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Introduction 
The Irish Mathematician Sir William Hamilton labeled the twenty vertices of a regular 

dodecahedron with names of famous cities and asked various questions. The questions he asked 
surrounding the dodecahedron came to be known as the Around the World problem, because the 
dodecahedron looks like a sphere. One such question is does there exist a path from one city 
through every other city with out visiting two cities twice? Such a path is called a Hamiltonian 
path. The figure on the right is a digraph of a dodecahedron where each of the numbered vertices 
is a city. The vertices are numbered in a manner that if one follows them in numerical order, a 
Hamiltonian path is traced. This paper looks at the problem of finding Hamiltonian paths, not of 
dodecahedrons, but of Cayley digraphs of Algebraic groups. 

 
 

 
                              

 
 

 

 

This research project combines programming in Maple and mathematics, and focuses on 
the interplay between the two. The objective of this project is to develop an algorithm for finding 
Hamiltonian paths of graphs, such as the graph above on the right, and to use that algorithm to 
draw conclusions about Hamiltonian paths in the Cayley digraphs of Algebraic groups. Another 
goal of the project was to write a program in Maple that would draw a Cayley digraph in a 
manner that is useful and educational to a viewer. This paper is a guide to the process of writing 
programs and using them to do mathematics. First some background material will be covered, 
and the new terms specific to this project will be defined. Then the procedures that were written 
will be described in detail, with many example of their use. Finally the conclusions that were 
made about Algebraic groups will be discussed. The interplay between mathematics and 
programming was crucial to this project. With out the math, there would be no motivation for the 
programming, and without the programming, the plethora of examples that could be studied 
would have been diminished. 
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Background 

Generating Set of a Group 

To create Cayley digraphs, and to find Hamiltonian Paths of groups the notion of a 
generating set needs to be discussed. Maple denotes a set with curly brackets {}, and a list with 
square brackets []. To define a generating set let S be the set { s1 , s2 ,..., sn } and let 〈 〉S  be the 
smallest subgroup containing S. If 〈 〉S  is equal to the group, then we say S is a set of generators 
for the group. 〈 〉S is the set of "words" in { s1 , s2 ,..., sn , s1

( )-1
s2

( )-1
,..., sn

( )-1
}. If there exists 

〈 〉S  such that S  only has one element then group is said to be cyclic. An example of this 
concept is illustrated below.[3] 
 
Example 

As an example examine the group Z6 which is the group of integers (mod 6) with addition 
as a binary operation. Z6  has six elements {0,1,2,3,4,5}, and there are several different 
generating sets. One generating set is {1}. Starting at the identity 0 and adding 1 recursively 
yields:  { 0 + 1 = 1,  1 + 1 = 2,  2 + 1 = 3,  3 + 1 = 4,  4 + 1 = 5,  5 + 1 = 6 = 0 (mod6) } = {1 , 2 , 
3 , 4 , 5 , 0 }, therefore {1} generates the whole group. Since there exists a generating set 
for Z6 with only one element in it, then Z6  is cyclic. Another generating set of Z6  is {2,3}. All 
elements of Z6  can be represented as a word in the generating set. For example 1 = 3 + 2 + 2 = 7 
= 1 (mod6), and 5 = 3 + 2. All elements can be represented in such a manner. This group will be 
revisited after defining the Cayley digraph to give a more visual description of the generating set 
of a group. 

Group Representations 
When using Maple to do anything concerning group theory, the "group" package must be 

accessed. The reader can explore the package further by typing ?group on an execution line in a 
Maple worksheet (see [4]). The group package has two commands that can be used to input a 
group: permgroup and grelgroup. "permgroup" stands for a Permutation group which is the set of 
permutations of {1,2,...,n} that form a group under function composition. "grelgroup" stands for 
generators and relations, which is another way of defining a group. To define a group in terms of 
generators and relations one needs a set of elements that will generate the group and a set of 
equations (called relations) that specify the conditions that these generators are to satisfy. To 
illustrate these commands the group S3 , which is a set of permutations of {1,2,3}, and forms a 
group under permutation multiplication, will be used. 

When using the command permgroup, the first argument is the degree of the group, and 
should be an integer. The second argument is a set of group generators. Each generator is 
represented in disjoint cycle notation. For S3  the degree is 3 because it is the set of permutations 
of 1,2,3, and the set of generators used is {(12), (123)}. 
 
> with(group): 
> PG:=permgroup(3,{[[1,2]],[[1,2,3]]}); 
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 := PG ( )permgroup ,3 { },[ ][ ],1 2 [ ][ ], ,1 2 3  

 
In order to check to see that PG is the group S3  the order and the elements can be 

printed. The order of S3  is 6 because there are 6 ways to permute three numbers, and the 
elements are those six permutations. 
 
> grouporder(PG); elements(PG); 

6  
{ }, , , , ,[ ] [ ][ ],1 2 [ ][ ], ,1 2 3 [ ][ ], ,1 3 2 [ ][ ],2 3 [ ][ ],1 3

 

 
The command grelgroup takes as a first argument a set of Maple names, which stand for 

the generators of the group. The second argument is a set of “words” in the generators. A “word” 
is a list of generators and/or inverses of generators representing a product. As seen below a and b 
are the generators and [a,a,a], [b,b], [a,b,a,b] are a set of relations for S3 . [a,a,a], [b,b], [a,b,a,b] 

means that  = a2 e ,  = b2 e , and  = abab e  where e is the identity element.  
 
> GG:=grelgroup({a,b},{[a,a,a],[b,b],[a,b,a,b]}); 

 := GG ( )grelgroup ,{ },a b { }, ,[ ], ,a a a [ ],b b [ ], , ,a b a b  

To check that GG is S3  the order can be printed but Maple does not have a command to 
print the elements of a grelgroup. 
   
> grouporder(GG); 

6  

Since Maple does not have a command to print the elements of a grelgroup a procedure 
to do this called eelements was written. When running this procedure the user must pass to it a 
group, either a permutation group or a group defined by generators and relations. The procedure 
prints the elements by finding the cosets of a subgroup of the group. To see the Maple code for 
this procedure see Appendix A, under eelements. 
 
> eelements(GG); 

{ }, , , , ,[ ] [ ], ,a a b [ ],a b [ ]b [ ],a a [ ]a  

This does not look like the elements of the first representation of S3 , however it will 
become clear after studying the Cayley digraph. This will be revisited later in the paper for 
clarification.  

A procedure called MakePG was created that takes a set of generators and a set of 
relations and returns the corresponding permutation group. However for the set of generators and 
relations above it will not return S3 , it will return a subgroup of S6  that is isomorphic to S3 . For 
the Maple code and a description of MakePG, see Appendix A. 
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Cayley Digraph of a Group 

 
Arthur Cayley 

  
The Cayley digraph of a group provides a method of visualizing the group and it's 

properties. Properties such as commutativity, and the multiplication table of a group can be 
recovered from the Cayley digraph. A directed graph, or digraph is a finite set of points, called 
vertices, and a set of arrows, called arcs, connecting some of the vertices. The idea of 
representing a group in such a manner was originated by Cayley in 1878. [8] 
 
Definition of the Cayley Digraph of a group 

Let G be a finite group and S be a set of generators for G. The Cayley digraph of G with 
generating set S had two properties. The first property is that each element of G is a vertex of the 
Cayley digraph. The second property is, for a and b in G, there is an arc from a to b if and only if 
as = b for some s in S (see[2]). To give examples of Cayley digraphs the groups looked at 
previously will be revisited. The first example will be Z6 with the generating set {1}, the second 
example will be the same group but with generating set {2,3}, and the final example will be S3  
with the generating set {(12),(123)}. 

 
Examples 
> Cgraph(Z6a); 

As for everything else, so for a 
mathematical theory: beauty can be 
perceived but not explained. 
-Arthur Cayley 
Quoted in J R Newman, The World of 
Mathematics (New York 1956). [8] 
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This is the Cayley digraph of Z

6
  with generating set {1}. In the Cayley digraph each of 

the elements of the group Z6 are the vertices of the digraph. The red arrow represents addition by 
1, which is the only element in the generating set. The Cayley digraph illustrates several things 
about Z

6 with generating set {1}. The first point of interest is that 1 is of order 6, because if you 
start at the identity, 0, and add 1 six times which is equivalent to following the red arrow six 
times, you get back to the identity. Another property that should be noted is Z

6 is cyclic, because 
there is only one color of arrow, which implies that there exists a generating set with only one 
element.  
 
> Cgraph(Z6b); 

 
This is also a Cayley digraph for Z6 but with the generating set {2,3}. The red arrow 

represents addition by 2, because starting at the identity 0, and following the red arrow yields 2. 
By the same logic, the blue arrow represents 3. The element 2 is of order 3 because starting at 
the identity and following the red arrow once yields 2, follow it again and you get to 4, follow it 
once more and you get back to 0, the identity, therefore applying the red arrow three times is 
equivalent to the identity. By the same principal, 3 has order 2. A quick way to see that an 
element in the generating set has order two is to look and see if it has a double-headed arrow, i.e. 
an arrow on both sides of the arc. Another property of the group that can be observed by looking 
at the Cayley digraph is commutativity. Start at any element of the group, say 2, and follow the 
blue arrow and then the red arrow, this results in 1. Now start at 2 again and follow the red arrow 
and then the blue arrow, this also yields 1. This shows that ab = ba. If this is true for all elements 
in the group then the group is commutative. 
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> Cgraph(S); 

 
Above is the Cayley digraph for S3 , with generating set {(12),(123)}. The elements of 

the group are the vertices of the digraph and there are two elements in the generating set, (12) 
and (123). By looking at the identity element (0) = [[]], and following the red arrow, one can 
deduce that the red arrow represents multiplication by (12), and by the same logic, the blue 
arrow corresponds to multiplication by (123). The Cayley digraph illustrates several interesting 
facts about S3 . The Cayley digraph shows us that S3  is a non-commutative group. This can be 
seen by starting at any element, say (13) and following the red arrow and then the blue arrow, 
which yields (0), then start at (13) again and follow the blue arrow and then the red arrow, this 
results in (123). Since (13) is different that (123) then S3 is a non-commutative group.  

The Multiplication table of the group can be recovered from the Cayley digraph. As 
previously stated, (12) corresponds to traveling the red arrow, therefore let (12) = R, and by the 
same logic, let (123) = B. Then using this R/B notation the rest of the elements can be 
represented in the same manner. (13) = RB, (132) = BB, and (23) = BR. Using this notation the 
multiplication table can be recovered by starting at the identity and traveling the corresponding 
arrows. For example (132)(13) = BBRB = (23) and (23)(132) = BRBB = (13). Below is the 
multiplication table for S3 . The multiplication table is dependent on the group, not on the 
generating set.    
 

 0   = 12 R   = 123 B   = 13 RB   = 132 BB   = 23 BR  
0  0  12  123  13  132  23  
 = 12 R  12  0  23  132  13  123  
 = 123 B  123  13  132  23 0  12  

 = 13 RB  13  123  12  0  23  132  
 = 132 BB  132  23  0  12  123  13  

 = 23 BR  23  132  13  123  12  0  
 

As discussed previously in the representation section, S3 can be represented as a 
grelgroup and the elements looked very different from permutations. As previous indicated the 
alternate representation of S3  will be revisited in order to convince the reader that this 
representation adequately defines the group. 
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> GG:=grelgroup({a,b},{[a,a,a],[b,b],[a,b,a,b]}); 
 := GG ( )grelgroup ,{ },a b { }, ,[ ], ,a a a [ ],b b [ ], , ,a b a b

 

> eelements(GG); 
{ }, , , , ,[ ] [ ], ,a a b [ ],a b [ ]b [ ],a a [ ]a  

Looking again at the Cayley digraph and also at the multiplication table, the elements can 
be matched up with their corresponding permutations. Begin with element [a]. [a,a,a] is a 
relation which implies that  = a3 e  where e is the identity. Therefore a must be (123) because 
(123) is of order 3, so a corresponds to the blue arrow. Therefore b = (12), and corresponds to 
the red arrow and [ ] is obviously the identity element. [a,a] corresponds to two blue arrows, 
which if one looks at the multiplication table and the digraph, traveling two blue arrows yields 
(132), so [a,a] = (132). [a,b], by the same argument is a blue arrow followed by a red arrow 
which is (23), and lastly [a,a,b] is blue arrow, blue arrow, red arrow which yields (13). So one 
can see that the generators and relations given above do indeed define the group S3 .  

While writing procedures it was important to be able to draw Cayley digraphs and find 
Hamiltonian paths, given these two ways to represent groups. All of the procedures that were 
written accommodate for these two representations, and that is why the difference between them 
is discussed. There are important things to learn from each of the methods.  
 

Drawing Cayley Digraphs in Maple 
The definition of a Cayley digraph has been described, and examples of Cayley digraphs 

have been drawn in Maple, but the procedure for drawing them has not been explained. Maple 
does not have a procedure for drawing Cayley digraphs of groups. It does however have a 
package for drawing graphs. Further information about the draw package can be accessed by 
typing ?networks,draw in the execution line of a Maple worksheet (see[5]). In order to draw a 
graph that represents a group, the first task at hand it to convert a group to a graph. A graph is a 
set of vertices and a set of vertex pairs. Each pair of vertices is specified as either a list or a set 
and is called an edge. Use of a list indicates direction from the tail to the head. To represent a 
group as a graph the objective is to have the elements of the group be the set of vertices, and to 
have a set of edges where an edge exists from one vertex to another if multiplying the first vertex 
by an element in the generating set yields the second vertex.   

In order to convert a permutation group into a graph a procedure was created called 
DefGraph. The user passes this procedure the index of the permutation group and a generating 
set. Given this information it uses the procedure eelements to extract the elements of the group 
and then it multiplies these elements to the elements in the generating set to create the edges of 
the graph. The procedure then combines the set of elements, and the set of edges into a list that is 
now in the correct form for Maple to recognize it as a graph. Maple can display a graph using the 
draw command. D4 will be used as an example. First convert the grelgroup to a permutation 
group using MakePG, then define the graph using DefGraph, and the draw the graph using 
Maples draw command.(Note that The "op" function extracts operands from an expression, so 
op(D4) just returns the 8, and the set of generators.) 
 
> D4:=MakePG({a,b},{[a,a,a,a],[b,b],[a,b,a,b]}); 

 := D4 ( )permgroup ,8 { },[ ],[ ], , ,1 3 5 6 [ ], , ,2 7 8 4 [ ], , ,[ ],1 2 [ ],3 4 [ ],5 8 [ ],6 7
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> DD4:=DefGraph(op(D4)); 
 := DD4 cay1  

> draw (DD4); 

 
As can be seen from this graph there are several problems. The first problem is that when 

a group gets large, the permutations get large, so it would be better to represent the edges with 
numbers rather than long permutations. The second problem is that the draw command draws 
green lines with no arrows. The graph would be closer to a Cayley digraph if arrows could be 
drawn at the end of the directed edges. The third problem is that there is no way of knowing 
which generator goes with which edges. Again the graph would look more like a Cayley digraph 
if the edges belonging to different elements in the generating set were different colors.  

The first problem and part of the last problem were solved by using Groups32. Groups32 
is a computer program which is based on the group tables for all groups of orders 1-32. It 
computes a variety of important properties of the groups. It also provides a “group theory” 
programming language. A program was written for Groups32 to provide data for all groups of 
orders 1-32 in a form that can be used by Maple. This program identifies generators for each 
group and produces a list which groups edges in the Cayley digraph by the generator used to 
produce them. This allows the production of colored Cayley digraphs for all groups up to order 
32. It also allows application of the Hamiltonian Path procedure to all of these groups (see[7]). 

The new representation given by Groups32 is a list. The first element in the list is a set of 
vertices, where the vertices are no longer permutations, but just numbers. The second element of 
the list is the number of generators, and the third element in the list is another list. The first 
element in this "sub list" is all the edges corresponding to the first element of the generating set, 
the second element is the edges corresponding to the second element of the generating set, and 
so on. Now the edges of the different elements of the generating set have been separated so that 
they can be drawn in different colors. Here is the new representation of D4 . It has edges 0-7, 2 
elements in the generating set, and the list of the two sets, each set corresponding to the edges 
that belong to a separate element of the generating set. 
 
> d4 := [{$0..7},  2 , 
            [{[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7],[7,4]} 
            ,{[0,4],[1,7],[2,6],[3,5],[4,0],[5,3],[6,2],[7,1]}]]: 
 

 
In order to solve the problem of the graph having colors and arrows, Maple's draw 
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procedure needs modification. The directed edges need to be drawn with arrows, and there needs 
to be some way of passing color, edge width, arrow length and arrow width to the draw 
command. To view the modifications to the code of the draw command see Appendix A under 
Cgraph. A short overview of these modifications will be given.  

A new procedure was created called xdraw that passed colors, length of the edge, and 
length and width of the arrow. Within xdraw, zdraw is called. zdraw is the modified draw 
command where it now recognizes these new arguments and incorporates them into drawing the 
graph. zdraw calls a subroutine named conc, which is a modification of the internal Maple 
command concentric. This had to be modified to recognize the new variables being passed. In 
order to use these modified programs the user only needs to know about four new variables. The 
first three are conc_a, conc_b, and conc_c. These three variables represent the line width, arrow 
width and arrow length, in that order. The user has the ability to change any of these 
specifications just by changing the assignment of the variable. The fourth variable is the set of 
colors. There are 25 different colors to choose from and to access a list the user can type 
?plot,color in the execution line of a Maple worksheet. The procedure Cgraph is used to draw a 
Cayley digraph. Cgraph needs to be passed a graph in the notation that was discussed above with 
the group D4 . Cgraph uses this notation to make separate graphs with the same vertices. It 
makes as many graphs as there are generators. And each graph has one color and corresponds to 
a separate generator. Then all the graphs are displayed together to give the final result. Look at 
D4  again, this time using Cgraph.     

> conc_a:=.015: 
 conc_b:=.1: 
 conc_c:=.1: 
> Colors := [red,blue,green,orange,yellow]; 

 := Colors [ ], , , ,red blue green orange yellow  

> Cgraph := proc(Cay_struc) local X,Vert,Edg,numgens,i; 
                          global Colors; 
          Vert := Cay_struc[1]; 
          numgens := Cay_struc[2]; 
          Edg := Cay_struc[3]; 
          for i from 1 to numgens do 
              X[i] := xdraw(graph(Vert,Edg[i]),Colors[i]) od; 
          display(convert(X,set))  end: 
> Cgraph (d4); 
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On earth there is nothing great but 
man; in man there is nothing great 
but mind. 
-Sir William Rowan Hamilton 
Lectures on Metaphysics.[9] 

One element of the generating set is red and of order 4 because following the red arrow 
four times returns to the identity. Call this generator 1, and the other element of the generating 
set, the blue arrow is of order 2, call this 4. Note that D4  is a non-commutative group. The 
multiplication table for D4  can be recovered by noticing that 1 = R, 2 = RR, 3 = RRR, 4 = B, 5 
= BR, 6 = BRR, 7 = RB, where R corresponds to the red arrow and B corresponds to the blue 
arrow.    

Cayley digraphs are more than just a visual representation of a group. They illustrate 
various properties of the group such a being cyclic, and commutativity. The multiplication table 
of the group can be recovered from these illustrations. 

Hamiltonian Path 

 
Sir William Hamilton 

 
The questions that Hamilton had when he invented his Around the World puzzle can be 

applied to Cayley digraphs. That is, one starts at some vertex and attempts to traverse the digraph 
by moving along arcs in such a way that each vertex is visited once. Such a sequence of arcs that 
passes through each vertex exactly once without returning to the starting point is called a 
Hamiltonian path, after Sir William Hamilton. One can find, or not find, a Hamiltonian path in 
any graph, but paths in Cayley digraphs will be discussed in this paper.  

A procedure was created that determines whether or not a graph has a Hamiltonian path. 
If a graph has a Hamiltonian path then the procedure will return that path. If the graph does not 
have a Hamiltonian path then the procedure will return the statement "NO PATH, TRY 
ANOTHER VERTEX", and the last path that it could find. The main procedure written is called 
HamiltonainPath. It calls two other procedures, continuepath and backtrack. An example graph 
will be used to explain how all three of these procedures work. The example graph is not the 
graph of a group, and will be called SG. Below is a picture of SG. (Note that SGr is the sample 
graph in the notation that Cgraph needs to draw a Cayley digraph.)  
> SGr := [{$1..4},1,[{[1,2],[2,4],[1,3],[1,4],[4,1]}]] : 
> SG := graph(op(1,SGr),op(op(3,SGr))): 
> Cgraph (SGr); 
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HamiltonianPath is the procedure written to find Hamiltonian paths of graphs. 

HamiltonianPath calls two subroutines:continuepath, and backtrack. An overview will be given 
to explain what the three procedures do and how they work together, and then each program will 
be defined and described in detail. SG, the sample graph, will be used to illustrate what is going 
on in the procedures.   

For a quick overview, the user passes HamiltonianPath a graph and a starting vertex. 
HamiltonianPath passes that vertex to the subroutine continuepath as a path (a path is a sequence 
of vertices), where it tries to continue the path. This is repeated until a dead end is hit. Once a 
dead end is hit, HamiltonianPath passes the path to backtrack where it takes the last vertex off 
the path and labels it as "bad". From there either the path gets sent to continuepath, or stays in 
backtrack until it can go to continuepath. This backing up and going forward method is repeated 
until one of two things happens; one, the path has the same number of elements at the graph has 
vertices, or two, backtrack has backed up all the way to the beginning and all options have been 
exhausted. In the first case HamiltonianPath will print the path, in the second case it will print 
"NO PATH TRY ANOTHER VERTEX" and will return the last path it found.  

Now each of the procedures will be described in more detail, using SG, the sample graph 
to aid in description. It is worth noting that print statements have been added to the procedures 
so that it will be easier to understand what is happening throughout the description. The 
procedures in Appendix A do not have print statements. Print statements slow down an algorithm 
considerably. 
 

The continuepath Procedure 
> continuepath := proc(Graph,path) 
  local daugh; 
print(`continuepath was passed`,path);   
daugh:=sort([op(departures(path[1],Graph) minus {op(path)})]);    
    if daugh = [] 
      then RETURN ([path,false]); 
      else RETURN ([[daugh[1],op(path)],true]); 
    fi; 
end: 
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Continuepath is passed a graph, such as SG. It then finds the departures of the last 

element of the path. The departures of a vertex is a set of vertices which are at the head of the 
edges directed out of that vertex. For example the departures of 1 in the sample graph are: 
> departures(1,SG); 

{ }, ,2 3 4  

The departures of 4 , and the departures of 3 are below. 
 
> departures(4,SG); departures (3,SG); 

{ }1  
{ }  

Once continuepath finds the departures, it then does one of two things. If the set of 
departures in empty, like it was for the vertex 3, then continuepath will return the a list where the 
first element is the path, and the second element is the word false. If the set of departures is not 
empty then continuepath will also return a list. The first element of this list will be a new path 
that is made up of all the elements of the old path, with the first element of the departure set 
attached to the path, and the second element of the list will be the word true. For example, 
execute continuepath twice, the first time with 1 as the path and the second time with 3 as the 
path. 
 
> continuepath(SG,[1]); 
continuepath(SG,[3]); 

,continuepath was passed [ ]1  
[ ],[ ],2 1 true  

 

,continuepath was passed [ ]3  
[ ],[ ]3 false  

As can be seen above, continuepath continues on from 1 to 2, and returns a true, but in 
the case where the path is 3, and 3 has no departures, continuepath returns the path and a false. 
Continuepath is the procedure that adds vertices to the path. 
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The backtrack Procedure 
> backtrack := proc( Graph, origpath) 
  local bad, daugh, position, path ; 
  path := origpath; 
  do 
    bad:=path [1]; 
    path:=path [2..nops(path)]; 
    if path = [] 
      then RETURN ([path, false]); 
    fi; 
 print (`after bad is off the path is`,path); 
    daugh:=sort([op(departures(path[1],Graph) minus                                        
{op(path)})]); 
    member (bad,daugh,'position'); 
print(`the daughters of`, path[1], `are`,daugh,`the bad element is`, bad); 
    if position < nops(daugh) 
      then RETURN ([[daugh[position + 1],op(path)],true]); 
    fi; 
   od; 
end: 

If continuepath is the procedure that adds vertices to the graph, then backtrack is the 
procedure that takes those vertices off the path. No matter what path is passes to backtrack it will 
take off the first element in the path, and mark it as bad. Then it will do what continuepath does 
and find the departures. If the set of departures is not empty then it will put the last element of 
the departures on the list and will return a list with the new path and the word true. If the set of 
departures is empty, it will continue to backtrack and label elements as bad until it finds a set of 
departures that is not empty. If it backs all the way up until there is nothing left in the path, then 
it will return the empty path, and a false. For example look at the path 1, 3, which is represented 
in a list [3,1]. (Note that in the procedures a path starts from the right and goes to the left. This 
may seem backwards, but backwards is relative.) 
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> backtrack(SG,[3,1]); 

,after bad is off the path is [ ]1  
, , , , ,the daughters of 1 are [ ], ,2 3 4 the bad element is 3  

[ ],[ ],4 1 true  

Backtrack took the 3 off the list, went back to 1, found the departures, and went to 4 
which is the last element in the set of departures, and returned a true. In order to see backtrack 
work it's magic look at the path from 2 to 4 to 1 to 3. If this path is sent to backtrack, it will have 
to back all the way up to the beginning because the set of departures will always have only the 
bad elements in it. 
 
> backtrack (SG,[3,1,4,2]); 

,after bad is off the path is [ ], ,1 4 2  
, , , , ,the daughters of 1 are [ ]3 the bad element is 3  

,after bad is off the path is [ ],4 2  
, , , , ,the daughters of 4 are [ ]1 the bad element is 1  

,after bad is off the path is [ ]2  
, , , , ,the daughters of 2 are [ ]4 the bad element is 4  

[ ],[ ] false  

A seen in the above example, backtrack will continue to back up until it can not back up 
anymore, and when that happens it returns an empty path and a false. Traveling forward is done 
with continuepath and backing up is done with backtrack. The procedure HamiltonianPath uses 
these to subroutines to find paths in graphs. 
 

The HamiltonianPath Procedure 
> HamiltonianPath := proc(Graph,start) 
  local path, result; 
  path := [start]; 
  do  
    do 
      result := continuepath (Graph,path); 
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      path := result [1];  
    
      if result [2] = false  
        then break; 
      fi; 
    od ; 
     
    if nops(result [1]) = nops(vertices(Graph)) 
      then RETURN (path); 
    fi ; 
  
    result:=backtrack (Graph,path); 
    if result[2]=false  
      then print (`NO PATH TRY ANOTHER VERTEX`); break ; 
      else path :=result [1]; 
    fi; 
  od; 
end: 

The HamiltonianPath procedure takes in a graph and a starting point. It makes the 
starting point the first element of the path and it sends the path to continuepath. As long as 
continuepath returns a true at the end of the list containing the path then HamiltonianPath 
continues to send the path to continuepath. When continuepath returns a false at the end of the 
list that contains the path, then HamiltonianPath sends the list to backtrack. Backtrack returns a 
list with true or false as the last element. If a true is sent, then the path is sent to continuepath 
again, if a false is passed, then no path exists and HamiltonianPath returns a message and the last  
path found before backtrack was called. Every time a vertex is added to the path, 
HamiltonianPath checks to see if the path has as many elements as the graph has vertices. If at 
any time the two have the same number of elements, then HamiltonainPath ends and returns the 
path that is found.  

 
> HamiltonianPath(SG,1); 

,continuepath was passed [ ]1  
,continuepath was passed [ ],2 1  

,continuepath was passed [ ], ,4 2 1  
,after bad is off the path is [ ],2 1  

, , , , ,the daughters of 2 are [ ]4 the bad element is 4  
,after bad is off the path is [ ]1  
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, , , , ,the daughters of 1 are [ ], ,2 3 4 the bad element is 2  
,continuepath was passed [ ],3 1  

,after bad is off the path is [ ]1  
, , , , ,the daughters of 1 are [ ], ,2 3 4 the bad element is 3  

,continuepath was passed [ ],4 1  
,after bad is off the path is [ ]1  

, , , , ,the daughters of 1 are [ ], ,2 3 4 the bad element is 4  
NO PATH TRY ANOTHER VERTEX  

[ ],4 1  

The print statements along with the digraph can be followed to chart the progress of the 
procedure. This verifies that HamiltonianPath works as described. HamiltonianPath verifies that 
there does not exist a path from 1 in the sample graph. However a path does exist from vertex 
number 2. The path can be found without backtracking. 
 

 
> HamiltonianPath(SG,2); 

,continuepath was passed [ ]2  
,continuepath was passed [ ],4 2  

,continuepath was passed [ ], ,1 4 2  
[ ], , ,3 1 4 2  

  The subroutines created to make things easier for the user to find Hamiltonian paths of 
groups and graphs will now be described. The user to be able to find Hamiltonian paths by 
inputting any one of four forms of input: 
❶   A graph and a starting vertex 
❷   A permutation group 
❸   A group defined by generators and relations 
❹   A group in the notation obtained from Groups32, where there is a set of vertices, the number 
of elements in the generating set, and a list where the edges are separated into sets corresponding 
to the different elements of the generating set. 
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The procedure HamiltonianPath was created for the first form of input. Here is an example: 
 
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) : 
> HamiltonianPath(A,1); 

NO PATH TRY ANOTHER VERTEX  
[ ],4 1  

For the second and third form of input the procedure HamPath was created. The user can type 
either form in after the command and it will recognize which form is given. Here is an example: 
 
> HamPath(3,{[[1,2]],[[1,2,3]]}); 

[ ], , , , ,[ ][ ], ,1 3 2 [ ][ ], ,1 2 3 [ ][ ],2 3 [ ][ ],1 3 [ ][ ],1 2 [ ]  

> HamPath({a,b},{[a,a,a],[b,b],[a,b,a,b]}); 
[ ], ,[ ],1 4 [ ],2 5 [ ],3 6 [ ], ,[ ],1 5 [ ],2 6 [ ],3 4 [ ], ,[ ],1 6 [ ],2 4 [ ],3 5, , ,[

[ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ], , ]

 

 
Hpath was created for the forth form of input. Here is an example: 
 
> Z:=[{0,1,2,3,4,5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]]; 

 := Z [ ], ,{ }, , , , ,0 1 2 3 4 5 1 [ ]{ }, , , , ,[ ],0 1 [ ],4 5 [ ],5 0 [ ],3 4 [ ],1 2 [ ],2 3
 

> Hpath(Z); 
[ ], , , , ,5 4 3 2 1 0  

Do All groups have Hamiltonian Paths? 
After creating a procedure for finding Hamiltonian paths the next task was to use the 

program to determine which groups with which generating sets have Hamiltonian paths? Seven 
cases were tested to see if paths were abundant or hard to find. These cases were Z6 ,  S3 ,  Z8 ,  
Z4  x Z2 ,  Z2  x Z2  x Z2 ,  D4 ,  and Q8 . The first two groups are of order 6 and the last five 

are of order 8. Of the two groups of order 6, Z6  is Abelian and S3  is not Abelian. Of the five 
groups of order 8, three are Abelian:  Z8 , Z4  x Z2 , Z2  x Z2  x Z2   and two are non-Abelian 
D4  (the dihedral group) and Q8  (the group of quaternionic units). 

The first group tested is Z6 . It is a cyclic group of order 6 and the generating set is {1}. It 
has a Hamiltonian path, which is printed in blue. 
 
> CCay[7] := [{$0..5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]] 
: 
Hpath(CCay[7]); 
Cgraph(CCay[7]); 
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[ ], , , , ,5 4 3 2 1 0  

 
 

Below is S3 with the generating set {(12),(123)}. This Cayley digraph was displayed previously, 
and the blue line is a Hamiltonian path. 
 
> CCay[8] := [{$0..5},2,[\ 
         {[0,1],[1,2],[2,0],[3,4],[4,5],[5,3]}\ 
        ,{[0,3],[1,5],[2,4],[3,0],[4,2],[5,1]}]] : 
Hpath(CCay[8]); 
Cgraph(CCay[8]); 
 

[ ], , , , ,3 5 4 2 1 0  

 
 
 Below is Z8 . It is a cyclic group of order 8, and it obviously has a Hamiltonian path.  
> CCay[10] := [{$0..7},1,[\ 
         {[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]\ 
        ,[7,0]}]] : 
Hpath(CCay[10]); 
Cgraph(CCay[10]); 
 

[ ], , , , , , ,7 6 5 4 3 2 1 0  
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The next group is Z4  x Z2 and it also has a Hamiltonian path. The red generator is of order 4 and 
the blue is of order 2. The two generators commute with one another and therefore the group is 
commutative.   
  
> CCay[11] := [{$0..7},2,[ 
         {[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\ 
        ,[7,4]},{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\ 
        ,[7,3]}]] : 
Hpath(CCay[11]); 
Cgraph(CCay[11]); 
 

[ ], , , , , , ,6 5 4 7 3 2 1 0  

 
Below is the group Z2  x Z2  x Z2  and it requires three generators each of order 2. It also has a 
Hamiltonian path. 
> CCay[12] := [{$0..7},3,[\ 
         {[0,1],[1,0],[2,3],[3,2],[4,5],[5,4],[6,7]\ 
        ,[7,6]},{[0,2],[1,3],[2,0],[3,1],[4,6],[5,7],[6,4]\ 
        ,[7,5]},{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\ 
        ,[7,3]}]] : 
Hpath(CCay[12]); 
Cgraph(CCay[12]); 

[ ], , , , , , ,7 5 4 6 2 3 1 0  
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Below is D4  which is the group of symmetries of the square (the dihedral group), and it also has 
a Hamiltonian path. The red generator is of order 4 and the blue of order 2.  They do not 
commute with each other.  
> CCay[13] := [{$0..7},2,[\ 
         {[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\ 
        ,[7,4]},{[0,4],[1,7],[2,6],[3,5],[4,0],[5,3],[6,2]\ 
        ,[7,1]}]] : 
Hpath(CCay[13]); 
Cgraph(CCay[13]); 

[ ], , , , , , ,4 7 6 5 3 2 1 0  

 
The last group is Q8 . This group has two elements in the generating set, each of order 4, which 
do not commute. The quaternion group has elements ±1, ±i, ±j, ±k. The multiplication is like that 
for the cross product, ij=k, etc., however i2  = j2  = k2  = -1. Generators are i and j. Vertex 0 is 
"1" and vertex 2 is -1.  It has a Hamiltonian path also. 
 
> CCay[14] := 
[{$0..7},2,[{[0,1],[1,2],[2,3],[3,0],[4,5],[5,6],[6,7]\ 
        ,[7,4]},{[0,4],[1,7],[2,6],[3,5],[4,2],[5,1],[6,0]\ 
        ,[7,3]} ]] : 
Hpath(CCay[14]); 
Cgraph(CCay[14]); 

[ ], , , , , , ,4 7 6 5 3 2 1 0  
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All seven examples with minimal generating sets had Hamiltonian paths. Do all groups 

have Hamiltonian paths? Research on the subject yielded a theorem by Joseph Gallian. He 
proved that Abelian Groups have Hamiltonian paths.  
 
Theorem: Let G be a finite Abelian group, and let S be any non-empty generating set for G. Then 
the Cayley digraph of G with generating set S has a Hamiltonian path. 
  
 The theorem is proved by induction on the number of elements in the generating set, and can be 
found in reference [2] on page 512. Gallian states that there are some Cayley digraphs for non-
Abelian groups that do not have Hamiltonian paths, but he does not discuss the matter further. In 
order to find such a group, more groups and generating sets are needed. Using Groups32, 
minimal generating sets for all groups of order 1-32 were obtained (see [7]). There are 144 
groups with order less than or equal to 32. All 144 of these groups with their minimal generating 
were run through a procedure that returns 5 things. The first is the group number (1-144), the 
second is a true or false, which corresponds to having or not having a Hamiltonian path. The 
third piece of information returned is the order of the group, the fourth is the number of elements 
in the generating set, and the fifth is how long it took to find the path. Here is the output of that 
procedure. 

 
, , , ,2 true 2 1 .005  
, , , ,3 true 3 1 .005  
, , , ,4 true 4 1 .010  
, , , ,5 true 4 2 .014  
, , , ,6 true 5 1 .010  
, , , ,7 true 6 1 .015  
, , , ,8 true 6 2 .074  
, , , ,9 true 7 1 .015  
, , , ,10 true 8 1 .015  
, , , ,11 true 8 2 .025  

, , , ,12 true 8 3 .035  
, , , ,13 true 8 2 .020  
, , , ,14 true 8 2 .030  
, , , ,15 true 9 1 .015  
, , , ,16 true 9 2 .030  
, , , ,17 true 10 1 .070  
, , , ,18 true 10 2 .030  
, , , ,19 true 11 1 .019  
, , , ,20 true 12 1 .025  
, , , ,21 true 12 2 .145  

, , , ,22 true 12 2 .095  
, , , ,23 true 12 2 .036  
, , , ,24 true 12 2 .120  
, , , ,25 true 13 1 .025  
, , , ,26 true 14 1 .081  
, , , ,27 true 14 2 .045  
, , , ,28 true 15 1 .031  
, , , ,29 true 16 1 .030  
, , , ,30 true 16 2 .045  
, , , ,31 true 16 2 .320  

, , , ,32 true 16 3 .150  
, , , ,33 true 16 4 .086  
, , , ,34 true 16 3 .145  
, , , ,35 true 16 3 .090  
, , , ,36 true 16 3 .085  
, , , ,37 true 16 2 .150  
, , , ,38 true 16 2 .139  
, , , ,39 true 16 2 .105  
, , , ,40 true 16 2 .050  
, , , ,41 true 16 2 .045  
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, , , ,42 true 16 2 .050  
, , , ,43 true 17 1 .030  
, , , ,44 true 18 2 .455  
, , , ,45 true 18 1 .035  
, , , ,46 true 18 2 .305  
, , , ,47 true 18 2 .054  
, , , ,48 true 18 3 .179  
, , , ,49 true 19 1 .040  
, , , ,50 true 20 2 .314  
, , , ,51 true 20 1 .040  
, , , ,52 true 20 2 .056  
, , , ,53 true 20 2 1.405  
, , , ,54 true 20 2 .060  
, , , ,55 true 21 1 .100  
, , , ,56 true 21 2 .600  
, , , ,57 true 22 1 .040  
, , , ,58 true 22 2 .065  
, , , ,59 true 23 1 .045  
, , , ,60 true 24 3 6.141  
, , , ,61 true 24 2 4.695  
, , , ,62 true 24 1 .045  

✰

, , , ,63 false 24 2 1.804  

✰

, , , ,64 true 24 3 5.420  
, , , ,65 true 24 2 .070  
, , , ,66 true 24 2 4.873  

, , , ,67 true 24 2 .131  
, , , ,68 true 24 2 .180  
, , , ,69 true 24 2 .130  
, , , ,70 true 24 2 .179  
, , , ,71 true 24 2 .135  
, , , ,72 true 24 2 .070  
, , , ,73 true 24 2 3.580  
, , , ,74 true 24 2 .070  
, , , ,75 true 25 2 .140  
, , , ,76 true 25 1 .045  
, , , ,77 true 26 1 .049  
, , , ,78 true 26 2 .080  
, , , ,79 true 27 3 .179  
, , , ,80 true 27 2 .080  
, , , ,81 true 27 1 .110  
, , , ,82 true 27 2 .095  
, , , ,83 true 27 2 2.595  
, , , ,84 true 28 2 1.061  
, , , ,85 true 28 1 .055  
, , , ,86 true 28 2 .150  
, , , ,87 true 28 2 .085  
, , , ,88 true 29 1 .110  
, , , ,89 true 30 1 .055  
, , , ,90 true 30 2 .121  
, , , ,91 true 30 2 3.375  
, , , ,92 true 30 2 .085  
, , , ,93 true 31 1 .060  

, , , ,94 true 32 1 .119  
, , , ,95 true 32 2 7.624  
, , , ,96 true 32 2 1.930  
, , , ,97 true 32 2 2.188  
, , , ,98 true 32 2 1.470  
, , , ,99 true 32 2 1.138  
, , , ,100 true 32 2 .995  
, , , ,101 true 32 2 14.036  
, , , ,102 true 32 2 1.570  
, , , ,103 true 32 2 27.482  
, , , ,104 true 32 2 .730  
, , , ,105 true 32 2 8.451  
, , , ,106 true 32 2 5.490  
, , , ,107 true 32 2 17.075  
, , , ,108 true 32 2 49.727  
, , , ,109 true 32 2 3.166  
, , , ,110 true 32 2 1.750  
, , , ,111 true 32 2 .085  
, , , ,112 true 32 2 4.020  
, , , ,113 true 32 2 19.213  
, , , ,114 true 32 3 80.652  
, , , ,115 true 32 3 6.236  
, , , ,116 true 32 3 54.755  
, , , ,117 true 32 3 26.670  
, , , ,118 true 32 3 48.210  
, , , ,119 true 32 3 36.441  
, , , ,120 true 32 3 .261  

, , , ,121 true 32 3 .240  
, , , ,122 true 32 3 11.400  
, , , ,123 true 32 3 1.295  
, , , ,124 true 32 3 64.603  
, , , ,125 true 32 3 3.150  
, , , ,126 true 32 3 2.100  
, , , ,127 true 32 3 1.415  
, , , ,128 true 32 3 118.045  
, , , ,129 true 32 3 .680  
, , , ,130 true 32 3 12.610  
, , , ,131 true 32 3 4.440  
, , , ,132 true 32 3 .185  
, , , ,133 true 32 3 35.546  
, , , ,134 true 32 3 15.385  
, , , ,135 true 32 3 3.321  
, , , ,136 true 32 3 .120  
, , , ,137 true 32 3 8.821  
, , , ,138 true 32 4 .274  
, , , ,139 true 32 4 .215  
, , , ,140 true 32 4 1.465  
, , , ,141 true 32 4 .874  
, , , ,142 true 32 4 .154  
, , , ,143 true 32 4 .271  

, , , ,144 true 32 5 .260  

Running all groups of order 32 or less through this procedure returned only one group 
without a Hamiltonian path. This group is separated with red stars in the above data. The group 
is group number 63 and it has 24 elements and two elements in its generating set. This group 
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deserves further exploration. 

Z2 x A4 : Three different generating sets 
 
Out of all the groups that were looked at during this research project, group number 63 was the 
only group found not to have a Hamiltonian path. What does group number 63 look like? 
 
> Cgraph(CCay[63]); 

 
Group number 63 has two elements in it's generating set, one of order two and one of 

order three. Holsztynski and Strube talk about a group defined by generators and relations that 
doesn't have a path. They state G = {{a,b},a2 = b3 = (aba b2)2 = e} does not have a Hamiltonian 
path (see [3]). Since G has two elements in the generating set, one of order two and one of order 
three, one can ask if group 63 and G are equal. If G = group 63 then group 63 would have to 
have the relation (aba b2)2 = e. Looking at the Cayley digraph one can verify this relation. 
Although it is visually difficult, it is true. Therefore group 63 is the same as G and G is 
isomorphic Z2 x A4. It remains to verity that G does not have a Hamiltonian path. 
 
> HamPath({a,b},{[a,a],[b,b,b],[a,b,a,b,b,a,b,a,b,b]}); 

NO PATH TRY ANOTHER VERTEX  

A generating set for Z2 x A4 was found where the Cayley digraph does not have a 
Hamiltonian path. Is there a generating set where Z2 x A4 does have a Hamiltonian path? This is 
a difficult question because there are hundreds of generating sets for Z2 x A4 and finding a 
minimal one for a large group is tough. Using Groups32 two alternate generating sets were 
found. They both have two elements, which implies that they are minimal. Does Z2 x A4 with 
these two generating sets have a Hamiltonian path. The representation of Z2 x A4 with the two 
new generating sets will be called CayN, and CayM. First look at CayN. 
 
> CayN := [{$0..23},2,[\ 
         {[0,3],[1,9],[2,4],[3,0],[4,2],[5,6]\ 
        ,[6,5],[7,8],[8,7],[9,1],[10,11],[11,10]\ 
        ,[12,13],[13,12],[14,15],[15,14],[16,17]\ 
        ,[17,16],[18,19],[19,18],[20,21],[21,20]\ 
        ,[22,23],[23,22]}\ 
        ,{[0,4],[1,3],[2,9],[3,7],[4,16],[5,2]\ 
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        ,[6,8],[7,19],[8,11],[9,12],[10,0]\ 
        ,[11,13],[12,20],[13,15],[14,1],[15,17]\ 
        ,[16,22],[17,6],[18,5],[19,23],[20,18]\ 
        ,[21,10],[22,21],[23,14]}\ 
                  ]] : 
> Hpath(CayN); 

[ ], , , , , , , , , , , , , , , , , , , , , , ,8 6 17 15 13 11 10 21 20 12 9 1 14 23 22 16 4 2 5 18 19 7 3 0  

> Cgraph(CCay[63]);  

 
The Cayley digraph of CayN has a Hamiltonian path. Call the two elements in the 

generating set a and b. If a corresponds to the red arrow and b corresponds to the blue arrow then 
a has order 2, and b has order 6. 
Next look at CayM 
> CayM := 
[{$0..23},2,[{[0,4],[1,3],[2,9],[3,7],[4,16],[5,2],[6,8],[7,19],[
8,11],[9,12],[10,0],[11,13],[12,20],[13,15],[14,1],[15,17], 
 [16,22],[17,6],[18,5],[19,23],[20,18],[21,10],[22,21],[23,14]} 
,{[0,8],[1,13],[2,17],[3,2],[4,1],[5,7],[6,4],[7,10],[8,18], 
 [9,0],[10,12],[11,3],[12,14],[13,21],[14,16],[15,9],[16,5], 
 [17,23],[18,22],[19,6],[20,11],[21,19],[22,15],[23,20]}]] : 
> Hpath(CayM); 

[ ], , , , , , , , , , , , , , , , , , , , , , ,10 21 22 18 20 23 17 15 13 11 8 6 19 7 5 16 14 12 9 2 3 1 4 0  

> Cgraph(CayM); 
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CayM also has a Hamiltonian path. Both elements in the generating set are of order 6. 
This Cayley digraph is very distorted to view. As the order of the elements in the generating set 
gets large, there are more edges in the Cayley digraph. As the amount of edges in the Cayley 
digraph grows it is more difficult to see what is going on within the digraph.    
 Finding one generating set for Z2 x A4 that has a Hamiltonian path and one that doesn’t 
raises questions about what it means for a Hamiltonian path to exist in a group. Holsztynski and 
Strube define a group to be sequential if every generating set has a Hamiltonian path in the 
corresponding Cayley digraph (see [3]). Therefore Z2 x A4 is not sequential. Holsztynski and 
Strube also state that every finite group of order 15 or less is sequential (see[3]). If this statement 
is to be extended, then one would have to look at all generating sets of all non-Abelian groups 
with orders between 15 and 24. Holsztynski and Strube also state that S5 with a 2 cycle and a 5 
cycle will not have a Hamiltonian path, but four two cycles might. However S5 has order 120 so 
it will not extend the theorem, but it would be another useful example. 
 
Conclusion 
 
 There are many more questions that exist when studying Hamiltonian paths in Cayley 
digraphs. What effects do the size of the generating set or number of edges have on the amount 
of time it takes to find (or not find) a Hamiltonian Path in a Cayley digraph? Does the order of 
the generators have anything to do with execution time? Can the theorem about all groups of 
order 15 or less by Holsztynski and Strube be extended, if not, what is special about groups of 
order 16, and which group of order 16 has a generating set that does not have a Hamiltonian 
path? These are lingering questions that must wait for another day. In conclusion this paper has 
demonstrated the interplay between programming and mathematics. The connection between the 
two is necessary when looking at Hamiltonian paths in the Cayley digraphs of Algebraic groups. 
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Appendix A 
 
This appendix contains a description of all of the programs written. For each program the calling 
sequence is identified, the parameters are given, a description is given, the code is displayed, and 
there are examples for the user. 
 
In order to use the following procedures, several of the existing packages in Maple need to be 
called. 

Maple Packages 
> with (networks): 
> with (group): 
> with(plottools): 
  with(plots): 

eelements - elements of an algebraic group. 

Calling Sequence: 
     eelements(G); 

Parameters: 
     G - a group, permgroup or grelgroup 
 
Description: 
• Given a group G, this routine returns the elements of the group G.  

• If a permutation group is given, the elements are permutations. If a grelgroup is given then 
the elements are sequences of the elements in the generating set.  

Code: 
> eelements := proc(G); 
    if op(0,G)=`grelgroup` then 
         cosets(subgrel({},G)) 
    elif op(0,G)=`permgroup` then 
         cosets(G,permgroup(op(1,G),{})) 
    else ERROR(`argument is not a group`) fi; end: 
 

Examples: 
> eelements(permgroup(6,{[[1,2,3]],[[4,5,6]]})); 

[ ] [ ][ ], ,1 2 3 [ ][ ], ,4 5 6 [ ][ ], ,1 3 2 [ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ][ ], ,4 6 5, , , , , ,{
[ ],[ ], ,1 2 3 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ],[ ], ,1 3 2 [ ], ,4 6 5, , }

 

> eelements(grelgroup({a,b},{[a,a],[b,b,b],[a,b,a,b,a,b]})); 
[ ] [ ],b b [ ],a b [ ], ,a b a [ ]a [ ]b [ ], , , ,a b a b b [ ],b a [ ], ,b a b [ ], ,a b b [ ], , ,a b a b, , , , , , , , , , ,{

[ ], , , , ,a b a b b a }
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DefGraph - takes a permutation group and converts it to a graph. 

Calling Sequence: 
DefGraph(n, gen); 

Parameters: 
     n - the index of a permutation group 
     gen - a generating set of the group 
Description: 
• Given the arguments that are normally passed to the command permgroup, this routine 

returns a graph called cay1. The elements of the permutation group are the vertices of cay1 
and there is an edge from a to b if as = b for some s in the generating set.   

Code: 
> DefGraph := proc(n,gen) 
local s, PG, i, j:      
new (cay1): 
PG:= permgroup (n, gen);   
 
s:=eelements(PG): 
addvertex(s,cay1): 
   
for i in gen do: for j in s do : 
   connect ({j}, {mulperms (j,i)}, names=[[j,i]], 
   'directed' , cay1) 
od :od ; 
cay1; 
end: 

Example: 
> DefGraph(6,{[[1,2,3]],[[4,5,6]]}); 

cay1  

MakePG  - converts a grelgroup to a permutation group. 

Calling Sequence: 
MakePG(gens, rels); 

Parameters: 
     gens - a set of names taken to be the generators of the group 
     rels - a set of relations among the generators which define the group 
 
Description: 
• Given a set of generators and a set of relations, this routine returns a permutation group. 

• If the grelgroup has n elements the permutation group returned will be a subgroup of Sn .  

Code: 
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> MakePG:= proc(gens,rels) local G,GR,n,ident; 
  GR:= grelgroup(gens,rels); 
  G:=  permrep(subgrel({},GR)); 
  n:=  op(1,G); 
  permgroup(n,map(x->op(2,x),op(2,G))); 
end: 

Example: 
> MakePG({a,b},{[a,a],[b,b,b],[a,b,a,b,a,b]}); 
permgroup 12 [ ], , ,[ ], ,1 3 4 [ ], ,2 5 8 [ ], ,6 7 11 [ ], ,9 10 12 ,{,(

[ ], , , , ,[ ],1 2 [ ],3 9 [ ],4 7 [ ],5 6 [ ],8 10 [ ],11 12 })  

continuepath –takes a path and a graph and tries to add another element to the path. 

Calling Sequence: 
     eelements(G, path); 

Parameters: 
     G - a finite graph 
     path - a list of vertices      
Description: 
• Given a started path and a graph, this routine returns a list where the first element of the list 

is a path and the second element of the list is the word true or false.  

• The path that is returned is the path that was given with another vertex added to the path if 
the last element of the path had a viable departure. It the last element does not have a viable 
departure then the path passed in is passed out without any change to the path. 

• A true is returned if the path was altered and a false is returned if the path was unaltered.  

Code: 
> continuepath := proc(Graph,path) 
  local daugh; 
  daugh:=sort([op(departures(path[1],Graph) minus {op(path)})]); 
     
    if daugh = [] 
      then RETURN ([path,false]); 
      else RETURN ([[daugh[1],op(path)],true]); 
    fi; 
end: 

Examples: 
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}): 
> continuepath(A,[1]); 

[ ],[ ],2 1 true  

> continuepath(A,[5]); 
[ ],[ ]5 false  
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backtrack – given a path and a graph it takes one or more elements off the path 

Calling Sequence: 
     backtrack(G, path); 

Parameters: 
     G - a graph 
     path - a list of vertices 
Description: 
• Given a started path and a graph, this routine returns a list where the first element of the list 

is a path and the second element of the list is the word true or false.  

• The path that is returned is the path that was passed by the user without one, two,..., or all of 
the last vertices. This routine continues to take vertices off the path as long as the path can 
not be moved forward. 

• A true is returned if the path can now more forward and a false is returned if there are no 
elements left in the path.  

Code: 
> backtrack := proc( Graph, origpath) 
  local bad, daugh, position, path ; 
  path := origpath; 
  do 
    bad:=path [1]; 
    path:=path [2..nops(path)]; 
    if path = [] 
      then RETURN ([path, false]); 
    fi; 
    daugh:=sort([op(departures(path[1],Graph) minus                                                      {op(path)})]); 
    member (bad,daugh,'position'); 
    if position < nops(daugh) 
      then RETURN ([[daugh[position + 1],op(path)],true]); 
    fi; 
   od; 
end: 

Example: 
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) : 
> backtrack(A,[2,1]); 

[ ],[ ],3 1 true  

 

HamiltonianPath -determines whether a Hamiltonian path exists in a graph from a given 
starting point. 

Calling Sequence: 
HamiltonianPath(G, start); 
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Parameters: 
     G - a graph 
     start - a vertex 
Description: 
• Given a graph G and a starting vertex s, this routine returns a Hamiltonian path if one exists 

from the given starting point. If no path exists it prints "NO PATH TRY ANOTHER 
VERTEX" and returns the last path found. 

Code: 
> HamiltonianPath := proc(Graph,start) 
  local path, result; 
  path := [start]; 
  do  
    do 
      result := continuepath (Graph,path); 
      path := result [1];  
      if result [2] = false  
        then break; 
      fi; 
    od ; 
     
    if nops(result [1]) = nops(vertices(Graph)) 
      then RETURN (path); 
    fi ; 
  
    result:=backtrack (Graph,path); 
    if result[2]=false  
      then print (`NO PATH TRY ANOTHER VERTEX`); break ; 
      else path :=result [1]; 
    fi; 
  od; 
end: 

Examples: 
> A := graph({$1..5},{[1,2],[2,4],[1,3],[1,4],[4,1],[3,5]}) : 
> HamiltonianPath(A,1); 

NO PATH TRY ANOTHER VERTEX  
[ ],4 1  

> HamiltonianPath(A,2); 
[ ], , , ,5 3 1 4 2  

 

HPFromPerm -finds a Hamiltonian path (or no path) given a permutation group. 

Calling Sequence: 
     HPFromPerm(n, gen); 

Parameters: 



UCSD Honors Thesis 
Sonja Willis  -34- 

     n - the index of a permutation group 
     gen - a generating set of the group 
 
Description: 
• Given the index and a generating set of a group, this routine returns a Hamiltonian path if 

one exists. It no such path exists then the routine prints "NO PATH TRY ANOTHER 
VERTEX" and returns the last path it could find.  

• The path is returned as a list of permutations, and the path always starts at the identity 
element.  

Code: 
> HPFromPerm:= proc(number,gen) 
local Graph; 
Graph:= DefGraph(number,gen); 
HamiltonianPath(Graph,[]); 
end: 
 

Example: 
> HPFromPerm(3,{[[1,2]],[[1,2,3]]}); 

[ ], , , , ,[ ][ ], ,1 3 2 [ ][ ], ,1 2 3 [ ][ ],2 3 [ ][ ],1 3 [ ][ ],1 2 [ ]  

HPFromRels -finds a Hamiltonian path (or no path) given a generating set and a set of 
relations of a group. 

Calling Sequence: 
     HPFromRels(gens, rels); 

Parameters: 
     gens - a set of names taken to be the generators of the group 
     rels - a set of relations among the generators which define the group 
 
Description: 
• Given a generating set and a set of relations for a group, this routine returns a Hamiltonian 

path if one exists. It no such path exists then the routine prints "NO PATH TRY ANOTHER 
VERTEX" and returns the last path it could find.  

• The grelgroup is converted to a permutation group and the path is returned as a list of 
permutations. The path always starts at the identity element.  

Code: 
> HPFromRels:= proc(gens,rels) local begin, Group,Graph; 
Group:= MakePG(gens,rels); 
Graph:= DefGraph(op(Group)); 
HamiltonianPath(Graph,[]); 
end: 
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Example: 
> HPFromRels({a,b},{[a,a,a],[b,b],[a,b,a,b]}); 

[ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ], ,[ ],1 5 [ ],2 6 [ ],3 4, , ,[
[ ], ,[ ],1 6 [ ],2 4 [ ],3 5 [ ], ,[ ],1 4 [ ],2 5 [ ],3 6 [ ], , ]  

HamPath -finds a Hamiltonian path (or no path) given a generating set and a set of relations 
of a group, or given the index and a generating set of a permutation group. 

Calling Sequence: 
      HamPath(gens, rels); 
      HamPath(n, gen); 

Parameters: 
      gens - a set of names taken to be the generators of the group 
      rels - a set of relations among the generators which define the group 
      n - the index of a permutation group 
      gen - a generating set of the group 
Description: 
• Given the arguments that are usually passed to permgroup or grelgroup, this routine returns a 

Hamiltonian path if one exists. It no such path exists then the routine prints "NO PATH TRY 
ANOTHER VERTEX" and returns the last path it could find.  

• The path returned is a sequence of permutations.  

Code: 
> HamPath:=proc()  local r; 
r:=nargs; 
if type(args[1],set)  
then HPFromRels(args) 
else HPFromPerm(args) 
fi; end: 

Examples: 
> HamPath({a,b},{[a,a,a],[b,b],[a,b,a,b]}); 

[ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ], ,[ ],1 5 [ ],2 6 [ ],3 4, , ,[
[ ], ,[ ],1 6 [ ],2 4 [ ],3 5 [ ], ,[ ],1 4 [ ],2 5 [ ],3 6 [ ], , ]

 

> HamPath(3,{[[1,2]],[[1,2,3]]}); 
[ ], , , , ,[ ][ ], ,1 3 2 [ ][ ], ,1 2 3 [ ][ ],2 3 [ ][ ],1 3 [ ][ ],1 2 [ ]  

ngenCrep -converts a permutation group to a list where the generators are separated, so that 
the group can be graphed using Cgraph. 

Calling Sequence: 
     ngenCrep(n, gen); 

Parameters: 
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     n - the index of a permutation group 
     gen - a generating set of the group 
 
Description: 
• Given the arguments usually passed to permgroup, this routine returns a list. The first 

element of the list is a set of elements of the group, the second element is the number of 
elements in the generating set, and the third element is another list. This sub-list is a list of 
sets where each set contains all the edges that correspond to one element of the generating 
set.  

Code: 
> AllEdges := proc(gens,elems) local gg,L; 
       L := []; 
       for gg in gens do  
       L := [op(L),OneGen(gg,elems)]  od; 
       L end:       
> ngenCrep:=proc (n, gen) local PG,s,G; 
 PG:=permgroup(n,gen); 
 s:=eelements(PG); 
 G := [s,nops(gen),AllEdges(gen,s)]; 
 G end: 
 

Example: 
> ngenCrep(6,{[[1,2,3]],[[4,5,6]]}); 

[ ] [ ][ ], ,1 2 3 [ ][ ], ,4 5 6 [ ][ ], ,1 3 2 [ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ][ ], ,4 6 5, , , , , ,{[
[ ],[ ], ,1 2 3 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ],[ ], ,1 3 2 [ ], ,4 6 5, , } 2 {[, ,
[ ],[ ][ ], ,1 2 3 [ ][ ], ,1 3 2 [ ],[ ][ ], ,1 3 2 [ ] [ ],[ ][ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 5 6, , ,
[ ],[ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ][ ], ,4 5 6 [ ],[ ] [ ][ ], ,1 2 3, ,
[ ],[ ][ ], ,4 6 5 [ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ],[ ],[ ], ,1 2 3 [ ], ,4 5 6 [ ],[ ], ,1 3 2 [ ], ,4 5 6, ,

[ ],[ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ],[ ], ,1 3 2 [ ], ,4 6 5 [ ],[ ],[ ], ,1 3 2 [ ], ,4 6 5 [ ][ ], ,4 6 5, } {,
[ ],[ ][ ], ,4 6 5 [ ] [ ],[ ],[ ], ,1 3 2 [ ], ,4 6 5 [ ][ ], ,1 3 2, ,
[ ],[ ],[ ], ,1 2 3 [ ], ,4 6 5 [ ][ ], ,1 2 3 [ ],[ ],[ ], ,1 2 3 [ ], ,4 5 6 [ ],[ ], ,1 2 3 [ ], ,4 6 5, ,
[ ],[ ],[ ], ,1 3 2 [ ], ,4 5 6 [ ],[ ], ,1 3 2 [ ], ,4 6 5 [ ],[ ] [ ][ ], ,4 5 6, ,
[ ],[ ][ ], ,1 2 3 [ ],[ ], ,1 2 3 [ ], ,4 5 6 [ ],[ ][ ], ,4 5 6 [ ][ ], ,4 6 5, ,
[ ],[ ][ ], ,1 3 2 [ ],[ ], ,1 3 2 [ ], ,4 5 6 }] ]

 

vertgenCrep -converts a set of vertices and a set of generators to a notation where the 
generators are separated, so that the group can be graphed using Cgraph. 

Calling Sequence: 
     vertgenCrep(vert, gen); 

Parameters: 
     vert - a set of vertices, or elements of a group. 
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     gen -  a set of generators 
 
Description: 
• Given a set of vertices and a set of generators, this routine returns a list. The first element of 

the list is a set of the group elements, the second element is the number of elements in the 
generating set, and the third is another list. This sub-list is a list of sets where each set 
contains all the edges that correspond to one element of the generating set.  

Code: 
> vertgenCrep:=proc(vert,gens) local M; 
M:=[vert,nops(gen),AllEdges(gen,vert)]; 
M end: 
 

Hpath -finds a Hamiltonian path (or no path) 

Calling Sequence: 
     Hpath([vert, n, [g]]); 

Parameters: 
     vert - a set of vertices of a graph, or elements of a group. 
     n - the number of elements in the generating set 
     [g] - a list where the n-th element is all edges corresponding to the n-th element in the 
generating set.   
 
Description: 
• Given the above list, this routine returns a Hamiltonian path if one exists. It no such path 

exists then the routine prints "NO PATH TRY ANOTHER VERTEX" and returns the last 
path it could find.  

• The path returned is a list of elements in vert.  

Code: 
> OneGen:=proc(gg,s)local L,ss; 
L:={}; 
for ss in s do L:=`union`(L, {op(L),[ss,mulperms(ss,gg)]}); 
od; L; end: 
> Hpath:=proc(CayStruc) local N,P; 
N:= graph(CayStruc[1],convert(map(op,CayStruc[3]),set)); 
P:=HamiltonianPath(N,op(1,CayStruc[1])); 
P end: 

Example: 
> Z:=[{0,1,2,3,4,5},1,[{[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]}]]; 

 := Z [ ], ,{ }, , , , ,0 1 2 3 4 5 1 [ ]{ }, , , , ,[ ],3 4 [ ],0 1 [ ],4 5 [ ],5 0 [ ],1 2 [ ],2 3
 

> Hpath(Z); 
[ ], , , , ,5 4 3 2 1 0  
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Cgraph -draws the Cayley digraph of a group. 

Calling Sequence: 
Cgraph([vert, n,[gen]]); 

Parameters: 
     vert - a set of vertices of a graph, or elements of a group. 
     n - the number of elements in the generating set 
     [g] - a list where the n-th element is all edges corresponding to the n-th element in the 
generating set.   
 
Description: 
• Given the above arguments, this routine draws the Cayley digraph of a group where the 

edges corresponding to different generators are different colors.  

• To change the colors of the graph, change the colors in the set "Colors". A list of possible 
colors can be found at ?plot,color. 

• To change the line width change the number assigned to conc_a, to change the arrow width 
change the number assigned to conc_b, and to change the arrow length change the number 
assigned to conc_c.   

Code: 

conc 
The areas that are in green are the code that was changed from the original concentric command. 
> conc := proc(partitions::specfunc(list, Concentric),  
               G::GRAPH, Offset::list(numeric),  
               xrng::name, yrng::name) 
      local n, pos, j, t, t1, orbit, y, v, x, e,  
            pos1, radius, center, rotation, vset,  
            lines, points, text; 
      global conc_a, conc_b, conc_c, conc_clr; 
      option `Copyright (c) 1992 by the University of Waterloo.`; 
    radius := 0; 
    center := Offset[1 .. 2]; 
    vset := {}; 
    n := 0; 
    for t in partitions do 
        n := n + 1; 
        if not type(t, list) then 
            ERROR(`partition should be a list of vertices`) 
        fi; 
        rotation[n] := 0; 
        userinfo(3, networks, `working on`, t); 
        t1 := select(has, t, 'offset'); 
        t := 
            select(proc(x, y) not has(x, y) end, t, 'offset') 
            ; 
        if t1 <> [] then 
            if not type(t1, 'list'(`=`)) then 
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                ERROR(`usage: offset = 3.2`) 
            fi; 
            rotation[n] := subs({op(t1)}, 'offset'); 
            t := select(proc(x) not hastype(x, `=`) end, t) 
        else 
            if {op(t)} intersect vset <> {} then 
                ERROR(`intersecting partitions involving`, t) 
            fi; 
            vset := vset union {op(t)} 
        fi; 
        if not type(t, 'list'('VERTEX'(G))) then 
            ERROR(`not a list of vertices`, t) 
        fi; 
        orbit[n] := t 
    od; 
    if networks['vertices'](G) minus vset <> {} then 
        n := n + 1; 
        orbit[n] := 
            sort([op(networks['vertices'](G) minus vset)]); 
        rotation[n] := 0 
    fi; 
    points := table(); 
    text := table(); 
    pos := table(); 
    if n = 1 and nops({op(orbit[1])}) = 1 then 
        pos[orbit[1]] := center 
    else for j to n do 
            if 0 < radius then radius := 5/3*radius 
            else radius := 1 
            fi; 
            pos1 := `draw/position`(orbit[j], radius, center, 
                rotation[j]); 
            for v in orbit[j] do 
                pos[v] := pos1[v]; 
                points[v] := POINTS(pos[v]); 
                text[v] := 
                    'TEXT'(1.1*pos[v], convert(v, string)) 
            od 
        od 
    fi; 
    lines := table(); 
    for e in edges(G) do 
        x := networks['ends'](e, G); 
        if 1 < nops(x) then y := x[2]; x := x[1] 
        else x := x[1] 
        fi; 
        lines[e] := arrow(pos[x], pos[y], conc_a, conc_b, 
            conc_c, color = conc_clr) 
    od; 
    t := map(op, 
        {entries(text), entries(points), entries(lines)}); 
    t1 := max(op(indets(t, numeric))); 
    xrng := -t1 .. t1; 
    yrng := -t1 .. t1; 
    RETURN(t) 
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end ; 

zdraw 
The text in green is the code that was modified from the draw command. 
>   zdraw := proc() 
local yrng, xrng, G, partitions, curveset, Offset, t; 
option 
`Copyright (c) 1992 by J. S. Devitt. All rights reserved.`; 
    Offset := [0, 0, 0]; 
    partitions := NULL; 
    for t in [args] do 
        if type(t, identical('origin' = 'list')) then 
            Offset := rhs(t) 
        elif type(t, 'GRAPH') then G := eval(t) 
        else partitions := partitions, t 
        fi 
    od; 
    if not type(G, 'GRAPH') then ERROR(`not a graph`) fi; 
    partitions := [partitions]; 
    if nargs = 1 and type(G(_Draw), 'procedure') then 
        t := G(_Draw)(args); if t <> FAIL then RETURN(t) fi 
    elif partitions = [] then 
        partitions := 
            'Concentric'(sort([op(networks['vertices'](G))])) 
            ; 
        curveset := 
            conc(partitions, G, Offset, 'xrng', 'yrng') 
    elif type(partitions[1], specfunc('list', 'Linear')) then 
        if 1 < nops(partitions) then ERROR(`not implemented`) 
        fi; 
        curveset := `draw/Linear`(partitions[1], G, Offset, 
            'xrng', 'yrng') 
    elif type(partitions[1], 'specfunc'('list', Concentric)) 
    then 
        if 1 < nops(partitions) then ERROR(`not implemented`) 
        fi; 
        curveset := 
            conc(partitions[1], G, Offset, 'xrng', 'yrng') 
    else ERROR(`invalid args`, [args]) 
    fi; 
    PLOT(op(curveset), AXESSTYLE(NONE)) 
end;  

 
> xdraw := proc(GR,Clr)  global conc_a,conc_b,conc_c,conc_clr; 
        conc_clr := Clr; 
        zdraw(GR)  end : 
 
> conc_a:=.015: 
 conc_b:=.1: 
 conc_c:=.1: 
> Colors := [red,blue,green,orange,yellow]; 

 := Colors [ ], , , ,red blue green orange yellow  
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> Cgraph := proc(Cay_struc) local X,Vert,Edg,numgens,i; 
                          global Colors; 
          Vert := Cay_struc[1]; 
          numgens := Cay_struc[2]; 
          Edg := Cay_struc[3]; 
          for i from 1 to numgens do 

              X[i] := xdraw(graph(Vert,Edg[i]),Colors[i])                                                                                 
od; 

          display(convert(X,set))  end: 

Example: 
> CCay[12] := [{$0..7},3,[\ 
         {[0,1],[1,0],[2,3],[3,2],[4,5],[5,4],[6,7]\ 
        ,[7,6]}\ 
        ,{[0,2],[1,3],[2,0],[3,1],[4,6],[5,7],[6,4]\ 
        ,[7,5]}\ 
        ,{[0,4],[1,5],[2,6],[3,7],[4,0],[5,1],[6,2]\ 
        ,[7,3]} ]] : 
 
> Cgraph(CCay[12]); 

 
 


