The Composites are a Hyperbolic Fractal

Robert M. Akscyn
The University of Waikato
Faculty of Computing \& Mathematical Sciences
rakscyn@gmail.com

8 June 2012
An exact, massively-parallelizable formulation for the prime counting function is

$$
\begin{equation*}
\pi(n)=n-1-\overbrace{\sum_{2 \leq p \leq \sqrt{n}} R(n / p, p)}^{\text {Composites }} \tag{1}
\end{equation*}
$$

where $R(h, p)$ counts p-Rough integers not greater than h (i.e., integers whose least prime is not less than p) for which we have the induction-provable recurrence relation, with base case $R(h, 2)=h-1$,

$$
\begin{equation*}
R\left(h, p_{i}\right)=R\left(h, p_{i-1}\right)-R\left(h / p_{i-1}, p_{i-1}\right)-\underbrace{R\left(p_{i}-1, p_{i-1}\right)}_{=1} \tag{2}
\end{equation*}
$$

for which inverting the recursive descent of the recurrence into an iterative ascent gives

$$
R(h, p)= \begin{cases}0, & \text { if } h<p \tag{3}\\ \underbrace{(h-1)}_{\text {Base Case }}-\sum_{2 \leq q<p}\left(R\left(\frac{h}{q}, q\right)+1\right), & \text { otherwise }\end{cases}
$$

illustrating the composites are a hyperbolic fractal.
In Java terms, computing the count of composites (to date replicating known exact values for all orders of magnitude to 10^{14}) consists primarily of

```
for (int i=1; P[i] <= Math.sqrt(n); i++) Composites += R(n/P[i],i);
```

where $P[i]$ is the ith prime, and the iterated function system for $R(h, p)$ in (3) above is:

```
public static long R(long h, int a) {
    if (h < P[a]) return 0;
    long R = h-1;
    for (int b=1; b<a; b++) R -= R(h/P[b],b) + 1;
    return R;
}
```

