

Hamiltonian Paths and
Cayley Digraphs of
Algebraic Groups.

Sonja Willis
UCSD Honors Thesis 2001

UCSD Honors Thesis
Sonja Willis -2-

Table of Contents

Introduction______________________________________ 3
Background ______________________________________ 4
Cayley Digraph of a Group _________________________ 6
Drawing Cayley Digraphs in Maple __________________ 9
Hamiltonian Path ________________________________ 12
The continuepath Procedure _______________________ 13
The backtrack Procedure__________________________ 15
The HamiltonianPath Procedure____________________ 16
Do All groups have Hamiltonian Paths?______________ 19
Z2 x A4 : Three different generating sets______________ 25
References ______________________________________ 28
Appendix A ______________________________________ 29

UCSD Honors Thesis
Sonja Willis -3-

Introduction
The Irish Mathematician Sir William Hamilton labeled the twenty vertices of a regular

dodecahedron with names of famous cities and asked various questions. The questions he asked
surrounding the dodecahedron came to be known as the Around the World problem, because the
dodecahedron looks like a sphere. One such question is does there exist a path from one city
through every other city with out visiting two cities twice? Such a path is called a Hamiltonian
path. The figure on the right is a digraph of a dodecahedron where each of the numbered vertices
is a city. The vertices are numbered in a manner that if one follows them in numerical order, a
Hamiltonian path is traced. This paper looks at the problem of finding Hamiltonian paths, not of
dodecahedrons, but of Cayley digraphs of Algebraic groups.

This research project combines programming in Maple and mathematics, and focuses on
the interplay between the two. The objective of this project is to develop an algorithm for finding
Hamiltonian paths of graphs, such as the graph above on the right, and to use that algorithm to
draw conclusions about Hamiltonian paths in the Cayley digraphs of Algebraic groups. Another
goal of the project was to write a program in Maple that would draw a Cayley digraph in a
manner that is useful and educational to a viewer. This paper is a guide to the process of writing
programs and using them to do mathematics. First some background material will be covered,
and the new terms specific to this project will be defined. Then the procedures that were written
will be described in detail, with many example of their use. Finally the conclusions that were
made about Algebraic groups will be discussed. The interplay between mathematics and
programming was crucial to this project. With out the math, there would be no motivation for the
programming, and without the programming, the plethora of examples that could be studied
would have been diminished.

UCSD Honors Thesis
Sonja Willis -4-

Background

Generating Set of a Group

To create Cayley digraphs, and to find Hamiltonian Paths of groups the notion of a
generating set needs to be discussed. Maple denotes a set with curly brackets {}, and a list with
square brackets []. To define a generating set let S be the set { s1 , s2 ,..., sn } and let 〈 〉S be the
smallest subgroup containing S. If 〈 〉S is equal to the group, then we say S is a set of generators
for the group. 〈 〉S is the set of "words" in { s1 , s2 ,..., sn , s1

()-1
s2

()-1
,..., sn

()-1
}. If there exists

〈 〉S such that S only has one element then group is said to be cyclic. An example of this
concept is illustrated below.[3]

Example

As an example examine the group Z6 which is the group of integers (mod 6) with addition
as a binary operation. Z6 has six elements {0,1,2,3,4,5}, and there are several different
generating sets. One generating set is {1}. Starting at the identity 0 and adding 1 recursively
yields: { 0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, 5 + 1 = 6 = 0 (mod6) } = {1 , 2 ,
3 , 4 , 5 , 0 }, therefore {1} generates the whole group. Since there exists a generating set
for Z6 with only one element in it, then Z6 is cyclic. Another generating set of Z6 is {2,3}. All
elements of Z6 can be represented as a word in the generating set. For example 1 = 3 + 2 + 2 = 7
= 1 (mod6), and 5 = 3 + 2. All elements can be represented in such a manner. This group will be
revisited after defining the Cayley digraph to give a more visual description of the generating set
of a group.

Group Representations
When using Maple to do anything concerning group theory, the "group" package must be

accessed. The reader can explore the package further by typing ?group on an execution line in a
Maple worksheet (see [4]). The group package has two commands that can be used to input a
group: permgroup and grelgroup. "permgroup" stands for a Permutation group which is the set of
permutations of {1,2,...,n} that form a group under function composition. "grelgroup" stands for
generators and relations, which is another way of defining a group. To define a group in terms of
generators and relations one needs a set of elements that will generate the group and a set of
equations (called relations) that specify the conditions that these generators are to satisfy. To
illustrate these commands the group S3 , which is a set of permutations of {1,2,3}, and forms a
group under permutation multiplication, will be used.

When using the command permgroup, the first argument is the degree of the group, and
should be an integer. The second argument is a set of group generators. Each generator is
represented in disjoint cycle notation. For S3 the degree is 3 because it is the set of permutations
of 1,2,3, and the set of generators used is {(12), (123)}.

> with(group):
> PG:=permgroup(3,{[[1,2]],[[1,2,3]]});

UCSD Honors Thesis
Sonja Willis -5-

 := PG ()permgroup ,3 { },[][],1 2 [][], ,1 2 3

In order to check to see that PG is the group S3 the order and the elements can be

printed. The order of S3 is 6 because there are 6 ways to permute three numbers, and the
elements are those six permutations.

> grouporder(PG); elements(PG);

6
{ }, , , , ,[] [][],1 2 [][], ,1 2 3 [][], ,1 3 2 [][],2 3 [][],1 3

The command grelgroup takes as a first argument a set of Maple names, which stand for

the generators of the group. The second argument is a set of “words” in the generators. A “word”
is a list of generators and/or inverses of generators representing a product. As seen below a and b
are the generators and [a,a,a], [b,b], [a,b,a,b] are a set of relations for S3 . [a,a,a], [b,b], [a,b,a,b]

means that = a2 e , = b2 e , and = abab e where e is the identity element.

> GG:=grelgroup({a,b},{[a,a,a],[b,b],[a,b,a,b]});

 := GG ()grelgroup ,{ },a b { }, ,[], ,a a a [],b b [], , ,a b a b

To check that GG is S3 the order can be printed but Maple does not have a command to
print the elements of a grelgroup.

> grouporder(GG);

6

Since Maple does not have a command to print the elements of a grelgroup a procedure
to do this called eelements was written. When running this procedure the user must pass to it a
group, either a permutation group or a group defined by generators and relations. The procedure
prints the elements by finding the cosets of a subgroup of the group. To see the Maple code for
this procedure see Appendix A, under eelements.

> eelements(GG);

{ }, , , , ,[] [], ,a a b [],a b []b [],a a []a

This does not look like the elements of the first representation of S3 , however it will
become clear after studying the Cayley digraph. This will be revisited later in the paper for
clarification.

A procedure called MakePG was created that takes a set of generators and a set of
relations and returns the corresponding permutation group. However for the set of generators and
relations above it will not return S3 , it will return a subgroup of S6 that is isomorphic to S3 . For
the Maple code and a description of MakePG, see Appendix A.

UCSD Honors Thesis
Sonja Willis -6-

Cayley Digraph of a Group

Arthur Cayley

The Cayley digraph of a group provides a method of visualizing the group and it's

properties. Properties such as commutativity, and the multiplication table of a group can be
recovered from the Cayley digraph. A directed graph, or digraph is a finite set of points, called
vertices, and a set of arrows, called arcs, connecting some of the vertices. The idea of
representing a group in such a manner was originated by Cayley in 1878. [8]

Definition of the Cayley Digraph of a group

Let G be a finite group and S be a set of generators for G. The Cayley digraph of G with
generating set S had two properties. The first property is that each element of G is a vertex of the
Cayley digraph. The second property is, for a and b in G, there is an arc from a to b if and only if
as = b for some s in S (see[2]). To give examples of Cayley digraphs the groups looked at
previously will be revisited. The first example will be Z6 with the generating set {1}, the second
example will be the same group but with generating set {2,3}, and the final example will be S3
with the generating set {(12),(123)}.

Examples
> Cgraph(Z6a);

As for everything else, so for a
mathematical theory: beauty can be
perceived but not explained.
-Arthur Cayley
Quoted in J R Newman, The World of
Mathematics (New York 1956). [8]

UCSD Honors Thesis
Sonja Willis -7-

This is the Cayley digraph of Z

6
 with generating set {1}. In the Cayley digraph each of

the elements of the group Z6 are the vertices of the digraph. The red arrow represents addition by
1, which is the only element in the generating set. The Cayley digraph illustrates several things
about Z

6 with generating set {1}. The first point of interest is that 1 is of order 6, because if you
start at the identity, 0, and add 1 six times which is equivalent to following the red arrow six
times, you get back to the identity. Another property that should be noted is Z

6 is cyclic, because
there is only one color of arrow, which implies that there exists a generating set with only one
element.

> Cgraph(Z6b);

This is also a Cayley digraph for Z6 but with the generating set {2,3}. The red arrow

represents addition by 2, because starting at the identity 0, and following the red arrow yields 2.
By the same logic, the blue arrow represents 3. The element 2 is of order 3 because starting at
the identity and following the red arrow once yields 2, follow it again and you get to 4, follow it
once more and you get back to 0, the identity, therefore applying the red arrow three times is
equivalent to the identity. By the same principal, 3 has order 2. A quick way to see that an
element in the generating set has order two is to look and see if it has a double-headed arrow, i.e.
an arrow on both sides of the arc. Another property of the group that can be observed by looking
at the Cayley digraph is commutativity. Start at any element of the group, say 2, and follow the
blue arrow and then the red arrow, this results in 1. Now start at 2 again and follow the red arrow
and then the blue arrow, this also yields 1. This shows that ab = ba. If this is true for all elements
in the group then the group is commutative.

UCSD Honors Thesis
Sonja Willis -8-

> Cgraph(S);

Above is the Cayley digraph for S3 , with generating set {(12),(123)}. The elements of

the group are the vertices of the digraph and there are two elements in the generating set, (12)
and (123). By looking at the identity element (0) = [[]], and following the red arrow, one can
deduce that the red arrow represents multiplication by (12), and by the same logic, the blue
arrow corresponds to multiplication by (123). The Cayley digraph illustrates several interesting
facts about S3 . The Cayley digraph shows us that S3 is a non-commutative group. This can be
seen by starting at any element, say (13) and following the red arrow and then the blue arrow,
which yields (0), then start at (13) again and follow the blue arrow and then the red arrow, this
results in (123). Since (13) is different that (123) then S3 is a non-commutative group.

The Multiplication table of the group can be recovered from the Cayley digraph. As
previously stated, (12) corresponds to traveling the red arrow, therefore let (12) = R, and by the
same logic, let (123) = B. Then using this R/B notation the rest of the elements can be
represented in the same manner. (13) = RB, (132) = BB, and (23) = BR. Using this notation the
multiplication table can be recovered by starting at the identity and traveling the corresponding
arrows. For example (132)(13) = BBRB = (23) and (23)(132) = BRBB = (13). Below is the
multiplication table for S3 . The multiplication table is dependent on the group, not on the
generating set.

 0 = 12 R = 123 B = 13 RB = 132 BB = 23 BR
0 0 12 123 13 132 23
 = 12 R 12 0 23 132 13 123
 = 123 B 123 13 132 23 0 12

 = 13 RB 13 123 12 0 23 132
 = 132 BB 132 23 0 12 123 13

 = 23 BR 23 132 13 123 12 0

As discussed previously in the representation section, S3 can be represented as a
grelgroup and the elements looked very different from permutations. As previous indicated the
alternate representation of S3 will be revisited in order to convince the reader that this
representation adequately defines the group.

UCSD Honors Thesis
Sonja Willis -9-

> GG:=grelgroup({a,b},{[a,a,a],[b,b],[a,b,a,b]});
 := GG ()grelgroup ,{ },a b { }, ,[], ,a a a [],b b [], , ,a b a b

> eelements(GG);
{ }, , , , ,[] [], ,a a b [],a b []b [],a a []a

Looking again at the Cayley digraph and also at the multiplication table, the elements can
be matched up with their corresponding permutations. Begin with element [a]. [a,a,a] is a
relation which implies that = a3 e where e is the identity. Therefore a must be (123) because
(123) is of order 3, so a corresponds to the blue arrow. Therefore b = (12), and corresponds to
the red arrow and [] is obviously the identity element. [a,a] corresponds to two blue arrows,
which if one looks at the multiplication table and the digraph, traveling two blue arrows yields
(132), so [a,a] = (132). [a,b], by the same argument is a blue arrow followed by a red arrow
which is (23), and lastly [a,a,b] is blue arrow, blue arrow, red arrow which yields (13). So one
can see that the generators and relations given above do indeed define the group S3 .

While writing procedures it was important to be able to draw Cayley digraphs and find
Hamiltonian paths, given these two ways to represent groups. All of the procedures that were
written accommodate for these two representations, and that is why the difference between them
is discussed. There are important things to learn from each of the methods.

Drawing Cayley Digraphs in Maple
The definition of a Cayley digraph has been described, and examples of Cayley digraphs

have been drawn in Maple, but the procedure for drawing them has not been explained. Maple
does not have a procedure for drawing Cayley digraphs of groups. It does however have a
package for drawing graphs. Further information about the draw package can be accessed by
typing ?networks,draw in the execution line of a Maple worksheet (see[5]). In order to draw a
graph that represents a group, the first task at hand it to convert a group to a graph. A graph is a
set of vertices and a set of vertex pairs. Each pair of vertices is specified as either a list or a set
and is called an edge. Use of a list indicates direction from the tail to the head. To represent a
group as a graph the objective is to have the elements of the group be the set of vertices, and to
have a set of edges where an edge exists from one vertex to another if multiplying the first vertex
by an element in the generating set yields the second vertex.

In order to convert a permutation group into a graph a procedure was created called
DefGraph. The user passes this procedure the index of the permutation group and a generating
set. Given this information it uses the procedure eelements to extract the elements of the group
and then it multiplies these elements to the elements in the generating set to create the edges of
the graph. The procedure then combines the set of elements, and the set of edges into a list that is
now in the correct form for Maple to recognize it as a graph. Maple can display a graph using the
draw command. D4 will be used as an example. First convert the grelgroup to a permutation
group using MakePG, then define the graph using DefGraph, and the draw the graph using
Maples draw command.(Note that The "op" function extracts operands from an expression, so
op(D4) just returns the 8, and the set of generators.)

> D4:=MakePG({a,b},{[a,a,a,a],[b,b],[a,b,a,b]});

 := D4 ()permgroup ,8 { },[],[], , ,1 3 5 6 [], , ,2 7 8 4 [], , ,[],1 2 [],3 4 [],5 8 [],6 7

UCSD Honors Thesis
Sonja Willis -10-

> DD4:=DefGraph(op(D4));
 := DD4 cay1

> draw (DD4);

As can be seen from this graph there are several problems. The first problem is that when

a group gets large, the permutations get large, so it would be better to represent the edges with
numbers rather than long permutations. The second problem is that the draw command draws
green lines with no arrows. The graph would be closer to a Cayley digraph if arrows could be
drawn at the end of the directed edges. The third problem is that there is no way of knowing
which generator goes with which edges. Again the graph would look more like a Cayley digraph
if the edges belonging to different elements in the generating set were different colors.

The first problem and part of the last problem were solved by using Groups32. Groups32
is a computer program which is based on the group tables for all groups of orders 1-32. It
computes a variety of important properties of the groups. It also provides a “group theory”
programming language. A program was written for Groups32 to provide data for all groups of
orders 1-32 in a form that can be used by Maple. This program identifies generators for each
group and produces a list which groups edges in the Cayley digraph by the generator used to
produce them. This allows the production of colored Cayley digraphs for all groups up to order
32. It also allows application of the Hamiltonian Path procedure to all of these groups (see[7]).

The new representation given by Groups32 is a list. The first element in the list is a set of
vertices, where the vertices are no longer permutations, but just numbers. The second element of
the list is the number of generators, and the third element in the list is another list. The first
element in this "sub list" is all the edges corresponding to the first element of the generating set,
the second element is the edges corresponding to the second element of the generating set, and
so on. Now the edges of the different elements of the generating set have been separated so that
they can be drawn in different colors. Here is the new representation of D4 . It has edges 0-7, 2
elements in the generating set, and the list of the two sets, each set corresponding to the edges
that belong to a separate element of the generating set.

> d4 := [{$0..7}, 2 ,
 [{[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7],[7,4]}
 ,{[0,4],[1,7],[2,6],[3,5],[4,0],[5,3],[6,2],[7,1]}]]:

In order to solve the problem of the graph having colors and arrows, Maple's draw

UCSD Honors Thesis
Sonja Willis -11-

procedure needs modification. The directed edges need to be drawn with arrows, and there needs
to be some way of passing color, edge width, arrow length and arrow width to the draw
command. To view the modifications to the code of the draw command see Appendix A under
Cgraph. A short overview of these modifications will be given.

A new procedure was created called xdraw that passed colors, length of the edge, and
length and width of the arrow. Within xdraw, zdraw is called. zdraw is the modified draw
command where it now recognizes these new arguments and incorporates them into drawing the
graph. zdraw calls a subroutine named conc, which is a modification of the internal Maple
command concentric. This had to be modified to recognize the new variables being passed. In
order to use these modified programs the user only needs to know about four new variables. The
first three are conc_a, conc_b, and conc_c. These three variables represent the line width, arrow
width and arrow length, in that order. The user has the ability to change any of these
specifications just by changing the assignment of the variable. The fourth variable is the set of
colors. There are 25 different colors to choose from and to access a list the user can type
?plot,color in the execution line of a Maple worksheet. The procedure Cgraph is used to draw a
Cayley digraph. Cgraph needs to be passed a graph in the notation that was discussed above with
the group D4 . Cgraph uses this notation to make separate graphs with the same vertices. It
makes as many graphs as there are generators. And each graph has one color and corresponds to
a separate generator. Then all the graphs are displayed together to give the final result. Look at
D4 again, this time using Cgraph.

> conc_a:=.015:
 conc_b:=.1:
 conc_c:=.1:
> Colors := [red,blue,green,orange,yellow];

 := Colors [], , , ,red blue green orange yellow

> Cgraph := proc(Cay_struc) local X,Vert,Edg,numgens,i;
 global Colors;
 Vert := Cay_struc[1];
 numgens := Cay_struc[2];
 Edg := Cay_struc[3];
 for i from 1 to numgens do
 X[i] := xdraw(graph(Vert,Edg[i]),Colors[i]) od;
 display(convert(X,set)) end:
> Cgraph (d4);

UCSD Honors Thesis
Sonja Willis -12-

On earth there is nothing great but
man; in man there is nothing great
but mind.
-Sir William Rowan Hamilton
Lectures on Metaphysics.[9]

One element of the generating set is red and of order 4 because following the red arrow
four times returns to the identity. Call this generator 1, and the other element of the generating
set, the blue arrow is of order 2, call this 4. Note that D4 is a non-commutative group. The
multiplication table for D4 can be recovered by noticing that 1 = R, 2 = RR, 3 = RRR, 4 = B, 5
= BR, 6 = BRR, 7 = RB, where R corresponds to the red arrow and B corresponds to the blue
arrow.

Cayley digraphs are more than just a visual representation of a group. They illustrate
various properties of the group such a being cyclic, and commutativity. The multiplication table
of the group can be recovered from these illustrations.

Hamiltonian Path

Sir William Hamilton

The questions that Hamilton had when he invented his Around the World puzzle can be

applied to Cayley digraphs. That is, one starts at some vertex and attempts to traverse the digraph
by moving along arcs in such a way that each vertex is visited once. Such a sequence of arcs that
passes through each vertex exactly once without returning to the starting point is called a
Hamiltonian path, after Sir William Hamilton. One can find, or not find, a Hamiltonian path in
any graph, but paths in Cayley digraphs will be discussed in this paper.

A procedure was created that determines whether or not a graph has a Hamiltonian path.
If a graph has a Hamiltonian path then the procedure will return that path. If the graph does not
have a Hamiltonian path then the procedure will return the statement "NO PATH, TRY
ANOTHER VERTEX", and the last path that it could find. The main procedure written is called
HamiltonainPath. It calls two other procedures, continuepath and backtrack. An example graph
will be used to explain how all three of these procedures work. The example graph is not the
graph of a group, and will be called SG. Below is a picture of SG. (Note that SGr is the sample
graph in the notation that Cgraph needs to draw a Cayley digraph.)
> SGr := [{$1..4},1,[{[1,2],[2,4],[1,3],[1,4],[4,1]}]] :
> SG := graph(op(1,SGr),op(op(3,SGr))):
> Cgraph (SGr);

UCSD Honors Thesis
Sonja Willis -13-

HamiltonianPath is the procedure written to find Hamiltonian paths of graphs.

HamiltonianPath calls two subroutines:continuepath, and backtrack. An overview will be given
to explain what the three procedures do and how they work together, and then each program will
be defined and described in detail. SG, the sample graph, will be used to illustrate what is going
on in the procedures.

For a quick overview, the user passes HamiltonianPath a graph and a starting vertex.
HamiltonianPath passes that vertex to the subroutine continuepath as a path (a path is a sequence
of vertices), where it tries to continue the path. This is repeated until a dead end is hit. Once a
dead end is hit, HamiltonianPath passes the path to backtrack where it takes the last vertex off
the path and labels it as "bad". From there either the path gets sent to continuepath, or stays in
backtrack until it can go to continuepath. This backing up and going forward method is repeated
until one of two things happens; one, the path has the same number of elements at the graph has
vertices, or two, backtrack has backed up all the way to the beginning and all options have been
exhausted. In the first case HamiltonianPath will print the path, in the second case it will print
"NO PATH TRY ANOTHER VERTEX" and will return the last path it found.

Now each of the procedures will be described in more detail, using SG, the sample graph
to aid in description. It is worth noting that print statements have been added to the procedures
so that it will be easier to understand what is happening throughout the description. The
procedures in Appendix A do not have print statements. Print statements slow down an algorithm
considerably.

The continuepath Procedure
> continuepath := proc(Graph,path)
 local daugh;
print(`continuepath was passed`,path);
daugh:=sort([op(departures(path[1],Graph) minus {op(path)})]);
 if daugh = []
 then RETURN ([path,false]);
 else RETURN ([[daugh[1],op(path)],true]);
 fi;
end:

UCSD Honors Thesis
Sonja Willis -14-

Continuepath is passed a graph, such as SG. It then finds the departures of the last

element of the path. The departures of a vertex is a set of vertices which are at the head of the
edges directed out of that vertex. For example the departures of 1 in the sample graph are:
> departures(1,SG);

{ }, ,2 3 4

The departures of 4 , and the departures of 3 are below.

> departures(4,SG); departures (3,SG);

{ }1
{ }

Once continuepath finds the departures, it then does one of two things. If the set of
departures in empty, like it was for the vertex 3, then continuepath will return the a list where the
first element is the path, and the second element is the word false. If the set of departures is not
empty then continuepath will also return a list. The first element of this list will be a new path
that is made up of all the elements of the old path, with the first element of the departure set
attached to the path, and the second element of the list will be the word true. For example,
execute continuepath twice, the first time with 1 as the path and the second time with 3 as the
path.

> continuepath(SG,[1]);
continuepath(SG,[3]);

,continuepath was passed []1
[],[],2 1 true

,continuepath was passed []3
[],[]3 false

As can be seen above, continuepath continues on from 1 to 2, and returns a true, but in
the case where the path is 3, and 3 has no departures, continuepath returns the path and a false.
Continuepath is the procedure that adds vertices to the path.

UCSD Honors Thesis
Sonja Willis -15-

The backtrack Procedure
> backtrack := proc(Graph, origpath)
 local bad, daugh, position, path ;
 path := origpath;
 do
 bad:=path [1];
 path:=path [2..nops(path)];
 if path = []
 then RETURN ([path, false]);
 fi;
 print (`after bad is off the path is`,path);
 daugh:=sort([op(departures(path[1],Graph) minus
{op(path)})]);
 member (bad,daugh,'position');
print(`the daughters of`, path[1], `are`,daugh,`the bad element is`, bad);
 if position < nops(daugh)
 then RETURN ([[daugh[position + 1],op(path)],true]);
 fi;
 od;
end:

If continuepath is the procedure that adds vertices to the graph, then backtrack is the
procedure that takes those vertices off the path. No matter what path is passes to backtrack it will
take off the first element in the path, and mark it as bad. Then it will do what continuepath does
and find the departures. If the set of departures is not empty then it will put the last element of
the departures on the list and will return a list with the new path and the word true. If the set of
departures is empty, it will continue to backtrack and label elements as bad until it finds a set of
departures that is not empty. If it backs all the way up until there is nothing left in the path, then
it will return the empty path, and a false. For example look at the path 1, 3, which is represented
in a list [3,1]. (Note that in the procedures a path starts from the right and goes to the left. This
may seem backwards, but backwards is relative.)

UCSD Honors Thesis
Sonja Willis -16-

> backtrack(SG,[3,1]);

,after bad is off the path is []1
, , , , ,the daughters of 1 are [], ,2 3 4 the bad element is 3

[],[],4 1 true

Backtrack took the 3 off the list, went back to 1, found the departures, and went to 4
which is the last element in the set of departures, and returned a true. In order to see backtrack
work it's magic look at the path from 2 to 4 to 1 to 3. If this path is sent to backtrack, it will have
to back all the way up to the beginning because the set of departures will always have only the
bad elements in it.

> backtrack (SG,[3,1,4,2]);

,after bad is off the path is [], ,1 4 2
, , , , ,the daughters of 1 are []3 the bad element is 3

,after bad is off the path is [],4 2
, , , , ,the daughters of 4 are []1 the bad element is 1

,after bad is off the path is []2
, , , , ,the daughters of 2 are []4 the bad element is 4

[],[] false

A seen in the above example, backtrack will continue to back up until it can not back up
anymore, and when that happens it returns an empty path and a false. Traveling forward is done
with continuepath and backing up is done with backtrack. The procedure HamiltonianPath uses
these to subroutines to find paths in graphs.

The HamiltonianPath Procedure
> HamiltonianPath := proc(Graph,start)
 local path, result;
 path := [start];
 do
 do
 result := continuepath (Graph,path);

UCSD Honors Thesis
Sonja Willis -17-

 path := result [1];

 if result [2] = false
 then break;
 fi;
 od ;

 if nops(result [1]) = nops(vertices(Graph))
 then RETURN (path);
 fi ;

 result:=backtrack (Graph,path);
 if result[2]=false
 then print (`NO PATH TRY ANOTHER VERTEX`); break ;
 else path :=result [1];
 fi;
 od;
end:

The HamiltonianPath procedure takes in a graph and a starting point. It makes the
starting point the first element of the path and it sends the path to continuepath. As long as
continuepath returns a true at the end of the list containing the path then HamiltonianPath
continues to send the path to continuepath. When continuepath returns a false at the end of the
list that contains the path, then HamiltonianPath sends the list to backtrack. Backtrack returns a
list with true or false as the last element. If a true is sent, then the path is sent to continuepath
again, if a false is passed, then no path exists and HamiltonianPath returns a message and the last
path found before backtrack was called. Every time a vertex is added to the path,
HamiltonianPath checks to see if the path has as many elements as the graph has vertices. If at
any time the two have the same number of elements, then HamiltonainPath ends and returns the
path that is found.

> HamiltonianPath(SG,1);

,continuepath was passed []1
,continuepath was passed [],2 1

,continuepath was passed [], ,4 2 1
,after bad is off the path is [],2 1

, , , , ,the daughters of 2 are []4 the bad element is 4
,after bad is off the path is []1

UCSD Honors Thesis
Sonja Willis -18-

, , , , ,the daughters of 1 are [], ,2 3 4 the bad element is 2
,continuepath was passed [],3 1

,after bad is off the path is []1
, , , , ,the daughters of 1 are [], ,2 3 4 the bad element is 3

,continuepath was passed [],4 1
,after bad is off the path is []1

, , , , ,the daughters of 1 are [], ,2 3 4 the bad element is 4
NO PATH TRY ANOTHER VERTEX

[],4 1

The print statements along with the digraph can be followed to chart the progress of the
procedure. This verifies that HamiltonianPath works as described. HamiltonianPath verifies that
there does not exist a path from 1 in the sample graph. However a path does exist from vertex
number 2. The path can be found without backtracking.

> HamiltonianPath(SG,2);

,continuepath was passed []2
,continuepath was passed [],4 2

,continuepath was passed [], ,1 4 2
[], , ,3 1 4 2

 The subroutines created to make things easier for the user to find Hamiltonian paths of
groups and graphs will now be described. The user to be able to find Hamiltonian paths by
inputting any one of four forms of input:
❶ A graph and a starting vertex
❷ A permutation group
❸ A group defined by generators and relations
❹ A group in the notation obtained from Groups32, where there is a set of vertices, the number
of elements in the generating set, and a list where the edges are separated into sets corresponding
to the different elements of the generating set.

UCSD Honors Thesis
Sonja Willis -19-

The procedure HamiltonianPath was created for the first form of input. Here is an example:

> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) :
> HamiltonianPath(A,1);

NO PATH TRY ANOTHER VERTEX
[],4 1

For the second and third form of input the procedure HamPath was created. The user can type
either form in after the command and it will recognize which form is given. Here is an example:

> HamPath(3,{[[1,2]],[[1,2,3]]});

[], , , , ,[][], ,1 3 2 [][], ,1 2 3 [][],2 3 [][],1 3 [][],1 2 []

> HamPath({a,b},{[a,a,a],[b,b],[a,b,a,b]});
[], ,[],1 4 [],2 5 [],3 6 [], ,[],1 5 [],2 6 [],3 4 [], ,[],1 6 [],2 4 [],3 5, , ,[

[],[], ,1 3 2 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5 [], ,]

Hpath was created for the forth form of input. Here is an example:

> Z:=[{0,1,2,3,4,5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]];

 := Z [], ,{ }, , , , ,0 1 2 3 4 5 1 []{ }, , , , ,[],0 1 [],4 5 [],5 0 [],3 4 [],1 2 [],2 3

> Hpath(Z);
[], , , , ,5 4 3 2 1 0

Do All groups have Hamiltonian Paths?
After creating a procedure for finding Hamiltonian paths the next task was to use the

program to determine which groups with which generating sets have Hamiltonian paths? Seven
cases were tested to see if paths were abundant or hard to find. These cases were Z6 , S3 , Z8 ,
Z4 x Z2 , Z2 x Z2 x Z2 , D4 , and Q8 . The first two groups are of order 6 and the last five

are of order 8. Of the two groups of order 6, Z6 is Abelian and S3 is not Abelian. Of the five
groups of order 8, three are Abelian: Z8 , Z4 x Z2 , Z2 x Z2 x Z2 and two are non-Abelian
D4 (the dihedral group) and Q8 (the group of quaternionic units).

The first group tested is Z6 . It is a cyclic group of order 6 and the generating set is {1}. It
has a Hamiltonian path, which is printed in blue.

> CCay[7] := [{$0..5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]]
:
Hpath(CCay[7]);
Cgraph(CCay[7]);

UCSD Honors Thesis
Sonja Willis -20-

[], , , , ,5 4 3 2 1 0

Below is S3 with the generating set {(12),(123)}. This Cayley digraph was displayed previously,
and the blue line is a Hamiltonian path.

> CCay[8] := [{$0..5},2,[\
 {[0,1],[1,2],[2,0],[3,4],[4,5],[5,3]}\
 ,{[0,3],[1,5],[2,4],[3,0],[4,2],[5,1]}]] :
Hpath(CCay[8]);
Cgraph(CCay[8]);

[], , , , ,3 5 4 2 1 0

 Below is Z8 . It is a cyclic group of order 8, and it obviously has a Hamiltonian path.
> CCay[10] := [{$0..7},1,[\
 {[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]\
 ,[7,0]}]] :
Hpath(CCay[10]);
Cgraph(CCay[10]);

[], , , , , , ,7 6 5 4 3 2 1 0

UCSD Honors Thesis
Sonja Willis -21-

The next group is Z4 x Z2 and it also has a Hamiltonian path. The red generator is of order 4 and
the blue is of order 2. The two generators commute with one another and therefore the group is
commutative.

> CCay[11] := [{$0..7},2,[
 {[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\
 ,[7,4]},{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\
 ,[7,3]}]] :
Hpath(CCay[11]);
Cgraph(CCay[11]);

[], , , , , , ,6 5 4 7 3 2 1 0

Below is the group Z2 x Z2 x Z2 and it requires three generators each of order 2. It also has a
Hamiltonian path.
> CCay[12] := [{$0..7},3,[\
 {[0,1],[1,0],[2,3],[3,2],[4,5],[5,4],[6,7]\
 ,[7,6]},{[0,2],[1,3],[2,0],[3,1],[4,6],[5,7],[6,4]\
 ,[7,5]},{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\
 ,[7,3]}]] :
Hpath(CCay[12]);
Cgraph(CCay[12]);

[], , , , , , ,7 5 4 6 2 3 1 0

UCSD Honors Thesis
Sonja Willis -22-

Below is D4 which is the group of symmetries of the square (the dihedral group), and it also has
a Hamiltonian path. The red generator is of order 4 and the blue of order 2. They do not
commute with each other.
> CCay[13] := [{$0..7},2,[\
 {[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\
 ,[7,4]},{[0,4],[1,7],[2,6],[3,5],[4,0],[5,3],[6,2]\
 ,[7,1]}]] :
Hpath(CCay[13]);
Cgraph(CCay[13]);

[], , , , , , ,4 7 6 5 3 2 1 0

The last group is Q8 . This group has two elements in the generating set, each of order 4, which
do not commute. The quaternion group has elements ±1, ±i, ±j, ±k. The multiplication is like that
for the cross product, ij=k, etc., however i2 = j2 = k2 = -1. Generators are i and j. Vertex 0 is
"1" and vertex 2 is -1. It has a Hamiltonian path also.

> CCay[14] :=
[{$0..7},2,[{[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\
 ,[7,4]},{[0,4],[1,7],[2,6],[3,5],[4,2],[5,1],[6,0]\
 ,[7,3]}]] :
Hpath(CCay[14]);
Cgraph(CCay[14]);

[], , , , , , ,4 7 6 5 3 2 1 0

UCSD Honors Thesis
Sonja Willis -23-

All seven examples with minimal generating sets had Hamiltonian paths. Do all groups

have Hamiltonian paths? Research on the subject yielded a theorem by Joseph Gallian. He
proved that Abelian Groups have Hamiltonian paths.

Theorem: Let G be a finite Abelian group, and let S be any non-empty generating set for G. Then
the Cayley digraph of G with generating set S has a Hamiltonian path.

 The theorem is proved by induction on the number of elements in the generating set, and can be
found in reference [2] on page 512. Gallian states that there are some Cayley digraphs for non-
Abelian groups that do not have Hamiltonian paths, but he does not discuss the matter further. In
order to find such a group, more groups and generating sets are needed. Using Groups32,
minimal generating sets for all groups of order 1-32 were obtained (see [7]). There are 144
groups with order less than or equal to 32. All 144 of these groups with their minimal generating
were run through a procedure that returns 5 things. The first is the group number (1-144), the
second is a true or false, which corresponds to having or not having a Hamiltonian path. The
third piece of information returned is the order of the group, the fourth is the number of elements
in the generating set, and the fifth is how long it took to find the path. Here is the output of that
procedure.

, , , ,2 true 2 1 .005
, , , ,3 true 3 1 .005
, , , ,4 true 4 1 .010
, , , ,5 true 4 2 .014
, , , ,6 true 5 1 .010
, , , ,7 true 6 1 .015
, , , ,8 true 6 2 .074
, , , ,9 true 7 1 .015
, , , ,10 true 8 1 .015
, , , ,11 true 8 2 .025

, , , ,12 true 8 3 .035
, , , ,13 true 8 2 .020
, , , ,14 true 8 2 .030
, , , ,15 true 9 1 .015
, , , ,16 true 9 2 .030
, , , ,17 true 10 1 .070
, , , ,18 true 10 2 .030
, , , ,19 true 11 1 .019
, , , ,20 true 12 1 .025
, , , ,21 true 12 2 .145

, , , ,22 true 12 2 .095
, , , ,23 true 12 2 .036
, , , ,24 true 12 2 .120
, , , ,25 true 13 1 .025
, , , ,26 true 14 1 .081
, , , ,27 true 14 2 .045
, , , ,28 true 15 1 .031
, , , ,29 true 16 1 .030
, , , ,30 true 16 2 .045
, , , ,31 true 16 2 .320

, , , ,32 true 16 3 .150
, , , ,33 true 16 4 .086
, , , ,34 true 16 3 .145
, , , ,35 true 16 3 .090
, , , ,36 true 16 3 .085
, , , ,37 true 16 2 .150
, , , ,38 true 16 2 .139
, , , ,39 true 16 2 .105
, , , ,40 true 16 2 .050
, , , ,41 true 16 2 .045

UCSD Honors Thesis
Sonja Willis -24-

, , , ,42 true 16 2 .050
, , , ,43 true 17 1 .030
, , , ,44 true 18 2 .455
, , , ,45 true 18 1 .035
, , , ,46 true 18 2 .305
, , , ,47 true 18 2 .054
, , , ,48 true 18 3 .179
, , , ,49 true 19 1 .040
, , , ,50 true 20 2 .314
, , , ,51 true 20 1 .040
, , , ,52 true 20 2 .056
, , , ,53 true 20 2 1.405
, , , ,54 true 20 2 .060
, , , ,55 true 21 1 .100
, , , ,56 true 21 2 .600
, , , ,57 true 22 1 .040
, , , ,58 true 22 2 .065
, , , ,59 true 23 1 .045
, , , ,60 true 24 3 6.141
, , , ,61 true 24 2 4.695
, , , ,62 true 24 1 .045

✰

, , , ,63 false 24 2 1.804

✰

, , , ,64 true 24 3 5.420
, , , ,65 true 24 2 .070
, , , ,66 true 24 2 4.873

, , , ,67 true 24 2 .131
, , , ,68 true 24 2 .180
, , , ,69 true 24 2 .130
, , , ,70 true 24 2 .179
, , , ,71 true 24 2 .135
, , , ,72 true 24 2 .070
, , , ,73 true 24 2 3.580
, , , ,74 true 24 2 .070
, , , ,75 true 25 2 .140
, , , ,76 true 25 1 .045
, , , ,77 true 26 1 .049
, , , ,78 true 26 2 .080
, , , ,79 true 27 3 .179
, , , ,80 true 27 2 .080
, , , ,81 true 27 1 .110
, , , ,82 true 27 2 .095
, , , ,83 true 27 2 2.595
, , , ,84 true 28 2 1.061
, , , ,85 true 28 1 .055
, , , ,86 true 28 2 .150
, , , ,87 true 28 2 .085
, , , ,88 true 29 1 .110
, , , ,89 true 30 1 .055
, , , ,90 true 30 2 .121
, , , ,91 true 30 2 3.375
, , , ,92 true 30 2 .085
, , , ,93 true 31 1 .060

, , , ,94 true 32 1 .119
, , , ,95 true 32 2 7.624
, , , ,96 true 32 2 1.930
, , , ,97 true 32 2 2.188
, , , ,98 true 32 2 1.470
, , , ,99 true 32 2 1.138
, , , ,100 true 32 2 .995
, , , ,101 true 32 2 14.036
, , , ,102 true 32 2 1.570
, , , ,103 true 32 2 27.482
, , , ,104 true 32 2 .730
, , , ,105 true 32 2 8.451
, , , ,106 true 32 2 5.490
, , , ,107 true 32 2 17.075
, , , ,108 true 32 2 49.727
, , , ,109 true 32 2 3.166
, , , ,110 true 32 2 1.750
, , , ,111 true 32 2 .085
, , , ,112 true 32 2 4.020
, , , ,113 true 32 2 19.213
, , , ,114 true 32 3 80.652
, , , ,115 true 32 3 6.236
, , , ,116 true 32 3 54.755
, , , ,117 true 32 3 26.670
, , , ,118 true 32 3 48.210
, , , ,119 true 32 3 36.441
, , , ,120 true 32 3 .261

, , , ,121 true 32 3 .240
, , , ,122 true 32 3 11.400
, , , ,123 true 32 3 1.295
, , , ,124 true 32 3 64.603
, , , ,125 true 32 3 3.150
, , , ,126 true 32 3 2.100
, , , ,127 true 32 3 1.415
, , , ,128 true 32 3 118.045
, , , ,129 true 32 3 .680
, , , ,130 true 32 3 12.610
, , , ,131 true 32 3 4.440
, , , ,132 true 32 3 .185
, , , ,133 true 32 3 35.546
, , , ,134 true 32 3 15.385
, , , ,135 true 32 3 3.321
, , , ,136 true 32 3 .120
, , , ,137 true 32 3 8.821
, , , ,138 true 32 4 .274
, , , ,139 true 32 4 .215
, , , ,140 true 32 4 1.465
, , , ,141 true 32 4 .874
, , , ,142 true 32 4 .154
, , , ,143 true 32 4 .271

, , , ,144 true 32 5 .260

Running all groups of order 32 or less through this procedure returned only one group
without a Hamiltonian path. This group is separated with red stars in the above data. The group
is group number 63 and it has 24 elements and two elements in its generating set. This group

UCSD Honors Thesis
Sonja Willis -25-

deserves further exploration.

Z2 x A4 : Three different generating sets

Out of all the groups that were looked at during this research project, group number 63 was the
only group found not to have a Hamiltonian path. What does group number 63 look like?

> Cgraph(CCay[63]);

Group number 63 has two elements in it's generating set, one of order two and one of

order three. Holsztynski and Strube talk about a group defined by generators and relations that
doesn't have a path. They state G = {{a,b},a2 = b3 = (aba b2)2 = e} does not have a Hamiltonian
path (see [3]). Since G has two elements in the generating set, one of order two and one of order
three, one can ask if group 63 and G are equal. If G = group 63 then group 63 would have to
have the relation (aba b2)2 = e. Looking at the Cayley digraph one can verify this relation.
Although it is visually difficult, it is true. Therefore group 63 is the same as G and G is
isomorphic Z2 x A4. It remains to verity that G does not have a Hamiltonian path.

> HamPath({a,b},{[a,a],[b,b,b],[a,b,a,b,b,a,b,a,b,b]});

NO PATH TRY ANOTHER VERTEX

A generating set for Z2 x A4 was found where the Cayley digraph does not have a
Hamiltonian path. Is there a generating set where Z2 x A4 does have a Hamiltonian path? This is
a difficult question because there are hundreds of generating sets for Z2 x A4 and finding a
minimal one for a large group is tough. Using Groups32 two alternate generating sets were
found. They both have two elements, which implies that they are minimal. Does Z2 x A4 with
these two generating sets have a Hamiltonian path. The representation of Z2 x A4 with the two
new generating sets will be called CayN, and CayM. First look at CayN.

> CayN := [{$0..23},2,[\
 {[0,3],[1,9],[2,4],[3,0],[4,2],[5,6]\
 ,[6,5],[7,8],[8,7],[9,1],[10,11],[11,10]\
 ,[12,13],[13,12],[14,15],[15,14],[16,17]\
 ,[17,16],[18,19],[19,18],[20,21],[21,20]\
 ,[22,23],[23,22]}\
 ,{[0,4],[1,3],[2,9],[3,7],[4,16],[5,2]\

UCSD Honors Thesis
Sonja Willis -26-

 ,[6,8],[7,19],[8,11],[9,12],[10,0]\
 ,[11,13],[12,20],[13,15],[14,1],[15,17]\
 ,[16,22],[17,6],[18,5],[19,23],[20,18]\
 ,[21,10],[22,21],[23,14]}\
]] :
> Hpath(CayN);

[], ,8 6 17 15 13 11 10 21 20 12 9 1 14 23 22 16 4 2 5 18 19 7 3 0

> Cgraph(CCay[63]);

The Cayley digraph of CayN has a Hamiltonian path. Call the two elements in the

generating set a and b. If a corresponds to the red arrow and b corresponds to the blue arrow then
a has order 2, and b has order 6.
Next look at CayM
> CayM :=
[{$0..23},2,[{[0,4],[1,3],[2,9],[3,7],[4,16],[5,2],[6,8],[7,19],[
8,11],[9,12],[10,0],[11,13],[12,20],[13,15],[14,1],[15,17],
 [16,22],[17,6],[18,5],[19,23],[20,18],[21,10],[22,21],[23,14]}
,{[0,8],[1,13],[2,17],[3,2],[4,1],[5,7],[6,4],[7,10],[8,18],
 [9,0],[10,12],[11,3],[12,14],[13,21],[14,16],[15,9],[16,5],
 [17,23],[18,22],[19,6],[20,11],[21,19],[22,15],[23,20]}]] :
> Hpath(CayM);

[], ,10 21 22 18 20 23 17 15 13 11 8 6 19 7 5 16 14 12 9 2 3 1 4 0

> Cgraph(CayM);

UCSD Honors Thesis
Sonja Willis -27-

CayM also has a Hamiltonian path. Both elements in the generating set are of order 6.
This Cayley digraph is very distorted to view. As the order of the elements in the generating set
gets large, there are more edges in the Cayley digraph. As the amount of edges in the Cayley
digraph grows it is more difficult to see what is going on within the digraph.
 Finding one generating set for Z2 x A4 that has a Hamiltonian path and one that doesn’t
raises questions about what it means for a Hamiltonian path to exist in a group. Holsztynski and
Strube define a group to be sequential if every generating set has a Hamiltonian path in the
corresponding Cayley digraph (see [3]). Therefore Z2 x A4 is not sequential. Holsztynski and
Strube also state that every finite group of order 15 or less is sequential (see[3]). If this statement
is to be extended, then one would have to look at all generating sets of all non-Abelian groups
with orders between 15 and 24. Holsztynski and Strube also state that S5 with a 2 cycle and a 5
cycle will not have a Hamiltonian path, but four two cycles might. However S5 has order 120 so
it will not extend the theorem, but it would be another useful example.

Conclusion

 There are many more questions that exist when studying Hamiltonian paths in Cayley
digraphs. What effects do the size of the generating set or number of edges have on the amount
of time it takes to find (or not find) a Hamiltonian Path in a Cayley digraph? Does the order of
the generators have anything to do with execution time? Can the theorem about all groups of
order 15 or less by Holsztynski and Strube be extended, if not, what is special about groups of
order 16, and which group of order 16 has a generating set that does not have a Hamiltonian
path? These are lingering questions that must wait for another day. In conclusion this paper has
demonstrated the interplay between programming and mathematics. The connection between the
two is necessary when looking at Hamiltonian paths in the Cayley digraphs of Algebraic groups.

UCSD Honors Thesis
Sonja Willis -28-

References

[1] Bang-Jensen, Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag
London Limited (2001).

[2] Gallian J.A., Contemporary Abstract Algebra, 4th ed. Houghton Mifflin: New York
(1998).

[3] Holsztynski, Strube, “Paths and Circuits in Finite Groups”, Discrete Mathematics, 22
(1978): 263-272.

[4] Maple 6, On-line Help on Groups, Waterloo Maple, Inc, 1981-2000.

[5] Maple 6, On-line Help on Networks, Waterloo Maple, Inc, 1981-2000.

[6] Maple 6, On-line Help on Plottools, Waterloo Maple, Inc, 1981-2000.

[7] Wavrik, John., Groups32 version 6.3.2a, 1990-2001, http://math.ucsd.edu/~jwavrik

[8] http://www-groups.dcs.st-andrews.ac.uk/~history/Quotations/Cayley.html

[9] http://www-groups.dcs.st-andrews.ac.uk/~history/Quotations/Hamilton.html

UCSD Honors Thesis
Sonja Willis -29-

Appendix A

This appendix contains a description of all of the programs written. For each program the calling
sequence is identified, the parameters are given, a description is given, the code is displayed, and
there are examples for the user.

In order to use the following procedures, several of the existing packages in Maple need to be
called.

Maple Packages
> with (networks):
> with (group):
> with(plottools):
 with(plots):

eelements - elements of an algebraic group.

Calling Sequence:
 eelements(G);

Parameters:
 G - a group, permgroup or grelgroup

Description:
• Given a group G, this routine returns the elements of the group G.

• If a permutation group is given, the elements are permutations. If a grelgroup is given then
the elements are sequences of the elements in the generating set.

Code:
> eelements := proc(G);
 if op(0,G)=`grelgroup` then
 cosets(subgrel({},G))
 elif op(0,G)=`permgroup` then
 cosets(G,permgroup(op(1,G),{}))
 else ERROR(`argument is not a group`) fi; end:

Examples:
> eelements(permgroup(6,{[[1,2,3]],[[4,5,6]]}));

[] [][], ,1 2 3 [][], ,4 5 6 [][], ,1 3 2 [],[], ,1 3 2 [], ,4 5 6 [][], ,4 6 5, , , , , ,{
[],[], ,1 2 3 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5 [],[], ,1 3 2 [], ,4 6 5, , }

> eelements(grelgroup({a,b},{[a,a],[b,b,b],[a,b,a,b,a,b]}));
[] [],b b [],a b [], ,a b a []a []b [], , , ,a b a b b [],b a [], ,b a b [], ,a b b [], , ,a b a b, , , , , , , , , , ,{

[], , , , ,a b a b b a }

UCSD Honors Thesis
Sonja Willis -30-

DefGraph - takes a permutation group and converts it to a graph.

Calling Sequence:
DefGraph(n, gen);

Parameters:
 n - the index of a permutation group
 gen - a generating set of the group
Description:
• Given the arguments that are normally passed to the command permgroup, this routine

returns a graph called cay1. The elements of the permutation group are the vertices of cay1
and there is an edge from a to b if as = b for some s in the generating set.

Code:
> DefGraph := proc(n,gen)
local s, PG, i, j:
new (cay1):
PG:= permgroup (n, gen);

s:=eelements(PG):
addvertex(s,cay1):

for i in gen do: for j in s do :
 connect ({j}, {mulperms (j,i)}, names=[[j,i]],
 'directed' , cay1)
od :od ;
cay1;
end:

Example:
> DefGraph(6,{[[1,2,3]],[[4,5,6]]});

cay1

MakePG - converts a grelgroup to a permutation group.

Calling Sequence:
MakePG(gens, rels);

Parameters:
 gens - a set of names taken to be the generators of the group
 rels - a set of relations among the generators which define the group

Description:
• Given a set of generators and a set of relations, this routine returns a permutation group.

• If the grelgroup has n elements the permutation group returned will be a subgroup of Sn .

Code:

UCSD Honors Thesis
Sonja Willis -31-

> MakePG:= proc(gens,rels) local G,GR,n,ident;
 GR:= grelgroup(gens,rels);
 G:= permrep(subgrel({},GR));
 n:= op(1,G);
 permgroup(n,map(x->op(2,x),op(2,G)));
end:

Example:
> MakePG({a,b},{[a,a],[b,b,b],[a,b,a,b,a,b]});
permgroup 12 [], , ,[], ,1 3 4 [], ,2 5 8 [], ,6 7 11 [], ,9 10 12 ,{,(

[], , , , ,[],1 2 [],3 9 [],4 7 [],5 6 [],8 10 [],11 12 })

continuepath –takes a path and a graph and tries to add another element to the path.

Calling Sequence:
 eelements(G, path);

Parameters:
 G - a finite graph
 path - a list of vertices
Description:
• Given a started path and a graph, this routine returns a list where the first element of the list

is a path and the second element of the list is the word true or false.

• The path that is returned is the path that was given with another vertex added to the path if
the last element of the path had a viable departure. It the last element does not have a viable
departure then the path passed in is passed out without any change to the path.

• A true is returned if the path was altered and a false is returned if the path was unaltered.

Code:
> continuepath := proc(Graph,path)
 local daugh;
 daugh:=sort([op(departures(path[1],Graph) minus {op(path)})]);

 if daugh = []
 then RETURN ([path,false]);
 else RETURN ([[daugh[1],op(path)],true]);
 fi;
end:

Examples:
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}):
> continuepath(A,[1]);

[],[],2 1 true

> continuepath(A,[5]);
[],[]5 false

UCSD Honors Thesis
Sonja Willis -32-

backtrack – given a path and a graph it takes one or more elements off the path

Calling Sequence:
 backtrack(G, path);

Parameters:
 G - a graph
 path - a list of vertices
Description:
• Given a started path and a graph, this routine returns a list where the first element of the list

is a path and the second element of the list is the word true or false.

• The path that is returned is the path that was passed by the user without one, two,..., or all of
the last vertices. This routine continues to take vertices off the path as long as the path can
not be moved forward.

• A true is returned if the path can now more forward and a false is returned if there are no
elements left in the path.

Code:
> backtrack := proc(Graph, origpath)
 local bad, daugh, position, path ;
 path := origpath;
 do
 bad:=path [1];
 path:=path [2..nops(path)];
 if path = []
 then RETURN ([path, false]);
 fi;
 daugh:=sort([op(departures(path[1],Graph) minus {op(path)})]);
 member (bad,daugh,'position');
 if position < nops(daugh)
 then RETURN ([[daugh[position + 1],op(path)],true]);
 fi;
 od;
end:

Example:
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) :
> backtrack(A,[2,1]);

[],[],3 1 true

HamiltonianPath -determines whether a Hamiltonian path exists in a graph from a given
starting point.

Calling Sequence:
HamiltonianPath(G, start);

UCSD Honors Thesis
Sonja Willis -33-

Parameters:
 G - a graph
 start - a vertex
Description:
• Given a graph G and a starting vertex s, this routine returns a Hamiltonian path if one exists

from the given starting point. If no path exists it prints "NO PATH TRY ANOTHER
VERTEX" and returns the last path found.

Code:
> HamiltonianPath := proc(Graph,start)
 local path, result;
 path := [start];
 do
 do
 result := continuepath (Graph,path);
 path := result [1];
 if result [2] = false
 then break;
 fi;
 od ;

 if nops(result [1]) = nops(vertices(Graph))
 then RETURN (path);
 fi ;

 result:=backtrack (Graph,path);
 if result[2]=false
 then print (`NO PATH TRY ANOTHER VERTEX`); break ;
 else path :=result [1];
 fi;
 od;
end:

Examples:
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) :
> HamiltonianPath(A,1);

NO PATH TRY ANOTHER VERTEX
[],4 1

> HamiltonianPath(A,2);
[], , , ,5 3 1 4 2

HPFromPerm -finds a Hamiltonian path (or no path) given a permutation group.

Calling Sequence:
 HPFromPerm(n, gen);

Parameters:

UCSD Honors Thesis
Sonja Willis -34-

 n - the index of a permutation group
 gen - a generating set of the group

Description:
• Given the index and a generating set of a group, this routine returns a Hamiltonian path if

one exists. It no such path exists then the routine prints "NO PATH TRY ANOTHER
VERTEX" and returns the last path it could find.

• The path is returned as a list of permutations, and the path always starts at the identity
element.

Code:
> HPFromPerm:= proc(number,gen)
local Graph;
Graph:= DefGraph(number,gen);
HamiltonianPath(Graph,[]);
end:

Example:
> HPFromPerm(3,{[[1,2]],[[1,2,3]]});

[], , , , ,[][], ,1 3 2 [][], ,1 2 3 [][],2 3 [][],1 3 [][],1 2 []

HPFromRels -finds a Hamiltonian path (or no path) given a generating set and a set of
relations of a group.

Calling Sequence:
 HPFromRels(gens, rels);

Parameters:
 gens - a set of names taken to be the generators of the group
 rels - a set of relations among the generators which define the group

Description:
• Given a generating set and a set of relations for a group, this routine returns a Hamiltonian

path if one exists. It no such path exists then the routine prints "NO PATH TRY ANOTHER
VERTEX" and returns the last path it could find.

• The grelgroup is converted to a permutation group and the path is returned as a list of
permutations. The path always starts at the identity element.

Code:
> HPFromRels:= proc(gens,rels) local begin, Group,Graph;
Group:= MakePG(gens,rels);
Graph:= DefGraph(op(Group));
HamiltonianPath(Graph,[]);
end:

UCSD Honors Thesis
Sonja Willis -35-

Example:
> HPFromRels({a,b},{[a,a,a],[b,b],[a,b,a,b]});

[],[], ,1 3 2 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5 [], ,[],1 5 [],2 6 [],3 4, , ,[
[], ,[],1 6 [],2 4 [],3 5 [], ,[],1 4 [],2 5 [],3 6 [], ,]

HamPath -finds a Hamiltonian path (or no path) given a generating set and a set of relations
of a group, or given the index and a generating set of a permutation group.

Calling Sequence:
 HamPath(gens, rels);
 HamPath(n, gen);

Parameters:
 gens - a set of names taken to be the generators of the group
 rels - a set of relations among the generators which define the group
 n - the index of a permutation group
 gen - a generating set of the group
Description:
• Given the arguments that are usually passed to permgroup or grelgroup, this routine returns a

Hamiltonian path if one exists. It no such path exists then the routine prints "NO PATH TRY
ANOTHER VERTEX" and returns the last path it could find.

• The path returned is a sequence of permutations.

Code:
> HamPath:=proc() local r;
r:=nargs;
if type(args[1],set)
then HPFromRels(args)
else HPFromPerm(args)
fi; end:

Examples:
> HamPath({a,b},{[a,a,a],[b,b],[a,b,a,b]});

[],[], ,1 3 2 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5 [], ,[],1 5 [],2 6 [],3 4, , ,[
[], ,[],1 6 [],2 4 [],3 5 [], ,[],1 4 [],2 5 [],3 6 [], ,]

> HamPath(3,{[[1,2]],[[1,2,3]]});
[], , , , ,[][], ,1 3 2 [][], ,1 2 3 [][],2 3 [][],1 3 [][],1 2 []

ngenCrep -converts a permutation group to a list where the generators are separated, so that
the group can be graphed using Cgraph.

Calling Sequence:
 ngenCrep(n, gen);

Parameters:

UCSD Honors Thesis
Sonja Willis -36-

 n - the index of a permutation group
 gen - a generating set of the group

Description:
• Given the arguments usually passed to permgroup, this routine returns a list. The first

element of the list is a set of elements of the group, the second element is the number of
elements in the generating set, and the third element is another list. This sub-list is a list of
sets where each set contains all the edges that correspond to one element of the generating
set.

Code:
> AllEdges := proc(gens,elems) local gg,L;
 L := [];
 for gg in gens do
 L := [op(L),OneGen(gg,elems)] od;
 L end:
> ngenCrep:=proc (n, gen) local PG,s,G;
 PG:=permgroup(n,gen);
 s:=eelements(PG);
 G := [s,nops(gen),AllEdges(gen,s)];
 G end:

Example:
> ngenCrep(6,{[[1,2,3]],[[4,5,6]]});

[] [][], ,1 2 3 [][], ,4 5 6 [][], ,1 3 2 [],[], ,1 3 2 [], ,4 5 6 [][], ,4 6 5, , , , , ,{[
[],[], ,1 2 3 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5 [],[], ,1 3 2 [], ,4 6 5, , } 2 {[, ,
[],[][], ,1 2 3 [][], ,1 3 2 [],[][], ,1 3 2 [] [],[][], ,4 5 6 [],[], ,1 2 3 [], ,4 5 6, , ,
[],[],[], ,1 3 2 [], ,4 5 6 [][], ,4 5 6 [],[] [][], ,1 2 3, ,
[],[][], ,4 6 5 [],[], ,1 2 3 [], ,4 6 5 [],[],[], ,1 2 3 [], ,4 5 6 [],[], ,1 3 2 [], ,4 5 6, ,

[],[],[], ,1 2 3 [], ,4 6 5 [],[], ,1 3 2 [], ,4 6 5 [],[],[], ,1 3 2 [], ,4 6 5 [][], ,4 6 5, } {,
[],[][], ,4 6 5 [] [],[],[], ,1 3 2 [], ,4 6 5 [][], ,1 3 2, ,
[],[],[], ,1 2 3 [], ,4 6 5 [][], ,1 2 3 [],[],[], ,1 2 3 [], ,4 5 6 [],[], ,1 2 3 [], ,4 6 5, ,
[],[],[], ,1 3 2 [], ,4 5 6 [],[], ,1 3 2 [], ,4 6 5 [],[] [][], ,4 5 6, ,
[],[][], ,1 2 3 [],[], ,1 2 3 [], ,4 5 6 [],[][], ,4 5 6 [][], ,4 6 5, ,
[],[][], ,1 3 2 [],[], ,1 3 2 [], ,4 5 6 }]]

vertgenCrep -converts a set of vertices and a set of generators to a notation where the
generators are separated, so that the group can be graphed using Cgraph.

Calling Sequence:
 vertgenCrep(vert, gen);

Parameters:
 vert - a set of vertices, or elements of a group.

UCSD Honors Thesis
Sonja Willis -37-

 gen - a set of generators

Description:
• Given a set of vertices and a set of generators, this routine returns a list. The first element of

the list is a set of the group elements, the second element is the number of elements in the
generating set, and the third is another list. This sub-list is a list of sets where each set
contains all the edges that correspond to one element of the generating set.

Code:
> vertgenCrep:=proc(vert,gens) local M;
M:=[vert,nops(gen),AllEdges(gen,vert)];
M end:

Hpath -finds a Hamiltonian path (or no path)

Calling Sequence:
 Hpath([vert, n, [g]]);

Parameters:
 vert - a set of vertices of a graph, or elements of a group.
 n - the number of elements in the generating set
 [g] - a list where the n-th element is all edges corresponding to the n-th element in the
generating set.

Description:
• Given the above list, this routine returns a Hamiltonian path if one exists. It no such path

exists then the routine prints "NO PATH TRY ANOTHER VERTEX" and returns the last
path it could find.

• The path returned is a list of elements in vert.

Code:
> OneGen:=proc(gg,s)local L,ss;
L:={};
for ss in s do L:=`union`(L, {op(L),[ss,mulperms(ss,gg)]});
od; L; end:
> Hpath:=proc(CayStruc) local N,P;
N:= graph(CayStruc[1],convert(map(op,CayStruc[3]),set));
P:=HamiltonianPath(N,op(1,CayStruc[1]));
P end:

Example:
> Z:=[{0,1,2,3,4,5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]];

 := Z [], ,{ }, , , , ,0 1 2 3 4 5 1 []{ }, , , , ,[],3 4 [],0 1 [],4 5 [],5 0 [],1 2 [],2 3

> Hpath(Z);
[], , , , ,5 4 3 2 1 0

UCSD Honors Thesis
Sonja Willis -38-

Cgraph -draws the Cayley digraph of a group.

Calling Sequence:
Cgraph([vert, n,[gen]]);

Parameters:
 vert - a set of vertices of a graph, or elements of a group.
 n - the number of elements in the generating set
 [g] - a list where the n-th element is all edges corresponding to the n-th element in the
generating set.

Description:
• Given the above arguments, this routine draws the Cayley digraph of a group where the

edges corresponding to different generators are different colors.

• To change the colors of the graph, change the colors in the set "Colors". A list of possible
colors can be found at ?plot,color.

• To change the line width change the number assigned to conc_a, to change the arrow width
change the number assigned to conc_b, and to change the arrow length change the number
assigned to conc_c.

Code:

conc
The areas that are in green are the code that was changed from the original concentric command.
> conc := proc(partitions::specfunc(list, Concentric),
 G::GRAPH, Offset::list(numeric),
 xrng::name, yrng::name)
 local n, pos, j, t, t1, orbit, y, v, x, e,
 pos1, radius, center, rotation, vset,
 lines, points, text;
 global conc_a, conc_b, conc_c, conc_clr;
 option `Copyright (c) 1992 by the University of Waterloo.`;
 radius := 0;
 center := Offset[1 .. 2];
 vset := {};
 n := 0;
 for t in partitions do
 n := n + 1;
 if not type(t, list) then
 ERROR(`partition should be a list of vertices`)
 fi;
 rotation[n] := 0;
 userinfo(3, networks, `working on`, t);
 t1 := select(has, t, 'offset');
 t :=
 select(proc(x, y) not has(x, y) end, t, 'offset')
 ;
 if t1 <> [] then
 if not type(t1, 'list'(`=`)) then

UCSD Honors Thesis
Sonja Willis -39-

 ERROR(`usage: offset = 3.2`)
 fi;
 rotation[n] := subs({op(t1)}, 'offset');
 t := select(proc(x) not hastype(x, `=`) end, t)
 else
 if {op(t)} intersect vset <> {} then
 ERROR(`intersecting partitions involving`, t)
 fi;
 vset := vset union {op(t)}
 fi;
 if not type(t, 'list'('VERTEX'(G))) then
 ERROR(`not a list of vertices`, t)
 fi;
 orbit[n] := t
 od;
 if networks['vertices'](G) minus vset <> {} then
 n := n + 1;
 orbit[n] :=
 sort([op(networks['vertices'](G) minus vset)]);
 rotation[n] := 0
 fi;
 points := table();
 text := table();
 pos := table();
 if n = 1 and nops({op(orbit[1])}) = 1 then
 pos[orbit[1]] := center
 else for j to n do
 if 0 < radius then radius := 5/3*radius
 else radius := 1
 fi;
 pos1 := `draw/position`(orbit[j], radius, center,
 rotation[j]);
 for v in orbit[j] do
 pos[v] := pos1[v];
 points[v] := POINTS(pos[v]);
 text[v] :=
 'TEXT'(1.1*pos[v], convert(v, string))
 od
 od
 fi;
 lines := table();
 for e in edges(G) do
 x := networks['ends'](e, G);
 if 1 < nops(x) then y := x[2]; x := x[1]
 else x := x[1]
 fi;
 lines[e] := arrow(pos[x], pos[y], conc_a, conc_b,
 conc_c, color = conc_clr)
 od;
 t := map(op,
 {entries(text), entries(points), entries(lines)});
 t1 := max(op(indets(t, numeric)));
 xrng := -t1 .. t1;
 yrng := -t1 .. t1;
 RETURN(t)

UCSD Honors Thesis
Sonja Willis -40-

end ;

zdraw
The text in green is the code that was modified from the draw command.
> zdraw := proc()
local yrng, xrng, G, partitions, curveset, Offset, t;
option
`Copyright (c) 1992 by J. S. Devitt. All rights reserved.`;
 Offset := [0, 0, 0];
 partitions := NULL;
 for t in [args] do
 if type(t, identical('origin' = 'list')) then
 Offset := rhs(t)
 elif type(t, 'GRAPH') then G := eval(t)
 else partitions := partitions, t
 fi
 od;
 if not type(G, 'GRAPH') then ERROR(`not a graph`) fi;
 partitions := [partitions];
 if nargs = 1 and type(G(_Draw), 'procedure') then
 t := G(_Draw)(args); if t <> FAIL then RETURN(t) fi
 elif partitions = [] then
 partitions :=
 'Concentric'(sort([op(networks['vertices'](G))]))
 ;
 curveset :=
 conc(partitions, G, Offset, 'xrng', 'yrng')
 elif type(partitions[1], specfunc('list', 'Linear')) then
 if 1 < nops(partitions) then ERROR(`not implemented`)
 fi;
 curveset := `draw/Linear`(partitions[1], G, Offset,
 'xrng', 'yrng')
 elif type(partitions[1], 'specfunc'('list', Concentric))
 then
 if 1 < nops(partitions) then ERROR(`not implemented`)
 fi;
 curveset :=
 conc(partitions[1], G, Offset, 'xrng', 'yrng')
 else ERROR(`invalid args`, [args])
 fi;
 PLOT(op(curveset), AXESSTYLE(NONE))
end;

> xdraw := proc(GR,Clr) global conc_a,conc_b,conc_c,conc_clr;
 conc_clr := Clr;
 zdraw(GR) end :

> conc_a:=.015:
 conc_b:=.1:
 conc_c:=.1:
> Colors := [red,blue,green,orange,yellow];

 := Colors [], , , ,red blue green orange yellow

UCSD Honors Thesis
Sonja Willis -41-

> Cgraph := proc(Cay_struc) local X,Vert,Edg,numgens,i;
 global Colors;
 Vert := Cay_struc[1];
 numgens := Cay_struc[2];
 Edg := Cay_struc[3];
 for i from 1 to numgens do

 X[i] := xdraw(graph(Vert,Edg[i]),Colors[i])
od;

 display(convert(X,set)) end:

Example:
> CCay[12] := [{$0..7},3,[\
 {[0,1],[1,0],[2,3],[3,2],[4,5],[5,4],[6,7]\
 ,[7,6]}\
 ,{[0,2],[1,3],[2,0],[3,1],[4,6],[5,7],[6,4]\
 ,[7,5]}\
 ,{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\
 ,[7,3]}]] :

> Cgraph(CCay[12]);

