Math 103A W23 HW 6

11. Suggested answer:

11. What are the possible cycle structures of elements in A_5 ? What about A_6 ?

The possible cycle structures of elements in A_5 (represented as disjoint cycles of decreasing size) are

$$(5 - cycle)$$

$$(3 - cycle)$$

$$(2 - cycle)(2 - cycle)$$

$$(id)$$

The possible cycle structures of elements in A_6 (represented as disjoint cycles of decreasing size) are

$$(5-cycle)$$

$$(4-cycle)(2-cycle)$$

$$(3-cycle)(3-cycle)$$

$$(3-cycle)$$

$$(2-cycle)(2-cycle)$$

$$(id)$$

37c. Suggested answer:

(c)

Proposition 5. The order of $r^k \in D_n$ is $n/\gcd(k, n)$

Proof. Suppose $r^k \in D_n$. We are given that r has order n and thus that $\langle r \rangle$ is a cyclic group with order n generated by r.

Therefore, Theorem 4.13 give us that the order of r^k is $n/\gcd(k,n)$.

common mistakes:

Many people neglected to give justification for the differing group structures.

12. Suggested answer:

Proposition 8. If $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$, then right cosets

are identical to left cosets. That is, that gH = Hg for all $g \in G$.

Proof. Suppose $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.

Suppose $g \in G$.

12.

Suppose $j \in gH$.

Then, we have that j = gh for some $h \in H$.

Equivalently, then, we have that $j = ghg^{-1}g$ as $g^{-1}g = e$.

From above, we have that $ghg^{-1} \in H$.

Letting $h' = ghg^{-1}$, we have that j = h'g and $h' \in H$.

Therefore, we have shown that $j \in Hg$ and thus that $gH \subset Hg$.

Now, suppose that $j \in Hg$.

That is, that j = hg for some $h \in H$.

Then, we may saying that $j = gg^{-1}hg$ as $gg^{-1} = e$.

As $ghg^{-1} \in H$ for all $g \in G$, it follows that $g^{-1}hg = g^{-1}h(g^{-1})^{-1} \in H$ as $g^{-1} \in G$ by definition of G being a group.

Thus, if we let $h' = g^{-1}hg$ we have that j = gh' and $h' \in H$ and thus that $j \in gH$.

Then, we have shown that $Hg \subset gH$.

Therefore, as we have shown that $gH \subset Hg$ and $Hg \subset gH$, we have shown that gH = Hg.

13. Suggested answer:

Proposition 9. In the proof of Theorem 6.8, if $\phi : \mathcal{L}_H \to \mathcal{R}_H$ is defined by $\phi(gH) = Hg$, the proof fails because ϕ is not a well-defined mapping.

Proof. It suffices to show there exist some subgroup H of G and $g_1,g_2\in G$ such that $g_1H=g_2H$ but $Hg_1\neq Hg_2$. Let $G=S_3$ and H be the subgroup $\{(1),(12)\}$. Then, we may observe that $(23)H=\{(23),(132)\}=(132)H$. However, we also may observe that $H(23)=\{(23),(123)\}$ but $H(132)=\{(132),(13)\}$ and thus $H(23)\neq H(132)$. Therefore, the map ϕ is not well-defined.