Math 103A W23 HW 4

11. If $a^{24}=e$, then order of a must be a factor of 24 . So it can be $1,2,3,4,6,8,12,24$.
12. Suggested answer:

know that in case of Z_{p}, the order
of the group is going to be p. From
the given P is a prime. So the only
divisors of p are 1 and itself, which
makes the subgroups identity (trivial
subgroup) and itself (the whole group).
\therefore There are no other non-trivial.
subgroup that are possible for R_{p} if p is a prime number as there are no other divisors other than 1 and itself.

Comments:

The first sentence of the answer makes its idea clear - order of subgroup H must be a divisor of order of group \mathbb{Z} / p.
Common Mistakes:
Many proved the proposition by claiming H to be a cyclic group, which leads to a correct solution but is a little complicated.

27. Suggested answer:

27.)

$$
\begin{aligned}
& g, h \in G \text { and }|g|=15,|h|=16 \text {. } \\
& \text { We know that for any, sMbgroup/group, the order of } \\
& \text { every element divides the order of the subgroup } \\
& \text { /group. } \\
& \text { This means that the orders of the elements of } \\
& \langle g\rangle \text { can be } 1,3,5 \text {, or } 15 \text {, and } \\
& \langle h\rangle \text { can be } 1,2,4,8, \text { or } 16 \text {. } \\
& \text { Since the only possible order in both is } 1 \text {, } \\
& \langle g\rangle \cap\langle h\rangle=\{e\} \text {. } \\
& \text { The order is therefore } 1 \text {. }
\end{aligned}
$$

Comments:

A straightforward and concise answer showing the only common divisor between the orders of g and h .

Common Mistakes:

Many proved the proposition by claiming $\langle g\rangle \cap\langle h\rangle$ to be a subgroup of both $\langle g\rangle$ and $\langle h\rangle$. This is correct but requires extra proof (no point is deducted because of this).

31. Suggested answer:

Proof. Suppose G is an abelian group.
Let H represent the elements of finite order in G.
We will show H is a subgroup.

Closure:

Suppose $a, b \in H$.
By definition $a, b \in G$ and thus $a b \in G$.
Furthermore, as a, b have finite order, we have $a^{k_{1}}=e$ and $b^{k_{2}}=e$ for some positive integers k_{1}, k_{2}.
It follows that $a^{k_{1} k_{2}}=e$ and $b^{k_{1} k_{2}}=e$.
Therefore, we have $a^{k_{1} k_{2}} b^{k_{1} k_{2}}=e$.
As G is abelian, we may reorder terms such that $(a b)^{k_{1} k_{2}}=e$.
Therefore, we have shown $a b$ has finite order and thus $a b \in H$.

Identity:

We know that $e^{1}=e$ by definition and thus e has finite order.
Thus $e \in H$.

Inverse:

Suppose $a \in H$.
Then, as $a \in G$ by definition, we have that $a^{-1} \in G$.
By Q23A, the order of a is the same as the order of a^{-1} and thus a^{-1} has finite order.
Therefore, by definition $a^{-1} \in H$.

Thus H is a subgroup of G.

Comments:

The elements of the proof are very clear: identity, inverse and closure.

