A p-adic Stark conjecture in the rank one setting

Joseph W. Ferrara

Abstract

We give a new definition of a p-adic L-function for a mixed signature character of a real
quadratic field and for a nontrivial ray class character of an imaginary quadratic field. We then
state a p-adic Stark conjecture for this p-adic L-function. We prove our conjecture in the case
when p is split in the imaginary quadratic field by relating our construction to Katz’s p-adic
L-function. We also provide numerical evidence for our conjecture in three examples.
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1 Introduction

Let F' be a number field and let
X : GF — C*

be a continuous one dimensional representation of the absolute Galois group of F. Let K be the
fixed field of the kernel of y. For the rest of this article, let p be an odd prime number, let Q be an
algebraic closure of Q, and fix embeddings 1o : Q < C and ¢, : Q — C,,.

Via the Artin map, to y we may associate the complex Hecke L-function, L(x,s), defined by

the series

L(x,s) = ﬁ(:‘:z

aCOp

for Re(s) > 1. The function L(x, s) has a meromorphic continuation to the whole complex plane.
In the late 1970s, in a series of papers, Stark made precise conjectures concerning the leading term
of the Taylor series expansion at s = 0 of L(x,s) ([28], [29], [31]). Stark’s conjectures relate the
leading term of L(x, s) at s = 0 to the determinant of a matrix of linear combinations of logarithms
of units in K. His conjectures refine Dirichlet’s class number formula. Stark proved his conjectures
when the field F' is equal to Q or to an imaginary quadratic field. In general the conjectures are
open.

Around the same time that Stark made his conjectures, p-adic L-functions were constructed
interpolating the critical values of complex Hecke L-functions for general number fields. This vastly
generalized Kubota and Leopoldt’s work on the p-adic Riemann zeta function. When F is a totally
real field and x : Gp — C* is a totally even character, Cassou-Nogues ([5]), and then Deligne and
Ribet ([10]) defined a p-adic meromorphic function

Lyp(x,s) 1 Zy — C,
determined by the following interpolation property: for all n € Z<y,

Lp(x.n) = [J(1 = xw" (@) Np™") L(xw" " ) (1)
plp

where w is the Teichmiiller character. Siegel and Klingen ([26]) showed that the values L(xw" ', n)
lie in the field obtained by adjoining the values of yw™ ! to Q. The equality (1) takes place in Q.
Now let F' be a CM field with maximal totally real subfield E. A prime p is called ordinary for
F if every prime above p in FE splits in F'. For such primes p, Katz ([18],[19]) defined a p-adic L-
function associated to any ray class character y : Gp — C*. Katz’s p-adic L-function interpolates
the values of complex L-functions of algebraic Hecke characters with nonzero infinity type. To
specify the interpolation property we specialize to the case that F' is imaginary quadratic. Let p
be a rational prime that is split in F'. Let A be a Hecke character of infinity type (1,0). Then Katz

constructed a p-adic meromorphic function

1

L,(x,t,s): Zy x Z, — C,,
determined by the following interpolation property: for all k,j € Z such that 1 < j <k —1,

Lyp(x; k. 5) Lo )
IJQ? = Ep(X7k7])W‘ (2)

Here Ep(x,k,j) is an explicit complex number and €2, € C;, Qo € C* are p-adic and complex
periods that make both sides of (2) algebraic.

In these two cases, F totally real and F' imaginary quadratic with p split, p-adic Stark con-
jectures have been made for L,(x,s) and L,(x,t,s), and some progress has been made on these
conjectures. When F' is totally real and x is totally odd Gross ([17]) stated a conjecture for the



order of vanishing of L,(xw,s) at s = 0 and the leading term of the Taylor series of L,(xw, s) at
s = 0. Progress has been made on the order of vanishing, and recently the formula for the leading
term was proved in [8] building off of earlier work in [7]. When F' is totally real and x is totally
even there is a conjecture for the value Ly(x, 1) known as the Serre-Solomon-Stark conjecture ([27],
[32]). This conjecture is open except in the cases when F' = Q, when the formula is due to Leopoldt,
and when x is trivial, where Colmez has proven a p-adic class number formula ([6]). When F' is
imaginary quadratic and p is split in F', Katz stated and proved a p-adic Stark conjecture for the
value Ly(x, 1, j) known as Katz’s p-adic Kronecker’s 2nd limit formula ([18] and see Section 5.1).

One of the original motivations for Stark’s conjectures is that when the order of vanishing of
L(x,s) at s = 0 is exactly one, then the conjectures shed light on Hilbert’s 12th problem about
explicit class field theory. More precisely, when the order vanishing is exactly one then Stark’s
conjectures predict the existence of a unit u € &} such that the relation

D@0 =1 Y bo) sl 3)
c€eGal(K/F)

holds for all characters of the Galois group Gal(K/F) and such that K (u'/¢) is an abelian extension
of F'. Here e is the number of roots of unity in K and the absolute value is a particular absolute
value on K. When F is real quadratic, ords—o(L(x,s)) = 1 if and only if x is mixed signature. In
this case, we choose the absolute value on K to correspond to one of the real places of K. Then by
varying ¢ and exponentiating (3) one can solve for the unit v from the L-values L'(1,0). In this
way, Stark’s conjectures give a way to construct units in abelian extensions of F. In Section 2, we
review the rank one abelian Stark conjecture when F is a quadratic field.

The goal of this article is to define a p-adic L-function and state a p-adic Stark conjecture in the
setting when F' is a quadratic field and ords—o(L(x, s)) = 1 (the rank one setting). This is the case
when x is any nontrivial character if F' is imaginary quadratic, and when y is a mixed signature
character when F is real quadratic. When F' is imaginary quadratic and p is split in F' our p-adic
L-function is related to Katz’s. In the cases when F' is imaginary quadratic and p is inert, as well
as when F' is real quadratic and x is mixed signature, our p-adic L-function is new. One of the
main issues with defining the p-adic L-function for xy when F' is quadratic and ords—o(L(x,s)) =1
is that the complex L-function L(y, s) has no critical values. Therefore the p-adic L-function of x
will not interpolate any of the special values of L(x,s). In order to define the p-adic L-function
in lieu of the fact that L(x, s) has no critical values we p-adically deform x into a family of p-adic
representations where complex L-functions in the family do have critical values to interpolate.

We now explain in more detail our definition, conjectures, and results. Let

p=Indg? : Gg — GLy(C)
be the induction of x from G to Gg. Then the g-expansion

F=> x(a)g"*
aCOf
is the g-expansion of a weight one modular form and p is the representation associated to f. The
modular form f has character € = det p and level N = |dp|Np/gm where dp is the discriminant of
F and m is the conductor of y. Let

2 = ap(f)z +e(p) = (z — a)(z — )
be the Hecke polynomial of f at p. Then « and /3 are roots of unity, so f has two (possibly equal)
ordinary p-stabilizations. Let f,(2) = f(2)—Bf(pz) be a p-stabilization of f. Under the assumption
that a # 3, Bellaiche and Dmitrov ([2]) have shown that the eigencurve is smooth at the point
corresponding to f,. We will use Bellaiche and Dmitrov’s result, so we assume « # § and let V' be
a neighborhood of f,, on the eigencurve such that the weight map is étale at all points of V' except



perhaps f,. Let W be weight space. Using the constructions of [1] there exists a two-variable p-adic
rigid analytic function
Ly(fa,z,0): VxW—C,

such that for all classical points y € V, all finite order characters ¢y € W(C,), and all integers j,
1 < j <k —1 where k is the weight of y,
Lp(fa7ya¢71<')<'>j71) _ . L(gyfwwjila.j)
o) = Ep(fa,y, ¢,J)W- (4)

Here g, is the modular form corresponding to the point y € V, L(gy,wwj ~14) is the complex
L-function of the modular form g, twisted by the Dirichlet character YwI ™Y Ep(fayy,1,j) is an
explicit complex number, and Qécovy, Q;)t,y are p-adic and complex periods respectively that make
both sides of the equality algebraic. In Section 3, we give the background needed in order to define
Lp(f ay 2,0 )

Conceptually, it makes sense to define the p-adic L-function of x as
LP(X7 «, S) : ZP — CP
Lp(x’ «, 5) = Lp(fow z, <'>871)

where x € V is the point corresponding to f,. The problem with this definition is that while the
function L,(fa,2,0) is determined by the above interpolation property, the triple of the function
L,(fa, 2, 0), the p-adic periods Q;f’y, and the complex periods in,y is not canonically defined. The
choice of the function L,(fa, 2,0) may be changed by a p-adic analytic function on V for which we
would obtain a new function with new p-adic and complex periods satisfying the same interpolation
formula. We would like to state a p-adic Stark conjecture for the function Ly(x, «, s), but because
the function is not canonically defined it does not make sense to specify its value at any point with
a precise conjecture.

To define a function that does not depend on any choices, we fix two finite order Dirichlet
characters 7,1 € W(C,) and define the p-adic L-function of x with the auxiliary characters n and
P as
Lp(fos w1 () ()7
Lp(fa,z,n w1 () ()*71)

The function L,(x, @, Yw,nw, s) does not depend on the choices made to define L,(fq,z,0). In
Section 4, we make the following conjecture for L,(x, o, Yw, nw, s).

LP(X7 Oé, ¢w7 77W7 S) =

Conjecture 1.1. Let 1,7 € W(C,) be of orders p™ and p™ respectively. Let My, and M, be the
fixed fields of the kernels of the representations p @ n and p ® ¢ respectively. Let ky, and k,, be the
fields obtained by adjoining the values of x, a, and (ym+1 and (yni1 respectively to Q. Then there
exists units u¥, . € ky @ ﬁ]\x/[m and u*, €k, ® ﬁ]@n such that

N X,
_ I (O W ! N
P i 2) (1-22) "D yp (ur,, )
R _ _ @) ) log,(uk, )
(1= 8n(p)) (1 ap pFI DAXT,

1

where 7(¢=1) and T(n~') are the Gauss sums associated to yp~" and n=1 respectively.

In Section 5, we prove our conjecture when F' is imaginary quadratic and p is split in F' by
comparing L, (x, &, Yw, nw, s) to Katz’s p-adic L-function (Theorem 5.13). We also show in Section
5 that in this case, it is possible to choose the periods in (4) in such a way as to make L,(x, @, s)
canonically defined. It is a goal of future research to explore whether or not this is possible in the
other cases.



At the outset of this project, we believed that the units u, ,, “;w,a would be related to the
units appearing in (3) for the characters yn and xw (see [13] for the precise relation we expected).
This is the case when F' is imaginary quadratic and p is split (see Section 5.7). In the other cases
it is not clear what the precise relation is or if there is a relation. In Section 6, we give evidence
for our conjecture exploring the relation between Uy o and u;w7 ., and the units that would appear
in (3).
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paper.

2 The rank one abelian Stark conjecture for quadratic fields

In this section we state the rank one abelian Stark conjecture for quadratic fields, and introduce
notation that will be used in later sections. Let F' be a quadratic extension of Q and let K be a
nontrivial finite abelian extension of F. If F' is real quadratic assume that one infinite place of F'
stays real in K and the other becomes complex.

Let S be a finite set of places of F' that contains the infinite places and the places that ramify in
K. Assume that |S| > 2. Let Sk denote the places of K above those in S. Let v denote an infinite
place of K such that v(K) C R if F is real quadratic. We also let v denote the infinite place of F
that is v|p, so v € S. Let U, g denote the subgroup of K* defined by

I {ue K* : |uly = 1,Vw' such that w'|p # v|p} if [S]>3

S pu—

U’ {u e K*: |uly = |u]yr, V', w" | v and |u|, = 1,Vw &€ Sk} if S = {v,v'}.

Let e denote the number of roots of unity in K. Let Lg(x, s) be the complex L-function associated
to x with the Euler factors at the primes in .S removed.

Conjecture 2.1. (Stark [31] at s = 0) There exists u € U, g such that for all characters x of
Gal(K/F),

Lis(x,0) = 1 Z x (o) log|o(u)ly.

(&
c€Gal(K/F)

Remark 2.2. 1. Stark conjectured the additional conclusion that K (u!/¢) is an abelian extension
of F. For our purposes we will not be considering this part of the conjecture.

2. Stark proved the above conjecture when F' is imaginary quadratic ([31]). The conjecture is
open when F is real quadratic.

3. If |S| > 3, then the element u € U, g has its absolute value specified at every infinite place of
K, so u if it exists is determined up to multiplication by a root of unity.

4. In the real quadratic case, we can always take S to be the infinite places of F' union the
places of F' that ramify in K. In this case, the conjectural u € U, g is an actual unit in Ok.
Similarly in the imaginary quadratic case if at least two primes of F' ramify in K and we take
S to be the infinite place of F' union the places of F' that ramify in K, then the Stark unit
u € Uy, g is a unit in Ok.

Definition 2.3. Let K/F, S and v be as above. An element in U, g satisfying the above conjecture
is called a Stark unit for K/F and is denoted ug. If |S| > 3, then ug is determined up to



multiplication by a root of unity. When F' is imaginary quadratic the units ux will be specified in
Section 2.1.

Now fix a character x of Gal(K/F). We state the rank one abelian Stark conjecture for the one
L-function Lg(x, s).

We keep the setting and notation as above for K/F, S, and v. Let x be a character of Gal(K/F')
such that ords—o(Ls(x,s)) = 1, and let k be the field obtained by adjoining the values of x to Q.
Extend log | - |, from U, g to k ®z U, s by k-linearity. Let

(k@7 Ups)X  ={uck®yU,g:o(u)=x'(c)u,¥o € Gal(K/F)}
be the x ™! isotypic component of k ®z U, s where Gal(K/F) acts via its action on U, g.

—1

Conjecture 2.4. (Rational Stark for x at s = 0). There exists an element u, € (k ®z U, g)X
such that

Lis(x,0) = 1og |ty ]o-

Remark 2.5. 1. As it happens with Conjecture 2.1, Conjecture 2.4 is open when F' is real
quadratic and x is mixed signature.
2. Since we are assuming ords—o(Lg(x,s)) = 1, the k-dimension of (k ®z UU,S)’(1 is one.
3. Conjecture 2.1 implies Conjecture 2.4 by taking

1
Uy =~ Z x(o) ®o(u) € (k®z U, 5)X
ceGal(K/F)
where u € U, g is the unit satisfying Conjecture 2.1.

-1

2.1 The imaginary quadratic case

In this section we define the Stark units that exist in the imaginary quadratic case of the rank one
abelian Stark conjecture. These units will be used in later sections.

Let L = Zwy 4+ Zws C C be a lattice in C with ordered basis so that 7 = wy /ws is in the upper
half plane. Define the sigma and delta functions of a complex number z and lattice L to be

o(z,L) ==z H (1 — 5) ef*%(f)Q

weL
w#0

-\ 12

A(L) _ <27TZ> eQm’T - (1 . e?m’m’)?él

= s I | .
n=1

Let .
A(L) _ wiw2 Wi

21

so A(L) the area of C/L divided by m. Further let

— Z Z (mwy + nwz)2

neZ meZ,m#0

w2 Z Z (mwy + nwz)Q

meZneZ,n#0

and

and define . .
Wil — w1 _  Wal — W12

WD) = =030 ° T amiA()




Define the fundamental theta function by
0(z, L) = A(L) exp(—6n(z, L)z)a(z, L)".

We now define Robert’s units associated to an integral ideal of an imaginary quadratic field
([23]). For the rest of this section we fix the following notation. Let F' be any imaginary quadratic
field, f a non-trivial integral ideal of F', F'(f) the ray class field of F" of conductor §, G; = Gal(F(f)/F),
f the least positive integer in fNZ, and w; the number of roots of unity in F' congruent to 1 mod f.
For a fractional ideal a coprime to f, let o4 € Gj be the image of a under the Artin map. Let S be
the set consisting of the infinite place of F' and the places dividing f, and let v be the infinite place
of F(f) induced by teo.

Definition 2.6. Define for o € G}, the Robert unit associated to o by
E(o) =6(1,fc 1)

where o, = 0.

Proposition 2.7. ([14]) For all o € G},
(1) E(0) € F(f).
(ii) For all o' € Gy, 0'(E(0)) = E(0'0).
(i5i) If § is divisible by two distinct primes then E(o) is a unit in F(f). If f = q™ for a prime q of
F, then E(o) is a q-unit.
Theorem 2.8. (Kronecker’s second limit formula) For all characters x of Gy,

1
Ls(x,0) = ———— > log|E(c)|o.
12 fwy U;f

When Stark stated his conjectures, he recast this theorem using the following lemma.

Lemma 2.9. (Lemma 9 on page 225 of [31]) Let K C F(f) be a subfield of F'(f) that is a nontrivial
extension of F. Let J C Gj be the subgroup such that G;/J = Gal(K/F), and define for oJ € Gs/J

BoJ) = [[ E(") = Nrgyx(E(@)).
o'eod
Let e be the number of roots of unity in K. Then E(oJ)¢ is a 12 fw; power in K.

Definition 2.10. Let K C F(f) be a nontrivial extension of F' such that Gal(K/F) = Gj/J. Let
e be the number of roots of unity in K. Define the Stark unit of the extension K/F, denoted ug

to be an element of K such that b
ug " = B(J)*

where E(J) = [[,c; E(c). Such an element ug exists by the previous lemma and is unique up to
multiplication by a root of unity in K.

Theorem 2.11. (/31] Stark’s Conjecture when F is imaginary quadratic) Keeping the notation as
in the previous definition, for all characters x of Gal(K/F),

1
L’s(xﬁ)z—g > x(0)loglo(uk)l
o€ Gal(K/F)

and K(u%e) is an abelian extension of F.



3 Background for definition of the p-adic L-function

3.1 Conventions for modular forms and modular symbols

In this section, we set some notation and conventions that will be fixed throughout for modular
forms and modular symbols. We also state some relevant definitions for later reference.

Fix a positive integer N such that p{ N and let I" be either I' (V) or I'1 (N)NT'o(p). Our Hecke
actions are defined via the double coset algebra of I' in GL2(Q). Let T; denote the Hecke operator
at £ for (4 Np. If I' =T'1(N), let T}, denote the Hecke operator at p, while if I' = T'y (V) NT'o(p), let
U, denote the Hecke operator at p. Let ¢ denote the operator for the double coset corresponding
to <é _01> For a € (Z/NZ)*, let [a] denote the diamond operators. Define the Hecke algebra to
be the algebra

) Z[Ty, £ Np,Up, la],a € (Z/NZ)*] if I'=T1(N)NTo(p)
Z[Ty, 0t N,|a],a € (Z/NZ)*] it ' =T4(N).
If ¥ is a subsemigroup of GL2(Q) containing the matrices needed to define H, then we also consider
M as a subalgebra of the double coset algebra of I' in X.

For k > 1, let Sk(I', Q) denote the space of holomorphic weight k and level I cusp forms with
algebraic g-expansions, and let Sy,(N,e,Q) C Si(I'1(IN), Q) be the space of holomorphic cuspforms
of level N and nebentypus ¢ with algebraic ¢g-expansions. Let

Sk(T',Cp) = Sk(T', Q) ®g Cp and Sk(I', C) = Si(T', Q) ®5 C

and similarly let
Sk(N,e,(Cp) = Sk(N,S,@) ®@ (Cp and Sk(N,é—:,C) = Sk(N,&@) ®@C.

Let F be the set of holomorphic functions f on the upper half plane such that for all ¢ € P1(Q),
lim, . |f(2)] = 0, where to make sense of the limit, we view P!(Q) and the upper half plane
as subsets of P1(C). For k > 1, we define the following weight-k action of GLj (Q) on F: for

= (L)@ rer

flha(z) = (ez + d)*f (ij;) .

The space Si(I", C), of holomorphic cusp forms of weight & and level T' is the set of invariants of T’
with respect to this weight-k action. Let ¥ = GL3 (Q) N M2(Z) C GLy(Q). The action of XF on
F induces an action of H on Si(I', C) which leaves the space Sy (I', Q) invariant, defining an action

of H on Si(I',Q). We extend this action to Si(T',Cp) by linearity.
For the rest of this article, we adopt the notation that I' = I'y (V) and I'g = I'1 (V) N Ty(p).

Definition 3.1. A Hecke eigenform (or just eigenform) of level N and character ¢ is an element
f € Sk(N,e,Cp) which is an eigenvector for all the elements of H. A normalized eigenform is a
Hecke eigenform f € Si(N,e,C,) such that the leading term of the g-expansion of f is 1. If f is a
normalized eigenform, then f € Si(N,e,Q) and so we may also view f as an element of Sy(N, ¢, C).
If f € Si(N,e,Q) is a normalized eigenform that is new at level N, we call f a newform.

o0
Definition 3.2. Let f = Zanq" € Sp(N,e,Q) be a newform. Then the Hecke polynomial of f
n=1

at p is the polynomial z? — apx + e(p)pkfl. Let a and B be the roots of this polynomial. Define
the p-stabilizations of f to be f,(2) := f(2) — Bf(pz) and f3(2) := f(2) — af(pz).



The p-stabilizations f, fg are elements of Si(I'p, Q), and are eigenvectors for the action of H.
The T} eigenvalues of f, (respectively fg) are the same as for f when ¢ # p, and the U,-eigenvalue
of fo (respectively fg) is a (respectively ().

Definition 3.3. Let S{"4(N,¢e,Cp) (respectively S¢"4(Ty, C,)) denote the maximal invariant sub-
space of Si(N,e,Cp) (respectively Si(I'o,C,)) with respect to the action of T}, (respectively U,)
such that the characteristic polynomial of T}, (respectively U),) restricted to this subspace has roots
which are p-adic units. We call the subspace SZ"¢(N,e,C,) (respectively S27¢(I'y, C,)) the ordi-
nary subspace of Si(V,e,C,) (respectively Si(I'g,C,)). A cuspform f € Si(N,e,C,) (respec-
tively Sg(I'o, Cp)) is called p-ordinary if f is an element of the subspace S¢"¥(N, g, C,) (respectively
ST, C,).

We remark that if f € S’,‘C’Td(N ,€,C,) is a newform and k > 2, then there is a unique p-ordinary
p-stabilization of f, while if f € Si(N,¢,C,) is a weight one newform, then there are two (possibly
equal) p-ordinary p-stabilizations of f.

We now introduce modular symbols. Let Ag = Div?(P}(Q)) be the set of degree zero divisors on
P1(Q) and view Ay as a GL2(Q)-module via the action of linear fractional transformations. Let V
be a right I" module. We define a right action of I' on Hom (A, V') via the rule for ¢ € Hom(Ay, V),
~veTD,and D € Ag:

(D) = e(vD)|.

Definition 3.4. The set of V-valued modular symbols on I', denoted Symbr(V), is the set of
all ¢ € Hom(Ap, V') that are invariant under the action of I

In the cases we consider, V' has an action of a submonoid of GLy(Q) which defines an action
of H on Symbp (V') through a double coset algebra. When 2 acts invertibly on V' and ¢ acts on
Symbp(V), we get a decomposition of Symbr (V') into the direct sum of the 1 and —1 eigenspaces
of ¢, denoted Symbi:(V),Symby (V) C Symbp(V). If ¢ € Symbp(V), then we write ¢ for the
projection of ¢ onto Symbli:(V).

3.2 Overconvergent modular symbols

In this section we introduce overconvergent modular symbols following the notation and conventions
of [1] and [21].

Let W = Homcom(Z; , Gy,) denote weight space as a Q,-rigid analytic space, and let R denote
the ring of Q,-rigid analytic functions on W. Let w € W be the Teichmiiller character. For m with
0<m<p-—2, let W,, C W denote the subset of W consisting of characters whose restriction to
pp—1 C Z, is equal to w™.

We give an explicit description of certain admissible open subsets of the Q,-points of W,,. For
any kK € Wi, (Qp) and any r > 1, let W(k, 1/p") denote the closed disk of radius 1/p" in W, around
k. Then

Wk, 1/5)(Cp) = {K € Win(Cy) £ IR (1) — (3)] < 1/p"},
and W(k,1/p") is an an admissible open subset of W,,. The ring of Q,-rigid analytic functions on
W(k,1/p") is the Qp-algebra

" {Z_%a"“” — (k) = )" € Qyllw — ((3) = D] : [anp™] = 0 ass 1 - OO}

and W(k,1/p") = Sp R C W. We remark that R is isomorphic to the Tate algebra

Qu(T) = {i an,T" € Qp[[T]) : |an] — 0 as n — oo}
n=0
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by setting 7' = (z—(x(v)—1)/p". The sets W (k,1/p") form a basis of admissible open neighborhoods
of kK in W,.
For each r € |C| = p©, let
B(Zy, 1) ={2€Cp:Fa € Zy,|z—a|l <r}.
B[Zy,r] is the set of C,-points of the Q,-rigid analytic space which is the union of the closed unit
balls of radius 7 around each point in Z,. Let A[r] be the Qp-algebra of rigid analytic functions on
B[Zy,r]. The sup norm on A[r] makes A[r| a Q,-Banach space. Explicitly the norm is given for
fe Alr] by
Ifll- =" sup [f(z)]-

2E€B[Zp,r)

Let D[r] = Homg, (A[r], Qp) be the continuous Q,-dual of Afr]. The space D[r] is a Q,-Banach
space with norm given by
n(f
o= _sup 1T

reafr.f20 11l

for p € D[r]. For r; > 7o, restriction of functions gives a map A[ri] — A[rs]. This map is injective,
has dense image, and is compact. The dual map D[re] — D[rq] is injective and compact. For any
real number r > 0 define

ATlr] = lim Als] and Di[r] = Jim Ds].

We give Af[r] the inductive limit topology and D'[r] the projective limit topology. For the remainder
of this article, we write A = AT[0] and D = D'[0]. We remark that D is the continuous Q,-linear
dual to A, and that A may be identified with the set of locally analytic functions on Z, and D the
set of locally analytic distributions.

Given p € D, via integration u determines a QQp-rigid analytic function on W, which we call the
p-adic Mellin transform of p. We denote the map corresponding to the p-adic Mellin transform

L:D—R.
For p € D and x € W(C,), we use the integration symbol for ;1 evaluated at x:

£00 = [ xEdu(o)
P
We now define overconvergent modular symbols. Let

Yo(p) = {(CCL Z) € My(Zy) :pfa,p| cand ad—bc;éO}.
For any integer k € Z, we define a weight k action of ¥y(p) on A[r] for r < p as follows. For
v = (i 2) € Xo(p), f € Alr], let

() = (atea's
This induces an action of ¥(p) on D[r| on the right via

(k) (f) = p(y & f)

for 1 € D[r]. These actions induce actions of ¥y(p) on A and D. When we consider A and D with
their weight k actions, we write k in the subscript, Ag, Dg. The spaces of modular symbols of
interest are Symbp, (D). These space are Hecke modules via the action of ¥ (p) on Dy.

b+dz
a+cz)’

Definition 3.5. Let k € Z. The space of overconvergent modular symbols of weight £ is
defined to be Symbrp, (Dy).

10



Definition 3.6. Let ¢ € Symbp (D) be an overconvergent modular symbol of weight k. We define
the p-adic L-function of ¢ by composing the following two maps: first evaluation at {0} — {oo}, and
then the map L from before. The composition is called the Mellin transform of ¢ and denoted
by Ak:

Ak : Symbpo (]D)k) — R.

For ¢ € Symbyp, (D) and x € W(C,),
Ar(p)(x) = /ZX x(2)d(p({0} = {o0}))(2).

P
By definition, Ay is a Q,-linear map.

3.3 The p-adic L-function of an ordinary weight k£ > 2 modular form

In this section, we review how to use classical and overconvergent modular symbols to define the
p-adic L-function of a weight k 4+ 2 > 2 p-ordinary newform.

Let R be a Q-algebra, and for k € Zxg, let Vi(R) = Sym*(R?) be the R-module of homogeneous
polynomials of degree k in two variables X and Y with coefficients in R. Define an action of GLa(R)

on Vi (R) as follows: for v = <CCL Z) € GLy(R) and P € Vi (R), define

(PI)(X.Y) = P((X,Y)3%) = P(dX — Y, ~bX +aY)
where vx = <—dc
obtains an action of GL2(Q), which determines a Hecke action of H.

Let g € Si42(Io,C). Define the standard modular symbol associated to g, denoted 14, to be
the function

_ab>. Since R is a Q-algebra, the space of modular symbols, Symbr (Vi(R)),

¢g : Ao — Vk(@)

b
U0}~ {a)) =271 | g(a)(aX +Y)dz,

It follows that 1, € Symbrp (Vi(C)) and the map
Sk+2(T0,C)  — Symbp (Vi(C))
g = 1/19
is Hecke equivariant.

Let f € Sg%(N ,&,C) be a p-ordinary newform, and let f, € SgidQ(Fo,(C) be its p-ordinary
p-stabilization. Shimura ([24]) showed that there exist complex periods ija € C* such that
wjfa / ija € Symbljfo(vk(@)), and that thejlecke eigenspaces in SymbleO(Vk(@)) with the same
eigenvalues as f, are one-dimensional over Q.

The algebraicity result of Shimura allows one to view the modular symbol associated to fq
p-adically in order to define the p-adic L-function of f,. Let gpi = wjfa / Qi € Symbr, (V1(Q)) for
some choice of complex periods Qi. (Each choice of period is determined up to a scalar in @X )
Via ¢, view @}ta as an element of Symbrp (Vi(Cp)).

Mazur-Tate and Teitelbaum ([20]) proved that the function ujfa defined by the rule

,u}ta (a+p™Zy) = a_mgoi <{a} - {oo}) |x=0,y=1

pm

11



is a Cp, valued measure on Z,;. Given a finite order character ¢» € W(C,), we then define the p-adic
L-function of f, twisted by ¢ to be the analytic function of s € Z, given by the formula

o(fortt,5) / OO ).
We record here the interpolation property of Ly(fq, 1, s) for future reference.

Theorem 3.7. (/20]) Let fq be the ordinary p-stabilization of a p-ordinary newform of level N and
weight k +2 > 2. Let ¢ € W(C,) be a finite order character of conductor p™. Then Ly(fa,1,s)
is a p-adic analytic function on Z, with the interpolation property that for all integers j with
0<j<k+2,

Lp(faﬂ/%j) =

1 (1 _ ‘1w1—j(p)> pUD (G — DT (Yt ™) L fa, Y’ ™1, 5)

aplfj (27T’L')j7 Qjcgn(l/f)

Here T(p~1w'™7) is the Gauss sum associated to 1~ 1wl =7,

Remark 3.8. If f is a non-ordinary newform with Hecke polynomial

2* —ap(fz + ()Pt = (z — a)(z - B)
then one may define the p-adic L-function of either p-stabilization f, or fg of f in the same way
as above but a little more care is needed because the distribution py, (or jus,) is not a measure.

For the critical p-stabilization fg when f is p-ordinary, even more care is needed. See [22] and [1]
for more information about these cases.

When f is a weight one modular form there is no modular symbol associated to f and so the
above constructions do not work. It is for this reason that we consider overconvergent modular
symbols of arbitrary integer weight k € Z. We now explain the connection between overconvergent
modular symbols of weight k& € Z>o and the modular symbols just considered.

Let k € Z>( and define the map

pr Dy — Vi(Qp)
o) = [ (V= 2X)du(o).

P

The integration in the definition of p; takes place coefficient by coefficient. The map py is 3o (p)-
equivarient, so induces a Hecke equivariant map

pr : Symbp, (D) — Symbp (Vi(Qp)).
Let Symbp, (Dg)<*1 (respectively Symbp, (Vi (Qp))<F*1) denote the subspace of Symbr, (Dy) (re-
spectively Symbr, (Vi (Qp))) which is the span of the set of eigenvectors of U, with eigenvalue that
has p-adic valuation less than k + 1.

Theorem 3.9. (Stevens’ control theorem [21]) For k € Z>q the map
pi + Symbrp, (D) < — Symbr, (Vii(@,)) <+
is an isomorphism of Hecke modules.

Remark 3.10. By Theorem 3.9, there exists unique &i € Symbr (D) such that pZ((ﬁf) = ijf, and
we have the compatibility of p-adic L-function:

MA@ @7 = Ly(far )
for all s € Z,, and finite order characters ¢ € W(C,).
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3.4 Families of overconvergent modular symbols

In this section we introduce families of overconvergent modular symbols, and construct the ordinary
locus of the eigencurve over certain open subsets of weight space following [1] and [12].

Embed Z into W(Q,) by identifying k € Z with the map = +— z* in W(Q,). Let k' € Z and let
W = W(k,1/p?) C W for some d € Z>1. We will construct the ordinary locus of the eigencurve
over the open set W.

Let v be a topological generator of 1+ pZ,. Let R be the ring of Q,-affinoid functions on W in
the variable w induced by the choice 7. Given k € ZNW(Q,) and F(w) € R, define the evaluation
at k map:

evp: R — C,

evp(F) = F(v* - 1).
For r € p@, define

The evaluation maps induce maps
ev : Alr](R) — Alr]
for all r.
We define an action of ¥o(p) on A[r|(R) that is compatible with the evaluation maps and the
action defined in the previous section. Note that A[1] is the Tate algebra. Let z be the variable for
A[1], so A[1] = Qp(z). For r < 1 the inclusion A[1] < A[r] induces an inclusion A[1](R) — A[r](R).

Let log, (u) = iggig:; Define for a = (CCL Z) €Xo(p), 0<m<p-—1,

>, /1 atez oo (atcz
f@m@mo=mwm§3(%%fMGW"zwwma+wf%“%>e@Mawy
n=0
By Lemma 2.6 of [12], K, (2, w) € A[1](R). By construction, for all k € ZNW(Q)),
evp(Kom(z,0)) = (a + cz)".

Let r be such that r < p%. View K, as an element of Afr](R) via the inclusion A[1](R) C
Alr](R). Define, using the ring structure of Ar|(R), for f € Alr], F € R, a = (CCL Z) € o (p),

b+ dz
a—+cz

a«ﬂ@®Fw»:Kmmmwf( )®Fw»

on simple tensors and extend this to an action on A[r](R) by linearity.
Define
D[r)(R) := Dlr|&q, R,
and define an action of Xy(p) on D[r](R) as follows: D[r] is an A[r]-module via

(g-m)(f) = nlgf)
where f,g € Afr], u € D[r]. Then D[r](R) is an A[r](R)-module. Define for p ® F' € D[r|(R),

a= (¢ 3) <z,
(1@ F)Jor = Ko (2, w) (1o © F)

where plpa is the weight 0 action on D[r].
Now let D(R) = fm o D[r](R). The actions of ¥y(p) on D[r](R) induce an action on D(R). By
Lemma 3.2 of [1], there’s a natural isomorphism

D&g, R — D(R).
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The map induced by evaluation at k from D(R) to Dy, will be called specialization to weight k& and
denoted by spy:
SPg. - D(R) — ]Dk
uRF +— evp(F)u
The map spy is Xo(p)-equivariant and induces a Hecke equivariant specialization map which we

denote by the same name
spy : Symbr, (D(R)) — Symbr, (D).

To end this section, we summarize some results of Bellaiche ([1]) about the relation between
Symbrp (D(R)) and Symbr, (D) as Hecke modules.

Definition 3.11. Fix a weight k¥ € Z N W(Q,). Let Symbi (Dg)° C Symb?0 (Dg) (respectively
Symb%0 (D(R))° C Symbljfo (D(R))) be the subspace where U, acts with slope bounded by 0 in the
sense of [1] Section 3.2.4. Let T (respectively Tii,) be the Q,-subalgebra of Ende(SymbIjEO (Dx)?)
(respectively the R-subalgebra of EndR(SymbeO (D(R))?)) generated by the image of H. We call
Symbff0 (Dg)° (respectively Symbi (D(R))?) the ordinary subspace of Symb%0 (Dg) (respectively
Symbf, (D(R))).

We have ([1] Section 3.2.4) that Symb%0 (D(R))? is a finite projective R-module. Then since Tjj,

is a finite R-algebra, ’]I'ﬁf is an affinoid algebra. Furthermore, ']I%V is torsion-free as an R-module
and since R is a principal ideal domain, ']I‘ijv is flat.

Theorem 3.12. (Bellaiche’s specialization theorem (Corollary 3.12 in [1])) Let k € ZNW(Qp).
The specialization map restricted to the ordinary subspaces

Spg Symb%O (D(R))° — Symbffo (Dx)° (5)
18 surjective.

Since spy is an H-equivariant surjective map, it induces an H-equivariant map spy, : vatv — T,
which we use in the following definition.

Definition 3.13. Let z : Tf — C, be a Qp-algebra homomorphism. The homomorphism x
corresponds to a system of H-eigenvalues appearing in Symb%0 (Dg)°. Let Sy]rnbljf0 (Dk) () denote
the corresponding generalized eigenspace and let Symbljf0 (Dy)[x] denote the eigenspace.

1. Let (Tf)(m) be the localization of Tf ®q, Cp at the kernel of z. We have that

Symby, (Dk)(z) = Symbi, (D) @z (T};)(a)-

2. Through the specialization map, x induces a Q)-algebra homomorphism which we also denote

by x:

:E:xospk:']l'ﬁ, — C,.
Let (’]I‘?,EV)(I) be the rigid analytic localization of ’]I‘ijv ®q, Cp at the kernel of x o spy, and let
Symbf (D(R))(s) = Symby;, (D(R))° S (TE) (2)-
Let R be the rigid analytic localization of R®q, C, at the kernel of evy. We can then localize
the specialization map spg to get a map
5Pk (T35 (@) @Reeyk Co — (T3 ) (a)-

In ([1]), Bellaiche following Stevens uses these spaces of families of overconvergent modular

symbols to construct the eigencurve. Let Cﬁ/ = Sp Tﬁ,. Then Cljfv is the ordinary locus of the
eigencurve above the open set W of weight space. The weight map

ni:CijV—>W
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is the map of rigid analytic spaces induced by the Q,-algebra homomorphism R — ']I‘icv. Since ’]I%V
is a finite, flat R-module, the map x¥ is finite and flat. Given a point z € C‘jfv (Cp), we define the
weight of z to be k*(x) € W(C,). For any k € W(C,) we may consider the evaluation at x map
evg : R — C,
eve(F) = F(k(y) = 1).

Define Ry,) to be the rigid analytic localization of R at the kernel of ev.

Theorem 3.14. ([1]) Let U = W(K',1/p?) for some k',d € Z, d > 1, and let x € CF(Cp) be a
smooth point of weight k'. Then there exists a neighborhood, W = W (k',1/p") of k' with r > d,
such that the following hold. Let R be the ring of rigid analytic functions on W. LetT" be the direct
factor of T?/EV corresponding to the connected component of CViV that x lies in. (Note that T may be
defined over a finite extension of Qp.) Let Tc, = T@(Cp and Rc, = R@Cp.
1. The generalized eigenspace Symb%0 (Dyr)(z) is free of rank one over the algebra (Tki/)(w), and
the eigenspace Symblif0 (Dy)[x] is dimension one over C,.

o

For all points y € C%,, except perhaps x, the algebra (Tﬁ,)(y) is €tale over R+ (y))-
3. There exists u € Rc, such that evi(u) = 0 and k is the only 0 of u on W and an element
t € T such that x(t) # 0 as well as an isomorphism

Tc, — Re, [X]/(X° = u)
sending t to X.
4. The Tc,-module Symb%0 (D(R))° ®px Tc, is free of rank one.
5. For any point y € C"j,EV((Cp) of weight k*(y) € Z, the H-equivariant map
Symb%o (]D)(R))O ®T‘:/tv T(cp — Symb%o (Dﬁﬂ:(y))(y)

sends any generator of Symb%0 (D(R))° ®T$V Tc, to a generator of Symbi (D (y)) () -
Proof. This theorem is a combination of results from Section 4 of [1]. O]

Remark 3.15. If k € Z>0, then the eigencurve is étale over weight space at any weight k-point. The
point that we are interested in is when k& = —1, which corresponds to weight one modular forms.
At weight k = —1 points, the eigencurve may not be étale over weight space, and this is the case
in which we will use the above proposition.

3.5 Two-variable p-adic L-functions

In this section we explain how to use Theorem 3.14 to construct a two-variable p-adic L-function.
Let W =W (K',1/p") = Sp R for some k¥’ € Z and r > 1. Let M = SymbljfO (D(R))°. Define the
R-linear map
A:M— R@QPR

to be the composition of evaluation at {0} — {oco} and the map £ from before. By construction,
for all k € ZNW(Q,) we have the commutative diagram

A

M R®R
£ Ak
Symby, (Dy)° R.

which shows that for ® € M, A(®) interpolates the functions Ag(spr(P)).
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We now put ourselves in the situation of Theorem 3.14, and we extend scalars to C,. A C,
in the subscript means completed tensor product over Q, with C,. Let = € C’ff (Cp) be a smooth
point of weight k' € Z for some U = W (k’,1/p%). Let W = W (k/,1/p") = Sp R and T be as in the
proposition. Let € € Tﬁ,(cp be such that T, = ET%CP. Then

+ + +
Symbp, (D(R))° S T, = eSymbp, (]D(R))(%p C Symbr, (D(R))%p,
so we let
M = Symby;, (D(R))° @y Tc, = e Symby, (D(R))2, -

We first give a construction of a two-variable p-adic L-function, that we use when the weight
map kT : C%V — W is étale. Assume x* : C’viv — W is étale.

The module M is a rank one T -module, so let ® be a generator. Let

A, ) : W xW —C,
be the two-variable rigid analytic function that is the image of ® in R®R under A. By the
commutative diagram (3), for all o € W and k € Z,

A(CI), ]{7, U) = Ak(spk(q)), O’).

We now consider the non-étale case. In the non-étale case, if y € Cljfv is of weight k # k’, then
spr(®) € Symb%0 (Dg)? is not in the eigenspace corresponding to y. The construction that follows
is due to Bellaiche ([1]). Let N = M ®p. Tc, and let V' =SpT. Define

Ar =A® Ithcp : N — (R(CP@(CPR(CP) ®Rccp T(Cp = T(CP@CPRCP'
Then for ® € N, the function Ap(P) € T@p@)ch is a two-variable rigid analytic function on
Ve, x We,,. For each y € V(C,) of weight k € W(Qj), define the specialization map
spy : N — Symbp, (Dﬁ)%p
as the natural map
N — N ®T(Cp7y Cp.

We view N @1,y Cp as a subset of Symbljf0 (Dy)g, via
N QTe, .y C =W ORe, T(Cp) QTc, v (o
= M ®Rc, ev. Cp = Symby;, (D)2 .

By construction sp, is H-equivariant with respect to the action of H on the first component of N.
Furthermore, if ¢ € N and y € V(C,) is of weight k € Z, then ([1] Lemma 4.12)

Ar(®)(y,0) = Ak(spy(®))(0).
We recall that we have an element t € T, and v € R¢, and an isomorphism
Tc, — Re, [X]/(X° = u)
sending t to X. Now let ¢ be a generator of M as a T, module, and define

e—1

=) teet " eN.
i=0
Proposition 3.16. 1. Let 1g, ®Re, Tc, act on N with the first factor acting on M and the
second factor acting on Tc,. Then
tel-1®t)®=0.
2. Lety € C‘j,EV(Cp) be a point of weight kK € W(Q)). Then
spy(®) € Symbi (D,)[y].
We note that if y # x, then Symb%0 (Dp)[y] = Symbljf0 (Dk)(y), while if y = x and the ramifi-
cation index is e, Symbi (Dk)(y) is an e-dimensional vector space.
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Proof. The first part of the proposition is Lemma 4.13 of [1] and the second part is Proposition
4.14 of [1]. O

Define the two-variable p-adic L-function to be
AT(CI)) : V(Cp X W(cp — (Cp.
To compare this second construction with the first construction when the ramification index is 1,
we note that Tc, = Rc, [X]/(X® —u) = Rc,, so
NZM@RCPT(CP%M

and
e—1

=0

so the second construction reduces to the first one when e = 1.

4 Definition of p-adic L-functions and p-adic Stark Conjecture

We begin this section by introducing the objects we are working with and setting notation. Let F'
be a quadratic field of discriminant dp, and let x : Gp — @X be a nontrivial ray class character
of F' that is of mixed signature if F' is real quadratic. Let K be the fixed field of the kernel of x
and let f be the conductor of K/F. Assume that too(K) C R if F is real quadratic. Let v denote
the infinite place of K determined by to,. Let p = Indg% x : Gg — GL2(Q) be the induction of x
and let M be the fixed field of the kernel of p. Let f be the weight one modular form associated to
p; so f haslevel N = Np/qo(f) - |[dr| and character ¢ = det p. The g-expansion of f is

F=> x(a)qg™

aCﬁF

(a,)=1
and we have that L(f,s) = L(x,s). Let

2 —ap(f)z +e(p) = (z — a)(z — )
be the Hecke polynomial of f at p. We note that when p splits in F, say pOr = pp, then oo = x(p)
and 8 = x(p), and if p is inert, then a = /x(pOF) and B = —\/x(pOF). Let k be the field
obtained by adjoining the values of x along with o and 8 to Q.

We make some assumptions that will be fixed throughout. First we assume that p { N, which
implies in particular that p does not ramify in M. We further assume that p t [M : Q], and we
assume that o # 5. With these assumptions, let f,(z) = f(z) — Bf(pz) be a fixed p-stabilization
of f.

4.1 Definition of p-adic L-function

We use the constructions from the previous section to define our p-adic L-function. In order to do
that, we start with the following result of Bellaiche and Dmitrov about the eigencurve at weight
one points.

Theorem 4.1. (/2]) Let g be a classical weight one newform of level N, whose Hecke polynomial
at p has distinct roots. Then the eigencurve is smooth at either p-stabilization of g. Moreover, the
eigencurve is smooth but not étale over weight space if and only if the representation associated to g
1s obtained by induction from a mized signature character of a real quadratic field in which p splits.
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By our assumption that « # 5 the above theorem implies that the eigencurve is smooth at the
point corresponding to f,. We may break our situation into four cases, the cases when F' is either
imaginary or real quadratic and when p is either inert or split in F'. In the case when F' is real
quadratic and p is split the eigencurve is smooth but not étale at f,. In the other three cases the
eigencurve is étale at f,. We adopt the notation from the previous section except that we base
change everything to C, and we drop all the C, subscripts. Since we will conjecture the value at
s = 0, we consider the minus subspace of modular symbols. Let T' = T¢,, M C Symbp, (]D(R))(‘(’:p,
N, and R = Rc, be as in Section 3.5 where the point of interest x is the point on the eigencurve
corresponding to f,. Let ¢ be a generator of M as a T-module and let

e—1
=) teet " eN.
i=0
Let V. =SpT, W =Wg,, W = Sp(R), and let A(®) = Ar(P) to make all the notation uniform.
We record the interpolation formulas for our two-variable rigid analytic function
A(D,-,): V x W — C,.
For each classical point y € V, let g, be the weight k € Z>3 p-stabilized newform corresponding to
y. Let Qs 4, € C* be the complex period used to define the p-adic L-function associated to g, as
in Section 3.3. Let
Py, € Symbr, (Dr—2)(y)

be the unique (by Theorem 3.9) modular symbol specializing under pj to

Vg, /Qoo,g, € Symbr, (Vi—2(Q)).
Let €24, € C) be the p-adic period such that sp,(®)/Qp 4, = @g,. For each y, the period pair

(Qoo,g,,2p,g,) viewed as an element of C* x Cj /@X, where Q™ is embedded diagonally, does not
depend on any choices.

Proposition 4.2. The two-variable rigid analytic function A(®) on V x W is determined by
the following two interpolation properties. First, for all y € V and all even characters o € W,
A(®,y,0) = 0. Second, for ally € V corresponding to a p-stabilized newform g, of weight k € Z>2,
and all odd characters ¥(-)~1 € W(C,) where v is a finite order character of conductor p™ and
1<j<k-1,

M@yt 1 <1 _ P (p) > PTG - D! )
Dp.g, ap(gy)™ , ap(gy)p* =7 (2mi)i—1 o
L(anwileil,j)
>< .
Qeo,g,

This equality takes place in Q. Here T(1pw'~7) is the Gauss sum associated to Yw' 7.

Proof. The first interpolation property follows from the fact that ® is in the minus subspace for
the action of ¢. For the second interpolation property, with the way everything is set up, it follows

from the fact that
A((I)7 Y, U) _ Ak(spy(q))a U)
Q Q

= Lp(gya 1/17])

p:gy p:!]y

where Ly (gy,1,s) is defined using that complex period Qu,g, - O

Remark 4.3. At this point, we would like to define the two-variable p-adic L-function associated to
X as
Lp(X,Oé, ’y ) : V X Zp — (Cp (8)
Lp(Xa .y, 5) = A((I)v Y, w_1<'>8_1)-
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The p-adic L-function Ly(x, c,y,s) is determined by the above interpolation formula. The first
variable is on the eigencurve varying through the p-adic family of modular forms passing through
fa and the second variable is the usual cyclotomic variable. To get the one variable p-adic L-function
associated to x we would plug the point z € V that corresponds to f,. It is then natural to make
a conjecture for the value L,(x, o, x,0) that is analogous to Conjectures 2.1 and 2.4, replacing the
complex logarithm with the p-adic logarithm.

The issue with making the conjecture this way is that the p-adic number L,(x, «,,0) is not
canonically defined because we made a choice for ¢. The condition on the choice of ¢ is that ¢ is
a generator of M as a T-module. If we choose a different generator of M as a T-module (changing
¢ by an element of T) that would change the value L,(x, c, x,0). Therefore as it stands now, we
cannot precisely conjecture the value L,(x, o, x,0).

This issue of the value L,(x,,,0) not being canonically defined is a question for further
research. One way to approach the problem is to ask whether or not there is a way to canonically
choose the periods (£2,g,,c0,g,) 50 that they determine a two-variable modular symbol ¢ which
would in turn define the function L,(x, o, z, s) canonically. It is possible to do this in the case when
F is imaginary quadratic and p is split in F' (see Section 5.6). In this case when F' is imaginary
quadratic and p is split in F' the two-variable p-adic L-function L(x,c,y,s) is not canonically
defined (it depends on the choice of canonical periods), but the one-variable p-adic L-function
Ly(x, o, x,s) is.

To get around these issues and make a precise conjecture we exploit the fact that in (7) the
function A(®,y, o) interpolates the values of the complex L-function of g, twisted by p-power
conductor Dirichlet characters. Let ¢ € W(C,) be a p-power order character. We could then
define, generalizing (8), the p-adic L-function of x twisted by v to be

Ly(x, @, dw, y, 8) = M@, y, ¢~ w1 ()*7h),

and state a p-adic Stark conjecture for the value L,(x, o, ¢Yw,z,0). The value L,(x, a, Yw,z,0)
is outside the range of interpolation for the function A(®,y,o0), but if it was in the range of
interpolation it would be related to L( fs, %, 0) at the point s = 0. We have the relation L(f,,s) =
L(x%,s), and so a conjecture for the value Ly(x, o, 9w, z,0) should have the same shape as the
conjecture for the value L'(x,0) with the complex logarithm replaced with the p-adic logarithm.

Of course, the value Ly(x, o, ¢Yw,z,0) has the same issue of not being canonically defined as
Ly(x, o, x,0), but since we have the flexibility of using finite order characters ¢» € W(C,) we can
make a function that is canonically defined. Fix two p-power order characters n,¢ € W(C,) and
define the function
A@,y,ntw ()
A,y tw= ()51
Then L,(x, o, nw,¢Yw,y, s) does not depend on the choice of ¢ because the indeterminacy of the
periods in the interpolation formula (7) cancels out. The value Ly (x, a, nw, ®w, x,0) is then canon-
ically defined independent of any choices, and we formulate a conjecture for this value.

Lp(Xa «, Njw, ¢w7 Y, 5) =

Definition 4.4. Let n,v € W(C,) be two p-power order characters. Define the two-variable p-adic
L-function of y with the auxiliary characters n and ¢ as

L,(x,o,nw,ypw,-,-) : V x Z, — C, U {oo}

A@,y,n'w ()57

A, y, = tw= ()51

The function Ly(x, o, nw, Yw,y, s) does not depend on the choice of ®.
Define the p-adic L-function of xy with the auxiliary characters n and ¢ as

Lp(Xv Oé, nwv wwa S) = LP(X? Oé, 770% 7/%07 :L" S)‘

Lp(Xa «, Njw, ¢w7 Y, 5) =
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Remark 4.5. We may give the definition of L,(x, o, nw, yw, s) without making reference to the two-
variable p-adic L-function. The two-variable p-adic L-function is introduced for two reasons. The
first is that it satisfies an interpolation property, while the one-variable function L, (x, o, nw, 1w, s)
does not. The second is that we will use the two-variable p-adic L-function to prove our conjectures
when F'is imaginary quadratic and p is split in F.

To define Ly (x, o, nw, Yw, s) without referencing the two-variable p-adic L-function, we consider
the space, Symbljf0 (D_1)°, of weight negative one overconvergent modular symbols. Since the
eigencurve is smooth at the point x corresponding to f, the eigenspace Symbljf0 (D_1)[z] with
the same eigenvalues as f, is one-dimensional. If cpi is a generator of this eigenspace, then
Ly(x, a,nw, Yw, s) may be defined as

(g, lw ()

(o o (D)

Since A(®~,z,0) = A_1(spy(P7),0) and 0 # sp,(P7), this definition is the same as the first
definition.

A
Lp(Xa Oé, 77007 UJW’ S) = A

4.2 p-adic Conjecture

For each n € Z>, let Q,, be the nth layer of the cyclotomic Z, extension of Q, so
Gal(Q,/Q) = 1+ pZ,/1 +p" 7, 2 Z/p"Z.

Let T, = Gal(Q,/Q). Let M, be the compositum of M and Q,. Let A = Gal(M/Q), and for
n > 0 let A, = Gal(M,/Q). By our assumption that p does not ramify in M and p t [M : Q],
restriction gives an isomorphism A, = A x I',,. For any n > 0, let v denote the infinite place of M,
induced by teo. Let U, = On, C M, if My is not the Hilbert class field of F' when F' is imaginary
quadratic. If F' is imaginary quadratic and My is the Hilbert class field of F, let

Up ={ue M) : |uly = |[tu|wr, V', 0" | p,|ulw = 1,Yw { p,v}.
Let k,, be the field obtained by adjoining the p"*!st roots of unity to k. For a character 1 of T, let
(pn)* be the representation Indgg x t@n! of A,. Given a k,[A,]-module A, let A®* denote
the (pn)*-isotypic component of A.

The following is how « is incorporated into our conjectures. It is an idea of Greenberg and
Vatsal ([15]), and is a key aspect to the conjecture. Let D, C A be the decomposition group at p
determined by ¢, and let &, be the geometric Frobenius. For a k[D,]-module A, let A%=% be the
subspace where §, acts with eigenvalue a. Via the isomorphism A, = A x I, we view D, as a
subgroup of A,, for any n. Then the A,-modules U,, are also D,-modules.

Let log,, : C; — C, denote Iwasawa’s p-adic logarithm. Extend log, to Q®z C, by Q-linearity.

Conjecture 4.6. Let 1,n € W(C,) be of orders p™ and p™ respectively with m,n > 1. Then there
exists units u*, € (kn @ Up) P 9= and u*, € (kpy @ Uy,) P %= such that

X, XN,
_ i) rw Y .
Ly (x. o 4w, 1w, 0) = (1—Bv(p)) (1 ap > R Ing(“Xw,a) o)
p Xy &y 5 ; — — — * .
(1= Bn(p)) (1 - %}E@) Tp(fliﬁ logy (uxn.a)

Remark 4.7. 1. This conjecture should be compared with Conjecture 2.4. We are relating the
p-adic L-value L,(x, a, Yw,nw,0) to the spaces (k, ® U,) WP %= and (k,, ® U,y,)P)" 0p=c
via the p-adic logarithm. The spaces (k, ® Un)(wp)*"sf’:a and (k,, ® Um)(’”’)*"spza have k,,-
and k,,-dimension one respectively.
Let K, be the fixed field of the kernel of y1). At the outset of this project, it was expected

that the unit u}, , would be the projection of the unit ur, from definition 2.3 to the space
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5.1

(kp ® U,)¥P)" 9= ([13]). This is the case when F is imaginary and p is split in F (see
Section 5), while the numerical evidence suggests that this is not the case when F' is imaginary
quadratic and p is inert in F' (see Sections 6.2, 6.3). We do think that this is the case when
F' is real quadratic as we verify in the example in Section 6.1, but we do not have enough
evidence to conjecture it.

. It is also possible to state a conjecture for the p-adic value at s = 1 (see [13]), and there

should be a functional equation relating the two conjectures.

In ([15]), Greenberg and Vatsal define a Selmer group associated to the representation p and
prove that the characteristic ideal of the Selmer satisfies an interpolation property that is
similar to the statement of our conjecture. Proving a main conjecture relating the character-
istic ideal of the Selmer group associated to p to the analytic p-adic L-functions defined here
would allow one to prove this conjecture using Greenberg and Vatsal’s result.

Proof of the conjecture when F' is imaginary quadratic and p
splits in F'

Katz’s p-adic L-function

In this section we state relevant facts that are needed about Katz’s two variable p-adic L-function.
Let F' be an imaginary quadratic field of discriminant dr, and assume p splits in F'. Let p factor
as pOp = pp, where p is the prime induced by the embedding ¢,. Let 0, = {z € C, : |z| < 1}
be the closed unit ball in C,. Let f be an integral ideal of F such that (f,p) = 1. Let § factor as
f =11, fv- Let Ap denote the adeles of F.

The domain of Katz’s p-adic L-function is the set of all p-adic Hecke characters of modulus f, so
we begin by giving our conventions for Hecke characters. Define the subgroups U, U p, Uy oo C Af

as

B . 2y =1 mod f, if v | §
Uy = {(xv)v €A, € Oy if v{f and is finite

xy = 1mod f, if v | f
Upp = { (20)y € AL i @, € OF if v1fp and is finite
xy=1ifv|p
zy = 1 mod fy, if v | f
Ujoo = § (#0)y € Af 2y € O, if v 1 and is finite
xy,=1ifv| oo

Let 01, 09 be the two embeddings of F into Q. Order o1, 09 so that oy is how we view F as a subset

of Q.

Definition 5.1. 1. Let (a1,as) € Z%. An algebraic Hecke character of F of infinity type

(a,b) and modulus f is a group homomorphism

X AR — @X
such that the image of x is contained in a finite extension of Q, U; C ker(x), and for all z € ',
x(z) = o1(x)"oa(x)?2. The smallest f with respect to divisibility such that U; C ker(x) is
called the conductor of y.
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If x is an algebraic Hecke character of modulus f and a an ideal of F' such that (a,f) = 1 and
that factors as a = H p®, then we define x(a) as
(p,a)=1

x@) = T x(m)®
(p.f)=1
where 7, denotes a uniformizer of Fj.
2. A p-adic Hecke character of I’ is a continuous group homomorphism
x:AL/F* —C.
By continuity, there exists an integral ideal §' of F' such that (f',p) = 1 and Uy, C ker(x).
Any § for which this is true is called a modulus of y and we say that y is a p-adic Hecke
character of modulus .
3. A complex Hecke character of F' is a continuous group homomorphism
X :Ag/F* — C*.
By continuity, there exists an integral ideal f of F' such that Uy o, C ker(x). Any § for which
this is true is called a modulus of y and we say x is a complex Hecke character of modulus
f.
If x is an algebraic, p-adic, or complex Hecke character and v is a place of F, then we let x,
denote y restricted to F C Aj.

Remark 5.2. In the literature, these notions of Hecke characters go by various names and definitions.
We introduce and use the definitions given to avoid confusion.

We will also need the following alternative definition of an algebraic Hecke character in terms
of ideals. Let f be an ideal of O and let a € F* be an element such that ((«),m) = 1 and say

that f factors as f = Hp{l Define @ = 1 mod § to mean that o = 1 mod p{i in Op,, for all 4.

(2
Let I(f) denote the group of fractional ideals of F' that are coprime with f. Let
P(f)={(a) € I(f) : « € K*,a =1 mod f}.
The second definition of an algebraic Hecke character is, an algebraic Hecke character of F' of
modulus § and infinity type (a1,as) € Z2 is a group homomorphism x : I(f) — Q" such that the
image of x is contained in a finite extension of @, and for all a € P;(f) such that a = (a) with
a =1 mod f,
x((@)) = o1(a)* oz(a)®.
Given an algebraic Hecke character, x, of modulus § and infinity type (ai,a2), using the second
definition, we get an algebraic Hecke character of the same modulus and infinity type, xa using the
first definition by defining x4 to be the unique group homomorphism x4 : Az — @X such that:
(i) For all primes p € I(f), XMﬁ;p =1 and x4(m) = x(p) for any uniformizer in Fj.

(ii) For all z € F*, xa(z) = o1(x)* o2(x)?2.
(ili) U C ker(xa)-
This gives a one-to-one correspondence between algebraic Hecke characters of modulus § and
infinity type (a1, a2) using the first and second definitions.
Given an algebraic Hecke character, x, of F' of infinity type (a1, a2) and modulus § we obtain
p-adic and complex Hecke characters x, and o, which are defined as follows. Define
Xp: Ap/F* — C)
at places v of F' not dividing p as x, so x| FX = X| FX- At places above p we define x, to be the

group homomorphism
Xp: (F®Qy)" — C;
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xp(a® 1) = x(a)/ip(01(a)" o2(a)®).

Since the image of F* in (FF®Q,)* is dense this defines x, on (FF®Q,)*. We do something similar

for xoo. Define
Xoo : Ap/F* — C*

at the places v of F' not dividing co as x, SO Xoo| Fx = X FX- At the place above co we define X0
to be the group homomorphism

Xoo ! (FOR)* — EX C C*
Xoo(or ® 1) = x(@) /oo (o1 () o2(0)*?).

Since the image of F* in (F' ® R)* is dense this defines yo, on (F @ R)*.

Given an algebraic Hecke character xy when we consider X, or Xoo, we will drop the subscripts
p and oco. It will be clear from context when we are considering y as a p-adic of complex Hecke
character. Furthermore, given a p-adic (or complex) Hecke character 1) we may abuse of language
and say that ¢ is an algebraic Hecke character of infinity type (a1, as) if there exists an algebraic
Hecke character x of infinity type (a1, a2) such that ¢ = x, (or ¥ = x0)-

Let ¢ be an algebraic Hecke character of F' of infinity type (a,b) and conductor f'p®p® where
§ divides §. Define the p-adic local root number associated to ¢ to be the complex number

wp(ﬂi%) .
W) = p+ S wp(w) exp(—2mi(Trr, g, (u/m"))) (10)
ue(OF, /p*?)*

where 1, denotes 1) restricted to F;* and m, is a uniformizer for Fy,. Since F, = Q, we could take
Tp = P.

Let G(fp™) = A} /F*Usp, so the space of p-adic Hecke characters of F of modulus f is

Homeont (G (™), (C; )-

In [4], Buzzard explains how to view Homeon:(G(fp™),C,) as the Cp-points of a rigid-analytic
variety. When we say rigid analytic function in the following theorem it is this rigid analytic
structure that we are referring to.

Let S be the set of places containing the infinite places of F' and the places of F' dividing f.

Theorem 5.3. ([18], [9]) There exists a p-adic rigid analytic function
Lp = Lp,Katz : Homcont(G(fpoo),(C;) — (Cp

as well as complex and p-adic periods Qo € C*,Qy, € C; such that for all algebraic Hecke character
Y of F of conductor fp™p® where f divides § and infinity type (a,b) with a < 0 and b > 0, we

have
Ly() _ (-a—1)!(2m)" )Y g e Ls(®,0)
i = B (1= ) e PR 1)

Remark 5.4. 1. Katz originally proved this theorem in [18] for imaginary quadratic fields and
then a similar theorem in [19] for CM fields. The above statement is taken from [9] with the
correction from [3] and with a slight modifications in order to state everything adelically.

2. The interpolation property (11) uniquely determines Katz’s p-adic L-function.

We now state Katz’s p-adic Kronecker’s second limit theorem. Let ¢, = 12 (e*™/") € Q for
n € Z>1 be a collection of primitive nth roots of unity in Q.

Theorem 5.5. ([18], [9]) Let x be an algebraic Hecke character of conductor § and trivial infinity
type and let 1 be a Dirichlet character of conductor p". Let K be the fixed field of the kernel of xy
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when x is viewed as a Galois character via the Artin isomorphism G(fp™°) = Gal(F (fp>°)/F). Let
ug be the Stark unit for K/F, G = Gal(K/F), and e be the number of roots of unity in K. Then

(-1 -
Lp(xw):_1¢( D7 (¥ )(1_ () 1(P)> ZXQ/) o) log, (o (ux))

n Y4
e x(p)p p =

Remark 5.6. A version of this was proved in Katz’s original paper. The formulas for this theorem
are taken from [9] with a minor correction so the 1 — x(p) factor is correct (see [16]).

5.2 Definition of the period pair ({2, (2,)

In this section, we explain how to define the period pair (2o, €2,,). The pair (o, £2),) viewed as an
element of C* x C /@X where Q* is embedded diagonally, is a canonical element associated to F'.

Let K be a finite extension of F' that contains the Hilbert class field of F'. Let 8 be the prime
of K determined by ¢,. Let E be an elliptic curve with CM by OF defined over K and with good
reduction at . Let w € QY(E/K) be an invariant differential of E defined over K. Attached to
the pair (E,w), we let x and y be coordinates on E such that

1 E — P?
P — (z,y,1)

is an embedding defined over K, which embeds E as the zero set of y? = 423 — gox + g3 and such
that ¢ (df) = w. Let E, denote the image of £ under ¢. Let E,(C) C P?(C) denote the complex
manifold which consists of the complex points of E,,. Let v € H;(E,(C),Q) and define the complex

period

1
Qoo = 5—

271 y

& = {;m/nw 11 € Hl(Ew((C)vZ)}

be the period lattice of E,,. We have the complex uniformization
¢:C/l¥Y — E,C)
z — (P(Z,2),P(ZL,2),1)
where & is the Weierstrass function. We consider the element

(P "Qoo)pzy € L P Qoo F/Qoo F) = (@p‘”f/f) ® Qp

which is in the Tate module of C/.Z tensored with Q. Let V,E,, = T, E, ®Qp, Vi E, = Ty E, @ Qy,
ViE, = TrE, ® Qp, and let £ = (£,);2; be the image of (p™ " )52, under the composition

Let

lim p " Qe F/ Qo F 2V, By — V,E

where the second map is the projection corresponding to T, Ey, = Ty E, X TiE,,.

The coordinates z and y on E, determine a formal group of E over Ky, Ew. Let VpEw =
Tpﬁw ® Qp. Since p splits in F' and p is the prime of F' determined by ¢, TpEw =T,E,. Let £ now
denote the corresponding elemet of VpEw. Since VpE is a rank one Q,-module, £ is a basis element.
Let

¢ = (Gr)nZy = (1 (exp(2mi/p™)) )5
so ( is a basis element of Vp@m =T p@m ® Qp. Define
©p: V},Ew — Vp@m

24



by ¢p(§) = (. It is a result of Tate ([33]) that the map
Homﬁcp (Ew, @m) — Homg, (TPEW, Tp@m)
is a bijection. We note that
Homg, (Vy Ew, VyGn) = Homy, (TpEy, T,Gp) © Q,
and let p € Hom@CP (E, @m) ® Qp be the element corresponding to ¢,. Define €2, by the rule
w=Q"dT/(1+T)).

This defines a pair (Qs,2,) € C* x C,. The definition depends on the choice of F, w, and

7, but is canonically defined as an element of C* x CJ /@X That is, if we make different choices

for E, w, or v, then Q and 2, are both scaled by the same element of Q" (see [13] for further
explanation of the dependence).

5.3 The CM Hida family

For the remainder of Section 5, fix a nontrivial ray class character x of conductor § such that
(f,p) = 1, and let f = > 4. x(a)g¥® be the weight one modular form associated to x. Let
fa be a p-stabilization of f, so « is either x(p) of x(p). Recall that the character of f is € :
(Z/NZ)* — Q determined by the rule £(¢) = x(£OF) for primes £ { Np. The goal of this section
is to explicitly describe the rigid analytic functions T for £ Np and U, on a neighborhood of the
point corresponding to f, on the eigencurve.

For k € Z, let v, € W(Q,) denote the character ¢ — t*=2. By Theorem 4.1), the eigencurve
is étale at the point corresponding to f,. Let w =11 € W(Q,) and let W = W(w,1/p") = SpR
be a neighborhood of w such that the weight map C};, — W is étale at all points in the connected
component containing the point corresponding to f,. Let € Cy;,(Cp) be the point corresponding
to fo and let V¢, = SpTc, C C’W(C be the connected component of CW(C containing x. Then
Ve, — W, is étale, and we take W to be as in Proposition 3.14. Then the Welght map on the level
of rings Rc, — T¢, is an isomorphism, and we use this map to identify T, with Rc,.

Fix a choice of topological generator v of 1 4 pZ,, so

R= {Z an(t — (w(y) —1))" € Qplit — (w(y) = 1)]] : |lanp™| = 0asn — oo} .
Let z =t — (w(y) — 1). Then R is the set of all F/(z) € Qp][[z]] that converge on the closed around
0 disk of radius 1/p” in C,,. By the Weierstrass preparation theorem, any F'(z) € R is determined
by its values
ey, (F(2)) = Fup(7) —w(y)) = F(* 2 =471

at the integers k € Z such that v, € W. For an integer k, vy is in W = W(w,1/p") if and only if
k=1mod p"1(p—1).

Since V is étale over weight space, the Hecke operators Ty for £ t Np U, and [a] for a € (Z/NZ)*
as rigid analytic functions in Rc, are deterined by the following two properties:

1. At the weight w,

evw(1y) = ap(fa) =
(Te) = ae(fa) if ¢ is inert in F

x(a) +x@ ifL0p =qq
0
evy (Up) = «, and evy([a]) = e(a) for all a € (Z/NZ)*.
2. For all k € Z>y such that v, € W, ev,, (17), evy, (Up,) are the Ty and U, Hecke eigenvalues of
an eigenform g of weight k, level I'g, and character & which is new at level V.
The second condition implies that the functions [a] € Rc, are the constant function [a] = ¢(a).

We exhibit explicit elements of Rc, with the above two properties as Ty for £ { Np and U.
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In the interest of clarity of composition and space, we assume for the rest of Section 5 that
a = x(p). The case a = x(p) is similar (see [13] for more details).

To begin we define an algebraic Hecke character of F. Since p > 3, the only root of unity (and
so the only unit of F') congruent to 1 mod p in F is 1. Therefore we may identify the group P;(p)
with a subgroup of F'*:

Pi(p)={a e F*: ((a),p) =1,a =1mod p} C F*.
Define A\ as
Xo: Pi(p) — F* cQ”

Mo(a) = a =o1(a).

Since Q” is divisible, we may extend Ag to I(p) to define an algebraic Hecke character A of infinity
type (1,0) and modulus p. The choice of extension of )y is determined up to multiplication be
a character of I(p)/P1(p). We impose a condition on the extension A we choose. Recall that C}
may be written as C; = p® x W x U, where W is the group of roots of unity of order prime to
pand U = {u € C; : |1 —u| < 1}. By construction, after composing with ¢, the image of )¢ is
contained in U. Since U is a divisible group, we may choose our extension A so that the image of
A after composing with ¢, is also contained in U, which we do. Since the only torsion elements in
U are the p-power roots of unity, any two extensions A and ) of )y that have image in U differ
by a character of I(p)/Pi(p)[p™°] where the [p>°] denotes the maximal quotient of I(p)/Pi(p) with
p-power order.

Let p™ = |I(p)/Pi(p)[p™]|. If p" < p™, then we shrink W so that W = W (w, ]ﬁ) We may
do this without changing anything we have assumed previously, and the reason for doing this will
become clear momentarily.

Let M = |I(p)/P1(p)| and note that |M|, = 1/p™. For each prime q of F' such that q # p define
the power series

>, 2" log, (A(q))"
Gq(z) = exp,(zlog,(A(q))) = Z 2" log,(A(q))"

n=0

n!

as an element of C,[[z]]. The power series G4(2) converges if
1

P!/~ Dlog, (Aa))|
Since M = |I(p)/Pi(p)|, g™ = (q) for some q € OF such that ¢ = 1 mod p. Hence by definition of
Ao

2| <

A@)™ = A((g)) =1 mod p
so |1 — X(q)M| < p~Y/®=1_ Then by properties of the p-adic logarithm,
1 M| _ My _ o |108§p()\(‘1))|
PRy} > 1= A@q)™ | = [log,(A(@)™)| = [M|[log,(A(a))| = o
1 1
o S D) '
pr o pt/P=Hllog,(A(a))|
Therefore Gq(z) converges for |z| < pin, which is independent of g.

Recall that log, (z) := }Z? 8, and define
D

SO

Fy(z) = Gyolog, (1 +vz2).
By construction, if |z| < zﬁ then Fy(z) converges. This implies that Fy(2) € Rc,. The function
Fy(z) is the unique element of Rc, with the property that for all & € Z such that v, € W,
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evy, (Fy(2)) = (A\(q))*~1. Furthermore, since k € Z is such that v, € W if and only if k = 1
mod p"~!(p — 1) and r > n, Fy(z) does not depend on the choice of extension A of Ay since p"
divides k — 1 so the exponent k& — 1 will kill any character of I(p)/P1(p)[p*].

Now let a C OF be a nontrivial ideal of & such that (a,p) = 1, and define

[T F:(z)" " if (a,p) =1
Fo(2) =X ¢
0 else.

Further, define A;(z) =1 and for n > 2 define
An(2) = ) x(@)Fu(2).

aCOp
NF/@Clzn

Define the formal g-expansion
F =) Au2)d" € Re,[la]l.
n=1

This formal g-expansion is the CM Hida family specializing to f, in weight one.

Proposition 5.7. For allk € Z>1, vy € W

[0.9]
Fi:=Y_evy (An(2))g" = Y xX(a)g""
n=1 ClCﬁF
is the g-expansion of a weight-k cusp form of level g and character € that is new at level N.

Proof. By definition of A, (z) we have that

evy, (An(2))g" = > xX 1 (a)g™™.
n=1 aCOF
Shimura ([25]) showed that
Y A (@)
aCOp

is the g-expansion of a weight-k cusp form of level I'g which is new at level N and has character
defined by

{—

k—1 k—1
X((E))Z’\f—l () _ ) (M;@))

for ¢ € (Z/NZ)* a prime not equal to p. A simple calculation shows that this is the character
E. [

By the proposition, the functions A,(z) € Rc, for £ { Np and Ay(z) € Rc, satisfy the two
properties that uniquely determine Ty, U, € Rc,. Hence Ty = A, for £{ Np and U, = A,,.

5.4 Two-variable p-adic L-function of the CM family

Keeping the notation of the previous section, let ® be a generator for the rank one T¢,-module
Symbrp (D(R))? S Tt, C Symby, (D(R))°

and let
A(D,-, )W xW—C,
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be the two-variable p-adic L-function associated to ® as in Section 3.5. In order to prove Conjecture
4.6 we restrict A(®,-,-) to a particular subset of W x W. Let

U={tcZ,:t=1modp '}

where W = W (w, ]%) and r was chosen in the previous section. Let 1 be a p-power order character
and let ¢ = nw. Let p" be the conductor of 1. Define the two-variable restriction of A(®,-,-):

Ly,(xnw, e, -,-) : U x Z, — C,
Lp(anv «, ta 5) = A((I)v w_1<'>t_27 (77“’)_1<‘>$_1)~
For all k € Z>2,k =1 mod p" 1, let (oo k, Q) be the periods for v, € W that appear in the in-

terpolation formula for A(®, -, -). Then L,(xnw, o, t,s) is determined by the following interpolation
property: for all k € Zsg, k=1modp" ! and j€Z, 1 <j<k—1,7=1mod2(p—1)

LP(anaaakaj) L(X)\k_lan)

Qp,yk = Ep(@, nw’ k’j) Qoo7yk
where
| 1 (W)l(p)p“)
E(a,qw,k,j)=—F/=—|1— ——F—=— ] X
plev e, k. j) XA’“‘I(P)”L( ()
P0G - i) )
Co

and L(x\*~1nw, s) is the complex Hecke L-function associated to xA*~1nw.

5.5 Two-variable specialization of L, k.

In this section we define a two-variable specialization of Katz’s p-adic L-function that we compare
to the two-variable p-adic L-function defined in the previous section.

Observe that the complex L-value appearing the interpolation formula in the previous section
is

LOAN 1w, ) = LOA 'wN ™, 0).
By our choice of A, the algebraic Hecke character xA*"'nwN~J has infinity type (k — 1 — 4, —7),
which is not in the range of interpolation of Katz’s p-adic L-function.

From here on, let ¢ denote complex conjugation, so ¢ is an automorphism of C. Via our
embedding (¢, ¢ acts on ideals of F', and there is the relation of complex L-functions

LN IwN = s) = LOXA* InwN 7 o ¢, s)
that changes the infinity type. Therefore, xA\*“1nwN =7 o ¢ has infinity type (—j,k — 1 — j), which
is in the range of interpolation of Katz’s p-adic L-function.

Let k1 = Ao ¢ viewed as an algebraic Hecke character. By our choice of A, k1 has infinity type
(0,1) and conductor p. Further when we view k; as a p-adic Hecke character, since A takes values
inU ={uecC):|1-ul <1} CC) we may consider the p-adic Hecke character x]* for any p-adic
number sy € Zp.

Let k2 be the algebraic Hecke character ko = w1 N where N is the norm character

N:Ap — @X
N((zv)o) = H |xv|_1~
v—finite

Viewing r2 as a p-adic Hecke character, k2 has image 1 + pZ, in C;. It therefore makes sense
to consider k5 as a p-adic Hecke character for any sy € Z,. Let X = x o ¢ and note that X has
conductor f. Let L, kq. be Katz’s p-adic L-function with respect to the ideal m where as in the
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notation of Section 4.1, m is the conductor of M /F. The ideal m is divisible by all the primes that
divide f and §. Let (Quo,,) be the period pair used to define L, xat.-
Define
Ly katz(Xn,,-,-) : U x Z, — C,,

Ly Kat= (X0, @, 81, 82) = Lp gar=(Xnr] " 155 %).
Proposition 5.8. L, kai- (X7, @, 51, 52) is determined by the following interpolation property: for
allk € Zso,k=1modp"1, j€Z,1<j<k—-1,j=1modp—1,
Ly, rcat=(x1; @, k. 5) —(2m)"? LN w1 )
Ql; 1 \/@k—l—j QF-1

where Ey(a,nw, k, j) is defined as in the previous section.

= Ep(a,nw, k, j)

Proof. That Ly, gat- (X7, @, 1, 52) is determined by the interpolation property follows from the con-
tinuity of Ly kar-(X7, @, 1, 52) and that the set of k’s and j’s is dense in U x Z,,. Let k € Z>o,
k=1modp landje€Z, 1<j<k—1,j=1modp— 1. By our definitions
)Zn/ilf_lﬁ;j = xnwAF TN oe (12)
SO Xnn’f L j has infinity type (—j,k —1 — j) which is in the range of interpolation for L, gt
By the interpolation formula for L, gas-,

Lp,Katz(Xnaaakaj) — (] B 1) ( )k 1=
! Vag
—1y\1—k NG (5
o (1- b
p
(an)\k IN=7.0)
Qk 1

Since A has modulus p, 1 — xnwA*IN~J(p) = 1. We also have that (nw)~*(p) = (nw) *(p),

N7(p) = p’, and a calculation shows that,

W, (xnwA* 1N o ¢) x

) (1 — XN ()

D))

Wy (xnwX* "N o c) = =
p(xnw oc) YN (p)m

Therefore the formula becomes
Ly kat=(x, 0k, j) _ (5 — DN2m)* 17 —pm0 D7 ((w) )

ot N XAE=T(p)m
() e LONT w, 4)
X)\k ( )m Qk—l
k—2 F=Lipei=1
= E,(o,nw, k, j) (27;) = LA Q,:/}Cf ).

5.6 Choice of periods and comparison

Let Sc, be the fraction field of T¢, = Rc, .

Proposition 5.9. There exists ¥ € Symbp, (D(R)) B Sc, such that the p-adic L-function
LP(XT]W) a, t? 8) = A(\IJ7 w71<‘>t727 (77W)71<‘>871)
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1s calculated with the p-adic and complex periods

k—2
(Qp,lmQ ) (Qk 1 Qk 1 <\éi7F> )

where (£, Qoo) is the period pair used to define Katz’s p-adic L-function. We note that the domain
of Ly(xnw, a, t,s) is as in the previous section.

Proof. Let L,(xnw,a,t,s) = A(®@,w ()72 (nw)~1{-)*7!) be as in Section 5.4. We determine a
meromorphic function P(t) on U such that P(t)L,(xnw, a,t, s) has interpolation formula with the

periods
k—2
vd
Qk—l Qk‘—l F )
(p 1o 21

P:U X Z, — Cp U {oc}

Let

be the p-adic meromorphic function defined by the ratio

Lp,Katz(Xnv o, t, 3)
Lp(an7 a, t’ ‘9)

P(t,s) =

Then P(t,s) has the interpolation property:
Pk, j) %k Qoor —(2m)F2

Qi;-l = QF1 Mk—l—j
for k’s and j’s as in the previous section.

When defining the periods for L,(xnw, a,t,s), we choose ® which we’ve done, and we choose
the {2y 1. These choices determine the €2,;. The condition on the choice of Q0 ; is that the
complex values in the interpolation formula L,(Fj, -, -) are algebraic. These values are for all odd
finite order characters ¢ € W(C,), k € Z>2, 1 < j <k —1,

LOA ' pw? ™1, )

(271' )j _19007 k

Calg(a7 k: .])

where

m(j—1) r 1 ,1-j 1,17
Gy = P2 DI (vt ) ) L

XARL(p)m XA (p)p'
and m is the power of p in the conductor of .
It is clear then that we may define

o gt (\/@>k2

27
since by the interpolation property of Katz’s p-adic L-function, the values

9 k—l—jL )\k—l j—1
Ca,g(a,k,j)( m) (5_2 )
Vdp Q!

are algebraic.
If we consider P(t,s) with this choice of complex periods, then P(t, s) satisfies the interpolation
formula for k € Z>2 k= 1mod p" !, j € Z, 1<j<k—1 j=1mod2(p—1)

P(k, j)< /7] 1

Qk 1 =
Now we separate variables for the function P(t,s). Since p splits in F', v/dr € Q, = F},. Define the
analytic function Q(s) as Q(s) = —(v/dr)*™ !, and let P(t) = P(t,s)/Q(s). The function P(t) is
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a p-adic meromorphic function on U satisfying the relation that for all k € Z>s, k = 1 mod p" 1,
P(k)Qpr = Q’Ij_l. Since P(t) is a p-adic meromorphic function on U, there exists an element
Pe Sc, such that for all t € U, P(y172 — 471y = P(t).
If we define U = P®~ and redefine the function
Ly (xnw, e, t, 8) = AW, ()72, (qw) 71 ()> )
then L,(xnw, a,t, s) satisfies the interpolation property that for all k, j as above,
Ly(x1w, @, t, ) (2m)* 2L pwi T, )

9! Vart ok

= Ep(aa T]w7 k?j)
O

Remark 5.10. If P(t) in the proof of the previous proposition does not have any zeros or poles,
then W is a generator for the free rank one T¢,-module Symbp (D(R))° S Tt, and so ¥ would
be a valid choice to define the p-adic L-function as in Section 3.5.

We record the precise comparison of the p-adic L-function defined in the previous two sections
that appeared in the proof of the previous proposition.

Corollary 5.11. Let Ly gar-(x1, o, t,s) and Ly(xnw, a,t,s) be defined as in the previous two sec-
tions, so
Ly(xnw, a,t,8) = A®@,w ()72, (pw) 71 ()" 1)
where @ is a generator of Symbp (D(R))° B Tc, as a Tc,-module. Then
Lp,Katz <X777 a, t7 8) = P(Tla t? S)Lp(an7 a, t7 8)
where P(n,t,s) is a p-adic meromorphic function determined by the interpolation property that for
allk € Zso, k=1modp™™1,j€Z,1<j<k—1,j=1mod2(p—1),
P(n,k, 7).k _ Qoo _(27r)k72
Qg—l Ql;o_l mk—l—j
Remark 5.12. We remark that P(n,t,s) a priori depends on n and «, but as is clear from the

interpolation formula does not actually depend on 1 or .. The reason for putting n in the notation
will become clear in the next section.

5.7 Proof of the conjecture in this case

In this section we prove Conjecture 4.6 for y. We adopt the notation of Section 4. For each r > 1
let u, = up, be the Stark unit for M, /F from Definition 2.10. For ¢ € W(C,) a character of

order p", the unit uy,, , is obtained from wu, by first mapping u, to the (py)*-isotypic component of

kr ® U, and then projecting to the subspace where d,, acts with eigenvalue a. Let 7y, be the map
o Uy — (ke @ U,)09)
mro(w) = Y Tr((pp)*(0)) @ o(u).
O'GAn

The idea to project to the subspace where d, acts with eigenvalue o is of Greenberg and Vatsal
([15]) and we adopt their notation. Let |- |, denote the map

o (k@ U)PD" — (ky ® U,) 09" 0=
|Ap|—1
1

o = > a '6i(w).

| P‘ i=0

Then |7}, (ur)|a € (kr ® U,)(P#)" %= and so the following theorem implies Conjecture 4.6.
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Theorem 5.13. Let n,¢ € W(C,,) be of orders p™ and p™ respectively. Then

T —1
e (1= 52 (1= B0(0) tog, %, () o

() 0wy e

LP(Xa O£, 77007 W/Ja 0) =

Proof. To begin, we simplify the expression |77, (um)|a. Since (pn)* = Indﬁz(xn)_l, for all o €
A= Hyp, Tr((pn)*(0)) = 0. Since ¢ € Ay, — Hyy, for all 0 € Hy,, Tr((pn)*(0)) = xn(o) +xn(coc).
Let x. denote the character x.(o) = x(coc) and note that since Q,, is totally real, n(coc) = n(o)
for all o. Therefore,
W;n(um) - Z X”(U) ® U(“m) + ch(o’) @ U(um)'
oc€EH
Since a = x(p), we have that

| Z xn(0) ® o(um)]a = 0 and | Z XN(0) @ o (tm)|a = Z Xen(0) @ 0 ().

occH,, occH,, oc€H,,
Therefore

| = > Xen(0) @ o (um).

O'GHm

A similar formula holds for |77, (un)|a-

Let Ly(xnw,a,t,s) and Ly(xyw, a,t,s) be as defined in Section 5.4. By construction
LP(X’OW? a, 17 5)
L,(xYpw,a,1,8)

Lp(Xa Oé, 77007 wwv S) =
Then by Corollary 5.11,
P(na ]-a S)Lp,Katz(XT/w) «, 17 S)
P(% 17 S)Lp,Katz (X¢w> «, 17 3)
- Lp,KatZ(an7 a, 17 8)

Lp,KatZ (waa a, 17 S) .

LP(Xa OZ, 77(*)7 Wda S) =

Plugging in 0, we get
Lp,Katz (X77 © C)
Lp,Katz(Xw o C) ‘

We now use Theorem 5.5. By the above simpliﬁcations of |75, (um)|a and |77, (un)|a;

Lp(Xa a, nw, ¢w7 O) =

Lo (1 ) (1~ xa(0) og, I3 ()
Lp,Katz (Xw © C B * .
TL+1 1- (1 - XT/J(P)) logp |7Tp'¢v(un)’a
To finish, we just note that since o = x(p), 8 = X(p) o (xn)~tp) = nt(p)/a and (x¥) " L(p) =
¥~ (p)/ e, as well as xn(p) = Bn(p) and ¢(p) = B(p)- ]

6 Numerical Evidence

The programming for the examples consisted of three basic parts: computing the minimal poly-
nomial of the Stark units, viewing the Stark units p-adically to take their p-adic logarithm,
and computing the p-adic L-values. The code used for the examples can be found at https:
//github.com/Joe-Ferrara/p-adicStarkExamples. We briefly explain the basis of the code.
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In the case where F' is real quadratic, the minimal polynomial of the Stark units was computed
in SAGE combining the strategies of Stark in [30] and Dummit, Sands, and Tangedal in [11]. In the
cases where F' is imaginary quadratic, the minimal polynomials of the Stark units were computed
in pari/gp using the formulas from Section 2.1. To view the Stark units p-adically and take the
p-adic logarithm we wrote a class in SAGE to represent the extension of Q, the Stark units are
in and to take their p-adic logarithm. To compute the p-adic L-values, we used code written in
SAGE by Rob Harron and Rob Pollack to compute overconvergent modular symbols (their code is
based off the algorithms described in [21]). We computed the weight negative one overconvergent
modular symbol associated to f, to get the p-adic L-values as described in Remark 4.5.

An important reason for these examples is that we expected the units appearing in Conjecture
4.6 to be related to the Stark units in definition 2.3 in the way that they are related in Section
5.7, when F' in imaginary quadratic and p is split in F' (see [13] for what we expected). As the
examples show this may be the case when F' is real quadratic. When F' is imaginary quadratic and
p is inert in F', we can verify the conjecture, but it is not clear how or if the units in Conjecture
4.6 are related to the Stark units in 2.10. In the case when F' is imaginary quadratic and p is inert
in F, the expected formulas conjectured in [13] are not correct.

We adopt all the notation of Section 4. All three examples are of the following form which we
describe before specifying the exact examples.

Let 1» € W(C,) be the character ¢ : (Z/p*Z)* — Q" that sends the generator of (Z/p2Z)* with
minimal positive integer coset representative, to (,. For o = %1 in the first example and o = —1 in
the second two examples, we verify the conjecture for L, (x, o, ¢'w, 9w, 0) when 1 <i < j < p—1.

Let K7 be the compositum of K and Q;. We computed the minimal polynomial of the Stark
unit for K7 over F'. Let u; be a root of the minimal polynomial, so u; is a Stark unit for K; over
F.

In all three examples, the Hecke polynomial of f at p is 22 — 1, so a = 41 and the geometric
Frobenius, ¢, has order two. For a A,-module A and a € A, let

adp(a) ifa=1
lala =

6P‘Ea) ifa=-1

SO || : A — A%=_ (Note that the definition of ||, appearing here differs from the one appearing
in Section 5.7 by the scalar ITlﬂ) Let

u;wi,a = Z XU o) @ |o(ur)]a € (k1 ® ﬁ]\xﬁ)(/ﬂlﬂ) dp=a
o€Gal(K1/F)

We computed each example to two levels of precision. First to check the results we computed
with 60 p-adic digits of precision. Then to reproduce and reaffirm the results we computed each
example at a higher level of precision. Let prec be the number of p-adic digits that each computation
log,, (u i o)

XYt
9y
logp(u;r[pj’a)
which lie in the p-adic field Q,((,2). The field Q,((y2) has ramification index p(p — 1) over Q, and
was represented in the computer with respect to the uniformizer = = (2 —1. Computing with prec
p-adic digits in Q,((y2) is prec- p(p — 1), w-adic digits. To verify the conjecture, we calculated the
m-adic valuation of the difference

Lp(Xa «, q)[)i(,_)7 ij7 O) -

was done with. We computed each of the p-adic numbers Ly(x, c, Yiw, P w,0) and

ORI
(7 ogy (i, )

A number in our computer representation of Q,((,2) is 0 if it has 7-adic valuation prec-p(p—1).
Our data shows that in the cases that we computed, the value of (13) is extremely close to 0. The
difference in the examples between (13) and 0 is most likely from rounding error.

(13)
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6.1 F:Q(\/l_?)aK:Q< 4+\/1_7)ap:5

In this example, Conjecture 4.6 is true because p is also the induction of a ray class character
of F/ = Q(i) where p = 5 splits (and Conjecture 4.6 only depends on p). To see this, define x’ so
that the fixed field of the kernel of x’ is K’ = Q(v/8 + 2i). Then since the fixed field of the kernel
of pis M = K(v4— \/ﬁ) and we have the relation \/4—1— V17 + \/4 — V17 =8+ 24, a simple
calculation shows that Ind x = p = Ind x/. For a further analysis of this situation where there is a
ray class character of a real quadratic field and of an imaginary quadratic field where p splits, and
such that the induction of the two ray class characters is the same, see chapter 5 of [13].

We include this example because the units appearing are the Stark units from 2.3 associated to
the real quadratic field F' = Q(+/17).

1+ V17
2

The character v is defined by ¥(2) = (5. Let a =
the Stark unit for K;/F is

210 + (—2268731445425a — 3542743970110)2°+
+(101815525268417913200a + 158990319870506526445) 25+
+(—908489137763713280149684575a — 1418653768481195383230297220)x" +
+(1212779745101402982169172133826675a + 1893819622280672026587959027568110) x5+
+(—51814142160111896449580114635979570875a — 80910519433399332983120295909704647352) x5+
+(1212779745101402982169172133826675a + 1893819622280672026587959027568110) 24+
+(—908489137763713280149684575a — 1418653768481195383230297220) 23+
+(101815525268417913200a + 158990319870506526445) 2%+

+(—2268731445425a — 3542743970110)x + 1.
The data for this example is in the following table.

. Then the minimal polynomial of

m-adic valuation of (13) | m-adic valuation of (13)

@ (1’-]) when prec=60 when prec=63
1 | (1,2) | 1141 1260
1 | (1,3) | 1140 1260
1 | (1,4) | 1140 1261
1 | (23) | 1140 1260
1 | (24) | 1140 1260
1 | (34) | 1141 1260
1] (1,2) | 1136 1255
1] (1,3) | 1135 1255
1| (1,4) [ 1135 1255
1] (23) | 1135 1255
1] (2.4) | 1135 1255
1] (3.4) | 1135 1257

6.2 F =Q(v/—23), K = Hilbert class field of F', p=5
The character ¢ is defined by ¥ (2) = (5. The minimal polynomial of the Stark unit for K;/F is
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1% — 83253521 + 6523167522 — 5650639400212+
+155334784252 1 — 3937694264020 — 2128042365252° — 38054132012525+
—260722959475027 — 21831928386252° + 37710113819502° — 1207366794625+
4990672775003 — 22156937522 + 4668752 — 125.

The data for this example is in the following table.

. - m-adic valuation of (13) | m-adic valuation of (13)
@ (I’J) when prec=60 when prec=72
1] (1,2) | 1135 1436
1 (1,3) | 1135 1436
1] (14) | 1135 1435
1] (2,3) | 1136 1436
1] (2,4) | 1135 1435
1] (3,4) | 1135 1435

When a = 1, we made the same calculation and got for (13) a p-adic number that is not close
to 0. This indicates that when F' is imaginary quadratic and p is inert in F', the units that appear
in Conjecture 4.6 may not come from the elliptic units from definition 2.10. For reference we give
the first 100 7-adic digits of the quantities in (13) for this example when o = 1:

T(y~1) logp(ulya o)

T(7?) log,(ul 2 )
2+ 70 + 472 4 3722 4 302 4+ 4n?t + 12 4 2720 4+ 47T 4+ 4n® 4 27070 4 2730 4 33 4 3 4 334
334 43130 4 130 43T 4 3B 4 3730 4 3010 4 3t 4 A2 4 33 2t 4 270 4 2740 p 2T 4 B 4 91
7T5O—|—27T52+37T54—|—47I‘55—|—37T56—|—7T57—|—7758—|—27T59—|—27T61—|—47[‘62—|-37T63+27T64+37T65+7T66+27T67+27T68+
71'71+37‘(72+27r73+27r74+7r75+27r76+37T77+7r78+37r79+27r80+7r81+27r82+47784+47785+27786+47r88+
2189 4 3790 4+ 379 4 3793 4 279 1 4% 4 27% 4 797 4 4n® 4 2710 L O(#10Y)  (14)

(1) logy () i )

T(¢72) log,(u} s )
3437° + 719 4 272 4 47?2 4 47?3 4 272 4 302 4 4?0 4 3727 4+ 302 4 4 4 430 4 33 4 32
7T33+37r34—|—47r36+7r38—|—7T40+47T41+47T42+37T43+37T44+47T45+47T46+27r47+27r48+47T49+47r50+37r51+
371'53—|—7r54+47r55—|—271'57—|-27'r58+27r59—|—37T60—|-37T62—|—27T63—|—47T65—|—37T66—|—37T67—|—47T69—|—7T70—|—7T71—I—27T72—|-
27r73+271'74—|—37r75—|—37r76+7'r77—|—27r78+47780+47'r81—|—27T82+37784+37T85+37T86+27r87+37T88—|—47‘r89+47r90+
271'91—|—47T92+47T93—|—7T95—|-7T97+27r98+271'99+271'100+0(7r101) (15)
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(1) logp(uly1 o)

() log, (il )
4475 4 4r10 4 g15 g2l 3022 4 3023 L 424 096 | 32T L 9098 | 4029 | 130 | o814 o 82,
2733 434 43030 4 30 4 37 4 3738 1 3730 4 2710 - an 2 BB oM 4 0 4 16 2T 4 388 2104
704w 13752 4 453 4 2Pt 4 4P 4 35T 4 4 ®8 4 2750 1 4762 4 4705 4 3706 4 36T 4+ 768 1 47894 37704
2T x24T o TA 9n 5 4 1T6 | 4T 4 80 L 181 13 82 /83 o 85 9 87 | o 88 9 89 g 0l
72 4+ 7% 4 27% 4 7% 4 277 4 47 4 271 900(x 1) (16)

T(¢~2) Ing(U;¢27a)

T(¢72) log,(u} s )
44210 42710 p4rt® 4 7220 430 4 722 4 1 1 322 2?4 2730 23 4 4n32 4 4n® 4 23t
37T35+47T36+7T37+37T39+37T41—|—7T42+37T43+7T45+7T46+47T48+47T51—|—37T53+27['54+27T55+37T56+7T57+
27T58—|—47T59—|—27T60—|—7T61—|—47T62—|—37r63—|-277‘64+371'66—|—37T67+7T69—|—7T70+37T72+27T73+7T74+47T75+37T76+
37r77+27r78+47r79+37780+7r81+471'82+37783+47784+27r85+7r86+47r87+47r88+47789+37790+27791+27r92+
4% 4 79 4309 4 370% 4 2797 4+ 47x% 4 2710 L O(£10)  (17)

7(1p=2) logy(ulye o)

(=) log,(u} ya )
2+ 271% + 7110 4+ 372 + 7122 4 2% 4 372 4 2720 4 2020 4 AT 4 4n?8 4 2720 4 3730 4 3735 4 3304
47(37+37T38+27T39+27T40—|—27T41+27T44—|-7T45+47T46+47T47—|—’/T52+7T53+7T56+7T58+27T59+27T64+4ﬂ'65+
7T68—|-47T69—|—7T70—|—47T71—1-271'72—|—7T73—|—37T76—|—47T77+47T78—|—7T79+37T80—|—27T81+2782+47T83—|—27T85—|—27T86—|—
4788 4 78 4 290 4 3791 4 4n%? 4 32 4+ 4x% 4 27090 4 2790 4 2797 998 4 O(7T101) (18)

(=) 108y (1 y0.0)
() ogy ("0 )
3 Ar® 37010 § 215 4 21 40222 | 9 )23 L 120 L 095 L9026 4 42T | 4098 | 9020 L 030 L 31
2732 42733 4 3 4 135 43730 1 93T 4 139 43740 a4 142 4 3B M 4 30 4 4P APt - 504
456 4 5T 4 58 4 8,59 | 060 | 61y 4062 4 g 64y g 66 o 67 3 70 g Tl o T2 L o TS L g TA L TE
370 4 7T f T8 4379 4 480 | 182 | 5 83 o 84 85 8T . 88 89 9 92, 93 9 95,0 96,
297 + 3% 4 2799 4 47100 4 O(7T101) (19)
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LP(X7 «, 7/}1("}7 17[)20.}, 0) =
1 —|—37T5 + 371'10 +7T15 4 27‘(‘21 +4ﬂ_22 +47T23 + 271'24 4 277'25 _|_ﬂ_30 +37T31 —|—7T32—|—
73343734 42735 12736 4 37 4 2738 1 3730 4 470 ot 4 3012 3 D 4 an 40 L 074 T 4 3 504
270 4 752 4 4753 43750 1 3758 4 4P 42700 4 3761 44702 4 703 4 3764 4 27706 4 3768 4 37769 37704 47 TE
27T75+7r76+471'80+471'81+37T82+37T83+37T84+7T85+7T86+7T87+27T88+37T89+7r91+371'92+47[‘93+47r94+
79 4+ 2796 4 37097 4 4x% 4 379 4 7190 L O(x101)  (20)

Ly(x, o, ' w, 9w, 0) =
1+ 7 + 472t + 3722 4+ 3023 + 4n?t 4+ 4n® 4+ 27020 + 47?7 + 4x?8 4 2720 4+ 4nP0 4
33l 32 4 3B 4 373 1 330 4 30 4 3T 4 3028 13130 £ 3+ 4n 2 1 3B 27 4 30T 208 a0+
371'50—|—47r51—{—371'53—}—27[‘54—}—477‘554—37756—|—7T57—|—7r58—|—277‘59—|—37r60—|—27761—|—27r62—|—7r64—|—27r66—|—37r67—{—7r68—|—
204 2 dn B 427 ™ 4 P 4 300 4 an B4 ™0 4 4nB2 43783 1 3784 4B 4 48T 4 4n B 43780+
37‘(’91 + 471,92 + 7_‘_93 + 27l'94 + 71_95 + 271'96 + 471'97 + 3ﬂ,98 + 27_[,99 + 271,100 + O(Trlol) (21)

Ly(x, 0w, ¥, 0) =
1 +47r5 +7r10 +47r15 +7T20 —|—7T21 +27r22 —|—27r23 —|-7T24 +7T25 +7T26 +27T27+
27T28+7T29+37T30—|—47T31+37r32—|—37T33+47T34+27T35+7737—|—47738—|—37T39+47r40+37T43—|—37T44+37T45—|—47T46—|—
47r47+37r48—|—37r49—|—47'r55+47T56+47T57+37r58+27T59—|—27r60—|—27'r61+47T62+7T63+47T65—}-27766+7T67+27T68+
3% 2m O 2m ! pAm P b B 2 O 43T 4T 4 AT 4 2% A 2% 4 2™ A0 Ty
27T88—|-7T89+37r90+71'91+47T92—|—7r96+71'97—|—7r98+47r99+471'100+0(7r101) (22)

Ly(x, o, 1w, 9w, 0) =
1 +37T5 —|—37T10 —|—7T15 —|—27T21 —|—47‘(’22 —|—47T23 —|—27T24 —|—27T25 +7_‘_30 —|—37T31 —|—7T32—|-
71'33+37r34+37r35+27r36—|—7r37—{—27r38—|—37r39+7r40—|—27r41—}—371'42—{—7r43—}—27745+47r46—|—27r47+37r48—|—7r50+
2792 437154 4750 4757 1 478 4 9759 43750 4 270l 42762 4 4703 9704 4 4705 4 3709 4370 4 2T 4 B -
37('75+37T76+7F77+27T78+47T79+47T80+7T82+7T84+47T87+47T90+47T91+37T92+27T93+7F94+7T96+2ﬂ'97+
A% 4 279 4 37100 4 O(7r101) (23)

Lp(x, @, 9w, ¢w, 0) =
1+ 70 4+ 472t + 37022 4+ 3723 + 4 + 47?5 4 2720 + 47?4 4728 + 27020 + 4n?04
33l 32 433 4 3m3 1 30 4 30 3T 13038 43039 - 3 42 4 3B 2 4 30T 2 4O+
3750 4 4Pl 4 3753 1 954 L 155 4 8,56 | 15T | 58 o159 L 8 60 4 o 61 o 62y 164 4o 66 3 67 68,
A T2 4™ 0 TA 3,5 4 g6 4 4 T8 LTI 4182 L 583 | 3 84 o 85 g 86 89 | 4 90 o 01,
2792 4 479 4 7% 4 279 4 37% 4 297 1 3299 L O(x10)  (24)
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Lp(X704a¢3wa¢4waO) =
14300 + 370 + 715 4 272 4 47022 4+ 478 4 272 + 2720 + 720 4 3731 4 1324
733 1 3m3 427135 4 2730 4 37 12738 £ 3739 4 40 ot 1 37012 4 3 D 410 4 21T 4 388 4 504
20t 4152 44723 43750 13758 4 4759 4 2760 4 3761 4 4762 4 763 4 3764 4 9760 4 3768 1 3709 4 2 TO L g T34
7T76 +7T80+47T81 +37T82+37783+37T84+7T85 +47r86+27r87+37r88+7r89+7792+27793+37r94+27r95+7r96+
97 4+ 2798 4 2799 4 37100 L O(2101).  (25)

6.3 F =Q(v-31), K = Hilbert class filed of F, p =3
This example is interesting because it does not satisfy the assumption, p{ [M : Q] (in this example
M = K). In this example p = 3 which divides [M : Q] = 6. The example does satisfy the condition
Ay = Gal(M; /Q) 2 Gal(M/Q) x Gal(Q1/Q) = A x T'y.
The character ¢ is defined by ¥(2) = (3. The minimal polynomial of the Stark unit for K;/F is
2% — 3062® — 114327 — 716402° + 601562° + 1171802 + 257042% — 73712% + 5022z — 27.
The data for this example is in the following table.

o ( ) m-adic valuation of (13) | m-adic valuation of (13)
) when prec=60 when prec=77

1] (1,2) | 352 441

When o = 1, as in the previous example, we made the same calculation and got for (13) a
p-adic number that is not close to 0. Again, this indicates that when F' is imaginary quadratic and
p is inert in F, the units that appear in Conjecture 4.6 may not come from the elliptic units from
definition 2.10. For reference we give the first 100 w-adic digits of the quantities in (13) for this
example when o = 1:

(v logy(yra) _

(02 log, (W)
2424+l b T+ A A b 2 B 2 M 2 P 2w O T 4 2k 2 20 2
724 25?4 420 42528 4129 4 2530 1 2532 033 4 030 1 23T 40 2t 4 20 4 250 4 2T -
a8 4251 1 190 4 2592 4 259 4 00 4 25 P8 4 25 4 700 4 24 162 4 24 703 4 704 4 25 65 4 24 06
47074 20 L 2o A 2 Pt T 2 S O 2S04 B 2582 4 2B 25 ST 4 80 e 4 2 92
24798 4+ 25 1% 4 25 7100 L O(£101)  (26)

Ly(x, o, ¢'w, ?w, 0) =
1425 +m0 + 7+ 78+ 2570 + 7l 425 7B 4+ 25 7t 4 25 716 4 7174
794720 1 25?2l 22 4 22 4 20 4 120 4 25 2T 4 25 2B 2530 4 132 4 233 4 230 30 1 2438 401
x40 4 241 4 2450 4 2Pl 4 25k P2 4 25 4 B0 4 T 4 P8 162 4 103 4 644 005 4 2u 08
2*7T69—|-7T71+7T74—|-7T75+7T76—|—2*7T78—|-2*7T82+7T83—|—7T84—|-2*7T86—|—7T88—|-7T90+2*7T91—|—7T92—|-7T94—|-7T97—|-
24718 4 25 7% + 7190 L O(x1h).  (27)
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