Homework #2

1. Let

\[
f(x) = \begin{cases}
\sqrt{x}, & \text{if } x \geq 0 \\
-\sqrt{-x}, & \text{if } x < 0
\end{cases}
\]

(a) Generate Newton’s method’s \(x_1, x_2, x_3\) in terms of \(x_0 > 0\). Then guess the value of \(x_n\) for \(n\) even and for \(n\) odd.

(b) Draw the graphical interpretation of Newton’s method in the previous part.

(c) Will Newton’s method converge for any \(x_0 \neq 0\)? Why does this not violate the theorem on the convergence of Newton’s method (Theorem 1 on page 85) since the initial guess can be arbitrarily close to the root?

2. Let \(\{x_n\}_{n=0}^\infty\) be a sequence of approximations, and suppose there is an interval of the form \([r - \alpha, r + \alpha]\), for some \(\alpha > 0\), and a constant \(0 \leq \rho < 1\) such that when \(x_n \in [r - \alpha, r + \alpha]\), we get \(|x_{n+1} - r| \leq \rho|x_n - r|\).

(a) Given \(x_0 \in [r - \alpha, r + \alpha]\), why is \(x_n \in [r - \alpha, r + \alpha]\), for all \(n \geq 0\)?

(b) For any \(x_0 \in [r - \alpha, r + \alpha]\), prove \(x_n\) converges to \(r\).

(c) If \(\{x_n\}_{n=0}^\infty\) comes from Newton’s method, we know

\[
x_{n+1} - r = \frac{f''(\xi_n)}{2f'(x_n)}(x_n - r)^2.
\]

For the case \(f(x) = x^2 - 2\), for the root of interest \(r = \sqrt{2}\), and given \(\rho < 1\), find the largest \(\alpha > 0\) satisfying: \(|x_{n+1} - r| \leq \rho|x_n - r|\), whenever \(x_n \in [r - \alpha, r + \alpha]\).

(d) Conclude that the sequence of approximations generated by Newton’s method, using initial guess \(x_0 = 1\), will converge.

3. Consider the problem of finding the point on the graph of \(y = x^3\) closest to the point \((3, -1)\).

(a) Write down the expression for \(d(x) = \) the square of the distance from \((x, x^3)\) to \((3, -1)\).

(b) Minimize \(d(x)\) by finding the, in this case, unique critical point: approximating the solution of \(f(x) = d'(x) = 0\) using Newton’s method to generate \(x_3\) when \(x_0 = 2\).

4. Consider \(f(x) = x(1 - e^x)\), with root \(r = 0\).

(a) Verify that \(f(0) = 0\) and \(f'(0) = 0\) and \(f''(0) \neq 0\).

(b) Using Newton’s method with \(x_0 = 0.1\), compute \(|e_{n+1}/e_n|\) for \(n = 0, 1, 2\) (\(e_n = x_n - r\)). Does this sequence look bounded? What about \(|e_{n+1}/(e_n^2)|\) for \(n = 0, 1, 2\)?
(c) Simplify \(g(x) = \frac{f(x)}{f'(x)} \) and verify \(r = 0 \) is still a root (find limit as \(x \to 0 \)).

(d) Apply Newton’s method with \(x_0 = 0.1 \) on \(g(x) \), and study \(|e_{n+1}/e_n| \) for \(n = 0, 1 \). Does this sequence look bounded? What about \(|e_{n+1}/(e_n^2)| \)?

(e) Apply the iterative method

\[
x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)},
\]

for \(m = 2 \), using \(x_0 = 0.1 \), and study \(|e_{n+1}/e_n| \) for \(n = 0, 1 \). Does this sequence look bounded? What about \(|e_{n+1}/(e_n^2)| \)?

5. Let \(f \in C^2[a, r] \), where \(r \) is a root of \(f \) and \(a < r \). Furthermore, suppose \(f''(x) < 0 \) in \([a, r]\) and \(f'(r) > 0 \). Prove Newton’s method’s sequence of approximations converges to \(r \) for all initial guesses \(x_0 \in [a, r] \).

6. (Matlab) Suppose we have two Matlab functions, in “hw2f.m” and “hw2fprime.m”, that both take as input \(x \) and output expressions for \(f(x) \) and \(f'(x) \), respectively. Then write a Matlab function that inputs

- initial guess \(x_0 \);
- tolerance \(tol \);

and outputs the first \(N \), and \(x_N \) of Newton’s method, such that \(|f(x_N)| < tol \). Make sure you call “hw2f” and “hw2fprime” when you need values of \(f(x) \) or \(f'(x) \).

(a) Write out or print out your function.

(b) For \(f(x) = x^2 - 8 \), write out or print out your results when \(x_0 = 2 \) and \(tol = 10^{-11} \).

Do the same for \(x_0 = 10 \) and \(tol = 10^{-11} \).

(c) For \(f(x) = x^2 \), write out or print out your results with when \(x_0 = 1 \) and \(tol = 10^{-11} \).