Math 103A W23 HW 2

7. Suggested answer:

1.5 Question 7

Proposition The set $\mathbb{S}=\mathbb{R} \backslash\{-1\}$ combined with the operation $a \circ b=a+b+a b$ makes an abelian group.

Proof. In order to prove that this set makes an abelian group, we must prove 5 things: closedness, associativity, identity, inverse, and commutativity.

Closedness In order to prove that the operation described is a mapping onto itself, we must prove that no (a, b) where a and b are real map onto -1 . This is logically equivalient to saying that, if $a \circ b=-1$, and a and b are real and a is not $-1, b$ must be -1 (and vice versa, however a and b are symmetric).

We can use algebra to manipulate the expression $-1=a+b+a b$

$$
\begin{aligned}
& -1=a+b(1+a) \\
& -1-a=b(1+a) \\
& \frac{-1-a}{1+a}=b
\end{aligned}
$$

$(-1) \frac{1+a}{1+a}=b=-1$
This proves that no two numbers (a, b) inside the set S result in the output -1 , and since the products and sums of real numbers must be real, we can conclude that \circ is a closed operation under \mathbb{S}.

Associativity We can prove associativity by stating that, as $a+b+a b+c+$ $c(a+b+a b)=a+(b+c+b c)+a(b+c+b c), a \circ(b \circ c)$ is by definition equal to $(a \circ b) \circ c$.

Identity We can prove that 0 is the identity by proving that, by definition, $a \circ 0=a+0+0 a=a$, and similarly $0 \circ a=0+a+0 a=a$.

Inverse We can prove that every element in \mathbb{S} has an inverse by writing out the equation $a \circ a^{-1}=a+a^{-1}+a a^{-1}=0$
$a^{-1}(1+a)+a=0$
$a^{-1}=\frac{-a}{1+a}$

This proves a^{-1} exists, and because $a=1+a$ has no solutions, we know that all a in \mathbb{S} has an a^{-1} that is also within \mathbb{S}.

Lastly, we can prove commutativity by stating that, as $b+a+b a=a+b+a b$, $b \circ a$ is by definition equal to $a \circ b$.

This proves all the axioms required to conclude that the group given is both a group and an abelian group.

Comments:

The solution clearly states the elements needed to prove the proposition: closedness(closure), associativity, identity, inverse and commutativity.

Common Mistakes:

Most students correctly calculated the inverse but neglected to show that the inverse resides in the group. For this question, we need to show that $\frac{-a}{1+a}$ can't equal -1 .

16. Suggested answer:

16.

Proposition. There exists a group G and elements $g, h \in G$ such that $(g h)^{n} \neq g^{n} h^{n}$.

Proof. Let G be the symmetry group of an equilateral triangle, D_{3}. Let $g=\left(\begin{array}{lll}A & B & C \\ B & C & A\end{array}\right)$ and $h=\left(\begin{array}{lll}A & B & C \\ A & C & B\end{array}\right)$. Then $g \circ h=\left(\begin{array}{lll}A & B & C \\ B & A & C\end{array}\right)$ so $(g \circ h)^{2}=\left(\begin{array}{lll}A & B & C \\ A & B & C\end{array}\right)$. We also have $g^{2}=\left(\begin{array}{lll}A & B & C \\ C & B & A\end{array}\right)$ and $h^{2}=$ $\left(\begin{array}{lll}A & B & C \\ A & B & C\end{array}\right)$ so $g^{2} \circ h^{2}=\left(\begin{array}{ccc}A & B & C \\ C & B & A\end{array}\right)$. Thus, $(g \circ h)^{2} \neq g^{2} \circ h^{2}$.

Comments:

A very straightforward answer/example.

39. Suggested answer:

```
39.) Proposition: let }\pi={z\in\mp@subsup{\mathbb{C}}{}{*}||z|=1}\mathrm{ - }\pi\mathrm{ is a group.
    Proof: Let }x,y,z\in\pi\mathrm{ such that }x=\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i,y=\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}i,z=\mp@subsup{a}{3}{}+\mp@subsup{b}{3}{}i\mathrm{ .
    (1) associativity
        (xy)z=[(a,+\mp@subsup{b}{1}{}i)(\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}i)](\mp@subsup{a}{3}{}+\mp@subsup{b}{3}{}i)
            =(a, a}+\mp@subsup{a}{1}{}\mp@subsup{p}{2}{}i+\mp@subsup{a}{2}{}\mp@subsup{b}{1}{}i-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{})(\mp@subsup{a}{3}{}+\mp@subsup{b}{3}{}i
            =(\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}-\mp@subsup{b}{1}{}\mp@subsup{p}{2}{}+(\mp@subsup{a}{1}{}\mp@subsup{b}{2}{}+\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})i)(\mp@subsup{a}{3}{}+\mp@subsup{b}{3}{}i)
```



```
            =(\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}-\mp@subsup{a}{1}{}\mp@subsup{b}{2}{}\mp@subsup{b}{3}{}-\mp@subsup{a}{2}{}\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}-\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{b}{2}{})+(\mp@subsup{a}{1}{}\mp@subsup{a}{3}{}\mp@subsup{b}{2}{}+\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}+\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{}\mp@subsup{b}{3}{})i
        x(yz)=(\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i)[(\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}i)(\mp@subsup{a}{3}{}+\mp@subsup{b}{3}{}i)]
            =(a, +\mp@subsup{b}{1}{})}(\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}+\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}i+\mp@subsup{a}{3}{}\mp@subsup{b}{2}{}i-\mp@subsup{b}{2}{}\mp@subsup{b}{3}{}
            =(\mp@subsup{d}{1}{}+\mp@subsup{b}{1}{}i)(\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}-\mp@subsup{b}{2}{}\mp@subsup{b}{3}{}+(\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}+\mp@subsup{a}{3}{}\mp@subsup{b}{2}{})i)
            = a, a a a < - a 1 b2 b3 + (a, a}2\mp@subsup{b}{3}{}+\mp@subsup{a}{1}{}\mp@subsup{a}{3}{}\mp@subsup{b}{2}{})i+(\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{}\mp@subsup{b}{3}{})i-\mp@subsup{a}{2}{}\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}-\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{b}{2}{
            =(\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}-\mp@subsup{a}{1}{}\mp@subsup{b}{2}{}\mp@subsup{b}{3}{}-\mp@subsup{a}{2}{}\mp@subsup{b}{1}{}\mp@subsup{b}{3}{}-\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}\mp@subsup{b}{2}{})+(\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{b}{3}{}+\mp@subsup{a}{1}{}\mp@subsup{a}{3}{}\mp@subsup{b}{2}{}+\mp@subsup{a}{2}{}\mp@subsup{a}{3}{}\mp@subsup{b}{1}{}-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{}\mp@subsup{b}{3}{});
        \therefore(xy)z=x(yz)
    (2) Identity
        The identity element is }e=\mp@subsup{a}{0}{}+\mp@subsup{b}{0}{}i\mathrm{ when }\mp@subsup{a}{0}{}=1\mathrm{ and bo}\mp@subsup{b}{0}{}=0\mathrm{ , s.e. }e=1\mathrm{ .
            e.x=I(a, b,i)=\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i=x
            x-e= (a, +b,i)-1=\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i=x
        Also,e\in \pi since }|e|=|1|=1
    (3) Inverge
        The inverse for any }x\in\pi\mathrm{ SUCh that }x=\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i\mathrm{ is }\frac{1}{x}=\frac{1}{a+\mp@subsup{b}{1}{}i}\mathrm{ . since }|x|=
        then }|\frac{1}{x}|=\frac{1}{|x|}=\frac{1}{1}=1\mathrm{ . Also, a,+b,i}\not=0\mathrm{ since }x\in\mp@subsup{\mathbb{C}}{}{*}\mathrm{ . Thus, }\frac{1}{x}\in
            x \cdot x ^ { - 1 } = x \cdot \frac { 1 } { x } = ( a _ { 1 } + b _ { 1 } , i ) \frac { 1 } { a _ { 1 } + b _ { 1 } i } = \frac { a _ { 1 } + b _ { 1 } i } { a _ { 1 } + b _ { 1 } i } = 1 = e
                x-1}0x=\frac{1}{x}\circx=\frac{1}{\mp@subsup{a}{1}{\prime+b,i}}.\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i=\frac{\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i}{\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i}=1=
    (4) closure
        For }x\in\mp@subsup{\Pi}{1}{},y\in\Pi\mathrm{ , we can take the product }xy\mathrm{ :
            xy=(a, +\mp@subsup{b}{1}{})})(\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}i
                =a, a}2+(\mp@subsup{a}{1}{}\mp@subsup{b}{2}{}+\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})i-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{
                =(\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}-\mp@subsup{b}{1}{}\mp@subsup{b}{2}{})+(\mp@subsup{a}{1}{}\mp@subsup{b}{2}{}+\mp@subsup{a}{2}{}\mp@subsup{b}{1}{})
        Since }x,y\in\pi\mathrm{ ,
                |a, +\mp@subsup{b}{1}{}i
        for }xy\mathrm{ ,
            |(\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}i)(\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}i)|=|\mp@subsup{a}{1}{}+\mp@subsup{b}{1}{}1|\cdot|\mp@subsup{a}{2}{}+\mp@subsup{b}{2}{}|
                    =1.1 
                        # is a grovp
```


Comments:

Again, the elements of the proof are very clear: associativity, identity, inverse and closure.

Common Mistakes:

1. Similar to the common mistake in Q7, we need to show that the identity/inverse we found resides within the group. For this question, we need to show that the identity 1 has $|1|=1$, and the inverse $\frac{1}{x}$ has $\left|\frac{1}{x}\right|=1$. 2. Notice that you can utilize the properties of modulus of complex number to simplify your proof for closure and inverse.
