greenberg and Vatsal’s result.

5 Proof of the conjecture when F is imaginary quadratic and p

splits in F

5.1 Katz’s p-adic L-function

In this section we state relevant facts that are needed about Katz’s two variable p-adic L-function.
Let F be an imaginary quadratic field of discriminant dF , and assume p splits in F . Let p factor
as pOF = pp, where p is the prime induced by the embedding ιp. Let Op = {x ∈ Cp : |x| ≤ 1}
be the closed unit ball in Cp. Let f be an integral ideal of F such that (f, p) = 1. Let f factor as
f =

∏
v|f fv. Let AF denote the adeles of F .

The domain of Katz’s p-adic L-function is the set of all p-adic Hecke characters of modulus f, so
we begin by giving our conventions for Hecke characters. Define the subgroups Uf, Uf,p, Uf,∞ ⊂ A×F
as

Uf =

{
(xv)v ∈ A×F :

xv ≡ 1 mod fv if v | f
xv ∈ O×Fv if v - f and is finite

}

Uf,p =

(xv)v ∈ A×F :
xv ≡ 1 mod fv if v | f

xv ∈ O×Fv if v - fp and is finite

xv = 1 if v | p


Uf,∞ =

(xv)v ∈ A×F :
xv ≡ 1 mod fv if v | f

xv ∈ O×Fv if v - f and is finite

xv = 1 if v | ∞

 .

Let σ1, σ2 be the two embeddings of F into Q. Order σ1, σ2 so that σ1 is how we view F as a subset
of Q.

Definition 5.1. 1. Let (a1, a2) ∈ Z2. An algebraic Hecke character of F of infinity type
(a, b) and modulus f is a group homomorphism

χ : A×F −→ Q×

such that the image of χ is contained in a finite extension of Q, Uf ⊂ ker(χ), and for all x ∈ F×,
χ(x) = σ1(x)a1σ2(x)a2 . The smallest f with respect to divisibility such that Uf ⊂ ker(χ) is
called the conductor of χ.
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If χ is an algebraic Hecke character of modulus f and a an ideal of F such that (a, f) = 1 and

that factors as a =
∏

(p,a)=1

pap , then we define χ(a) as

χ(a) :=
∏

(p,f)=1

χ(πp)
ap

where πp denotes a uniformizer of Fp.
2. A p-adic Hecke character of F is a continuous group homomorphism

χ : A×F /F
× −→ C×p .

By continuity, there exists an integral ideal f′ of F such that (f′, p) = 1 and Uf′,p ⊂ ker(χ).
Any f′ for which this is true is called a modulus of χ and we say that χ is a p-adic Hecke
character of modulus f′.

3. A complex Hecke character of F is a continuous group homomorphism

χ : A×F /F
× −→ C×.

By continuity, there exists an integral ideal f′ of F such that Uf′,∞ ⊂ ker(χ). Any f′ for which
this is true is called a modulus of χ and we say χ is a complex Hecke character of modulus
f′.

If χ is an algebraic, p-adic, or complex Hecke character and v is a place of F , then we let χv
denote χ restricted to F×v ⊂ A×F .

Remark 5.2. In the literature, these notions of Hecke characters go by various names and definitions.
We introduce and use the definitions given to avoid confusion.

We will also need the following alternative definition of an algebraic Hecke character in terms
of ideals. Let f be an ideal of OF and let α ∈ F× be an element such that ((α),m) = 1 and say

that f factors as f =
∏
i

pfii . Define α ≡ 1 mod f to mean that α ≡ 1 mod pfii in OFpi
for all i.

Let I(f) denote the group of fractional ideals of F that are coprime with f. Let

P1(f) = {(α) ∈ I(f) : α ∈ K×, α ≡ 1 mod f}.
The second definition of an algebraic Hecke character is, an algebraic Hecke character of F of
modulus f and infinity type (a1, a2) ∈ Z2 is a group homomorphism χ : I(f) → Q× such that the
image of χ is contained in a finite extension of Q, and for all a ∈ P1(f) such that a = (α) with
α ≡ 1 mod f,

χ((α)) = σ1(α)a1σ2(α)a2 .

Given an algebraic Hecke character, χ, of modulus f and infinity type (a1, a2), using the second
definition, we get an algebraic Hecke character of the same modulus and infinity type, χA using the
first definition by defining χA to be the unique group homomorphism χA : A×F −→ Q× such that:

(i) For all primes p ∈ I(f), χA|O×Fp
= 1 and χA(πp) = χ(p) for any uniformizer in Fp.

(ii) For all x ∈ F×, χA(x) = σ1(x)a1σ2(x)a2 .
(iii) Uf ⊂ ker(χA).

This gives a one-to-one correspondence between algebraic Hecke characters of modulus f and
infinity type (a1, a2) using the first and second definitions.

Given an algebraic Hecke character, χ, of F of infinity type (a1, a2) and modulus f we obtain
p-adic and complex Hecke characters χp and χ∞ which are defined as follows. Define

χp : A×F /F
× −→ C×p

at places v of F not dividing p as χ, so χp|F×v = χ|F×v . At places above p we define χp to be the
group homomorphism

χp : (F ⊗Qp)
× −→ C×p
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χp(α⊗ 1) = χ(α)/ιp(σ1(α)a1σ2(α)a2).

Since the image of F× in (F ⊗Qp)
× is dense this defines χp on (F ⊗Qp)

×. We do something similar
for χ∞. Define

χ∞ : A×F /F
× −→ C×

at the places v of F not dividing ∞ as χ, so χ∞|F×v = χ|F×v . At the place above ∞ we define χ∞
to be the group homomorphism

χ∞ : (F ⊗ R)× −→ E×∞ ⊂ C×

χ∞(α⊗ 1) = χ(α)/ι∞(σ1(α)a1σ2(α)a2).

Since the image of F× in (F ⊗ R)× is dense this defines χ∞ on (F ⊗ R)×.
Given an algebraic Hecke character χ when we consider χp or χ∞, we will drop the subscripts

p and ∞. It will be clear from context when we are considering χ as a p-adic of complex Hecke
character. Furthermore, given a p-adic (or complex) Hecke character ψ we may abuse of language
and say that ψ is an algebraic Hecke character of infinity type (a1, a2) if there exists an algebraic
Hecke character χ of infinity type (a1, a2) such that ψ = χp (or ψ = χ∞).

Let ψ be an algebraic Hecke character of F of infinity type (a, b) and conductor f′pappap where
f′ divides f. Define the p-adic local root number associated to ψ to be the complex number

Wp(ψ) =
ψp(π

−ap
p )

pap

∑
u∈(OFp/p

ap )×

ψp(u) exp(−2πi(TrFp/Qp(u/π
ap
p ))) (10)

where ψp denotes ψ restricted to F×p and πp is a uniformizer for Fp. Since Fp = Qp we could take
πp = p.

Let G(fp∞) = A×F /F
×Uf,p, so the space of p-adic Hecke characters of F of modulus f is

Homcont(G(fp∞),C×p ).

In [4], Buzzard explains how to view Homcont(G(fp∞),C×p ) as the Cp-points of a rigid-analytic
variety. When we say rigid analytic function in the following theorem it is this rigid analytic
structure that we are referring to.

Let S be the set of places containing the infinite places of F and the places of F dividing f.

Theorem 5.3. ([18], [9]) There exists a p-adic rigid analytic function

Lp = Lp,Katz : Homcont(G(fp∞),C×p ) −→ Cp
as well as complex and p-adic periods Ω∞ ∈ C×,Ωp ∈ C×p such that for all algebraic Hecke character
ψ of F of conductor f′pappap where f′ divides f and infinity type (a, b) with a < 0 and b ≥ 0, we
have

Lp(ψ)

Ωb−a
p

=
(−a− 1)!(2π)b
√
dF

b
Wp(ψ)

(
1− ψ−1(p)

p

)
(1− ψ(p))

LS(ψ, 0)

Ωb−a
∞

. (11)

Remark 5.4. 1. Katz originally proved this theorem in [18] for imaginary quadratic fields and
then a similar theorem in [19] for CM fields. The above statement is taken from [9] with the
correction from [3] and with a slight modifications in order to state everything adelically.

2. The interpolation property (11) uniquely determines Katz’s p-adic L-function.

We now state Katz’s p-adic Kronecker’s second limit theorem. Let ζn = ι−1
∞ (e2πi/n) ∈ Q for

n ∈ Z≥1 be a collection of primitive nth roots of unity in Q.

Theorem 5.5. ([18], [9]) Let χ be an algebraic Hecke character of conductor f and trivial infinity
type and let ψ be a Dirichlet character of conductor pn. Let K be the fixed field of the kernel of χψ
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when χψ is viewed as a Galois character via the Artin isomorphism G(fp∞) ∼= Gal(F (fp∞)/F ). Let
uK be the Stark unit for K/F , G = Gal(K/F ), and e be the number of roots of unity in K. Then

Lp(χψ) = −1

e

ψ(−1)τ(ψ−1)

χ(pn)pn

(
1− (χψ)−1(p)

p

)
(1− χψ(p))

∑
σ∈G

χψ(σ) logp(σ(uK))

Remark 5.6. A version of this was proved in Katz’s original paper. The formulas for this theorem
are taken from [9] with a minor correction so the 1− χψ(p) factor is correct (see [16]).

5.2 Definition of the period pair (Ω∞,Ωp)

In this section, we explain how to define the period pair (Ω∞,Ωp). The pair (Ω∞,Ωp) viewed as an

element of C××C×p /Q
×

where Q× is embedded diagonally, is a canonical element associated to F .
Let K be a finite extension of F that contains the Hilbert class field of F . Let P be the prime

of K determined by ιp. Let E be an elliptic curve with CM by OF defined over K and with good
reduction at P. Let ω ∈ Ω1(E/K) be an invariant differential of E defined over K. Attached to
the pair (E,ω), we let x and y be coordinates on E such that

ι : E −→ P2

P 7−→ (x, y, 1)

is an embedding defined over K, which embeds E as the zero set of y2 = 4x3 − g2x+ g3 and such
that ι∗(dxy ) = ω. Let Eω denote the image of E under ι. Let Eω(C) ⊂ P2(C) denote the complex
manifold which consists of the complex points of Eω. Let γ ∈ H1(Eω(C),Q) and define the complex
period

Ω∞ =
1

2πi

∫
γ
ω.

Let

L =

{
1

2πi

∫
η
ω : η ∈ H1(Eω(C),Z)

}
be the period lattice of Eω. We have the complex uniformization

Φ : C/L −→ Eω(C)
z 7−→ (P(L , z),P ′(L , z), 1)

where P is the Weierstrass function. We consider the element

(p−nΩ∞)∞n=1 ∈ lim←−
n

(p−nΩ∞F/Ω∞F ) = (lim←−
n

p−nL /L )⊗Qp

which is in the Tate module of C/L tensored with Qp. Let VpEω = TpEω⊗Qp, VpEω = TpEω⊗Qp,
VpEω = TpEω ⊗Qp, and let ξ = (ξn)∞n=1 be the image of (p−nΩ∞)∞n=1 under the composition

lim←−
n

p−nΩ∞F/Ω∞F
Φp−−→ VpEω −→ VpEω

where the second map is the projection corresponding to TpEω = TpEω × TpEω.

The coordinates x and y on Eω determine a formal group of E over KP, Êω. Let VpÊω =

TpÊω ⊗Qp. Since p splits in F and p is the prime of F determined by ιp, TpÊω = TpEω. Let ξ now

denote the corresponding elemet of VpÊω. Since VpÊ is a rank one Qp-module, ξ is a basis element.
Let

ζ = (ζpn)∞n=1 = (ι−1
p (exp(2πi/pn)))∞n=1

so ζ is a basis element of VpĜm := TpĜm ⊗Qp. Define

ϕp : VpÊω −→ VpĜm
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by ϕp(ξ) = ζ. It is a result of Tate ([33]) that the map

HomOCp
(Êω, Ĝm) −→ HomZp(TpÊω, TpĜm)

is a bijection. We note that

HomQp(VpÊω, VpĜm) = HomZp(TpÊω, TpĜm)⊗Qp

and let ϕ ∈ HomOCp
(Ê, Ĝm)⊗Qp be the element corresponding to ϕp. Define Ωp by the rule

ω = Ωpϕ
∗(dT/(1 + T )).

This defines a pair (Ω∞,Ωp) ∈ C× × C×p . The definition depends on the choice of E, ω, and

γ, but is canonically defined as an element of C× × C×p /Q
×

. That is, if we make different choices

for E, ω, or γ, then Ω∞ and Ωp are both scaled by the same element of Q× (see [13] for further
explanation of the dependence).

5.3 The CM Hida family

For the remainder of Section 5, fix a nontrivial ray class character χ of conductor f such that
(f, p) = 1, and let f =

∑
a⊂OF

χ(a)qNa be the weight one modular form associated to χ. Let
fα be a p-stabilization of f , so α is either χ(p) of χ(p). Recall that the character of f is ε :
(Z/NZ)× → Q determined by the rule ε(`) = χ(`OF ) for primes ` - Np. The goal of this section
is to explicitly describe the rigid analytic functions T` for ` - Np and Up on a neighborhood of the
point corresponding to fα on the eigencurve.

For k ∈ Z, let νk ∈ W(Qp) denote the character t 7→ tk−2. By Theorem 4.1), the eigencurve
is étale at the point corresponding to fα. Let w = ν1 ∈ W(Qp) and let W = W (w, 1/pr) = SpR
be a neighborhood of w such that the weight map C−W →W is étale at all points in the connected
component containing the point corresponding to fα. Let x ∈ C−W (Cp) be the point corresponding
to fα and let VCp = SpTCp ⊂ C−W,Cp be the connected component of C−W,Cp containing x. Then
VCp →WCp is étale, and we take W to be as in Proposition 3.14. Then the weight map on the level
of rings RCp → TCp is an isomorphism, and we use this map to identify TCp with RCp .

Fix a choice of topological generator γ of 1 + pZp, so

R =
{∑

an(t− (w(γ)− 1))n ∈ Qp[[t− (w(γ)− 1)]] : |anprn| → 0 as n→∞
}
.

Let z = t− (w(γ)− 1). Then R is the set of all F (z) ∈ Qp[[z]] that converge on the closed around
0 disk of radius 1/pr in Cp. By the Weierstrass preparation theorem, any F (z) ∈ R is determined
by its values

evνk(F (z)) = F (νk(γ)− w(γ)) = F (γk−2 − γ−1)

at the integers k ∈ Z such that νk ∈ W . For an integer k, νk is in W = W (w, 1/pr) if and only if
k ≡ 1 mod pr−1(p− 1).

Since V is étale over weight space, the Hecke operators T` for ` - Np Up, and [a] for a ∈ (Z/NZ)×

as rigid analytic functions in RCp are deterined by the following two properties:
1. At the weight w,

evw(T`) = a`(fα) =

{
χ(q) + χ(q) if `OF = qq

0 if ` is inert in F

evw(Up) = α, and evw([a]) = ε(a) for all a ∈ (Z/NZ)×.
2. For all k ∈ Z≥2 such that νk ∈ W , evνk(T`), evνk(Up) are the T` and Up Hecke eigenvalues of

an eigenform g of weight k, level Γ0, and character ε which is new at level N .
The second condition implies that the functions [a] ∈ RCp are the constant function [a] = ε(a).

We exhibit explicit elements of RCp with the above two properties as T` for ` - Np and Up.
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In the interest of clarity of composition and space, we assume for the rest of Section 5 that
α = χ(p). The case α = χ(p) is similar (see [13] for more details).

To begin we define an algebraic Hecke character of F . Since p ≥ 3, the only root of unity (and
so the only unit of F ) congruent to 1 mod p in F is 1. Therefore we may identify the group P1(p)
with a subgroup of F×:

P1(p) = {α ∈ F× : ((α), p) = 1, α ≡ 1 mod p} ⊂ F×.
Define λ0 as

λ0 : P1(p) −→ F× ⊂ Q×

λ0(α) = α = σ1(α).

Since Q× is divisible, we may extend λ0 to I(p) to define an algebraic Hecke character λ of infinity
type (1, 0) and modulus p. The choice of extension of λ0 is determined up to multiplication be
a character of I(p)/P1(p). We impose a condition on the extension λ we choose. Recall that C×p
may be written as C×p = pQ ×W × U , where W is the group of roots of unity of order prime to
p and U = {u ∈ C×p : |1 − u| < 1}. By construction, after composing with ιp the image of λ0 is
contained in U . Since U is a divisible group, we may choose our extension λ so that the image of
λ after composing with ιp is also contained in U , which we do. Since the only torsion elements in
U are the p-power roots of unity, any two extensions λ and λ′ of λ0 that have image in U differ
by a character of I(p)/P1(p)[p∞] where the [p∞] denotes the maximal quotient of I(p)/P1(p) with
p-power order.

Let pn = |I(p)/P1(p)[p∞]|. If pr ≤ pn, then we shrink W so that W = W (w, 1
pn+1 ). We may

do this without changing anything we have assumed previously, and the reason for doing this will
become clear momentarily.

Let M = |I(p)/P1(p)| and note that |M |p = 1/pn. For each prime q of F such that q 6= p define
the power series

Gq(z) = expp(z logp(λ(q))) =

∞∑
n=0

zn logp(λ(q))n

n!

as an element of Cp[[z]]. The power series Gq(z) converges if

|z| < 1

p1/(p−1)| logp(λ(q))|
.

Since M = |I(p)/P1(p)|, qM = (q) for some q ∈ OF such that q ≡ 1 mod p. Hence by definition of
λ0

λ(q)M = λ((q)) ≡ 1 mod p

so |1− λ(q)M | < p−1/(p−1). Then by properties of the p-adic logarithm,

1

p1/(p−1)
> |1− λ(q)M | = | logp(λ(q)M )| = |M || logp(λ(q))| =

| logp(λ(q))|
pn

so
1

pn
<

1

p1/(p−1)| logp(λ(q))|
.

Therefore Gq(z) converges for |z| ≤ 1
pn , which is independent of q.

Recall that logγ(z) :=
logp(z)

logp(γ) , and define

Fq(z) = Gq ◦ logγ(1 + γz).

By construction, if |z| ≤ 1
pn+1 then Fq(z) converges. This implies that Fq(z) ∈ RCp . The function

Fq(z) is the unique element of RCp with the property that for all k ∈ Z such that νk ∈ W ,
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evνk(Fq(z)) = (λ(q))k−1. Furthermore, since k ∈ Z is such that νk ∈ W if and only if k ≡ 1
mod pr−1(p − 1) and r > n, Fq(z) does not depend on the choice of extension λ of λ0 since pn

divides k − 1 so the exponent k − 1 will kill any character of I(p)/P1(p)[p∞].
Now let a ⊂ OF be a nontrivial ideal of OF such that (a, p) = 1, and define

Fa(z) =


∏
q

Fq(z)
valq(a) if (a, p) = 1

0 else.

Further, define A1(z) = 1 and for n ≥ 2 define

An(z) =
∑
a⊂OF

NF/Qa=n

χ(a)Fa(z).

Define the formal q-expansion

F =

∞∑
n=1

An(z)qn ∈ RCp [[q]].

This formal q-expansion is the CM Hida family specializing to fα in weight one.

Proposition 5.7. For all k ∈ Z≥1, νk ∈W

Fk :=

∞∑
n=1

evνk(An(z))qn =
∑
a⊂OF

χλk−1(a)qNa

is the q-expansion of a weight-k cusp form of level Γ0 and character ε that is new at level N .

Proof. By definition of An(z) we have that
∞∑
n=1

evνk(An(z))qn =
∑
a⊂OF

χλk−1(a)qNa.

Shimura ([25]) showed that ∑
a⊂OF

χλk−1(a)qNa

is the q-expansion of a weight-k cusp form of level Γ0 which is new at level N and has character
defined by

` 7−→ χ((`))λk−1((`))

`k−1
= χ((`))

(
λ((`))

`

)k−1

for ` ∈ (Z/NZ)× a prime not equal to p. A simple calculation shows that this is the character
ε.

By the proposition, the functions A`(z) ∈ RCp for ` - Np and Ap(z) ∈ RCp satisfy the two
properties that uniquely determine T`, Up ∈ RCp . Hence T` = A` for ` - Np and Up = Ap.

5.4 Two-variable p-adic L-function of the CM family

Keeping the notation of the previous section, let Φ be a generator for the rank one TCp-module

Symb−Γ0
(D(R))o ⊗T−W

TCp ⊂ Symb−Γ0
(D(R))o

and let
Λ(Φ, ·, ·) : W ×W −→ Cp
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be the two-variable p-adic L-function associated to Φ as in Section 3.5. In order to prove Conjecture
4.6 we restrict Λ(Φ, ·, ·) to a particular subset of W ×W. Let

U = {t ∈ Zp : t ≡ 1 mod pr−1}
where W = W (w, 1

pr ) and r was chosen in the previous section. Let η be a p-power order character
and let ψ = ηω. Let pm be the conductor of ψ. Define the two-variable restriction of Λ(Φ, ·, ·):

Lp(χηω, α, ·, ·) : U × Zp −→ Cp
Lp(χηω, α, t, s) = Λ(Φ, ω−1〈·〉t−2, (ηω)−1〈·〉s−1).

For all k ∈ Z≥2, k ≡ 1 mod pr−1, let (Ω∞,k,Ωp,k) be the periods for νk ∈ W that appear in the in-
terpolation formula for Λ(Φ, ·, ·). Then Lp(χηω, α, t, s) is determined by the following interpolation
property: for all k ∈ Z≥2, k ≡ 1 mod pr−1, and j ∈ Z, 1 ≤ j ≤ k − 1, j ≡ 1 mod 2(p− 1)

Lp(χηω, α, k, j)

Ωp,νk

= Ep(α, ηω, k, j)
L(χλk−1ηω, j)

Ω∞,νk
where

Ep(α, ηω, k, j) =
1

χλk−1(p)m

(
1− (ηω)−1(p)pj−1

χλk−1(p)

)
×

×p
m(j−1)(j − 1)!τ((ηω)−1)

(2π)j−1

and L(χλk−1ηω, s) is the complex Hecke L-function associated to χλk−1ηω.

5.5 Two-variable specialization of Lp,Katz

In this section we define a two-variable specialization of Katz’s p-adic L-function that we compare
to the two-variable p-adic L-function defined in the previous section.

Observe that the complex L-value appearing the interpolation formula in the previous section
is

L(χλk−1ηω, j) = L(χλk−1ηωN−j , 0).

By our choice of λ, the algebraic Hecke character χλk−1ηωN−j has infinity type (k − 1 − j,−j),
which is not in the range of interpolation of Katz’s p-adic L-function.

From here on, let c denote complex conjugation, so c is an automorphism of C. Via our
embedding ι∞, c acts on ideals of F , and there is the relation of complex L-functions

L(χλk−1ηωN−j , s) = L(χλk−1ηωN−j ◦ c, s)
that changes the infinity type. Therefore, χλk−1ηωN−j ◦ c has infinity type (−j, k − 1− j), which
is in the range of interpolation of Katz’s p-adic L-function.

Let κ1 = λ ◦ c viewed as an algebraic Hecke character. By our choice of λ, κ1 has infinity type
(0, 1) and conductor p. Further when we view κ1 as a p-adic Hecke character, since λ takes values
in U = {u ∈ C×p : |1− u| < 1} ⊂ C×p we may consider the p-adic Hecke character κs11 for any p-adic
number s1 ∈ Zp.

Let κ2 be the algebraic Hecke character κ2 = ω−1N where N is the norm character

N : AF −→ Q×

N((xv)v) =
∏

v−finite

|xv|−1.

Viewing κ2 as a p-adic Hecke character, κ2 has image 1 + pZp in C×p . It therefore makes sense
to consider κs22 as a p-adic Hecke character for any s2 ∈ Zp. Let χ̃ = χ ◦ c and note that χ̃ has
conductor f. Let Lp,Katz be Katz’s p-adic L-function with respect to the ideal m where as in the
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notation of Section 4.1, m is the conductor of M/F . The ideal m is divisible by all the primes that
divide f and f. Let (Ω∞,Ωp) be the period pair used to define Lp,Katz.

Define
Lp,Katz(χη, α, ·, ·) : U × Zp −→ Cp

Lp,Katz(χη, α, s1, s2) := Lp,Katz(χ̃ηκ
s1−1
1 κ−s22 ).

Proposition 5.8. Lp,Katz(χη, α, s1, s2) is determined by the following interpolation property: for
all k ∈ Z≥2, k ≡ 1 mod pr−1, j ∈ Z, 1 ≤ j ≤ k − 1, j ≡ 1 mod p− 1,

Lp,Katz(χη, α, k, j)

Ωk−1
p

= Ep(α, ηω, k, j)
−(2π)k−2

√
dF

k−1−j
L(χλk−1ψωj−1, j)

Ωk−1
∞

where Ep(α, ηω, k, j) is defined as in the previous section.

Proof. That Lp,Katz(χη, α, s1, s2) is determined by the interpolation property follows from the con-
tinuity of Lp,Katz(χη, α, s1, s2) and that the set of k’s and j’s is dense in U × Zp. Let k ∈ Z≥2,
k ≡ 1 mod pr−1 and j ∈ Z, 1 ≤ j ≤ k − 1, j ≡ 1 mod p− 1. By our definitions

χ̃ηκk−1
1 κ−j2 = χηωλk−1N−j ◦ c (12)

so χ̃ηκk−1
1 κ−j2 has infinity type (−j, k − 1− j) which is in the range of interpolation for Lp,Katz.

By the interpolation formula for Lp,Katz,

Lp,Katz(χη, α, k, j)

Ωk−1
p

=
(j − 1)!(2π)k−1−j
√
dF

k−1−j Wp(χηωλ
k−1N−j ◦ c)×

×
(

1− (χηω)−1λ1−kN j(p)

p

)
(1− χηωλk−1N−j(p))×

×L(χηωλk−1N−j , 0)

Ωk−1
∞

Since λ has modulus p, 1 − χηωλk−1N−j(p) = 1. We also have that (ηω)−1(p) = (ηω)−1(p),
N j(p) = pj , and a calculation shows that,

Wp(χηωλ
k−1N−j ◦ c) =

−pm(j−1)τ((ηω)−1)

χλk−1(p)m
.

Therefore the formula becomes

Lp,Katz(χη, α, k, j)

Ωk−1
p

=
(j − 1)!(2π)k−1−j
√
dF

k−1−j
−pm(j−1)τ((ηω)−1)

χλk−1(p)m
×

×
(

1− (ηω)−1(p)pj−1

χλk−1(p)m

)
L(χλk−1ηω, j)

Ωk−1
∞

= Ep(α, ηω, k, j)
−(2π)k−2

√
dF

k−1−j
L(χλk−1ψωj−1, j)

Ωk−1
∞

.

5.6 Choice of periods and comparison

Let SCp be the fraction field of TCp = RCp .

Proposition 5.9. There exists Ψ ∈ Symb−Γ0
(D(R))⊗T±W

SCp such that the p-adic L-function

Lp(χηω, α, t, s) := Λ(Ψ, ω−1〈·〉t−2, (ηω)−1〈·〉s−1)
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is calculated with the p-adic and complex periods

(Ωp,k,Ω∞,k) =

(
Ωk−1
p ,Ωk−1

∞

(√
dF

2π

)k−2
)

where (Ωp,Ω∞) is the period pair used to define Katz’s p-adic L-function. We note that the domain
of Lp(χηω, α, t, s) is as in the previous section.

Proof. Let Lp(χηω, α, t, s) = Λ(Φ, ω−1〈·〉t−2, (ηω)−1〈·〉s−1) be as in Section 5.4. We determine a
meromorphic function P (t) on U such that P (t)Lp(χηω, α, t, s) has interpolation formula with the
periods (

Ωk−1
p ,Ωk−1

∞

(√
dF

2π

)k−2
)
.

Let
P : U × Zp −→ Cp ∪ {∞}

be the p-adic meromorphic function defined by the ratio

P (t, s) =
Lp,Katz(χη, α, t, s)

Lp(χηω, α, t, s)
.

Then P (t, s) has the interpolation property:

P (k, j)Ωp,k

Ωk−1
p

=
Ω∞,k

Ωk−1
∞

−(2π)k−2

√
dF

k−1−j

for k’s and j’s as in the previous section.
When defining the periods for Lp(χηω, α, t, s), we choose Φ which we’ve done, and we choose

the Ω∞,k. These choices determine the Ωp,k. The condition on the choice of Ω∞,k is that the
complex values in the interpolation formula Lp(Fk, ·, ·) are algebraic. These values are for all odd
finite order characters ψ ∈ W(Cp), k ∈ Z≥2, 1 ≤ j ≤ k − 1,

Calg(α, k, j)
L(χλk−1ψωj−1, j)

(2π)j−1Ω∞,k
where

Calg(α, k, j) =
pm(j−1)(j − 1)!τ(ψ−1ω1−j)

χλk−1(p)m

(
1− ψ−1ω1−j(p)

χλk−1(p)p1−j

)
1

ij−1

and m is the power of p in the conductor of ψ.
It is clear then that we may define

Ω∞,k = Ωk−1
∞

(√
dF

2π

)k−2

since by the interpolation property of Katz’s p-adic L-function, the values

Calg(α, k, j)
(2π)k−1−jL(χλk−1ψωj−1, j)

√
dF

k−2
Ωk−1
∞

are algebraic.
If we consider P (t, s) with this choice of complex periods, then P (t, s) satisfies the interpolation

formula for k ∈ Z≥2 k ≡ 1 mod pr−1, j ∈ Z, 1 ≤ j ≤ k − 1, j ≡ 1 mod 2(p− 1)

P (k, j)Ωp,k

Ωk−1
p

= −
√
dF

j−1
.

Now we separate variables for the function P (t, s). Since p splits in F ,
√
dF ∈ Qp = Fp. Define the

analytic function Q(s) as Q(s) = −〈
√
dF 〉s−1, and let P (t) = P (t, s)/Q(s). The function P (t) is
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a p-adic meromorphic function on U satisfying the relation that for all k ∈ Z≥2, k ≡ 1 mod pr−1,
P (k)Ωp,k = Ωk−1

p . Since P (t) is a p-adic meromorphic function on U , there exists an element

P̃ ∈ SCp such that for all t ∈ U , P̃ (γt−2 − γ−1) = P (t).

If we define Ψ = P̃Φ− and redefine the function

Lp(χηω, α, t, s) = Λ(Ψ, ω−1〈·〉t−2, (ηω)−1〈·〉s−1)

then Lp(χηω, α, t, s) satisfies the interpolation property that for all k, j as above,

Lp(χηω, α, t, s)

Ωk−1
p

= Ep(α, ηω, k, j)
(2π)k−2L(χλk−1ψωj−1, j)

√
dF

k−2
Ωk−1
∞

.

Remark 5.10. If P (t) in the proof of the previous proposition does not have any zeros or poles,
then Ψ is a generator for the free rank one TCp-module SymbΓ0

(D(R))o ⊗T−W
TCp and so Ψ would

be a valid choice to define the p-adic L-function as in Section 3.5.

We record the precise comparison of the p-adic L-function defined in the previous two sections
that appeared in the proof of the previous proposition.

Corollary 5.11. Let Lp,Katz(χη, α, t, s) and Lp(χηω, α, t, s) be defined as in the previous two sec-
tions, so

Lp(χηω, α, t, s) = Λ(Φ, ω−1〈·〉t−2, (ηω)−1〈·〉s−1)

where Φ is a generator of Symb−Γ0
(D(R))o ⊗T±W

TCp as a TCp-module. Then

Lp,Katz(χη, α, t, s) = P (η, t, s)Lp(χηω, α, t, s)

where P (η, t, s) is a p-adic meromorphic function determined by the interpolation property that for
all k ∈ Z≥2, k ≡ 1 mod pr−1, j ∈ Z, 1 ≤ j ≤ k − 1, j ≡ 1 mod 2(p− 1),

P (η, k, j)Ωp,k

Ωk−1
p

=
Ω∞,k

Ωk−1
∞

−(2π)k−2

√
dF

k−1−j .

Remark 5.12. We remark that P (η, t, s) a priori depends on η and α, but as is clear from the
interpolation formula does not actually depend on η or α. The reason for putting η in the notation
will become clear in the next section.

5.7 Proof of the conjecture in this case

In this section we prove Conjecture 4.6 for χ. We adopt the notation of Section 4. For each r ≥ 1
let ur = uMr be the Stark unit for Mr/F from Definition 2.10. For ϕ ∈ W(Cp) a character of
order pr, the unit u∗χϕ,α is obtained from ur by first mapping ur to the (ρϕ)∗-isotypic component of
kr ⊗ Ur and then projecting to the subspace where δp acts with eigenvalue α. Let π∗ρϕ be the map

π∗ρϕ : Ur −→ (kr ⊗ Ur)(ρϕ)∗

π∗ρϕ(u) =
∑
σ∈∆n

Tr((ρϕ)∗(σ))⊗ σ(u).

The idea to project to the subspace where δp acts with eigenvalue α is of Greenberg and Vatsal
([15]) and we adopt their notation. Let | · |α denote the map

| · |α : (k ⊗ Ur)(ρϕ)∗ −→ (kr ⊗ Ur)(ρϕ)∗,δp=α

|u|α =
1

|∆p|

|∆p|−1∑
i=0

α−iδip(u).

Then |π∗ρϕ(ur)|α ∈ (kr ⊗ Ur)(ρϕ)∗,δp=α and so the following theorem implies Conjecture 4.6.
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Theorem 5.13. Let η, ψ ∈ W(Cp) be of orders pm and pn respectively. Then

Lp(χ, α, ηω, ψω, 0) =

τ(η−1)
pm+1

(
1− η−1(p)

αp

)
(1− βη(p))

τ(ψ−1)
pn+1

(
1− ψ−1(p)

αp

)
(1− βψ(p))

logp |π∗ρη(um)|α
logp |π∗ρψ(un)|α

.

Proof. To begin, we simplify the expression |π∗ρη(um)|α. Since (ρη)∗ = Ind∆m
Hm

(χη)−1, for all σ ∈
∆m−Hm, Tr((ρη)∗(σ)) = 0. Since c ∈ ∆m−Hm, for all σ ∈ Hm, Tr((ρη)∗(σ)) = χη(σ)+χη(cσc).
Let χc denote the character χc(σ) = χ(cσc) and note that since Qn is totally real, η(cσc) = η(σ)
for all σ. Therefore,

π∗ρη(um) =
∑
σ∈Hm

χη(σ)⊗ σ(um) + χcη(σ)⊗ σ(um).

Since α = χ(p), we have that

|
∑
σ∈Hm

χη(σ)⊗ σ(um)|α = 0 and |
∑
σ∈Hm

χcη(σ)⊗ σ(um)|α =
∑
σ∈Hm

χcη(σ)⊗ σ(um).

Therefore
|π∗ρη(um)|α =

∑
σ∈Hm

χcη(σ)⊗ σ(um).

A similar formula holds for |π∗ρψ(un)|α.
Let Lp(χηω, α, t, s) and Lp(χψω, α, t, s) be as defined in Section 5.4. By construction

Lp(χ, α, ηω, ψω, s) =
Lp(χηω, α, 1, s)

Lp(χψω, α, 1, s)
.

Then by Corollary 5.11,

Lp(χ, α, ηω, ψω, s) =
P (η, 1, s)Lp,Katz(χηω, α, 1, s)

P (ψ, 1, s)Lp,Katz(χψω, α, 1, s)

=
Lp,Katz(χηω, α, 1, s)

Lp,Katz(χψω, α, 1, s)
.

Plugging in 0, we get

Lp(χ, α, ηω, ψω, 0) =
Lp,Katz(χη ◦ c)
Lp,Katz(χψ ◦ c)

.

We now use Theorem 5.5. By the above simplifications of |π∗ρη(um)|α and |π∗ρψ(un)|α,

Lp,Katz(χη ◦ c)
Lp,Katz(χψ ◦ c)

=

τ(η−1)

pm+1

(
1− (χη)−1(p)

p

)
(1− χη(p)) logp |π∗ρη(um)|α

τ(ψ−1)

pn+1

(
1− (χψ)−1(p)

p

)
(1− χψ(p)) logp |π∗ρψ(un)|α

.

To finish, we just note that since α = χ(p), β = χ(p), so (χη)−1(p) = η−1(p)/α and (χψ)−1(p) =
ψ−1(p)/α, as well as χη(p) = βη(p) and χψ(p) = βψ(p).

6 Numerical Evidence

The programming for the examples consisted of three basic parts: computing the minimal poly-
nomial of the Stark units, viewing the Stark units p-adically to take their p-adic logarithm,
and computing the p-adic L-values. The code used for the examples can be found at https:

//github.com/Joe-Ferrara/p-adicStarkExamples. We briefly explain the basis of the code.
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In the case where F is real quadratic, the minimal polynomial of the Stark units was computed
in SAGE combining the strategies of Stark in [30] and Dummit, Sands, and Tangedal in [11]. In the
cases where F is imaginary quadratic, the minimal polynomials of the Stark units were computed
in pari/gp using the formulas from Section 2.1. To view the Stark units p-adically and take the
p-adic logarithm we wrote a class in SAGE to represent the extension of Qp the Stark units are
in and to take their p-adic logarithm. To compute the p-adic L-values, we used code written in
SAGE by Rob Harron and Rob Pollack to compute overconvergent modular symbols (their code is
based off the algorithms described in [21]). We computed the weight negative one overconvergent
modular symbol associated to fα to get the p-adic L-values as described in Remark 4.5.

An important reason for these examples is that we expected the units appearing in Conjecture
4.6 to be related to the Stark units in definition 2.3 in the way that they are related in Section
5.7, when F in imaginary quadratic and p is split in F (see [13] for what we expected). As the
examples show this may be the case when F is real quadratic. When F is imaginary quadratic and
p is inert in F , we can verify the conjecture, but it is not clear how or if the units in Conjecture
4.6 are related to the Stark units in 2.10. In the case when F is imaginary quadratic and p is inert
in F , the expected formulas conjectured in [13] are not correct.

We adopt all the notation of Section 4. All three examples are of the following form which we
describe before specifying the exact examples.

Let ψ ∈ W(Cp) be the character ψ : (Z/p2Z)× → Q× that sends the generator of (Z/p2Z)× with
minimal positive integer coset representative, to ζp. For α = ±1 in the first example and α = −1 in
the second two examples, we verify the conjecture for Lp(χ, α, ψ

iω, ψjω, 0) when 1 ≤ i < j ≤ p− 1.
Let K1 be the compositum of K and Q1. We computed the minimal polynomial of the Stark

unit for K1 over F . Let u1 be a root of the minimal polynomial, so u1 is a Stark unit for K1 over
F .

In all three examples, the Hecke polynomial of f at p is x2 − 1, so α = ±1 and the geometric
Frobenius, δp has order two. For a ∆p-module A and a ∈ A, let

|a|α =

{
aδp(a) if α = 1
a

δp(a) if α = −1

so | · |α : A→ Aδp=α. (Note that the definition of | · |α appearing here differs from the one appearing
in Section 5.7 by the scalar 1

|∆p| .) Let

u∗χψi,α =
∑

σ∈Gal(K1/F )

χψi(σ)⊗ |σ(u1)|α ∈ (k1 ⊗ O×M1
)(ρψi)∗,δp=α.

We computed each example to two levels of precision. First to check the results we computed
with 60 p-adic digits of precision. Then to reproduce and reaffirm the results we computed each
example at a higher level of precision. Let prec be the number of p-adic digits that each computation

was done with. We computed each of the p-adic numbers Lp(χ, α, ψ
iω, ψjω, 0) and

logp(u
∗
χψi,α

)

logp(u
∗
χψj ,α

)
,

which lie in the p-adic field Qp(ζp2). The field Qp(ζp2) has ramification index p(p− 1) over Qp and
was represented in the computer with respect to the uniformizer π = ζp2 −1. Computing with prec
p-adic digits in Qp(ζp2) is prec · p(p− 1), π-adic digits. To verify the conjecture, we calculated the
π-adic valuation of the difference

Lp(χ, α, ψ
iω, ψjω, 0)− τ(ψ−i)

τ(ψ−j)

logp(u
∗
χψi,α

)

logp(u
∗
χψj ,α

)
. (13)

A number in our computer representation of Qp(ζp2) is 0 if it has π-adic valuation prec ·p(p−1).
Our data shows that in the cases that we computed, the value of (13) is extremely close to 0. The
difference in the examples between (13) and 0 is most likely from rounding error.
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6.1 F = Q(
√

17), K = Q(
√

4 +
√

17), p = 5

In this example, Conjecture 4.6 is true because ρ is also the induction of a ray class character χ′

of F ′ = Q(i) where p = 5 splits (and Conjecture 4.6 only depends on ρ). To see this, define χ′ so
that the fixed field of the kernel of χ′ is K ′ = Q(

√
8 + 2i). Then since the fixed field of the kernel

of ρ is M = K(
√

4−
√

17) and we have the relation
√

4 +
√

17 +
√

4−
√

17 =
√

8 + 2i, a simple
calculation shows that Indχ = ρ = Indχ′. For a further analysis of this situation where there is a
ray class character of a real quadratic field and of an imaginary quadratic field where p splits, and
such that the induction of the two ray class characters is the same, see chapter 5 of [13].

We include this example because the units appearing are the Stark units from 2.3 associated to
the real quadratic field F = Q(

√
17).

The character ψ is defined by ψ(2) = ζ5. Let a =
1 +
√

17

2
. Then the minimal polynomial of

the Stark unit for K1/F is

x10 + (−2268731445425a− 3542743970110)x9+

+(101815525268417913200a+ 158990319870506526445)x8+

+(−908489137763713280149684575a− 1418653768481195383230297220)x7+

+(1212779745101402982169172133826675a+ 1893819622280672026587959027568110)x6+

+(−51814142160111896449580114635979570875a− 80910519433399332983120295909704647352)x5+

+(1212779745101402982169172133826675a+ 1893819622280672026587959027568110)x4+

+(−908489137763713280149684575a− 1418653768481195383230297220)x3+

+(101815525268417913200a+ 158990319870506526445)x2+

+(−2268731445425a− 3542743970110)x+ 1.

The data for this example is in the following table.

α (i,j) π-adic valuation of (13)
when prec=60

π-adic valuation of (13)
when prec=63

1 (1,2) 1141 1260

1 (1,3) 1140 1260

1 (1,4) 1140 1261

1 (2,3) 1140 1260

1 (2,4) 1140 1260

1 (3,4) 1141 1260

-1 (1,2) 1136 1255

-1 (1,3) 1135 1255

-1 (1,4) 1135 1255

-1 (2,3) 1135 1255

-1 (2,4) 1135 1255

-1 (3,4) 1135 1257

6.2 F = Q(
√
−23), K = Hilbert class field of F , p = 5

The character ψ is defined by ψ(2) = ζ5. The minimal polynomial of the Stark unit for K1/F is
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x15 − 832535x14 + 65231675x13 − 5650639400x12+

+15533478425x11 − 39376942640x10 − 212804236525x9 − 380541320125x8+

−2607229594750x7 − 2183192838625x6 + 3771011381950x5 − 1207366794625x4+

+99067277500x3 − 221569375x2 + 466875x− 125.

The data for this example is in the following table.

α (i,j) π-adic valuation of (13)
when prec=60

π-adic valuation of (13)
when prec=72

-1 (1,2) 1135 1436

-1 (1,3) 1135 1436

-1 (1,4) 1135 1435

-1 (2,3) 1136 1436

-1 (2,4) 1135 1435

-1 (3,4) 1135 1435

When α = 1, we made the same calculation and got for (13) a p-adic number that is not close
to 0. This indicates that when F is imaginary quadratic and p is inert in F , the units that appear
in Conjecture 4.6 may not come from the elliptic units from definition 2.10. For reference we give
the first 100 π-adic digits of the quantities in (13) for this example when α = 1:

τ(ψ−1)

τ(ψ−2)

logp(u
∗
χψ1,α)

logp(u
∗
χψ2,α

)
=

2 + π5 + 4π21 + 3π22 + 3π23 + 4π24 + π25 + 2π26 + 4π27 + 4π28 + 2π29 + 2π30 + 3π31 + π32 + π33+

3π34+3π35+π36+π37+3π38+3π39+3π40+3π41+4π42+3π43+2π44+2π45+2π46+2π47+π48+π49+

π50+2π52+3π54+4π55+3π56+π57+π58+2π59+2π61+4π62+3π63+2π64+3π65+π66+2π67+2π68+

π71+3π72+2π73+2π74+π75+2π76+3π77+π78+3π79+2π80+π81+2π82+4π84+4π85+2π86+4π88+

2π89 + 3π90 + 3π91 + 3π93 + 2π94 + 4π95 + 2π96 + π97 + 4π98 + 2π100 +O(π101) (14)

τ(ψ−1)

τ(ψ−3)

logp(u
∗
χψ1,α)

logp(u
∗
χψ3,α

)
=

3 + 3π5 + π10 + 2π21 + 4π22 + 4π23 + 2π24 + 3π25 + 4π26 + 3π27 + 3π28 + 4π29 + 4π30 + 3π31 + π32+

π33+3π34+4π36+π38+π40+4π41+4π42+3π43+3π44+4π45+4π46+2π47+2π48+4π49+4π50+3π51+

3π53+π54+4π55+2π57+2π58+2π59+3π60+3π62+2π63+4π65+3π66+3π67+4π69+π70+π71+2π72+

2π73+2π74+3π75+3π76+π77+2π78+4π80+4π81+2π82+3π84+3π85+3π86+2π87+3π88+4π89+4π90+

2π91 + 4π92 + 4π93 + π95 + π97 + 2π98 + 2π99 + 2π100 +O(π101) (15)
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τ(ψ−1)

τ(ψ−4)

logp(u
∗
χψ1,α)

logp(u
∗
χψ4,α

)
=

4 + π5 + 4π10 + π15 + 4π21 + 3π22 + 3π23 + 4π24 + 4π26 + 3π27 + 3π28 + 4π29 + π30 + π31 + 2π32+

2π33 +π34 +3π35 +π36 +π37 +3π38 +3π39 +2π40 +4π42 +π43 +2π44 +π45 +π46 +2π47 +3π48 +2π49+

π50+π51+3π52+4π53+2π54+4π55+3π57+4π58+2π60+4π62+4π65+3π66+3π67+π68+4π69+3π70+

π71+π72+4π73+2π74+2π75+π76+4π77+4π80+π81+3π82+π83+2π85+3π87+2π88+2π89+3π91+

π92 + π93 + 2π95 + π96 + 2π97 + 4π99 + 2π100O(π101) (16)

τ(ψ−2)

τ(ψ−3)

logp(u
∗
χψ2,α)

logp(u
∗
χψ3,α

)
=

4 + 2π5 + 2π10 + 4π15 + π20 + 3π21 + π22 + π23 + 3π24 + π25 + 2π30 + 2π31 + 4π32 + 4π33 + 2π34+

3π35+4π36+π37+3π39+3π41+π42+3π43+π45+π46+4π48+4π51+3π53+2π54+2π55+3π56+π57+

2π58+4π59+2π60+π61+4π62+3π63+2π64+3π66+3π67+π69+π70+3π72+2π73+π74+4π75+3π76+

3π77+2π78+4π79+3π80+π81+4π82+3π83+4π84+2π85+π86+4π87+4π88+4π89+3π90+2π91+2π92+

4π93 + π94 + 3π95 + 3π96 + 2π97 + 4π99 + 2π100 +O(π101) (17)

τ(ψ−2)

τ(ψ−4)

logp(u
∗
χψ2,α)

logp(u
∗
χψ4,α

)
=

2 + 2π5 + π10 + 3π21 + π22 + π23 + 3π24 + 2π25 + 2π26 + 4π27 + 4π28 + 2π29 + 3π30 + 3π35 + 3π36+

4π37+3π38+2π39+2π40+2π41+2π44+π45+4π46+4π47+π52+π53+π56+π58+2π59+2π64+4π65+

π68+4π69+π70+4π71+2π72+π73+3π76+4π77+4π78+π79+3π80+2π81+2π82+4π83+2π85+2π86+

4π88 + π89 + π90 + 3π91 + 4π92 + 3π93 + 4π94 + 2π95 + 2π96 + 2π97 + 2π98 +O(π101) (18)

τ(ψ−3)

τ(ψ−4)

logp(u
∗
χψ3,α)

logp(u
∗
χψ4,α

)
=

3 + 4π5 + 3π10 + π15 + π21 + 2π22 + 2π23 + π24 + 4π25 + 2π26 + 4π27 + 4π28 + 2π29 + π30 + π31+

2π32 +2π33 +π34 +π35 +3π36 +2π37 +π39 +3π40 +4π41 +π42 +3π43 +π44 +3π51 +4π52 +4π54 +π55+

4π56+π57+π58+3π59+4π60+π61+4π62+4π64+4π66+2π67+3π70+4π71+2π72+3π73+4π74+4π75+

3π76 +π77 +π78 +3π79 +4π80 +π82 +3π83 +2π84 +π85 +π87 +π88 +4π89 +2π92 +π93 +2π95 +2π96+

2π97 + 3π98 + 2π99 + 4π100 +O(π101) (19)
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Lp(χ, α, ψ
1ω, ψ2ω, 0) =

1 + 3π5 + 3π10 + π15 + 2π21 + 4π22 + 4π23 + 2π24 + 2π25 + π30 + 3π31 + π32+

π33+3π34+2π35+2π36+π37+2π38+3π39+4π40+2π41+3π42+π43+π45+4π46+2π47+3π48+π50+

2π51+π52+4π53+3π56+3π58+4π59+2π60+3π61+4π62+π63+3π64+2π66+3π68+3π69+3π70+4π73+

2π75+π76+4π80+4π81+3π82+3π83+3π84+π85+π86+π87+2π88+3π89+π91+3π92+4π93+4π94+

π95 + 2π96 + 3π97 + 4π98 + 3π99 + π100 +O(π101) (20)

Lp(χ, α, ψ
1ω, ψ3ω, 0) =

1 + π5 + 4π21 + 3π22 + 3π23 + 4π24 + 4π25 + 2π26 + 4π27 + 4π28 + 2π29 + 4π30+

3π31+π32+π33+3π34+3π35+π36+π37+3π38+3π39+3π41+4π42+3π43+2π44+3π47+2π48+4π49+

3π50+4π51+3π53+2π54+4π55+3π56+π57+π58+2π59+3π60+2π61+2π62+π64+2π66+3π67+π68+

2π70+π71+π72+4π73+2π74+π75+3π76+4π78+π79+4π82+3π83+3π84+4π85+4π87+4π88+3π89+

3π91 + 4π92 + π93 + 2π94 + π95 + 2π96 + 4π97 + 3π98 + 2π99 + 2π100 +O(π101) (21)

Lp(χ, α, ψ
1ω, ψ4ω, 0) =

1 + 4π5 + π10 + 4π15 + π20 + π21 + 2π22 + 2π23 + π24 + π25 + π26 + 2π27+

2π28+π29+3π30+4π31+3π32+3π33+4π34+2π35+π37+4π38+3π39+4π40+3π43+3π44+3π45+4π46+

4π47+3π48+3π49+4π55+4π56+4π57+3π58+2π59+2π60+2π61+4π62+π63+4π65+2π66+π67+2π68+

3π69+2π70+2π71+4π72+π73+2π74+4π76+3π77+π78+4π79+2π80+4π81+2π82+2π85+4π86+π87+

2π88 + π89 + 3π90 + π91 + 4π92 + π96 + π97 + π98 + 4π99 + 4π100 +O(π101) (22)

Lp(χ, α, ψ
2ω, ψ3ω, 0) =

1 + 3π5 + 3π10 + π15 + 2π21 + 4π22 + 4π23 + 2π24 + 2π25 + π30 + 3π31 + π32+

π33+3π34+3π35+2π36+π37+2π38+3π39+π40+2π41+3π42+π43+2π45+4π46+2π47+3π48+π50+

2π52+3π54+π56+π57+4π58+2π59+3π60+2π61+2π62+4π63+2π64+4π65+3π69+3π70+π71+π73+

3π75+3π76+π77+2π78+4π79+4π80+π82+π84+4π87+4π90+4π91+3π92+2π93+π94+π96+2π97+

4π98 + 2π99 + 3π100 +O(π101) (23)

Lp(χ, α, ψ
2ω, ψ4ω, 0) =

1 + π5 + 4π21 + 3π22 + 3π23 + 4π24 + 4π25 + 2π26 + 4π27 + 4π28 + 2π29 + 4π30+

3π31+π32+π33+3π34+3π35+π36+π37+3π38+3π39+3π41+4π42+3π43+2π44+3π47+2π48+4π49+

3π50+4π51+3π53+2π54+4π55+3π56+π57+π58+2π59+3π60+2π61+2π62+π64+2π66+3π67+π68+

π71+π72+4π73+2π74+3π75+3π76+4π78+π79+4π82+3π83+3π84+2π85+3π86+π89+4π90+2π91+

2π92 + 4π93 + π94 + 2π95 + 3π96 + π97 + 3π99 +O(π101) (24)
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Lp(χ, α, ψ
3ω, ψ4ω, 0) =

1 + 3π5 + 3π10 + π15 + 2π21 + 4π22 + 4π23 + 2π24 + 2π25 + π30 + 3π31 + π32+

π33+3π34+2π35+2π36+π37+2π38+3π39+4π40+2π41+3π42+π43+π45+4π46+2π47+3π48+π50+

2π51+π52+4π53+3π56+3π58+4π59+2π60+3π61+4π62+π63+3π64+2π66+3π68+3π69+π70+4π73+

π76 +π80 +4π81 +3π82 +3π83 +3π84 +π85 +4π86 +2π87 +3π88 +π89 +π92 +2π93 +3π94 +2π95 +π96+

π97 + 2π98 + 2π99 + 3π100 +O(π101). (25)

6.3 F = Q(
√
−31), K = Hilbert class filed of F , p = 3

This example is interesting because it does not satisfy the assumption, p - [M : Q] (in this example
M = K). In this example p = 3 which divides [M : Q] = 6. The example does satisfy the condition

∆1 = Gal(M1/Q) ∼= Gal(M/Q)×Gal(Q1/Q) = ∆× Γ1.

The character ψ is defined by ψ(2) = ζ3. The minimal polynomial of the Stark unit for K1/F is

x9 − 306x8 − 1143x7 − 71640x6 + 60156x5 + 117180x4 + 25704x3 − 7371x2 + 5022x− 27.

The data for this example is in the following table.

α (i,j) π-adic valuation of (13)
when prec=60

π-adic valuation of (13)
when prec=77

-1 (1,2) 352 441

When α = 1, as in the previous example, we made the same calculation and got for (13) a
p-adic number that is not close to 0. Again, this indicates that when F is imaginary quadratic and
p is inert in F , the units that appear in Conjecture 4.6 may not come from the elliptic units from
definition 2.10. For reference we give the first 100 π-adic digits of the quantities in (13) for this
example when α = 1:

τ(ψ−1)

τ(ψ−2)

logp(u
∗
χψ1,α)

logp(u
∗
χψ2,α

)
=

2+2∗π3 +π6 +π7 +π8 +π9 +π11 +2∗π13 +2∗π14 +2∗π15 +2∗π16 +π17 +2∗π19 +2∗π20 +π21+

π22+2∗π24+π26+2∗π28+π29+2∗π30+2∗π32+π33+π35+2∗π37+π40+2∗π41+2∗π45+2∗π46+2∗π47+

π48 +2∗π49 +π50 +2∗π52 +2∗π54 +π55 +2∗π58 +2∗π59 +π60 +2∗π62 +2∗π63 +π64 +2∗π65 +2∗π66

+π67+2∗π71+2∗π74+2∗π75+π77+2∗π78+π79+2∗π80+π81+2∗π82+2∗π84+2∗π87+π89+π91+2∗π92+

2 ∗ π98 + 2 ∗ π99 + 2 ∗ π100 +O(π101) (26)

Lp(χ, α, ψ
1ω, ψ2ω, 0) =

1 + 2 ∗ π3 + π6 + π7 + π8 + 2 ∗ π9 + π11 + 2 ∗ π13 + 2 ∗ π14 + 2 ∗ π16 + π17+

π19+π20+2∗π21+π22+2∗π24+π25+π26+2∗π27+2∗π28+2∗π30+π32+2∗π33+2∗π35+π36+2∗π38+π40+

2∗π41+π45+2∗π49+2∗π50+2∗π51+2∗π52+2∗π54+π55+π57+π58+π62+π63+π64+2∗π65+2∗π68+

2∗π69+π71+π74+π75+π76+2∗π78+2∗π82+π83+π84+2∗π86+π88+π90+2∗π91+π92+π94+π97+

2 ∗ π98 + 2 ∗ π99 + π100 +O(π101). (27)
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[2] J. Belläıche and M. Dimitrov. On the eigencurve at classical weight 1 points. Duke Math. J.,
165(2):245–266, 2016.

[3] M. Bertolini, H. Darmon, and K. Prasanna. p-adic Rankin L-series and rational points on CM
elliptic curves. Pacific J. Math., 260(2):261–303, 2012.

[4] K. Buzzard. On p-adic families of automorphic forms. In Modular curves and abelian varieties,
volume 224 of Progr. Math., pages 23–44. Birkhäuser, Basel, 2004.
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Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1984. Lecture notes edited by Dominique
Bernardi and Norbert Schappacher.

[33] J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183.
Springer, Berlin, 1967.

Joseph Ferrara, Department of Mathematics, University of California, San Diego, 9500 Gilman Drive
# 0112, La Jolla, CA 92093

E-mail address: jferrara@ucsd.edu

40


