Math 103A W23 HW 7

2. Suggested answer:

Q2.
$$f: C^* \rightarrow S$$
, $f(atbi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$
I. We check if $f(xy) = f(x) \cdot f(y)$.
 $f((atbi) \cdot (ctdi)) = f(ac-bd + (ad+bc)i)$
 $= \begin{pmatrix} ac-bd & ad+bc \\ -gd+bc \end{pmatrix} = \begin{pmatrix} a & b \\ -b & d \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = f(atbi) \cdot f(ctdi) \checkmark$
2. We check if there's bijectivity between them.
(a) One-to-one (Injective): Let $f(atbi) = f(ctdi) \rightarrow \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} c & d \\ -d & c \end{pmatrix}$

(b) Onto (surjective): For all $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in S$, there exists $a, b \in \mathbb{R}$ where $a, b \neq 0$ since $det(3) \neq 0$.

We can compute f(a+bi) as $a+bi \in C^*$ to get $f(a+bi)=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Thus, it is onto.

Thus, C* is isomorphic to S.

Comments:

Clearly structured answer. Note that the alternative of proving bijectivity is showing the well-defined inverse function of the isomorphism, which requires less hand-writing

11. Suggested answer:

QII. \mathbb{Z}_{6} , $\mathbb{Z}_{2}^{\times} \mathbb{Z}_{4}$, $\mathbb{Z}_{2}^{\times} \mathbb{Z}_{2}^{\times} \mathbb{Z}_{2}$, \mathbb{P}_{4} , \mathbb{Q}_{6}

- \mathbb{Z}_1 is cyclic while $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are not.
- $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ because every element of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is of order 2 but not the case in $\mathbb{Z}_2 \times \mathbb{Z}_4$

2

- Any of the groups in {Z_8, Z_2 × Z_1, Z_2 × Z_2 Z_2 can't be isomorphic to any group in {D1, Q0} because {D3, Q0} do not contain abelian groups while {Z_8, Z_2 × Z_4, Z_2 × Z_2 i contains.
- Q_8 have six elements of order 4 while Dy only has 2 two elements of order 4.

common mistakes:

Many people neglected to give justification for the differing group structures.

12. Suggested answer:

Q12. Sy has elements of order either 1, 2, 3, 4, however D_{12} has elements of order 2, 3, 4, 6, 12. Therefore Sy and D_{12} have different orders of their elements so they are not isomorphic.