Math 103A W23 HW 4

11. If $a^{24} = e$, then order of *a* must be a factor of 24. So it can be 1,2,3,4,6,8,12,24.

26. Suggested answer:

Comments:

The first sentence of the answer makes its idea clear - order of subgroup H must be a divisor of order of group \mathbb{Z}/p .

Common Mistakes:

Many proved the proposition by claiming H to be a cyclic group, which leads to a correct solution but is a little complicated.

27. Suggested answer:

07)	D	
2(.)	g, h E G and 1g1 = 15, 1h1 = 16.	
	We know that for any subgroup/group, the order of every element divides the order of the subgroup	
<	group.	
	This means that the orders of the elements of (g) can be 1, 3, 5, or 15, and	
	(h) can be 1, 2, 4, 8, 16.	
	Since the only possible order in both is 1, <q>A<h> = {e}.</h></q>	
	The order is therefore 1.	

Comments:

A straightforward and concise answer showing the only common divisor between the orders of g and h.

Common Mistakes:

Many proved the proposition by claiming $\langle g \rangle \cap \langle h \rangle$ to be a subgroup of both $\langle g \rangle$ and $\langle h \rangle$. This is correct but requires extra proof (no point is deducted because of this).

31. Suggested answer:

Proof. Suppose G is an abelian group. Let H represent the elements of finite order in G. We will show H is a subgroup.

Closure:

Suppose $a, b \in H$. By definition $a, b \in G$ and thus $ab \in G$. Furthermore, as a, b have finite order, we have $a^{k_1} = e$ and $b^{k_2} = e$ for some positive integers k_1, k_2 . It follows that $a^{k_1k_2} = e$ and $b^{k_1k_2} = e$. Therefore, we have $a^{k_1k_2}b^{k_1k_2} = e$. As G is abelian, we may reorder terms such that $(ab)^{k_1k_2} = e$. Therefore, we have shown ab has finite order and thus $ab \in H$.

Identity:

We know that $e^1 = e$ by definition and thus e has finite order. Thus $e \in H$.

Inverse:

Suppose $a \in H$. Then, as $a \in G$ by definition, we have that $a^{-1} \in G$. By Q23A, the order of a is the same as the order of a^{-1} and thus a^{-1} has finite order. Therefore, by definition $a^{-1} \in H$.

Thus H is a subgroup of G.

Comments:

The elements of the proof are very clear: identity, inverse and closure.