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Abstract

The first part of the paper studies the boundary behavior of holomorphic isometric
mappings F = (F1, · · · , Fm) from the complex unit ball Bn, n ≥ 2, to a bounded
symmetric domain Ω = Ω1× · · ·×Ωm up to constant conformal factors, where Ω′is are
irreducible factors of Ω. We prove every non-constant component Fi must map generic
boundary points of Bn to the boundary of Ωi. In the second part of the paper, we
establish a rigidity result for local holomorphic isometric maps from the unit ball to a
product of unit balls and Lie balls.
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1 Introduction

The study of the rigidity and extension problem for holomorphic isometric maps goes back to
the classical work of Calabi [Ca]. In 2003, motivated by problems in algebraic number theory,
Clozel-Ullmo [CU] considered a local holomorphic isometric map from the Poincaré disk ∆
into the polydisk ∆p (each factor ∆ is equipped with the Poincaré metric), and they proved
that such a map must extend to a totally geodesic map providing the image is invariant
under certain automorphisms of the target ∆p. On the other hand, Mok [M3] shows the
invariance assumption on the image of the map cannot be removed in this assertion. More
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precisely, Mok [M3] constructed a non-totally geodesic holomorphic isometric map, called
the p-th root embedding, from the Poincaré disk ∆ into the polydisk ∆p. Furthermore, Mok
initiated the systematic study of the local isometric mapping problems between bounded
symmetric domains. See [M2], [M3], [M4] and references therein. In the following context,
we write ds2

D for the Bergman metric of a bounded symmetric domain D. Let D1, D2 be two
bounded symmetric domains and V ⊆ D1 be an open connected set. Let F : V → D2 be a
holomorphic isometric map in the sense that F ∗(ds2

D2
) = λds2

D1
for some positive constant

λ. Mok [M3] proves that F extends to a holomorphic proper and isometric immersion from
D1 to D2. Mok [M3] also proves F must be totally geodesic if D1 is irreducible and has rank
at least two.

Much less is known when the rank of D1 equals one, i.e., D1 is the complex unit ball Bn
in Cn for some n ≥ 1. It is natural to first study the local holomorphic isometric mappings
from the unit ball Bn into the product of unit balls. The problem of holomorphic isometric
maps from the Poincaré disk into polydisks were intensively studied by many authors. The
readers are referred to Mok [M3], Ng [Ng1], Chan [Ch1, Ch2], Chan-Yuan [CY], Chan-Xiao-
Yuan [CXY] and references therein. The current article will concentrate on the case n ≥ 2.
The problem in this case was studied by Mok [M2], Ng [Ng2] and Yuan-Zhang [YZ]. Let
F = (F1, · · · , Fm) be a holomorphic map from an open connected set V ⊆ Bn, n ≥ 2, to the
product of unit balls (BN1 , λ1ds

2
BN1

)×· · ·× (BNm , λmds
2
BNm ) satisfying the metric-preserving

property that ds2
Bn =

∑m
i=1 λiF

∗
i (ds2

BNi
) on V. Here λi’s are positive constants. It follows

from Yuan-Zhang [YZ] that the non-constant components Fi of F must extend to a totally
geodesic map from Bn to BNi (The paper [YZ] indeed deals with a very general case where
the λi’s are allowed to be positive smooth Nash algebraic functions).

When D1 is the unit ball and D2 has an irreducible factor of rank at least two, the
total geodesy rigidity of F fails dramatically. Mok [M4] constructed a non-totally geodesic
holomorphic isometric map from Bn to a higher rank irreducible bounded symmetric domain
D2 of sufficiently large dimension (see also [XY1] for explicit examples of this kind). After
the work of Mok [M4], many authors took the study of holomorphic isometric or proper
maps from the unit ball to bounded symmetric domains of higher rank. See the work of
Chan-Mok [CM], Xiao-Yuan [XY1, XY2], Upmeier-Wang-Zhang [UWZ], Chan [Ch3], etc.
For more related study on metric-preserving or measure-preserving mappings, the readers
are referred to [MN], [HY], [Y1, Y2], [FHX] and references therein.

Although the strong rigidity of total geodesy fails when D2 has an irreducible factor of
higher rank, it is believed by researchers that some weaker rigidity can still be expected. An
explicit conjecture of this weaker rigidity was formulated by Yuan [Y2] which asserts that
if F = (F1, · · · , Fm) is a holomorphic isometric map from (Bn, ds2

Bn), n ≥ 2, to a reducible
bounded symmetric domain (Ω1, λ1ds

2
Ω1

)×· · ·×(Ωm, λmds
2
Ωm

) for some positive constants λ′is,
then the non-constant components Fi of F must be isometric (see more details in Problem

2



5.2, [Y2]). Although some partial results were proved when the dimension of Ωi is not too
much larger than n (cf. [XY2]), very little was known in the general case. The first step
toward understanding the map F is to study its boundary behavior. We carry this out in
Theorem 1.1. Then in Theorem 1.3 we confirm the weaker rigidity conjecture when the Ωi’s
are either the unit ball or the type IV classical domain. To the best of our knowledge, this
is the first theorem on this weaker rigidity conjecture that allows the dimension of Ωi to be
arbitrarily larger than n.

To introduce our theorems, we first recall some definitions and notations. We start with
the notion of generic norms. Let D be an irreducible bounded symmetric domain and denote
by KD(Z,Z) its Bergman kernel. Then there is a Hermitian polynomial QD(Z,Z) such that
KD(Z,Z) = 1

QD(Z,Z)
. Moreover, QD(Z,Z) = ADρ(Z,Z)n, where AD is a positive constant, n

is a positive integer both depending on D. Moreover, ρ(Z,W ) is an irreducible holomorphic
polynomial satisfying ρ(Z,Z) > 0 in D and ρ(Z,Z) = 0 on the boundary ∂D, as well as
ρ(0, 0) = 1. In addition, the expansion of ρ(Z,Z)− 1 at Z = 0 has no pure terms. See [M1],
[FK], [Lo] for more details on KD and ρ. The function ρ is called the generic norm of D.

Throughout the paper, for an irreducible bounded symmetric domain D in some com-
plex Euclidean space, we write gD for the canonical complete Kähler-Einstein metric on D
normalized so that the minimal disks are of constant Gaussian curvature −2. We denote
by ωD the corresponding Kähler form. Let Ω be a bounded symmetric domain and write
Ω = Ω1×· · ·×Ωm. Here Ωi, 1 ≤ i ≤ m, is an irreducible bounded symmetric domain in some
CNi . Denote by (Ω,⊕mi=1λigΩi

) = (Ω1, λ1gΩ1) × · · · × (Ωm, λmgΩm) the bounded symmetric
domain Ω equipped with the metric ⊕mi=1λigΩi

, where λ′is are positive constants.
Let V be an open connected subset of the n−dimensional complex unit ball Bn. Let

F = (F1, · · · , Fm) be a holomorphic map from V to Ω = Ω1×· · ·×Ωm, where each Fj maps
V to Ωj. We say F is a holomorphic isometric map from V to (Ω,⊕mi=1λigΩi

) if F preserves
the metric in the following sense:

gBn =
m∑
i=1

λiF
∗
i (gΩi

) in V. (1.1)

By Mok [M3] and Chan-Xiao-Yuan [CXY] (see Theorem 2.1.2 in [M3] and Theorem 4.25
in [CXY]), such a holomorphic isometric map F on V must be algebraic and extends to a
holomorphic proper and isometric immersion from Bn to Ω. Thus it suffices to study global
holomorphic isometric maps from Bn to Ω, and we can just assume V = Bn. Recall F is
called algebraic if each component fi,l of every Fi satisfies Pil(z, fi,l(z)) ≡ 0 in V for some
(nontrivial) irreducible polynomial Pil(z,X) in (z,X) ∈ Cn × C.

In this paper, we say F (which is defined on Bn) extends holomorphically to (or, can be
holomorphically continued to) some p ∈ ∂Bn, if there exist a domain U containing Bn∪{p},

3



and a holomorphic map F̂ on U satisfying F̂ = F on Bn. By the algebraicity of F , there is
a complex hypervariety E in Cn such that F can be holomorphically continued along every
path γ ⊂ Cn\E with its initial point in Bn. In particular, F extends holomorphically to every
point p ∈ ∂Bn \ E. Our first theorem describes the boundary behavior of each component
Fi. Here for a nonzero real analytic function h(z, z) defined on an open set W ⊆ Cn, we
say h(z, z) has vanishing order k ≥ 0 at q ∈ W if the lowest nonzero term(s) in the Taylor

expansion of h at q is of the form
∑
|α|+|β|=k cαβ(z − q)α(z − q)

β
.

Theorem 1.1. Let Ωi ⊂ CNi , 1 ≤ i ≤ m, be an irreducible bounded symmetric domain.
Let F = (F1, · · · , Fm) be a holomorphic isometric map from (Bn, gBn) to (Ω1, λ1gΩ1)× · · · ×
(Ωm, λmgΩm) satisfying gBn =

∑m
i=1 λiF

∗
i (gΩi

) in Bn. Here λ′is are positive constants. Write
S for the set of points p ∈ ∂Bn to which F extends holomorphically. (Then S is open in ∂Bn
and by the above discussion, there is complex hypervariety E in Cn satisfying ∂Bn \E ⊆ S.)
Assume n ≥ 2 and every Fi is non-constant. Then the following two conclusions hold:

(a). For every p ∈ S, the holomorphic continuation of each Fi to p, which is still denoted
by Fi, must map p to ∂Ωi.

(b). Denote by ρi the generic norm of Ωi. For each 1 ≤ i ≤ m, there exists some integer
ki ≥ 1, such that the vanishing order of ρi(Fi, Fi) at every p ∈ S equals ki. Moreover,
it holds that

∑m
i=1 kiλi = 1.

Remark 1.2. Note Theorem 1.1 is optimal in the sense that the assumption of n ≥ 2 cannot
be removed. Indeed, with p ≥ 2, Mok’s p-th root map (see page 1648, [M3]) gives an example
of holomorphic isometric embedding F = (F1, · · · , Fp) from the Poincaré disk ∆ into the
polydisk ∆p, where for every 1 ≤ i ≤ p, the holomorphic continuation of Fi maps some open
piece of ∂∆ to ∆. Hence the assertion in Theorem 1.1 fails when n = 1.

We will give in Section 2 a refined version of Theorem 1.1 for the case when Ω is a product
of Cartan’s classical domains (see Theorem 2.3). Theorem 1.1 makes it possible to apply
machinery from CR geometry to study holomorphic isometric maps from the unit ball to
bounded symmetric domains. In particular, we will apply Theorem 1.1, as well as recently
developed techniques in CR geometry, to study isometric maps from the unit ball to the
product of unit balls and Lie balls. Recall the type IV classical domain DIV

N in CN(N ≥ 2),
also called the Lie ball, is defined by

DIV
N = {Z = (z1, · · · , zN) ∈ CN : ZZ

t
< 2 and 1− ZZt

+
1

4
|ZZt|2 > 0}.

The Kähler form ωDIV
N

associated to the Kähler-Einstein metric gDIV
N

is given by

ωDIV
N

= −
√
−1∂∂ log(1− ZZt

+
1

4
|ZZt|2). (1.2)
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In the second part of the paper, we will establish the following rigidity result.

Theorem 1.3. Let Ωi, 1 ≤ i ≤ m, be either the complex unit ball BNi for some Ni ≥ 1
or the Lie ball DIV

Ni
for some Ni ≥ 2. Let F = (F1, · · · , Fm) be a holomorphic isometric

map from an open connected set V ⊆ Bn to (Ω1, λ1gΩ1) × · · · × (Ωm, λmgΩm) satisfying
(1.1), where λ′is are positive constants. Assume n ≥ 4 and each Fi is non-constant. Then
every Fi, 1 ≤ i ≤ m, extends to a holomorphic isometric embedding from Bn to Ωi with
F ∗i (gΩi

) = gBn . Furthermore,
∑m

i=1 λi = 1.

One key idea to prove Theorem 1.3 is to realize DIV
Ni

as an isometric submanifold in

the indefinite hyperbolic space BNi+1
1 (see Section 3 for the definition of the latter). With

the help of Theorem 1.1, we will show each Fi naturally induces a local holomorphic map
that sends an open piece of ∂Bn to ∂Bni+1

1 , and F induces an isometric map from Bn to
a product of indefinite hyperbolic spaces. To study the induced maps, we apply recently
developed ideas and methods in CR geometry. Especially the work in [HLTX1] will play a
fundamental role in the proof. We also borrow ideas from the work of Yuan-Zhang [YZ]. We
should mention that, in Theorem 1.3 when Ω is just a single copy of a Lie ball, classification
and characterization results of the map were established in [CM], [XY2] and [UWZ]. In
particular, by combining the results in [CM] and [XY2], we see any holomorphic isometric
map H : Bn → DIV

N , N > n ≥ 2, can be decomposed into the form H = ϕ ◦ f ◦ τ ◦ i ◦σ. Here
σ, τ, ϕ are automorphisms of Bn,BN−1, DIV

N , respectively. The map i is the standard linear
embedding from Bn to BN−1. And f is either of the two maps from BN−1 to DIV

N as defined
in Theorem 1.2 of [XY2], one of which is rational and the other irrational.

The paper is organized as follows. Section 2 is devoted to establishing Theorem 1.1.
In Section 3, as a preparation for the proof of Theorem 1.3, we study local holomorphic
isometric maps from the unit ball to the product of indefinite hyperbolic spaces under some
boundary conditions. In Section 4, we use Theorem 1.1 and results in Section 3 to prove
Theorem 1.3.

Acknowledgments. The author thanks Yuan Yuan for helpful comments. The author
is grateful to the anonymous referees for valuable comments that help improve the exposition
of the paper.

2 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. Given p ∈ S, we fix a small ball O in Cn

centered at p such that F extends holomorphically to O (note ∂Bn ∩ O is connected). We
still denote the extension by F = (F1, · · · , Fm).
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Write Zi for the coordinates of CNi . By the definition of the metric gΩi
on the irreducible

bounded symmetric domain Ωi ⊂ CNi , the corresponding Kähler form is given by:

ωΩi
= −
√
−1∂∂ log ρi(Zi, Zi).

Here ρi denotes the generic norm of Ωi. By composing F with automorphisms of Ω if nec-
essary, we can assume F (0) = 0. Write | · | for the Euclidean norm. By using the metric
preserving assumption (1.1), properties of ρi, and a standard reduction (see for example
[M3], [HY]), we have

1− |z|2 =
m∏
i=1

(
ρi
(
Fi, Fi

))λi on Bn. (2.1)

Letting z ∈ Bn → ∂Bn ∩ O in (2.1) (or by the properness of F ), we see there exists some
1 ≤ i ≤ m, such that ρi

(
Fi(z), Fi(z)

)
≡ 0 on ∂Bn ∩ O, or equivalently, Fi(∂Bn ∩ O) ⊆ ∂Ωi

(here we have used the fact that Fi is real analytic on ∂Bn∩O and that ∂Bn∩O is connected).
The following lemma shows it is indeed the case for all Fi.

Proposition 2.1. Under the assumptions of Theorem 1.1 and the above notations, for every
1 ≤ i ≤ m, Fi maps ∂Bn ∩O to ∂Ωi.

Proof of Proposition 2.1: First by the preceding discussion, there is at least one i
such that Fi maps ∂Bn ∩ O to ∂Ωi. Then after re-ordering F ′is and Ω′is, we can find some
1 ≤ i0 ≤ m such that the following two conditions hold:

(I). For every 1 ≤ i ≤ i0, we have Fi(∂Bn ∩O) ⊆ ∂Ωi.

(II). There is a smaller ball Ô ⊂ O in Cn centered at some q̂ ∈ ∂Bn near p such that, for
every i0 + 1 ≤ i ≤ m,Fi maps every q ∈ Ô to Ωi. Consequently, ρi

(
Fi(z), Fi(z)

)
> 0 in Ô.

To establish Proposition 2.1, it suffices to show i0 = m. Seeking a contradiction, we
suppose i0 < m. We first note for each 1 ≤ i ≤ i0, there exists an integer ki ≥ 1 and a real
analytic function ψi in O such that ψi 6≡ 0 on ∂Bn ∩O, and

ρi
(
Fi(z), Fi(z)

)
= (1− |z|2)kiψi(z, z) in O, 1 ≤ i ≤ i0. (2.2)

By further shrinking Ô to a smaller ball centered at some q̃ ∈ ∂Bn near q̂ if necessary, we can
assume ψi(z, z) 6= 0 everywhere in Ô for every 1 ≤ i ≤ i0. Furthermore, since 1 − |z|2 > 0
and ρi

(
Fi(z), Fi(z)

)
> 0 on Bn ∩ Ô, it follows that for 1 ≤ i ≤ i0, ψi(z, z) is everywhere

positive in Bn ∩ Ô, and thus also positive in Ô. Next by (2.1) and (2.2), we have

1− |z|2 =

i0∏
i=1

(1− |z|2)kiλi
(
ψi(z, z)

)λi m∏
i=i0+1

(
ρi
(
Fi(z), Fi(z)

))λi in Bn ∩O. (2.3)
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Note in Ô, ψi(z, z) > 0 for all 1 ≤ i ≤ i0; and ρi
(
Fi(z), Fi(z)

)
> 0 for all i0 + 1 ≤ i ≤ m.

Letting z ∈ Bn ∩ Ô → ∂Bn ∩ Ô in (2.3) and comparing the vanishing order of both sides, we
see that

i0∑
i=1

kiλi = 1. (2.4)

Then (2.3) is reduced to

1 =

i0∏
i=1

(
ψi(z, z)

)λi m∏
k=i0+1

(
ρk
(
Fk, Fk

))λk in Bn ∩ Ô. (2.5)

Note for any λ > 0, the function h(y) = yλ is real analytic on (0,∞). By the positivity and
real analycity of ψi, 1 ≤ i ≤ i0, and ρk

(
Fk, Fk

)
, i0 + 1 ≤ k ≤ m, on the ball Ô, we see the

right hand side of (2.5) is real analytic in Ô. Consequently, (2.5) indeed holds in Ô :

1 =

i0∏
i=1

(
ψi(z, z)

)λi m∏
k=i0+1

(
ρk
(
Fk, Fk

))λk in Ô. (2.6)

Next we define ri(Zi, Zi) := (−1)kiρi(Zi, Zi) for 1 ≤ i ≤ i0. It then follows from (2.2) that

ri
(
Fi(z), Fi(z)

)
= (|z|2 − 1)kiψi(z, z) in O, in particular in Ô, 1 ≤ i ≤ i0. (2.7)

The above implies ri
(
Fi(z), Fi(z)

)
> 0 in Ô\Bn for 1 ≤ i ≤ i0. Moreover, by (2.6) and (2.7),

1 =

i0∏
i=1

(
ri
(
Fi, Fi

)
(|z|2 − 1)ki

)λi m∏
k=i0+1

(
ρk
(
Fk, Fk

))λk in Ô \ Bn. (2.8)

Equivalently, we have

|z|2 − 1 =

i0∏
i=1

(
ri
(
Fi, Fi

))λi m∏
k=i0+1

(
ρk
(
Fk, Fk

))λk in Ô \ Bn. (2.9)

Recall F , which is in particular holomorphic in Ô, extends holomorphically along any path
γ in Cn \E for some complex hypervariety E in Cn. (For convenience, by further shrinking
Ô if necessary, we can assume Ô∩E = ∅. ) We will still denote the holomorphic continuation
of Fi along γ by Fi, 1 ≤ i ≤ m. We have the following lemma regarding the continuation.
To simplify the notations, we write Γ for the set of all paths γ : [0, 1]→ Cn \ (Bn ∪E) with
γ(0) ∈ Ô \ Bn. When we say γ ∈ Γ, we always assume γ is parameterized over the interval
[0, 1].
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Lemma 2.2. (1). For every path γ ∈ Γ, and every 1 ≤ i ≤ m, we have ρi(Fi, Fi) is nonzero
along γ :

ρi(Fi(γ(t)), Fi(γ(t))) 6= 0, for 0 ≤ t ≤ 1.

(2). Fix any i0 + 1 ≤ k ≤ m. Then for every path γ ∈ Γ, we have Fk(γ(t)) ∈ Ωk holds
for t ∈ [0, 1]. In particular, there is a positive constant Mk(only depending on Ωk) such that
|Fk(z)| ≤Mk along every γ ∈ Γ.

Proof of Lemma 2.2: We prove part (1) of the lemma by contradiction. Suppose not.
Then there is a path γ ∈ Γ such that when F is continued holomorphically along γ, we have

m∏
i=1

ρi(Fi, Fi) = 0 at the point z = γ(1).

This yields that

i0∏
i=1

ri
(
Fi, Fi

) m∏
k=i0+1

ρk
(
Fk, Fk

)
= 0 at the point z = γ(1).

Recall that we have ri
(
Fi(z), Fi(z)

)
> 0 in Ô \ Bn for 1 ≤ i ≤ i0; and ρk

(
Fk, Fk

)
> 0 in Ô

for i0 + 1 ≤ k ≤ m. Now set

t0 = sup

{
t > 0 :

i0∏
i=1

rj
(
Fi, Fi

) m∏
k=i0+1

ρk
(
Fk, Fk

)
> 0 along γ([0, t))

}
.

It is clear that 0 < t0 ≤ 1. And
∏i0

i=1 ri
(
Fi, Fi

)∏m
k=i0+1 ρk

(
Fk, Fk

)
= 0 at z = γ(t0).

Moreover,
ri
(
Fi, Fi

)
> 0 along γ([0, t0)) for 1 ≤ i ≤ i0;

ρk
(
Fk, Fk

)
> 0 along γ([0, t0)) for i0 + 1 ≤ k ≤ m.

Note
(
ri
(
Fi, Fi

))λi
is real analytic wherever ri

(
Fi, Fi

)
is a positive real analytic function.

Likewise for
(
ρk
(
Fk, Fk

))λk . It then follows from the analyticity that (2.9) holds along
γ([0, t0)). That is, for 0 ≤ t < t0,

|γ(t)|2 − 1 =

i0∏
i=1

(
ri
(
Fi(γ(t)), Fi(γ(t))

))λi m∏
k=i0+1

(
ρk
(
Fk(γ(t)), Fk(γ(t))

))λk . (2.10)
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Letting t→ t0− on both sides of (2.10), we have the limit of the left hand side is positive
as γ ⊂ Cn \ (Bn∪E), while the limit of the right hand side equals 0. This is a contradiction.
Part (1) of Lemma 2.2 is thus proved.

We also prove part (2) of Lemma 2.2 by contradiction. Fix i0 + 1 ≤ k ≤ m. Suppose
the first assertion of part (2) does not hold. Then there exists a path γ ∈ Γ such that the
holomorphic continuation of Fk along γ, which is still denoted by Fk, satisfies

Fk(γ(1)) ∈ CNk \ Ωk.

We recall Fk(z) ∈ Ωj for all z ∈ Ô, in particular Fk(γ(0)) ∈ Ωk. Since ∂Ωk separates the
two connected open subsets Ωk and CNk \Ωk in CNk , there exists some 0 < t∗ ≤ 1 such that
Fk(γ(t∗)) ∈ ∂Ωk. But this implies ρk

(
Fk, Fk

)
= 0 at the point γ(t∗), a plain contradiction

to part (1) of Lemma 2.2. This proves the first assertion in part (2). The second assertion
in part (2) then immediately follows from the boundedness of Ωk. Hence part (2) of Lemma
2.2 is also established.

We continue to prove Proposition 2.1. For i0 + 1 ≤ k ≤ m, write Fk = (fk,1, · · · , fk,Nk
),

which is in particular a holomorphic map from Ô to CNk . For any fixed i0 + 1 ≤ k ≤
m, 1 ≤ l ≤ Nk and q ∈ Cn \ (Bn ∪ E), write {(fk,l)j,q}νklj=1 for all possible (distinct) germs
of holomorphic functions at q that can be obtained by applying holomorphic continuation
to fk,l along paths γ ∈ Γ. Let τ ≥ 1 and σk,l,τ be the fundamental symmetric function of
{(fk,l)j,q}νklj=1 of degree τ. Then σk,l,τ is a well-defined holomorphic function in Cn \ (Bn ∪E).

Moreover, for each i0 +1 ≤ k ≤ m, 1 ≤ l ≤ Nk and τ ≥ 1, σk,l,τ is bounded over Cn\(Bn∪E)
by part (2) of Lemma 2.2. Thus by Riemann’s removable singularity theorem, σk,l,τ extends
to a bounded holomorphic function in Cn \Bn. Then by Hartogs’s extension theorem (recall
n ≥ 2), σk,l,τ extends to a bounded holomorphic function in Cn, which must be constant
by Liouville’s theorem. Finally, since every σk,l,τ is constant, we have fk,l must be constant
function and therefore Fk is a constant map for every i0 + 1 ≤ k ≤ m, 1 ≤ l ≤ Nk. This
contradicts the assumption of Theorem 1.1 if i0 < m. Hence we must have i0 = m and this
finishes the proof of Proposition 2.1.

We should remark that the above idea of applying Hartogs’s extension theorem and
Liouville’s theorem to study the extension of isometric maps shares the same spirit as that
of [Ng2] and [YZ]. We are now at the position to prove Theorem 1.1.

Proof of part (a) in Theorem 1.1: It’s clear that part (a) of Theorem 1.1 follows
from Proposition 2.1 as O can be a small ball centered at an arbitrary point p ∈ S.

Proof of part (b) in Theorem 1.1: To prove part (b) of Theorem 1.1, we first note
(2.3) is now reduced to the following (recall we have proved i0 = m):
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1− |z|2 =
m∏
i=1

(1− |z|2)kiλi
(
ψi(z, z)

)λi on Bn ∩O; (2.11)

where we recall ψ′is are real analytic functions onO. Similarly, (2.4) is reduced to
∑m

i=1 kiλi =
1. Combining this with (2.11), we have

1 =
m∏
i=1

(
ψi(z, z)

)λi on Bn ∩O. (2.12)

Here we recall by (2.2), ψi(z, z) > 0 on Bn∩O. Fix any q ∈ ∂Bn∩O. Let z ∈ Bn∩O → q, we
get ψi(q, q) 6= 0. By using (2.2) and checking the Taylor expansion of the right hand side of
(2.2) at q, we see the vanishing order of ρi(Fi, Fi) at q equals ki for every q ∈ ∂Bn∩O. Thus
the vanishing order of ρi(Fi, Fi) is locally constant on S. Note ∂Bn ∩E is of real dimension
at most 2n− 3. Consequently, ∂Bn \ E is connected. So is S. Hence the vanishing order of
ρi(Fi, Fi) is constant on S (and equals ki). This proves part (b) of Theorem 1.1.

At the end of this section, we provide a refined version of Theorem 1.1 in the case when
Ω is a product of Cartan’s classical domains. For that, we first recall some preliminary
about the boundary structure of an irreducible bounded symmetric domain D. By Borel
embedding (cf. [M1]), D can be canonically embedded into its dual Hermitian symmetric
manifolds X of compact type. Under the embedding, every automorphism g ∈ Aut(D)
extends to an automorphism of X and D becomes an open orbit under the action of Aut(D)
on X. Moreover, denoting the rank of D by r, the topological boundary ∂D of D decomposes
into exactly r orbits under the action of the identity component Aut0(D) of Aut(D) : ∂D =
∪rj=1Ej, where Ek lies in the closure of El if k > l. Moreover, Ek is the set of smooth points
of the semi-analytic variety ∪rj=kEj (see the proof of Lemma 2.2.3 in [MN]). In particular,
E1 consists of the smooth points of ∂D.

Let Ωi, 1 ≤ i ≤ m, be an (irreducible) Cartan’s classical domain. By the above discussion,
we can write the stratification of the boundary of Ωi as

∂Ωi = ∪ril=1Ei,l with ri = rank(Ωi). (2.13)

Here the E ′i,ls are the orbits under the action of Aut0(Ωi) as described in the above, satisfying

that Ei,k ⊆ Ei,l for k > l.

Theorem 2.3. Let Ωi ⊂ CNi , 1 ≤ i ≤ m, be an (irreducible) Cartan’s classical domain
with rank(Ωi) = ri and with the boundary stratification (2.13). Let F = (F1, · · · , Fm) be
a holomorphic isometric map from Bn to Ω = (Ω1, λ1gΩ1) × · · · × (Ωm, λmgΩm) satisfying
gBn =

∑m
j=1 λjF

∗
j (gΩj

) in Bn. Here λ′is are positive constants. Let S be as defined in
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Theorem 1.1. Assume n ≥ 2 and every Fi is non-constant. Then for each 1 ≤ i ≤ m, there
exists some integer 1 ≤ ki ≤ ri such that for every p ∈ S, the holomorphic continuation of
Fi to p maps p to Ei,ki . Moreover,

∑m
i=1 kiλi = 1.

Proof of Theorem 2.3: Fix 1 ≤ i ≤ m. By Theorem 1.1, the holomorphic extension of
Fi to p ∈ S must map p to ∂Ωi. Furthermore, still denoting the extension by Fi, there exists
some ki ≥ 1, such that the vanishing order of ρi(Fi, Fi) at p equals ki for some ki independent
of the choice of p. Moreover,

∑m
i=1 kiλi = 1. By Theorem 1 in [X1], Fi maps the point p ∈ S

to Ei,l if and only if the vanishing order of ρi(Fi, Fi) at p equals l. Consequently, 1 ≤ ki ≤ ri.
The other assertions in Theorem 2.3 follows as well.

3 Isometric maps into the product of indefinite hyper-

bolic spaces

In this section, as a preparation for the proof of Theorem 1.3, we study local holomorphic
isometric mappings from the unit ball (the hyperbolic space) to the product of indefinite
hyperbolic spaces. In §3.1, we first recall some basic definitions and preliminaries about
indefinite hyperbolic spaces. The section §3.2 proves a couple of algebraic lemmas which
will be used in the later proof. In §3.3, we prove a rigidity result for local holomorphic
isometric mappings from the unit ball to the product of indefinite hyperbolic spaces. The
rigidity result will be fundamentally used in the proof of Theorem 1.3.

3.1 Some preliminary of indefinite hyperbolic spaces

Let n, ` be integers such that n ≥ 2 and 0 ≤ ` ≤ n − 1. The generalized complex unit ball
is defined as the following domain in Pn :

Bn` = {[z0, ..., zn] ∈ Pn : |z0|2 + ...+ |z`|2 > |z`+1|2 + ...+ |zn|2}.

In the special case of ` = 0, Bn0 is reduced to the standard unit ball Bn (embedded in Pn).
The generalized ball Bn` carries a canonical (pseudo-Kähler) metric gBn

`
that is invariant

under the action of its automorphism group PSU(`+ 1, n+ 1), where the latter means the
projectivization of SU(`+ 1, n+ 1). The corresponding Kähler form ωBn

`
of gBn

`
is given by

ωBn
`

= −
√
−1∂∂̄ log(

∑̀
j=0

|zj|2 −
n∑

j=`+1

|zj|2). (3.1)

11



Note the (pseudo-Kähler) metric gBn
`

is indefinite if and only if ` ≥ 1. In this case, the
generalized ball equipped with the metric ωBn

`
is called the indefinite hyperbolic space form.

In the case ` = 0, it is reduced to the standard hyperbolic space form (up to a normalization).
To better perform the local CR differential analysis on the boundary, we also often work
with a different realization of Bn` , which is known as (generalized) Siegel upper-half space.
To introduce the latter, we first fix some notations that will be used throughout Section 3.

Given a fixed ` ≥ 0, we denote by δj,` the symbol which takes value −1 when 1 ≤ j ≤ `
and 1 otherwise. If l = 0, δj,0 is identically one for all j ≥ 1. For fixed integers `′ ≥ ` ≥ 1
and n ≥ 1, we denote by δj,`,`′,n the symbol which takes value -1 when 1 ≤ j ≤ ` or n ≤ j ≤
n+`′−`−1, and 1 otherwise. When `′ = `, δj,`,`′,n is the same as δj,`. Let m ≥ 1. For two m-
tuples x = (x1, ···, xm), y = (y1, ···, ym) of complex numbers, we write 〈x, y〉` =

∑m
j=1 δj,`xjyj,

and |x|2` = 〈x, x̄〉`. Also write 〈x, y〉`,`′,n =
∑m

j=1 δj,`,`′,nxjyj and |x|2`,`′,n = 〈x, x̄〉`,`′,n. For
0 ≤ ` ≤ n− 1, we define the generalized Siegel upper-half space

Sn` = {(z, w) ∈ Cn−1 × C : Im(w) > |z|2`}.

When l = 0, it is reduced to the standard Siegel upper-half space. The topological boundary
Hn
` of Sn` , called the generalized Heisenberg hypersurfaces, is defined by the equation Im(w) =
|z|2` . Now for (z, w) = (z1, ···, zn−1, w) ∈ Cn−1×C, let Ψn(z, w) = [i+w, 2z, i−w] ∈ Pn. Then
Ψn is the Cayley transformation which biholomorphically maps the generalized Siegel upper-
half space Sn` and its boundary Hn

` onto Bn` \{[ξ0, · · ·, ξn] : ξ0 +ξn = 0} and ∂Bn` \{[ξ0, · · ·, ξn] :
ξ0 + ξn = 0}, respectively.

We also define for ` ≤ n− 1, ` ≤ `′ ≤ N − 1 and N ≥ n+ `′ − `,

SN`,`′,n = {(z, w) ∈ CN−1 × C : Im(w) > |z|2`,`′,n}.

Note SN`,`′,n is identical to SN`′ if `′ = `. When `′ > ` , SN`,`′,n is holomorphically equivalent

to SN`′ by a permutation P of coordinates in CN . We will more often work with SN`,`′,n
instead of SN`′ , as it makes notations simpler. The topological boundary HN

`,`′,n of SN`,`′,n is
defined by the equation Im(w) = |z|2`,`′,n. Writing ΨN for the Cayley transformation which

biholomorphically maps SN`′ onto BN`′ \ {[ξ0, · · ·, ξN ] : ξ0 + ξN = 0}, the map ΨN
`,`′,n := ΨN ◦P

biholomorphically maps SN`,`′,n and its boundary HN
`,`′,n onto BN`′ \ {[ξ0, · · ·, ξN ] : ξ0 + ξN = 0}

and ∂BN`′ \{[ξ0, · · ·, ξN ] : ξ0 +ξN = 0}, respectively. We will call ΨN
`,`′,n the generalized Cayley

transformation.
Note the pull back of gBn

`
by Ψn gives a canonical indefinite metric gSn` = Ψ∗n(gBn

`
) on Sn` .

Writing (z1, · · · , zn−1, w) ∈ Cn−1 × C for the coordinates of Cn, the corresponding Kähler
form ωSn` of gSn` is given by −

√
−1∂∂̄ log

(
Im(w) − |z|2l

)
. We in particular recall here the
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explicit formula of gSn` when ` = 0. In this case, the metric gSn0 is indeed the normalized
Bergman metric of the standard Siegel upper-half space Sn0 .

gSn0 =
∑

1≤j,k≤n−1

δjk
(
Im(w)− |z|2

)
+ zjzk(

Im(w)− |z|2
)2 dzj ⊗ dzk +

dw ⊗ dw
4
(
Im(w)− |z|2

)2

+
∑

1≤j≤n−1

zjdzj ⊗ dw
2i
(
Im(w)− |z|2

)2 −
∑

1≤j≤n−1

zjdw ⊗ dzj
2i
(
Im(w)− |z|2

)2 .

(3.2)

Similarly, the pull back of gBN
`′

by ΨN
`,`′,n gives a canonical indefinite metric gSN

`,`′,n
=

(ΨN
`,`′,n)∗gBN

`′
on SN`,`′,n. A direct computation yields an explicit formula of gSN

`,`′,n
and the cor-

responding Kähler form ωSN
`,`′,n

. Writing (Z1, · · · , ZN−1,W ) ∈ CN−1×C for the coordinates

of CN , we have

ωSN
`,`′,n

= −
√
−1∂∂̄ log

(
Im(W )− |Z|2`,`′,n

)
; (3.3)

gSN
`,`′,n

=
∑

1≤J,K≤N−1

δJ,KδK,`,`′,n
(
Im(W )− |Z|2`,`′,n

)
+ δJ,`,`′,nδK,`,`′,nZJZK(

Im(W )− |Z|2`,`′,n
)2 dZJ ⊗ dZK

+
dW ⊗ dW

4
(
Im(W )− |Z|2`,`′,n

)2 +
∑

1≤J≤N−1

δJ,`,`′,nZJdZJ ⊗ dW
2i
(
Im(W )− |Z|2`,`′,n

)2 −
∑

1≤J≤N

δJ,`,`′,nZJdW ⊗ dZJ

2i
(
Im(W )− |Z|2`,`′,n

)2 .

(3.4)

The CR manifold ∂Bn` or Hn
` (or HN

`,`′,n) is a fundamental object in CR geometry, serving
as the basic model for Levi-nondegenerate hypersurfaces (see [BH]). There are extensive
study on the mappings between boundaries of generalized balls. See [BH, BEH, HLTX1,
HLTX2, X2, GN] and references therein.

We next recall some preliminary about holomorphic maps between (generalized) Heisen-
berg hypersurfaces from CR geometry (see [BH], [BEH], [HLTX1]). In this section, we let
F = (f̃ , g) = (f, φ, g) = (f1, · · ·, fn−1, φ1, · · ·, φN−n, g) be a holomorphic map from a neigh-
borhood U of p0 ∈ Hn

` into CN , satisfying F (U ∩ Sn` ) ⊂ SN`,`′,n and F (U ∩Hn
` ) ⊂ HN

`,`′,n. We
additionally assume M1 := U ∩Hn

` is connected and F is CR transversal on M1.
In the following, we denote by (z, w) = (z1, · · · , zn−1, w) the coordinates of Cn = Cn−1×

C. Letting q = (z0, w0) ∈ Cn−1 ×C be a point on Hn
` , we write σ0

q (z, w) = (z + z0, w+w0 +
2i〈z, z̄0〉`) for the (generalized) Heisenberg translation. Then σ0

q is an automorphism of Sn` ,
and in particular, σ0

q is a self-isometry of (Sn` , gSn` ). We write Aut+(HN
`,`′,n) for the group of
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side-preserving meromorphic automorphisms of HN
`,`′,n. Equivalently, it is the set of rational

maps R such that away from the set of indeterminacy I, R locally biholomorphically maps
HN
`,`′,n to itself. In addition, R gives a holomorphic isometric map from (SN`,`′,n \ I, gSN

`,`′,n
) to

(SN`,`′,n, gSN
`,`′,n

).

We will need a normalization lemma from [BH]. To introduce the lemma, we first recall
some notations (from [Hu1, Hu2] and [BH]) for functions of weighted degree that will be
used in the remaining context of the paper. We parameterize Hn

l by (z, z, u) through the
map (z, z, u)→ (z, u+ i

∑n−1
j=1 δj,l|zj|2). Under the parametrization, we assign the weight of

z to be 1, and assign the weight of u and w to be 2. We say a smooth function h(z, z̄, u) on

U ∩ Hn
` is of quantity Owt(s) for s ∈ N, if

∣∣∣∣h(tz,tz̄,t2u)
ts

∣∣∣∣ is bounded for (z, u) on any compact

subset of U ∩ Hn
l and t close to 0. Similarly, we say h is of quantity owt(s) for s ∈ N, if∣∣∣∣h(tz,tz̄,t2u)

ts

∣∣∣∣ converges to 0 uniformly for (z, u) on any compact subset of U∩Hn
` as t goes to 0.

In general, for a smooth function h(z, z̄, u) on U∩Hn
` , we denote h(k)(z, z̄, u) the sum of terms

of weighted degree k in the Taylor expansion of h at 0. Sometimes h(k)(z, z̄, u) also denotes
a weighted homogeneous polynomial of degree k, if h is not specified. When h(k)(z, z̄, u)
extends to a holomorphic polynomial of weighted degree k, we write it as h(k)(z, w) or
h(k)(z) if it depends only on z.

Lemma 3.1. Let F be as above. For each p ∈ M1, there is an element β ∈ Aut+(HN
`,`′,n)

such that the map F ∗∗p = β◦F ◦σ0
p satisfies the normalization conditions (3.5) and (3.6) when

we write F ∗∗p = (f ∗∗p , φ
∗∗
p , g

∗∗
p ). Here f ∗∗p =

(
(f ∗∗p )1, · · · , (f ∗∗p )n−1

)
has (n − 1) components,

φ∗∗p has N − n components and g∗∗p is a scalar function.
f ∗∗p = z +

√
−1
2
a
∗∗(1)
p (z)w +Owt(4)

φ∗∗p = φ
∗∗(2)
p (z) +Owt(3)

g∗∗p = w +Owt(5),

(3.5)

with
〈z̄, a∗∗(1)

p (z)〉`|z|2` = |φ∗∗(2)
p (z)|2τ , τ = `′ − `. (3.6)

Remark 3.2. If we write a
∗∗(1)
p (z) = zA(p) for some (n − 1) × (n − 1) matrix A(p) =

(ajk)1≤j,k≤n−1, then (f ∗∗p )k(z, w) = zk +
√
−1
2

∑n−1
j=1 ajkzjw + Owt(4) for 1 ≤ k ≤ n − 1. By

[HLTX1], the geometric rank of F at p is defined as the rank of the matrix A(p). See more
details of the definition in [HLTX1].
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3.2 An algebraic proposition

We first recall the definition of Hermitian rank of a real polynomial. Let R(z, z) be a real
polynomial in Cn. Then R(z, z) can be written as R(z, z) =

∑p
i=1 |fi(z)|2 −

∑q
j=1 |gj(z)|2

for some p, q ∈ Z≥0, where f ′is and g′js are holomorphic polynomials in Cn. Moreover
f1, · · · , fp, g1, · · · , gq are linearly independent over C. Then r = p+q is called the (Hermitian)
rank of R(z, z), and the pair (p, q) is called the signature of R(z, z). We remark that the rank
and signature of R(z, z) are independent of the choices of f ′is and g′js. The real polynomial
R(z, z) has rank zero (equivalently, it has signature (0, 0)), if and only if R(z, z) is identically
zero.

We recall the following well-known simple fact about the signature of real polynomials.
For the convenience of the readers, we sketch a proof here.

Lemma 3.3. Let R(z, z) be a real polynomial. Assume R(z, z) =
∑r

i=1 |φi(z)|2−
∑t

j=1 |ψj(z)|2,
where r, t ∈ Z≥0; φ′is and ψ′js are some holomorphic polynomials (they are not necessarily
linearly independent over C). Then the signature (p, q) of R(z, z) satisfies p ≤ r, q ≤ t.

Proof. We can assume R(z, z) is not identically zero, for otherwise the conclusion is trivial.
Since R(z, z) has signature (p, q), R(z, z) can be written as

R(z, z) =

p∑
i=1

|fi(z)|2 −
q∑
j=1

|gj(z)|2.

Here {f1, · · · , fp, g1, · · · , gq} is a set of linearly independent holomorphic polynomials over
C. We first prove p ≤ r. Seeking a contradiction, suppose p > r. Note by assumption we
have

p∑
i=1

|fi(z)|2 +
t∑

j=1

|ψj(z)|2 =
r∑
i=1

|φi(z)|2 +

q∑
j=1

|gj(z)|2.

By a lemma of D’Angelo (see [D]), for each 1 ≤ i ≤ p, we can find an (r + q)−dimensional
vector vi with complex entries such that fi = (φ1, · · · , φr, g1, · · · , gq)vi for 1 ≤ i ≤ p.
Consequently, since p > r, there exist constants λ1, · · · , λp, which are not all zero, such that∑p

i=1 λifi can be written as a linear combination of gj’s. This contradicts with the linear
independence of fi’s and gj’s. Hence we must have p ≤ r. Similarly one can prove q ≤ t.

We next prove the following algebraic lemma, which will be applied in §3.3. For two m-
tuples ξ = (ξ1, · · · , ξm), η = (η1, · · · , ηm) of complex numbers, we write 〈ξ, η〉 =

∑m
j=1 ξjηj.

Write Tr for the matrix trace operator.
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Proposition 3.4. Let m ≥ 3 and z = (z1, · · · , zm) be the coordinates of Cm. Let A be an
m×m Hermitian matrix such that R(z, z) = 〈zA, z〉|z|2 has signature (p, q) with 0 ≤ q ≤ 1.
Then we have the following two conclusions hold.

(1). Tr(A) ≥ 0.

(2). Tr(A) = 0 if and only if A is the zero matrix.

Proof of Proposition 3.4: By assumption, we can write

R(z, z) = 〈zA, z〉|z|2 =

p∑
i=1

|fi(z)|2 −
q∑
j=1

|gj(z)|2. (3.7)

for some linearly independent holomorphic polynomials f1, · · · , fp, g1, · · · , gq. Let U be an

m × m unitary matrix such that Â := UAU
t

= diag(λ1, · · · , λm), where λ1 ≥ · · · ≥ λm.
Replacing z by zU in (3.7), we get

〈zÂ, z〉|z|2 =

p∑
i=1

|fi(zU)|2 −
q∑
j=1

|gj(zU)|2. (3.8)

Therefore the real polynomial R̂(z, z) := 〈zÂ, z〉|z|2 also has signature (p, q). We next prove
the following claim:

Claim 1: One of the following two mutually exlcusive conditions must hold:

(A). For all 1 ≤ j ≤ m,λj ≥ 0.

(B). The last eigenvalue λm < 0, and λm−1 ≥ −λm. Consequently, λj > 0 for every
1 ≤ j ≤ m− 1 and Tr(A) =

∑m
i=1 λi > 0.

Proof of Claim 1: If λm ≥ 0, then (A) holds. We will thus assume λm < 0. We restrict
R̂(z, z) to the complex 2−plane H := {(0, · · · , 0, zm−1, zm) : zm−1, zm ∈ C}. Write R̂|H for
the function obtained by this restriction. By the form of Â and the definition of R̂, we have

R̂|H = (λm−1|zm−1|2 + λm|zm|2)(|zm−1|2 + |zm|2)

= λm−1|zm−1|4 + (λm−1 + λm)|zm−1zm|2 + λm|zm|4.
(3.9)

Write (p∗, q∗) for the signature of R̂|H . By restricting (3.8) to H and using Lemma 3.3, we
have q∗ ≤ q ≤ 1.

Suppose λm−1 + λm < 0. Note the functions z2
m−1, zm−1zm, z

2
m are linearly independent

over C. Then by (3.9), we have (p∗, q∗) = (1, 2) if λm−1 > 0; (p∗, q∗) = (0, 2) if λm−1 = 0;
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and (p∗, q∗) = (0, 3) if λm−1 < 0. In any case, it contradicts the preceding conclusion
that q∗ ≤ q ≤ 1. Hence we must have λm−1 ≥ −λm > 0. Consequently, λj > 0 for all
1 ≤ j ≤ m − 1. Finally since m ≥ 3, we have

∑m
j=1 λj > 0. This finishes the proof of the

claim.
We continue to prove Proposition 3.4. Note part (1) of Proposition 3.4 follows imme-

diately from Claim 1. To prove part (2), we only need to show that if Tr(A) = 0, then A
is zero. For that, we note when Tr(A) = 0, we must have case (A) holds in Claim 1. In
this case, the trace free condition immediately yields that all the eigenvalues λj = 0, and
therefore A is the zero matrix. Proposition 3.4 is thus established.

Remark 3.5. In the case m = 2, part (1) of Proposition 3.4 still holds, while part (2)
fails. For example, write z = (z1, z2) for the coordinates of C2, and let the 2 × 2 matrix
A = diag(λ,−λ) for some positive number λ. Then it is clear that the real polynomial
〈zA, z〉|z|2 = λ(|z1|4− |z2|4) has signature (1, 1). The trace of A is zero, while A is not zero.

3.3 Rigidity of isometric maps into products of indefinite hyper-
bolic spaces

We will prove a rigidity theorem for holomorphic isometric maps into a product of indefinite
hyperbolic spaces based on the setup and results from §3.1 and §3.2. The proof uses some
recently developed machinery in CR geometry ([HLTX1]), as well as ideas from the work of
Yuan-Zhang [YZ].

We consider local holomorphic map sending a piece of Hn
` to HN

`,`′,n with ` = 0 and `′ = 1.

More precisely, let N > n > 1 and let F = (f̃ , g) = (f, φ, g) = (f1, ···, fn−1, φ1, ···, φN−n, g) be
a holomorphic map from a neighborhood U of p0 = 0 ∈ Hn

0 into CN , satisfying F (U ∩ Sn0 ) ⊂
SN0,1,n and F (U ∩Hn

0 ) ⊂ HN
0,1,n. Assume F (0) = 0 and F is CR transversal at 0. Then there

exists a positive-valued real analytic function h in a small neighborhood of 0 such that

Im(g)− |f̃ |20,1,n =
(
Im(w)− |z|2

)
h.

Consequently, X := gSn0 − F
∗(gSN0,1,n) extends to a well-defined real analytic Hermitian sym-

metric (1, 1)−tensor in some neighborhood V of 0. Similarly as in [YZ], the value of X
along Hn

0 gives an intrinsic CR invariant that is associated with the map F near 0. We will
follow the idea in [YZ] to make connection of X with the CR second fundamental form of
the map F . For that, we normalize F and compute X under the normalization. First note
by Lemma 3.1, we can compose F with some β ∈ Aut+(HN

`,`′,n), such that the new map

β ◦F, still denoted by F = (f̃ , g) = (f, φ, g), satisfies the following normalization (3.10) and
(3.11). Here (z, w) = (z1, · · · , zn−1, w) denotes the coordinates of Cn = Cn−1 × C.
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
f = z +

√
−1
2
a(1)(z)w +Owt(4)

φ = φ(2)(z) +Owt(3)

g = w +Owt(5),

(3.10)

with
〈z̄, a(1)(z)〉|z|2 = |φ(2)(z)|21. (3.11)

Here a(1)(z) = zA for some (n − 1) × (n − 1) matrix A = (ajk)1≤j,k≤n−1. By (3.11), A is a
Hermitian matrix.

Write H := Im(g) − |f̃ |20,1,n which is a real analytic function on U . We next follow the
method of Lemma 2.4 and Proposition 2.5 in [YZ] to study the asymptotic behavior of H
and the boundary value of X. To make the computation simpler, we will carry it out in a
slightly different way from that in [YZ].

Write w = s+ it, where s, t are real and imaginary parts of w. Write L for a small piece
of real line segment passing through 0 along the normal direction ∂

∂t
of Hn

0 at 0. That is, L
is the following real line segment for some small ε > 0 :

L = {(z, w) ∈ Cn : z = 0, w = it with t ∈ R, |t| < ε}.

We restrict H on L to obtain H|L. Since H(0) = 0, by the Taylor expansion of H|L at t = 0
we have,

H|L(t) =
∂H

∂t
(0)t+

1

2

∂2H

∂t2
(0)t2 +O(3). (3.12)

Here O(k) denotes a real analytic function on L at 0 whose vanishing order at t = 0 is at
least k. We furthermore have the following lemma.

Lemma 3.6. Let F be as above and in particular satisfies (3.10) and (3.11). Then H|L
satisfies the following expansion at t = 0 :

H|L(t) = t+O(3).

Proof of Lemma 3.6: The proof is basically the same as that of Lemma 2.4 in [YZ]. We
sketch a proof here. For a function ψ of t, we write ψw = ∂ψ

∂w
. For a vector-valued function

Ψ = (ψ1, · · · , ψm), we write Ψw = (∂ψ1

∂w
, · · · , ∂ψm

∂w
), and ψw,Ψw are understood similarly.

Note ∂
∂t

= i ∂
∂w
− i ∂

∂w
. We thus have

∂H

∂t
(0) = iHw− iHw =

1

2
(gw(0)+gw(0))+ i〈f̃(0), f̃w(0)〉0,1,n− i〈f̃w(0), f̃(0)〉0,1,n = 1. (3.13)

The last equality follows from (3.10). One can verify that ∂2H
∂t2

(0) = 0 by using (3.10) in a
similar manner. Then the lemma follows from the above calculation and (3.12).
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Proposition 3.7. Let F be as Lemma 3.6 and X be as defined above. Write

X =
∑

1≤j,k≤n−1

Xjkdzj ⊗ dzk +
∑

1≤j≤n−1

Xjndzj ⊗ dw +
∑

1≤j≤n−1

Xnjdw ⊗ dzj +Xnndw ⊗ dw.

Then we have for 1 ≤ j, k ≤ n− 1,

Xjk(0) = −2i
∂2fk
∂zj∂w

(0) = ajk.

Here (ajk)1≤j,k≤n−1 is the coefficient matrix of a(1)(z) in (3.11).

Proof of Proposition 3.7: The proof is very similar to that of Proposition 2.5 in [YZ].
Although Xjk (as well as Xjn, Xnj and Xnn) are real analytic in a neighborhood of 0, we
will however carry out a calculation of H2Xjk instead of Xjk, as in [YZ]. This will make the
computation easier: In the definition of X, gSn0 and F ∗(gSN0,1,n) both have a singularity at 0,

and the multiplication of H2 annihilates the singularity.
Note H2X is a real analytic (1, 1)−tensor near 0 and its coefficient along the direction

dzj ⊗ dzk, 1 ≤ j, k ≤ n − 1, equals H2Xjk. We restrict H2Xjk to L, and write hjk for the
function obtained by the restriction. Then by Lemma 3.6,

hjk = (H|L)2(Xjk|L) = Xjk(0)t2 +O(3). (3.14)

On the other hand, we can use the explicit formula X := gSn0 − F
∗(gSN0,1,n) to compute

H2X and hjk. We first consider H2gSn0 . Take the coefficient of H2gSn0 along dzj ⊗ dzk, 1 ≤
j, k ≤ n− 1, and restrict it to L. Denoting by ψjk the function obtained by this restriction,
we have by Lemma 3.6 and (3.2),

ψjk = (H|L)2(δjk
t

t2
) = δjkt+O(3). (3.15)

Write I, II, III, IV for the four tensors on the right hand side of (3.4), respectively. Then
we have

H2F ∗(I) =
∑

1≤J,K≤N−1

(
δJ,KδK,0,1,nH + δJ,0,1,nδK,0,1,nf̃J f̃K

)
df̃J ⊗ df̃K .

Collect the coefficient of the above tensor along the direction dzj ⊗ dzk, 1 ≤ j, k ≤ n− 1
and restrict it to L. Write ηIjk for the function obtained by the restriction. Note by (3.10),

(f̃J)|L(t) = O(2) for any 1 ≤ J ≤ N − 1. Consequently,

ηIjk =
∑

1≤K≤N−1

δK,0,1,n(H|L)
(∂f̃K
∂zj

)
|L
(∂f̃K
∂zk

)
|L +O(4) = (H|L)〈f̃zj , f̃zk〉0,1,n +O(4). (3.16)
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Note (φl)zj |L = O(1), for 1 ≤ l ≤ N − n, 1 ≤ j ≤ n− 1. By the first equation of (3.10), we
have

(fl)zj = δjl +
i

2
ajlw +Owt(3), 1 ≤ l ≤ n− 1.

Using the above and Lemma 3.6, we see (3.16) is reduced to

ηIjk = t〈fzj |L, fzk |L〉+O(3) = t(δjk −
1

2
akjt−

1

2
ajkt) +O(3). (3.17)

Since A = (ajk)1≤j,k≤n−1 is a Hermitian matrix, we have akj = ajk. Thus the above equation
is reduced to

ηIjk = δjkt− ajkt2 +O(3). (3.18)

Similarly, we collect respectively the coefficient of the tensorsH2F ∗(II), H2F ∗(III), H2F ∗(IV)
along the direction dzj ⊗ dzk, 1 ≤ j, k ≤ n − 1, and restrict them to L. Write the func-
tions obtained by the restriction as ηIIjk , η

III
jk and ηIVjk , respectively. Note again by (3.10),

gzj |L(t) = O(2), 1 ≤ j ≤ n − 1, and (f̃J)|L(t) = O(2), 1 ≤ J ≤ N − 1. One can therefore
verify directly that ηIIjk , η

III
jk and ηIVjk are all of order O(4). Putting this together with (3.15)

and (3.18), we obtain

hjk = ψjk − (ηIjk + ηIIjk + ηIIIjk + ηIVjk ) = ajkt
2 +O(3). (3.19)

Finally we establish Proposition 3.7 by comparing (3.14) and (3.19).

We are now ready to formulate and prove a rigidity result about local holomorphic
isometric map from the unit ball to a product of generalized balls.

Theorem 3.8. Let n ≥ 4 and m ≥ 1. Let U be an open subset in Cn containing some
p ∈ ∂Bn such that U ∩ Bn is connected. Let G = (G1, · · · , Gm) be a holomorphic map
from U to PN1 × · · · × PNm , where all Ni ≥ 2. Assume each Gi, 1 ≤ i ≤ m, satisfies
Gi(U ∩ Bn) ⊆ BNi

1 and Gi(U ∩ ∂Bn) ⊆ ∂BNi
1 . Assume G is a local isometric embedding in

the sense that gBn =
∑m

i=1 λiG
∗
i (gBNi

1
) on U ∩ Bn, where λ′is are all positive constants. Then

each Gi is an isometric map from (U ∩ Bn, gBn) to (BNi
1 , gBNi

1
) satisfying G∗i (gBNi

1
) = gBn on

U ∩ Bn. Consequently,
∑m

i=1 λi = 1.

Remark 3.9. In the setting of Theorem 3.8, since 1 < n − 1, we can apply Lemma 4.1 in
[BH] (or Theorem 1.1 in [BER]) to see that each Gi, as a holomorphic map sending U ∩∂Bn
to ∂BNi

1 , is CR transversal at a generic point on ∂Bn. It then follows that Ni ≥ n + 1 for
each i(cf. [BH]).
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Proof of Theorem 3.8: Recall there is a Cayley transformation Ψn that biholo-
morphically maps Sn0 and its boundary Hn

0 onto Bn and ∂Bn \ {(0,−1)}, respectively.
By composing G with some automorphism of Bn, we can assume p0 = Ψn(0). Further-
more, recall there is some generalized Cayley transformation ΨN

0,1,n that biholomorphi-
cally maps SN0,1,n and its boundary HN

0,1,n onto BN1 \ V and ∂BN1 \ V , respectively. Here
V = {[z0, · · · , zN ] ∈ PN : z0 + zN = 0}. By composing each Gj with some automorphism of

BNj

1 , we can assume Gi(p0) = ΨNi
0,1,n(0) for every 1 ≤ i ≤ m. Now set

Fi := (ΨNi
0,1,n)−1 ◦Gi ◦Ψn, 1 ≤ i ≤ m.

By the assumption on Gi, each Fi is a well-defined holomorphic map from some neighborhood
W of 0 in Cn to CNi with Ψn(W ) ⊆ U (By shrinking W , we assume W ∩ Sn0 is connected).
Moreover, for each i we have, Fi(W ∩ Sn0 ) ⊆ SNi

0,1,n and Fi(W ∩ Hn
0 ) ⊆ HNi

0,1,n. Furthermore,
by the metric preserving condition of G and the definitions of gSn0 and gSNi

0,1,n
, we have

F := (F1, · · · , Fm) preserves the metric in the sense that

gSn0 =
m∑
i=1

λiF
∗
i (gSNi

0,1,n
) on W ∩ Sn0 . (3.20)

The argument in Remark 3.9 shows that Fi, as a holomorphic map sending W ∩ Hn
0 to

HNi
0,1,n, is CR transversal at a generic point on W ∩ Hn

0 . By shrinking W to a small ball
centered at some q ∈ Hn

0 , we can assume Fi is CR transversal along W ∩ Hn
0 for every

1 ≤ i ≤ m. By composing F with σ0
q , we can further assume q = 0. Furthermore, by

Lemma 3.1, composing each Fi with some element in Aut+(HNi
0,1,n) if necessary, we can

assume Fi satisfies the normalization condition (3.10) and (3.11). Following the notation at
the beginning of this section, we write X(Fi) := gSn0 −F

∗
i (gSNi

0,1,n
). By the previous discussion,

X(Fi) extends to a real analytic (1, 1)−tensor in some small neighborhood of 0, which can
be indeed taken to be W . We rewrite (3.20) into the following equation:

(−1 +
m∑
i=1

λi)gSn0 =
m∑
i=1

λi(gSn0 − F
∗
i (gSNi

0,1,n
)) =

m∑
i=1

λiX(Fi) on W ∩ Sn0 . (3.21)

Note the right hand side of (3.21) extends real analytically across W ∩ Hn
0 , while gSn0 is

singular at every point on Hn
0 . Hence we must have

∑m
i=1 λi = 1. Consequently, (3.21) is

reduced to
m∑
i=1

λiX(Fi) = 0 on W ∩ Sn0 . (3.22)
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Collecting the (dzj⊗dzk)−component of (3.22), 1 ≤ j, k ≤ n−1, and then letting z ∈ W∩Sn0
go to 0, we obtain

m∑
i=1

λi
(
X(Fi)

)
jk

(0) = 0. (3.23)

Here
(
X(Fi)

)
jk

is (dzj⊗dzk)−component of X(Fi). By Proposition 3.7, for each 1 ≤ i ≤ m,(
X(Fi)

)
jk

(0) = aijk, where Ai = (aijk)1≤j,k≤n−1 is the matrix associated with Fi in the

expansion of Fi at 0 as in (3.10) and (3.11) (see also Lemma 3.1 and Remark 3.2). Recall
by (3.11), Ai is a Hermitian matrix. Moreover, by Lemma 3.3 and (3.11), 〈zAi, z〉|z|2 has
signature (p, q) with 0 ≤ q ≤ 1. Since n− 1 ≥ 3, by part (1) of Proposition 3.4, Tr(Ai) ≥ 0.
But (3.23) means

∑m
i=1 λiAi = 0, which implies

∑m
i=1 λiTr(Ai) = 0. Hence we must have

Tr(Ai) = 0 for each i. We then apply part (2) of Proposition 3.4 to conclude that Ai = 0
for every i. It follows that the geometric rank of each Fi at 0 equals 0 (see Remark 3.2).

Next for each p ∈ W ∩ Hn
0 near 0, let βi ∈ Aut+(HNi

0,1,n) (depending on p) be such that
(Fi)

∗∗
p := βi◦Fi◦σ0

p, 1 ≤ i ≤ m, satisfies the normalization as in Lemma 3.1 with ` = 0, `′ = 1
(or the normalization similar to (3.10) and (3.11)). In particular, each (Fi)

∗∗
p maps 0 to 0.

Moreover, F̂p := ((F1)∗∗p , · · · , (Fm)∗∗p ) still satisfies the metric preserving condition as in

(3.20). Then we can apply the preceding argument to F̂p and conclude the geometric rank
of each (Fi)

∗∗
p at 0 equals 0. This is equivalent to that Fi has the geometric rank 0 at p (see

Proposition 3.4 in [HLTX1]). Since p is an arbitrary point on Hn
0 near 0, it follows that each

Fi has geometric rank 0 at every point on Hn
0 near 0. By the relation of Fi and Gi, and the

definition of geometric rank (see page 14 [HLTX1]), we see each Gi is CR transversal and
has geometric rank zero along some open piece of ∂Bn ∩ U. Finally we apply Theorem 1 in
[HLTX1] to conclude that every Gi is an isometric map from (U ∩ Bn, gBn) to (BNi

1 , gBNi
1

)

with G∗i (gBNi
1

) = gBn on U ∩ Bn. Theorem 3.8 is thus established.

Corollary 3.10. Let n ≥ 4 and m ≥ 1. Let U be an open subset in Cn containing some
p ∈ ∂Bn such that U ∩ Bn is connected. Let G = (G1, · · · , Gm) be a holomorphic map from
U to PM1 × · · · × PMm , where all Mi ≥ 2. Let Di ⊆ PMi , 1 ≤ i ≤ m, be either the unit ball
BMi ⊂ CMi ⊂ PMi or the generalized ball BMi

1 ⊂ PMi . Assume each Gi, 1 ≤ i ≤ m, satisfies
Gi(U ∩ Bn) ⊆ Di and Gi(U ∩ ∂Bn) ⊆ ∂Di. Assume G is a local isometric embedding in the
sense that gBn =

∑m
i=1 λiG

∗
i (gDi

) on U ∩Bn, where λ′is are all positive constants. Then each
Fi is an isometric map from (U ∩ Bn, gBn) to (Di, gDi

) satisfying G∗i (gDi
) = gBn on U ∩ Bn.

Consequently,
∑m

i=1 λi = 1.

Proof of Corollary 3.10: Write TM for the standard embedding from CM to PM+1

given by
TM : (z1, · · · , zM) ∈ CM → [1, 0, z1, · · · , zM ] ∈ PM+1.
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Note TM gives a canonical holomorphic isometric embedding from (BM , gBM ) to (BM+1
1 , gBM+1

1
) :

T ∗M(gBM+1
1

) = gBM . In particular, TM maps ∂BM to ∂BM+1
1 .

We define a new map G̃ = (G̃1, · · · , G̃m) in terms of G as follows. For 1 ≤ i ≤ m, if Di

is the generalized ball BMi
1 , then we set Ni = Mi and D̃i = Di, and set G̃i = Gi. If Di is the

unit ball BMi , then we set Ni = Mi + 1 and D̃i = BNi
1 , and set G̃i = TMi

◦ Gi : U → PNi .

Then G̃ is a holomorphic map from U to PN1 × · · · × PNm satisfying G̃i(U ∩ Bn) ⊆ BNi
1 and

G̃i(U ∩ ∂Bn) ⊆ ∂BNi
1 . Moreover, G̃ is isometric in the sense that gBn =

∑m
i=1 λiG̃

∗
i (gBNi

1
).

Hence by Theorem 3.8, each G̃i is an isometric map with gBn = G̃∗i (gBNi
1

). Note in the case

Di = BMi , we have

gBn = G̃∗i (gBNi
1

) = G∗i
(
T ∗M(gBNi

1
)
)

= G∗i (gBMi ) on U ∩ Bn.

This proves Corollary 3.10.

Remark 3.11. In the setting of Corollary 3.10, from the proof and Remark 3.9, we see for
each 1 ≤ i ≤ m, if Di = BMi , then we must have Mi ≥ n. If Di = BMi

1 , then we must have
Mi ≥ n+ 1.

4 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Let F be as in the theorem. First, as
discussed in Section 1, by [M3] and [CXY], F extends to a holomorphic proper and isometric
immersion from Bn to Ω. We can thus just assume V = Bn. Before starting the proof, we
remark that in the setting of Theorem 1.3, DIV

2 cannot appear as one of the Ω′is. Indeed,
suppose Ωi = DIV

2 for some i. Since DIV
2 is biholomorphic to the bidisc ∆2, it follows

from Theorem 1.1 that a generic point on ∂Bn is mapped to the unit circle ∂∆ by some
non-constant holomorphic map. This is a contradiction since n ≥ 4 (cf. [BX]). Hence if
Ωi = DIV

Ni
, then we must have Ni ≥ 3. Consequently, each Ωi is an irreducible bounded

symmetric domain. We also remark that once Theorem 1.3 is established, then by the
existence of an isometric map from Bn to Ωi we must have Ni ≥ n when Ωi = BNi ; and
Ni ≥ n + 1 when Ωi = DIV

Ni
(see [M4] or [XY1]. The same conclusion can also be derived

by merely applying Theorem 1.1 which yields the existence of a non-constant holomorphic
map sending a piece of ∂Bn to ∂Ωi).

Proof of Theorem 1.3: Denote by LN the following embedding from CN to PN+1 :

LN(z1, · · · , zN) = [1,
1

2

N∑
j=1

z2
j , z1, · · · , zN ].
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Then by (1.2) and (3.1), LN gives a canonical holomorphic isometric map from (DIV
N , gDIV

N
)

to (BN+1
1 , gBN+1

1
) : L∗N(gBN+1

1
) = gDIV

N
. In particular, we have LN(∂DIV

N ) ⊆ ∂BN+1
1 . Note by

Theorem 1.1, there exists a small ball U centered at some p0 ∈ ∂Bn (in particular U ∩Bn is
connected) such that F extends holomorphically to U . Moreover, still denoting the extension
by F , for each 1 ≤ i ≤ m,F (U ∩ ∂Bn) ⊆ ∂Ωi (and trivially F (U ∩ Bn) ⊆ Ωi). Then we
define a new map G = (G1, · · · , Gm) on U in terms of F as follows. For each 1 ≤ i ≤ m, if
Ωi = BNi , then we just define Mi = Ni and Di = BMi , and define Gi = Fi on U . If Ωi = DIV

Ni
,

then we define Mi = Ni + 1 and Di = BMi
1 , and define Gi = LNi

◦ Fi on U . Here LNi
is the

aforementioned embedding from CNi to PMi that gives a canonical holomorphic isometric
map from (DIV

Ni
, gDIV

Ni
) to (BMi

1 , gBMi
1

). One can easily verify that Gi maps U to PMi , and

satisfies Gi(U ∩ Bn) ⊆ Di and Gi(U ∩ ∂Bn) ⊆ ∂Di. In this way, G = (G1, · · · , Gm) is a
local holomorphic map from U to PM1 × · · · ×PMm . Moreover, by the definition of G as well
as the metric-preserving property of F and LNi

, we have gBn =
∑m

i=1 λiG
∗
i (gDi

) on U ∩ Bn.
Consequently, G satisfies the assumptions in Corollary 3.10. Hence by the conclusion of
Corollary 3.10, each Gi, 1 ≤ i ≤ m, is an isometric map from U ∩ Bn to Di : gBn = G∗i (gDi

)
on U ∩ Bn.

Now for each i, by the construction of G, if Di equals BNi , then so does Ωi and Fi = Gi.
Therefore Fi is a local holomorphic isometric map from U∩Bn to Ωi = BNi , and thus extends
to a totally geodesic embedding to Bn to BNi . If Di = BMi

1 , then Ωi = DIV
Ni

with Mi = Ni+1,
and Gi = LNi

◦ Fi. It then follows that

gBn = (LNi
◦ Fi)∗(gBNi+1

1
) = F ∗i

(
L∗Ni

(gBNi+1
1

)
)

= F ∗i (gDIV
Ni

) on U ∩ Bn.

Hence for every 1 ≤ i ≤ m, Fi is a local holomorphic isometric map from (U ∩ Bn, gBn) to
(Ωi, gΩi

). Finally since F is holomorphic on Bn (see the discussion at the beginning of this
section), by the analyticity we see every Fi is holomorphic isometric map from Bn to Ωi.
This finishes the proof of Theorem 1.3.

We finally remark that, in the proofs of Theorem 3.8 and Theorem 1.3, the assumption
n ≥ 4 is essentially used to apply Proposition 3.4, which yields the vanishing of the geometric
rank. When n = 2, 3, it seems the behavior of the geometric rank can be more complicated
and in particular, Proposition 3.4 fails when m = 1, 2 (see Remark 3.5). We however expect
the conclusion of Theorem 1.3 to still hold in these lower dimensional cases.
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