Math 103A W23 HW 3

27. Suggested answer:

Proposition. The inverse of $g_1g_2...g_n$ is $g_n^{-1}g_{n-1}^{-1}..g_1^{-1}$

Base case, n=1 The inverse of g_1 is g_1^{-1} by the definition of inverse. Induction step: Assume as our IH that inverse of $g_1g_2...g_n$ is $g_n^{-1}g_{n-1}^{-1}..g_1^{-1}$ for some n greater than 1. We will show that this true for n+1.

$$g_1g_2...g_ng_{n+1} \cdot g_{n+1}^{-1}g_n^{-1}..g_1^{-1} = e$$

$$g_1g_2...g_n \cdot e \cdot g_n^{-1}g_{n-1}^{-1}..g_1^{-1} = e$$

$$g_1g_2...g_n \cdot g_n^{-1}g_{n-1}^{-1}..g_1^{-1} = e$$

And because of our Induction Hypothesis, we know that this is true. Therefore this is proved.

Comments:

Concise induction.

Common Mistakes:

Not using induction.

46. Suggested answer:

Proposition. If H and K are subgroups of G, then $H \cup K$ is not necessarily a subgroup of G.

Proof. For a proof by counterexample, consider the group G to be $\mathbb Z$ with the addition operation.

In this case, both $2\mathbb{Z}$ and $3\mathbb{Z}$ are subgroups of \mathbb{Z} .

However, since 2+3=5 which is neither divisible by 2 or 3, the operation (addition) is not closed under the subset($2\mathbb{Z} \cup 3\mathbb{Z}$).

This counterexample proves that $H \cup K$ is not necessarily a subgroup of G. \square

Comments:

A very straightforward answer/counterexample.

54. Suggested answer:

Comments:

The elements of the proof are very clear: identity, inverse and closure.

Common Mistakes:

Majority of you did well! For those who didn't get full points please make sure you know how to prove a subgroup/group as this is repeatedly tested.