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Root Extraction Algorithms in Fq
Finding r-th root in Fq has many applications in computational
number theory and many other related areas.

Two standard algorithms for computing r-th root in finite field:

1 Tonelli-Shanks square root algorithm
- Adleman-Manders-Miller r-th root algorithm

2 Cipolla-Lehmer type algorithms
- Müller square root algorithm
- Nishihara cube root algorithm

Adleman-Manders-Miller algorithm : straightforward generalization
of Tonelli-Shanks square root algorithm

Müller square root algorithm : Cipolla-Lehmer + Lucas Sequence
Technique

Nishihara cube root algorithm : Cipolla-Lehmer + Efficient
Irreducibility Test for Cubic Polynomial
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Complexity of Tonelli-Shanks and Cipolla-Lehmer over Fq
for Cube Root Extraction

Tonelli-Shanks:

best case O(log3 q) when ν3(q − 1) is small
worst case O(log4 q) when ν3(q − 1) is large

where ν = ν3(q − 1) means 3ν |q − 1, 3ν+1 6 |q − 1

Cipolla-Lehmer:

average case O(log3 q) : does not dependent on ν = ν3(q− 1)

extension field arithmetic ∈ Fq3 is a bottleneck

Hence, refinement of Cipolla-Lehmer is desirable.
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Cipolla-Lehmer Algorithm

Input: A cubic residue a in Fq
Output: A cube root of a

Step 1: Choose an element b in Fq at random.

Step 2: Check f(x) = x3 + bx− a is irreducible over Fq.
If not, go to Step 1.

Step 3: Return x(q
2+q+1)/3 (mod f(x)).

Nishihara’s method :
Cipolla-Lehmer + Dickson’s irreducibility criterion for cubic
polynomial

Dickson’s irreducibility criterion for f(x) = x3 + bx− a : f(x) is
irreducible over Fq iff the following two conditions are satisfied;

1 D = −(4b3 + 27a2) is nonzero quadratic residue in Fq
2 1

2(a+ 3−2
√
−3D) is a cubic non-residue in Fq
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Müller’s square root algorithm with Lucas sequences

Let Q be a quadratic residue in Fq.

Assume
1 q ≡ 1 (mod 4),
2 f(x) = x2 − Px+ 1 with P = Q− 2 is irreducible.

Letting α, α−1 be roots of f , we find a square root of Q as

Tr(α
q−1
4 ) = s2q−1

4

= (α(q−1)/4 + α−(q−1)/4)2

= α−1α(q+1)/2 + αα−(q+1)/2 + 2

= α−1 + α+ 2 = P + 2 = Q

The cost of computing s q−1
4

is small because it comes from

x2 − Px+ 1 not from x2 − Px+Q.

Our Contribution : Extended Müller’s result for r = 2 to the
general case - cubic, quintic, · · · . Our method applies to any
r-th residue with r prime but the cubic case will be discussed
here for simplicity.
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The Third Order Linear Recurrence Sequences

Let f(x) = x3 − ax2 + bx− c, a, b, c ∈ Fq be irreducible over Fq.

A third-order linear recurrence sequence {sk} with characteristic
polynomial f(x) is defined as

sk = ask−1 − bsk−2 + csk−3, k ≥ 3.

If {sk} has the initial state s0 = 3, s1 = a, and s2 = a2 − 2b, then
{sk} is called the characteristic sequence generated by f(x).

Letting f(α) = 0, we denote such sk = αk + αkq + αkq
2

as

sk(f) or sk(a, b, c) or sk(α)

The sequence sk satisfies

1 s2n = s2n − 2cns−n,

2 sn+m = snsm − cmsn−ms−m + cmsn−2m

The above computation becomes simple when c = 1.
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Complexity of Computing sk for f(x) = x3− ax3 + bx2− 1

Let k =
∑r

i=0 ki2
r−i be a binary representation of k, and let

z0 = k0 6= 0, zj = kj + 2zj−1, j = 1, 2, · · · , r.

Then zr = k and sk can be computed as

When kj = 0,

1 szj−1 = szj−1szj−1−1 − bs−zj−1 + s−(zj−1+1)

2 szj = s2zj−1
− 2s−zj−1

3 szj+1 = szj−1szj−1+1 − as−zj−1 + s−(zj−1−1)

When kj = 1,

1 szj−1 = s2zj−1
− 2s−zj−1

2 szj = szj−1szj−1+1 − as−zj−1 + s−(zj−1−1)

3 szj+1 = s2zj−1+1 − 2s(−zj−1+1)

Thus, the complexity of computing both of sk and s−k is 9 log2 k
Fq-multiplications on average.
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Our method : polynomial choice, f(α) = 0, α = β3

Let f(x) = x3 − 3x2 + bx− 1 be irreducible over Fq with f(α) = 0
and q ≡ 1 (mod 3). The norm of f or the product of all the
conjugates of α is

α1+q+q2 = 1

Classical result of Hilbert Theorem 90 or direct calculation over the
finite field extension Fq3/Fq says that there exists β ∈ Fq3 such

that β3 = α. That is, using the property α1+q+q2 = 1, one can
show that

α(1 + α+ α1+q)q = 1 + α+ α1+q

Therefore letting β = (1 + α+ α1+q)
1−q
3 , we get

β3 = (1 + α+ α1+q)1−q = α
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Our method : properties of α

Let h(x) = x3 + (b− 3)x− (b− 3).
Then h(1− α) = 0. More precisely, h(1− x) = −f(x).
The irreducibility of f implies the irreducibility of h. Thus

(1− α)1+q+q2 = (b− 3) (1)

On the other hand, from
0 = h(1− α) = (1− α)3 + (b− 3)(1− α)− (b− 3), we get

(1− α)3 = (b− 3)α (2)

By taking 1+q+q2

3 -th power to both sides of the above expression,

(1− α)1+q+q2 = (b− 3)
1+q+q2

3 α
1+q+q2

3 (3)

Comparing two expressions (1) and (3), we get

α
1+q+q2

3 = (b− 3)−
q2+q−2

3 = (b− 3)−
(q−1)(q+2)

3 = 1 (4)

since q ≡ 1 (mod 3) and b− 3 ∈ Fq.
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Our method : relation between α and β I

Since α = β3, we may rewrite the equation (2) as

(1− α)3 = (b− 3)β3 (5)

Assume b− 3 = c3 for some c in Fq. Then from (1− α)3 = c3β3,
we get

(1− α) = ωcβ (6)

for some cube root of unity ω in Fq.
Now letting g(x) = x3 − a′x2 + b′x− c′ (a′, b′, c′ ∈ Fq) be the
irreducible polynomial of β over Fq,

ωcTr(β) = Tr(ωcβ) = Tr(1− α)

= (1− α) + (1− α)q + (1− α)q2

= 3− (α+ αq + αq
2
) = 0

(7)

Therefore, assuming c 6= 0, we get a′ = Tr(β) = 0. Also we have

1 = α
1+q+q2

3 = β1+q+q
2
= c′.
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Our method : relation between α and β II

Using the following simple identity

(A+B+C)3 = A3+B3+C3+3(A+B+C)(AB+BC+CA)−3ABC

with A = β1+q, B = βq+q
2
, C = β1+q

2
, we get

(β1+q + βq+q
2
+ β1+q

2
)3 =

α1+q + αq+q
2
+ α1+q2 + 3(β1+q + βq+q

2
+ β1+q

2
)(β + βq + βq

2
)− 3

(8)

which can be expressed as

b′3 = b+ 3b′a′ − 3 = b− 3 (9)

For given irreducible polynomial f(x) = x3 − ax2 + bx− 1 with
f(α) = 0, recall the sequence sk is defined as

sk = sk(α) = sk(f) = Tr(αk) = αk + αqk + αq
2k.
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Our method : s q2+q−2
9

(α) = s q2+q−2
3

(β)

We have

s q2+q−2
3

(α)3 = (α
q2+q−2

3 + αq
q2+q−2

3 + αq
2 q2+q−2

3 )3

= (α−1 + α−q + α−q
2
)3

= (αq+q
2
+ α1+q2 + α1+q)3 = sq+1(α)

3 = b3

(10)

Now we are interested in the following two irreducible polynomials

f(x) = x3 − 3x2 + bx− 1, g(x) = x3 + b′x− 1

with f(α) = 0, g(β) = 0 and α = β3.

Assuming q ≡ 1 (mod 9), we get q2 + q − 2 ≡ 0 (mod 9) and

s q2+q−2
9

(α) = Tr(α
q2+q−2

9 ) = Tr((β3)
q2+q−2

9 )

= Tr(β
q2+q−2

3 ) = s q2+q−2
3

(β)

(11)
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Our method : Cube root of Q as a closed formula

Therefore from the equation (10) and (9),

s q2+q−2
9

(α)3 = s q2+q−2
3

(β)3 = sq+1(β)
3 = b′3 = b− 3 (12)

Now using the polynomial f(x) = x3 − 3x2 + bx− 1, we can find a
cube root for given cubic residue Q in Fq as follows;
For given cubic residue Q ∈ Fq, define b = Q+ 3. If f(x) with
given coefficient b is irreducible, then s q2+q−2

9

(f) is a cube root of

Q. That is,
s q2+q−2

9

(f)3 = b− 3 = Q.

If the given f is not irreducible over Fq, then we twist Q by
random t ∈ Fq until we get irreducible f with b = Qt3 + 3. Then

s q2+q−2
9

(f)3 = b− 3 = Qt3,

which implies t−1s q2+q−2
9

(f) is a cube root of Q.
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Suggested Cube Root Algorithm

New Cube Root Algorithm for Fq with q ≡ 1 (mod 9)

Input: cubic residue Q 6= 0 ∈ Fq, Output: s satisfying s3 = Q
1 b← Q+ 3, f(x)← x3 − 3x2 + bx− 1
2 While f(x) is reducible over Fq

choose random t ∈ Fq
b← Qt3 + 3, f(x)← x3 − 3x2 + bx− 1

End While
3 s← s q2+q−2

9

(f) · t−1

The output s is indeed a cube root of Q because
s3 = s q2+q−2

9

(f)3 · t−3 = Qt3 · t−3 = Q.

When q 6≡ 1 (mod 9) : 1. If q ≡ 2 (mod 3), a cube root of Q is

given as Q
2q−1

3 . 2. If q ≡ 4 (mod 9), a cube root of cubic residue

Q is given by Q
2q+1

9 . 3. If q ≡ 7 (mod 9), a cube root of cubic

residue Q is given by Q
q+2
9 .
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Complexity Estimation

Randomly selected monic polynomial over Fq of degree 3 with
nonzero constant term is irreducible with probability 1

3 . Even if our
choice of f is not really random, experimental evidence implies
that one third of such f is irreducible.

Computing s q2+q−2
9

: 9 log2
q2+q−2

9 ≈ 18 log2 q Fq-multiplications.

Irreducibility testing : Using Dickson’s formula, 4 log2 q
Fq-multiplications at most.

Total cost : 4 · 3 + 18 = 30 log2 q multiplications in Fq

Speed up can be achieved if better irreducibility testing is used.

The complexity of Adleman-Manders-Miller cube root algorithm
costs O(log2 q + t2) multiplications in Fq with 3t||q − 1.
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Conclusion

We proposed a new Cube Root Algorithm using linear
recurrence relation arising from a cubic polynomial with
constant term −1.

The related linear recurrence is easy to compute and has low
computational complexity.

Complexity estimation shows that proposed algorithm is
better than Adleman-Manders-Miller when t is sufficiently
large, but the implementation is needed to verify which t is a
threshold value.

Our idea can be generalized to the case of r-th root
extraction : We obtained a closed formula for r-th root for
any odd prime r.

Bottleneck of our approach is the irreducibility testing of a
polynomial f of degree r : efficient irreducibility testing is
needed.
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