On Sequences of Integers of Quadratic Fields and Computations

Nihal Bircan
Berlin University of Technology, Institute for Mathematics, MA 8 - 1, Strasse des 17. Juni 136 D-10623 Berlin, Germany
Çankırı Karatekin University, Department of Mathematics, TR 18100, Çankırı, Turkey
bircan@math.tu-berlin.de
April 5, 2012

In our studies, we investigate the following problems;

- Let $O=\mathbb{Z}[\sqrt{d}]$ be the ring of integers of the real quadratic field $\mathbb{Q}(\sqrt{d})$ and $\varepsilon>1$ its fundamental unit. Defining $O_{f}=\mathbb{Z}[f \sqrt{d}]$ for the order of conductor f, what can be said about the smallest positive integer $n(f)$ such that $\varepsilon^{n(f)} \in O_{f}$?
- What can be said about $n\left(f p^{k}\right)$, where p is an odd prime and k is a positive integer?

Considering the questions above we compute best possible upper bounds for $n(f)$. We consider matrices $A \in \operatorname{GL}(2, \mathbb{Z})$ and we show how the integers α of any quadratic field $\mathbb{Q}(\sqrt{d})$ can be embedded in $\operatorname{GL}(2, \mathbb{Z})$ where $d=4 q+r \in \mathbb{N}$ is square-free. Namely,

$$
\alpha=a+b \sqrt{d}, \quad a, b \in \mathbb{Z} \text { if } r=2,3, \alpha=\frac{1}{2}(a+b \sqrt{d}), a, b \in \mathbb{Z}, a+b \in 2 \mathbb{Z} \text { if } r=1
$$

We find the n such that $A^{n}=I$ or $A^{n}=c I$ in the residue field $\mathbb{Z} / p \mathbb{Z}$ where p is an odd prime and A is defined by

$$
A=\left(\begin{array}{cc}
a & b \\
b d & a
\end{array}\right) \text { for } r=2,3, A=\left(\begin{array}{cc}
\frac{1}{2}(a+b) & b \\
q b & \frac{1}{2}(a-b)
\end{array}\right) \text { for } r=1 .
$$

Let $s=\operatorname{det} A$ and $x=\operatorname{tr} A$, the trace of A. We derive formulas for all $s \neq 0$. As a tool we always use modified Chebyshev polynomials $t_{n}(x ; s)$ and $u_{n}(x ; s)$ which are monic polynomials with integer coefficients. We obtain some results for A^{n} and formulate these results in terms of $t_{n}(x ; s)=\operatorname{tr} A^{n}$. The Legendre symbol $\ell:=\left(\left(x^{2}-4 s\right) / p\right)$ and the values of n with $A^{n} \equiv I(\bmod p)$ are connected with $p-1$ if $\ell=+1$ and with $p+1$ if $\ell=-1$. We also prove that if $s=1$ and $x^{2}-4 \not \equiv 0$ then $t_{\frac{p-\ell}{2}}(x) \equiv 2((x+2) / p)$ and we generalize this result. We determine the first $n=(p-\ell) / 2^{m}$ with $t_{n}(x) \equiv 2 \bmod p$ in terms of a chain of Legendre symbols. We also consider the more complicated case $s=-1$ and prove similar results.[BiPo]
For the second question we consider the sequence $n\left(f p^{k}\right), k \geq 0$ for a fixed f and any odd prime p. We consider the case $\frac{p \pm 1}{2}$ in detail and we always investigate the properties modulo p. We allow any norm $N(\alpha) \neq 0$. We can write the powers as

$$
\alpha^{n}= \begin{cases}\frac{1}{2} t_{n}(2 a)+u_{n-1}(2 a) b \sqrt{d} & \text { if } r=2,3 \\ \frac{1}{2} t_{n}(a)+\frac{1}{2} u_{n-1}(a) b \sqrt{d} & \text { if } r=1 .\end{cases}
$$

Finally, we compute the frequencies of $k=\frac{p \pm 1}{2 n(p)}$ for $N(\alpha)=+1$ and $k=\frac{p \pm 1}{n(p)}$ for $N(\alpha)=-1$. Our numerical results suggest that the frequencies should have a limit as the ranges of d and p go to infinity.[Bir]

References

```
[AbSt72] M.Abramowitz and I.A.Stegun, Handbook of mathematical functions, Dover Publications, New York, 1972
[BCP] W. Bosma, J. Cannon, C. Playoust, The Magma Algebra system I. The User Language, J. Symbolic Comput., 1997, 24(3-4), 235 - 265
[Bir] N.Bircan, A Conjecture connected with units of quadratic fields, preprint (2011)
[De79] J. Denef, The Diophantine problem for polynomial rings of positive characteristic, Logic Colloquium 78, North-Holland Publishing Company, 1979
[Jar05] J.H.Jaroma, On the rank of apparition of composite N in Lehmer sequences, Nonlinear Analysis, 2005, 63, e1081 - e1086
[JLW] M. J. Jacobson, R. F. Lukes, H. Williams, An investigation of bounds for the regulator of quadratic fields, Experiment. Math., 1995, vol. 4, No 3
[JaWi09] M.J.Jacobson jr. and H.C.Williams, Solving the Pell equations, Springer-Verlag, 2009
[Le30] D.H.Lehmer, An extended theory of Lucas functions, Ann. of Math., 1930, 31, 419 - 448
[Ki89] P.Kiss, On rank of apparition of primes in Lucas sequences, Publ.Math. Debrecen, 1989, 36, 147 - 151
[MaRe03] C.Maclachlan and A.W.Reid, The arithmetic of hyperbolic 3-manifolds, Springer-Verlag, New York, 2003
[MOS66] W.Magnus, F.Oberhettinger and R.P.Soni, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag Berlin, 1966 -
[BiPo] N.Bircan, C.Pommerenke, On Chebyshev polynomials and GL(2,\mathbb{Z}/p\mathbb{Z}), preprint(2012)
[PoZa] M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, 1989.
[Wa38] M.Ward, Arithmetical properties of sequences in rings, Ann. of Math., 1938, 39, 210-219
```

