New Cube Root Algorithm Based on Third Order Linear Recurrence Relation in Finite Field

Gookhwa Jo, Namhum Koo, EunHye Ha, and Soonhak Kwon*

E-mail : shkwon@skku.edu*

Department of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Just a Part of References :

- S. Müller, On the computation of square roots in finite fields, Design, Codes and Cryptography, Vol.31, pp. 301-312, 2004
- G. Gong and L. Harn, Public key cryptosystems based on cubic finite field extensions, IEEE Trans. Information Theory, Vol.45, pp. 2601-2605, 1999
- N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, A remark on the computation of cube roots in finite fields, preprint

Root Extraction Algorithms in \mathbb{F}_{q}

Finding r-th root in \mathbb{F}_{q} has many applications in computational number theory and many other related areas.

Two standard algorithms for computing r-th root in finite field:
(1) Tonelli-Shanks square root algorithm

- Adleman-Manders-Miller r-th root algorithm
(2) Cipolla-Lehmer type algorithms
- Müller square root algorithm
- Nishihara cube root algorithm

Adleman-Manders-Miller algorithm : straightforward generalization of Tonelli-Shanks square root algorithm

Müller square root algorithm : Cipolla-Lehmer + Lucas Sequence Technique

Nishihara cube root algorithm : Cipolla-Lehmer + Efficient Irreducibility Test for Cubic Polynomial

Complexity of Tonelli-Shanks and Cipolla-Lehmer over \mathbb{F}_{q} for Cube Root Extraction

Tonelli-Shanks:
best case $O\left(\log ^{3} q\right)$ when $\nu_{3}(q-1)$ is small
worst case $O\left(\log ^{4} q\right)$ when $\nu_{3}(q-1)$ is large
where $\nu=\nu_{3}(q-1)$ means $3^{\nu} \mid q-1,3^{\nu+1}$ $\chi q-1$
Cipolla-Lehmer:
average case $O\left(\log ^{3} q\right)$: does not dependent on $\nu=\nu_{3}(q-1)$
extension field arithmetic $\in \mathbb{F}_{q^{3}}$ is a bottleneck
Hence, refinement of Cipolla-Lehmer is desirable.

Cipolla-Lehmer Algorithm

Input: A cubic residue a in \mathbb{F}_{q} Output: A cube root of a
Step 1: Choose an element b in \mathbb{F}_{q} at random.
Step 2: Check $f(x)=x^{3}+b x-a$ is irreducible over \mathbb{F}_{q}. If not, go to Step 1.
Step 3: Return $x^{\left(q^{2}+q+1\right) / 3}(\bmod f(x))$.

Nishihara's method :
Cipolla-Lehmer + Dickson's irreducibility criterion for cubic polynomial

Dickson's irreducibility criterion for $f(x)=x^{3}+b x-a: f(x)$ is irreducible over \mathbb{F}_{q} iff the following two conditions are satisfied;
(1) $D=-\left(4 b^{3}+27 a^{2}\right)$ is nonzero quadratic residue in \mathbb{F}_{q}
(2) $\frac{1}{2}\left(a+3^{-2} \sqrt{-3 D}\right)$ is a cubic non-residue in \mathbb{F}_{q}

Müller's square root algorithm with Lucas sequences

Let Q be a quadratic residue in \mathbb{F}_{q}.
Assume
(1) $q \equiv 1(\bmod 4)$,
(2) $f(x)=x^{2}-P x+1$ with $P=Q-2$ is irreducible.

Letting α, α^{-1} be roots of f, we find a square root of Q as

$$
\begin{aligned}
\operatorname{Tr}\left(\alpha^{\frac{q-1}{4}}\right)=s_{\frac{q-1}{4}}^{2} & =\left(\alpha^{(q-1) / 4}+\alpha^{-(q-1) / 4}\right)^{2} \\
& =\alpha^{-1} \alpha^{(q+1) / 2}+\alpha \alpha^{-(q+1) / 2}+2 \\
& =\alpha^{-1}+\alpha+2=P+2=Q
\end{aligned}
$$

The cost of computing $s_{\frac{q-1}{4}}$ is small because it comes from $x^{2}-P x+1$ not from $x^{2}-P x+Q$.

Our Contribution : Extended Müller's result for $r=2$ to the general case - cubic, quintic, \cdots. Our method applies to any r-th residue with r prime but the cubic case will be discussed here for simplicity.

The Third Order Linear Recurrence Sequences

Let $f(x)=x^{3}-a x^{2}+b x-c, a, b, c \in \mathbb{F}_{q}$ be irreducible over \mathbb{F}_{q}.
A third-order linear recurrence sequence $\left\{s_{k}\right\}$ with characteristic polynomial $f(x)$ is defined as

$$
s_{k}=a s_{k-1}-b s_{k-2}+c s_{k-3}, \quad k \geq 3
$$

If $\left\{s_{k}\right\}$ has the initial state $s_{0}=3, s_{1}=a$, and $s_{2}=a^{2}-2 b$, then $\left\{s_{k}\right\}$ is called the characteristic sequence generated by $f(x)$.
Letting $f(\alpha)=0$, we denote such $s_{k}=\alpha^{k}+\alpha^{k} q+\alpha^{k q^{2}}$ as

$$
s_{k}(f) \text { or } s_{k}(a, b, c) \text { or } s_{k}(\alpha)
$$

The sequence s_{k} satisfies
(1) $s_{2 n}=s_{n}^{2}-2 c^{n} s_{-n}$,
(2) $s_{n+m}=s_{n} s_{m}-c^{m} s_{n-m} s_{-m}+c^{m} s_{n-2 m}$

The above computation becomes simple when $c=1$.

Complexity of Computing s_{k} for $f(x)=x^{3}-a x^{3}+b x^{2}$

Let $k=\sum_{i=0}^{r} k_{i} 2^{r-i}$ be a binary representation of k, and let $z_{0}=k_{0} \neq 0, z_{j}=k_{j}+2 z_{j-1}, j=1,2, \cdots, r$.

Then $z_{r}=k$ and s_{k} can be computed as
When $k_{j}=0$,
(1) $s_{z_{j}-1}=s_{z_{j-1}} s_{z_{j-1}-1}-b s_{-z_{j-1}}+s_{-\left(z_{j-1}+1\right)}$
(2) $s_{z_{j}}=s_{z_{j-1}}^{2}-2 s_{-z_{j-1}}$
(3) $s_{z_{j}+1}=s_{z_{j-1}} s_{z_{j-1}+1}-a s_{-z_{j-1}}+s_{-\left(z_{j-1}-1\right)}$

When $k_{j}=1$,
(1) $s_{z_{j}-1}=s_{z_{j-1}}^{2}-2 s_{-z_{j-1}}$
(2) $s_{z_{j}}=s_{z_{j-1}} s_{z_{j-1}+1}-a s_{-z_{j-1}}+s_{-\left(z_{j-1}-1\right)}$
(3) $s_{z_{j}+1}=s_{z_{j-1}+1}^{2}-2 s_{\left(-z_{j-1}+1\right)}$

Thus, the complexity of computing both of s_{k} and s_{-k} is $9 \log _{2} k$ F_{q}-multiplications on average.

Our method : polynomial choice, $f(\alpha)=0, \alpha=\beta^{3}$

Let $f(x)=x^{3}-3 x^{2}+b x-1$ be irreducible over \mathbb{F}_{q} with $f(\alpha)=0$ and $q \equiv 1(\bmod 3)$. The norm of f or the product of all the conjugates of α is

$$
\alpha^{1+q+q^{2}}=1
$$

Classical result of Hilbert Theorem 90 or direct calculation over the finite field extension $\mathbb{F}_{q^{3}} / \mathbb{F}_{q}$ says that there exists $\beta \in \mathbb{F}_{q^{3}}$ such that $\beta^{3}=\alpha$. That is, using the property $\alpha^{1+q+q^{2}}=1$, one can show that

$$
\alpha\left(1+\alpha+\alpha^{1+q}\right)^{q}=1+\alpha+\alpha^{1+q}
$$

Therefore letting $\beta=\left(1+\alpha+\alpha^{1+q}\right)^{\frac{1-q}{3}}$, we get

$$
\beta^{3}=\left(1+\alpha+\alpha^{1+q}\right)^{1-q}=\alpha
$$

Our method : properties of α

Let $h(x)=x^{3}+(b-3) x-(b-3)$.
Then $h(1-\alpha)=0$. More precisely, $h(1-x)=-f(x)$.
The irreducibility of f implies the irreducibility of h. Thus

$$
\begin{equation*}
(1-\alpha)^{1+q+q^{2}}=(b-3) \tag{1}
\end{equation*}
$$

On the other hand, from
$0=h(1-\alpha)=(1-\alpha)^{3}+(b-3)(1-\alpha)-(b-3)$, we get

$$
\begin{equation*}
(1-\alpha)^{3}=(b-3) \alpha \tag{2}
\end{equation*}
$$

By taking $\frac{1+q+q^{2}}{3}$-th power to both sides of the above expression,

$$
\begin{equation*}
(1-\alpha)^{1+q+q^{2}}=(b-3)^{\frac{1+q+q^{2}}{3}} \alpha^{\frac{1+q+q^{2}}{3}} \tag{3}
\end{equation*}
$$

Comparing two expressions (1) and (3), we get

$$
\begin{equation*}
\alpha^{\frac{1+q+q^{2}}{3}}=(b-3)^{-\frac{q^{2}+q-2}{3}}=(b-3)^{-\frac{(q-1)(q+2)}{3}}=1 \tag{4}
\end{equation*}
$$

since $q \equiv 1(\bmod 3)$ and $b-3 \in \mathbb{F}_{q}$.

Our method : relation between α and β I

Since $\alpha=\beta^{3}$, we may rewrite the equation (2) as

$$
\begin{equation*}
(1-\alpha)^{3}=(b-3) \beta^{3} \tag{5}
\end{equation*}
$$

Assume $b-3=c^{3}$ for some c in \mathbb{F}_{q}. Then from $(1-\alpha)^{3}=c^{3} \beta^{3}$, we get

$$
\begin{equation*}
(1-\alpha)=\omega c \beta \tag{6}
\end{equation*}
$$

for some cube root of unity ω in \mathbb{F}_{q}.
Now letting $g(x)=x^{3}-a^{\prime} x^{2}+b^{\prime} x-c^{\prime}\left(a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{F}_{q}\right)$ be the irreducible polynomial of β over \mathbb{F}_{q},

$$
\begin{align*}
\omega c \operatorname{Tr}(\beta) & =\operatorname{Tr}(\omega c \beta)=\operatorname{Tr}(1-\alpha) \\
& =(1-\alpha)+(1-\alpha)^{q}+(1-\alpha)^{q^{2}} \tag{7}\\
& =3-\left(\alpha+\alpha^{q}+\alpha^{q^{2}}\right)=0
\end{align*}
$$

Therefore, assuming $c \neq 0$, we get $a^{\prime}=\operatorname{Tr}(\beta)=0$. Also we have $1=\alpha^{\frac{1+q+q^{2}}{3}}=\beta^{1+q+q^{2}}=c^{\prime}$.

Our method : relation between α and β II

Using the following simple identity
$(A+B+C)^{3}=A^{3}+B^{3}+C^{3}+3(A+B+C)(A B+B C+C A)-3 A B C$
with $A=\beta^{1+q}, B=\beta^{q+q^{2}}, C=\beta^{1+q^{2}}$, we get

$$
\left(\beta^{1+q}+\beta^{q+q^{2}}+\beta^{1+q^{2}}\right)^{3}=
$$

$$
\begin{equation*}
\alpha^{1+q}+\alpha^{q+q^{2}}+\alpha^{1+q^{2}}+3\left(\beta^{1+q}+\beta^{q+q^{2}}+\beta^{1+q^{2}}\right)\left(\beta+\beta^{q}+\beta^{q^{2}}\right)-3 \tag{8}
\end{equation*}
$$

which can be expressed as

$$
\begin{equation*}
b^{\prime 3}=b+3 b^{\prime} a^{\prime}-3=b-3 \tag{9}
\end{equation*}
$$

For given irreducible polynomial $f(x)=x^{3}-a x^{2}+b x-1$ with $f(\alpha)=0$, recall the sequence s_{k} is defined as

$$
s_{k}=s_{k}(\alpha)=s_{k}(f)=\operatorname{Tr}\left(\alpha^{k}\right)=\alpha^{k}+\alpha^{q k}+\alpha^{q^{2} k}
$$

Our method: $s_{\frac{q^{2}++q^{2}}{g}}(\alpha)=s_{\frac{q^{2}+q-2}{3}}(\beta)$

We have

$$
\begin{align*}
s_{\frac{q^{2}+q-2}{3}}^{3}(\alpha)^{3} & =\left(\alpha^{\frac{q^{2}+q-2}{3}}+\alpha^{\frac{q^{2}+q-2}{3}}+\alpha^{q^{2} \frac{q^{2}+q-2}{3}}\right)^{3} \\
& =\left(\alpha^{-1}+\alpha^{-q}+\alpha^{-q^{2}}\right)^{3} \tag{10}\\
& =\left(\alpha^{q+q^{2}}+\alpha^{1+q^{2}}+\alpha^{1+q}\right)^{3}=s_{q+1}(\alpha)^{3}=b^{3}
\end{align*}
$$

Now we are interested in the following two irreducible polynomials

$$
f(x)=x^{3}-3 x^{2}+b x-1, \quad g(x)=x^{3}+b^{\prime} x-1
$$

with $f(\alpha)=0, g(\beta)=0$ and $\alpha=\beta^{3}$.
Assuming $q \equiv 1(\bmod 9)$, we get $q^{2}+q-2 \equiv 0(\bmod 9)$ and

$$
\begin{align*}
s_{\frac{q^{2}+q-2}{9}}(\alpha) & =\operatorname{Tr}\left(\alpha^{\frac{q^{2}+q-2}{9}}\right)=\operatorname{Tr}\left(\left(\beta^{3}\right)^{\frac{q^{2}+q-2}{9}}\right) \\
& =\operatorname{Tr}\left(\beta^{\frac{q^{2}+q-2}{3}}\right)=s_{\frac{q^{2}+q-2}{3}}(\beta) \tag{11}
\end{align*}
$$

Our method: Cube root of Q as a closed formula

Therefore from the equation (10) and (9),

$$
\begin{equation*}
s_{\frac{q^{2}+q-2}{9}}(\alpha)^{3}=s_{\frac{q^{2}+q-2}{3}}(\beta)^{3}=s_{q+1}(\beta)^{3}=b^{\prime 3}=b-3 \tag{12}
\end{equation*}
$$

Now using the polynomial $f(x)=x^{3}-3 x^{2}+b x-1$, we can find a cube root for given cubic residue Q in \mathbb{F}_{q} as follows; For given cubic residue $Q \in \mathbb{F}_{q}$, define $b=Q+3$. If $f(x)$ with given coefficient b is irreducible, then ${\frac{q^{2}+q-2}{9}}^{9}(f)$ is a cube root of Q. That is,

$$
s_{\frac{q^{2}+q-2}{}}^{9}(f)^{3}=b-3=Q .
$$

If the given f is not irreducible over \mathbb{F}_{q}, then we twist Q by random $t \in \mathbb{F}_{q}$ until we get irreducible f with $b=Q t^{3}+3$. Then

$$
s_{\frac{q^{2}+q-2}{9}}(f)^{3}=b-3=Q t^{3},
$$

which implies $t^{-1} s_{\frac{q^{2}+q-2}{9}}(f)$ is a cube root of Q.

Suggested Cube Root Algorithm

New Cube Root Algorithm for \mathbb{F}_{q} with $q \equiv 1(\bmod 9)$
Input: cubic residue $Q \neq 0 \in \mathbb{F}_{q}$, Output: s satisfying $s^{3}=Q$
(1) $b \leftarrow Q+3, \quad f(x) \leftarrow x^{3}-3 x^{2}+b x-1$
(2) While $f(x)$ is reducible over \mathbb{F}_{q}

$$
\text { choose random } t \in \mathbb{F}_{q}
$$

$$
b \leftarrow Q t^{3}+3, \quad f(x) \leftarrow x^{3}-3 x^{2}+b x-1
$$

End While

$$
\text { (3) } s \leftarrow s_{\frac{q^{2}+q-2}{9}}(f) \cdot t^{-1}
$$

The output s is indeed a cube root of Q because $s^{3}=s_{\frac{q^{2}+q-2}{9}}^{9}(f)^{3} \cdot t^{-3}=Q t^{3} \cdot t^{-3}=Q$.

When $q \not \equiv 1(\bmod 9): \mathbf{1}$. If $q \equiv 2(\bmod 3)$, a cube root of Q is given as $Q^{\frac{2 q-1}{3}}$. 2. If $q \equiv 4(\bmod 9)$, a cube root of cubic residue Q is given by $Q^{\frac{2 q+1}{9}}$. 3. If $q \equiv 7(\bmod 9)$, a cube root of cubic residue Q is given by $Q^{\frac{q+2}{9}}$.

Complexity Estimation

Randomly selected monic polynomial over \mathbb{F}_{q} of degree 3 with nonzero constant term is irreducible with probability $\frac{1}{3}$. Even if our choice of f is not really random, experimental evidence implies that one third of such f is irreducible.

Computing $s_{\frac{q^{2}+q-2}{9}}: 9 \log _{2} \frac{q^{2}+q-2}{9} \approx 18 \log _{2} q \mathbb{F}_{q^{-}}$-multiplications.
Irreducibility testing: Using Dickson's formula, $4 \log _{2} q$ \mathbb{F}_{q}-multiplications at most.

Total cost : $4 \cdot 3+18=30 \log _{2} q$ multiplications in \mathbb{F}_{q}
Speed up can be achieved if better irreducibility testing is used.
The complexity of Adleman-Manders-Miller cube root algorithm costs $O\left(\log _{2} q+t^{2}\right)$ multiplications in \mathbb{F}_{q} with $3^{t} \| q-1$.

- We proposed a new Cube Root Algorithm using linear recurrence relation arising from a cubic polynomial with constant term -1 .
- The related linear recurrence is easy to compute and has low computational complexity.
- Complexity estimation shows that proposed algorithm is better than Adleman-Manders-Miller when t is sufficiently large, but the implementation is needed to verify which t is a threshold value.
- Our idea can be generalized to the case of r-th root extraction: We obtained a closed formula for r-th root for any odd prime r.
- Bottleneck of our approach is the irreducibility testing of a polynomial f of degree r : efficient irreducibility testing is needed.

