Math 103A W23 HW 3

27. Suggested answer:

Proposition. The inverse of $g_{1} g_{2} \ldots g_{n}$ is $g_{n}^{-1} g_{n-1}^{-1} . . g_{1}^{-1}$
Base case, $\mathrm{n}=1$ The inverse of g_{1} is g_{1}^{-1} by the definition of inverse. Induction step: Assume as our IH that inverse of $g_{1} g_{2} \ldots g_{n}$ is $g_{n}^{-1} g_{n-1}^{-1} . . g_{1}^{-1}$ for some n greater than 1 . We will show that this true for $\mathrm{n}+1$.

$$
\begin{array}{r}
g_{1} g_{2} \ldots g_{n} g_{n+1} \cdot g_{n+1}^{-1} g_{n}^{-1} . . g_{1}^{-1}=e \\
g_{1} g_{2} \ldots g_{n} \cdot e \cdot g_{n}^{-1} g_{n-1}^{-1} . . g_{1}^{-1}=e \\
g_{1} g_{2} \ldots g_{n} \cdot g_{n}^{-1} g_{n-1}^{-1} . . g_{1}^{-1}=e
\end{array}
$$

And because of our Induction Hypothesis, we know that this is true. Therefore this is proved.

Comments:

Concise induction.
Common Mistakes:
Not using induction.

46. Suggested answer:

Proposition. If H and K are subgroups of G, then $H \cup K$ is not necessarily a subgroup of G.

Proof. For a proof by counterexample, consider the group G to be \mathbb{Z} with the addition operation.

In this case, both $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are subgroups of \mathbb{Z}.

However, since $2+3=5$ which is neither divisible by 2 or 3 , the operation (addition) is not closed under the subset $(2 \mathbb{Z} \cup 3 \mathbb{Z})$.

This counterexample proves that $H \cup K$ is not necessarily a subgroup of G.

Comments:

A very straightforward answer/counterexample.

54. Suggested answer:

$$
\begin{aligned}
& \text { (54) Proposition : Let } H \text { be the subgroup of } G \\
& g \in G, g H g^{-1}=\left\{g h g^{-1}=h \in H\right\} \text { is subgroup of } G \text {. } \\
& \text { Proof: } \\
& \text { 1. Closure. } \\
& \text { Let } x, y \in g H g^{-1} \text { and } x=g h_{1} g^{-1}, y=g h_{2} g^{-1} \\
& \quad\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g h_{1}\left(g^{-1} g\right) h_{2} g^{-1}=g h_{1} h_{2} g^{-1} \\
& \text { which is in } g H g^{-1} \text { because } h_{1} h_{2} \text { is in } H \text {. } \\
& \text { 2. Identity } \\
& \text { since } e \in H \text {, so we have } g e g^{-1}=g g^{-1}=e . \\
& \text { 3. Inverse } \\
& \text { (ghq } \left.g^{-1}\right)\left(g h g^{-1}\right)^{-1}=g h g^{-1} \cdot g h^{-1} g^{-1}=g h h^{-1} g^{-1}=g g^{-1}=e
\end{aligned}
$$

Comments:

The elements of the proof are very clear: identity, inverse and closure.

Common Mistakes:

Majority of you did well! For those who didn't get full points please make sure you know how to prove a subgroup/group as this is repeatedly tested.

