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Abstract. In this paper, we define the quantum product on the full orbifold K-group
of a smooth Deligne–Mumford stack. Its degree-zero piece is the full orbifold K-ring
introduced by Jarvis–Kaufmann–Kimura [40] and Adem–Ruan–Zhang [4]. We obtain
the explicit formulas of K-theoretic small I-functions of toric stacks. In the case of
weight projective spaces, we give an explicit description of the relations in the small
orbifold quantum K-ring, which generalize the relations obtained by Goldin–Harada–
Holm–Kimura [34] for the full orbifold K-ring.
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1. Introduction

1.1. Overview. Quantum K-theory was introduced by Givental [21] and Lee [46] as the
K-theoretic generalization of Gromov-Witten theory. Let X be a smooth projective variety
over C and let Mg,n(X, d) be the moduli space of degree d, genus-g, n-pointed stable maps
into X. Quantum K-invariants of X are defined as holomorphic Euler characteristics of
natural K-theory classes over Mg,n(X, d). Recently, there has been increased interest in
studying quantum K-invariants due to their connections to 3d gauge theories [37, 38, 41–
43, 58] and representation theory [5, 6, 45, 47, 48, 51].

It is shown in [21, 46] that the WDVV equation and most of Kontsevich-Manin axioms
hold in quantum K-theory. However, there are two major differences between quantum K-
theory and Gromov-Witten theory. First, there is no degree constraint or divisor equations
in quantum K-theory. As a result, the quantum K-invariants do not vanish for large
degrees even if X is Fano. A priori, a product of two K-theory classes in the quantum
K-ring of a Fano variety could be a formal power series in the Novikov variables with
infinitely many nonzero terms. Finiteness of quantum K-theory was first proved for the
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Grassmannians [14], and the finiteness result was generalized to cominuscule homogeneous
spaces in [12, 13] and any general homogeneous space X = G/P in [8]. The second major
difference between K-theoretic invariants and cohomological invariants is that the former
is more sensitive to the stacky structure of the moduli spaces. The Kawasaki–Hirzebruch–
Riemann–Roch formula [44, 54] expresses the holomorphic Euler characteristics of coherent
sheaves on a smooth orbifold (or Deligne–Mumford stack)M as intersection numbers over
its inertia stack IM. By applying the (virtual) Kawasaki–Hirzebruch–Riemann–Roch
formula [55], Givental–Tonita [33] expressed quantum K-invariants in terms of intersection
numbers over the inertia stack I Mg,n(X, d) of the moduli space of stable maps. They
gave a sophisticated description, called the adelic characterization, of the image of the K-
theoretic J-function in terms of the Lagrangian cones of certain twisted Gromov-Witten
invariants of the same target space.

Using the adelic characterization, Givental–Tonita [33] showed that certain explicit q-
hypergeometric series, called the K-theoretic I-function, lies on the Lagrangian cone of the
quantum K-theory of Fano complete intersections in projective spaces. Such a statement
is called a mirror theorem. To establish mirror theorems for quantum K-theory of general
target spaces, Givental studied a variant of quantum K-invariants in a series of papers
[22–32]. These invariants are called permutation-equivariant quantum K-invariants whose
definition takes into account the Sn-action on Mg,n(X,β) defined by permuting the marked
points. K-theoretic mirror theorems have been proved in [24, 25, 33] for toric varieties and
in [57] for general GIT quotients without stacky structure. Similar results have also been
established for quantum K-theory with level structure in [50] for toric varieties and in [61]
for general “stacky” GIT quotients. Note that mirror theorems for quantum K-theory with
level structure recover those for ordinary quantum K-theory.

1.2. Background and motivation. We now describe part of our motivation for studying
orbifold quantum K-theory, i.e., quantum K-theory of smooth Deligne–Mumford stacks.
Consider the Fermat quintic three-fold X defined by the homogeneous polynomial

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5.

In [17], Chiodo-Ruan proved a Landau–Ginzburg/Calabi–Yau (LG/CY) correspondence
relating the Gromov-Witten (GW) theory of the quintic three-fold to the Fan–Jarvis–
Ruan–Witten (FJRW) theory of the singularity defined by W . Let IGW (resp. IFJRW)
denote the I-function of the GW theory of the quintic three-fold (resp. the FJRW theory
of the Fermat quintic singularity W ). In particular, Chiodo–Ruan showed that there is
a Picard–Fuchs equation of degree four such that the summands of IGW and IFJRW form
its fundamental solutions at two different points: “large complex structure point” and
“Gepner point.” They explicitly computed a symplectic transformation mapping IFJRW to
the analytic continuation of IGW. It is natural to expect similar results to hold in K-theory.

Let P = OP4(−1). Then the K-theoretic I-function of the Fermat quintic three-fold X
is given by

IKX (Q, q) = 1 +

∞∑
d=1

Qd
∏5d
k=1(1− P 5qk)∏d
k=1(1− Pqk)5

,
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where Q is the Novikov variable and q is a formal parameter. Instead of satisfying a
differential equation of degree 4, it satisfies a finite-difference equation (or q-difference
equation) of degree 25 given by

(1)

[
(1− qQ∂Q)5 −Q

5∏
k=1

(1− q5Q∂Q+k)

]
IKX (Q, q) = 0.

The above finite-difference equation is the K-theoretic counterpart of the Picard–Fuchs
equation satisfied by the cohomological I-function of X. We refer the reader to [25, 59]
for more details. Since the K-theoretic I-function takes value in the K-group K(X), it
only has four summands and therefore can not span the solution space of (1) at Q =
0. Wen [59] constructed the extra solutions of (1) at Q = 0 via Adams’ method. The
first challenge in obtaining a K-theoretic LG/CY correspondence is to understand the
enumerative geometric meaning of the extra solutions. In [38], Gu, Du and the author
investigated this question by studying different phases of 3d N = 2 Chern–Simons-matter
theories. It was observed in [38] that the extra states should correspond to generating series
of Verlinde invariants for the abelian group C∗ of specific level. However, such invariants
in the framework of the K-theoretic LG/CY correspondence have not been constructed in
mathematics yet.

The second challenge in establishing the K-theoretic LG/CY correspondence is to define
K-theoretic enumerative invariants in the presence of orbifold structures. Note that both
FJRW theory and GW theory can be recovered by a mathematical theory of the gauged
linear sigma model (GLSM) developed in [20]. A GLSM has different phases. Phases
correspond to the GW theory and the FJRW theory are called geometric phases and affine
phases, respectively. The affine phases naturally involve orbifold structures. To the best
of our knowledge, the theory of K-theoretic enumerative invariants of GLSMs has not
been developed yet. The starting point of this project is to define and study the quantum
K-theory for geometric phases with non-trivial orbifold structures. We leave the study of
other phases for future research and refer the reader to [7] for a recent development in this
direction.

Let l, n be positive integers and let P(l, . . . , l) be the weighted projective space defined
by the C∗-action on Cn+1 with weight l (see Section 5). In [38], Gu, Du and the author
computed the Witten index of the 3d gauge theory for P(l, . . . , l), and it is equal to l2(n+1).
This has surprising implications in mathematics because the Witten index is the dimension
of the state space of the quantum K-theory of P(l, . . . , l). Recall that the state space of the
Gromov-Witten theory of P(l, . . . , l) is defined to be the Chen–Ruan (orbifold) cohomology1

H•CR(P(l, . . . , l)) := H•(IP(l, . . . , l),C),

where IP(l, . . . , l) =
∐l−1
k=0 P(l, . . . , l) is the inertia stack of P(l, . . . , l). Since the cohomology

of P(l, . . . , l) is the same as that of its coarse moduli space Pn, we conclude that the
dimension of the state space of the Gromov-Witten of P(l, . . . , l) is l(n + 1). The above

1The grading of the Chen–Ruan cohomology of X is different from the usual grading on the cohomology
of IX. We refer the reader to [2, 15] for more details on the grading.
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analysis shows that if l > 1, then l(n + 1) < l2(n + 1), and therefore there are extra
states in quantum K-theory of the orbifold target space P(l, . . . , l). It turns out that the
K-group with the correct dimension has been independently defined by Jarvis–Kaufmann–
Kimura [40] and Adem–Ruan–Zhang [4], which we will review in the next subsection.

1.3. Orbifold quantum K-invariants and quantum K-ring. Let X be a smooth
projective Deligne–Mumford (DM) stack over C. Let IX be its cyclotomic inertia stack.
There are three candidates for the state space of the quantum K-theory of X: (i) K(IX),
where IX is the coarse moduli space of IX. (ii) K(ĪX), where ĪX is the rigidified inertia
stack of X (c.f. [2, §3.1]). (iii) Korb(X) := K(IX). Note that these K-groups in general
have different dimensions. In fact, there are morphisms

IX
$−→ ĪX

π−→ IX

where $ is a rigidification map and π is the map to the coarse moduli space. One can
identify the first two K-groups, K(IX) and K(ĪX), as subspaces of the third K-group
K(IX) via the pullback maps (π ◦$)∗ and $∗. In this paper, we will choose the third K-
group Korb(X) as the state space. It is referred to as the full orbifold K-group in [40]. One
of the reasons for this choice is that the dimension of Korb(X) matches with the Witten
index of the corresponding 3d gauge theory [38].

Let Mg,n(X,β) be the moduli stack of n-pointed genus-g orbifold stable maps to X
of curve class β with sections to all gerbes (see [1, §4.5]). For 1 ≤ i ≤ n, there are an
evaluation map

evi : Mg,n(X,β)→ IX

at the i-th marking and a locally constant function ri : Mg,n(X,β) → Z defined by the

index of the gerbe at the i-th marking. Let L̃i be the line bundle on Mg,n(X,β) formed by

the cotangent spaces of the orbifold source curves at the i-th marking. We refer to L̃i as the
i-th orbifold cotangent line bundle. Given a line bundle L and a positive integer r, we define
the r-th Bott’s cannibalistic class of L by θr(L) :=

∑r−1
i=0 L

i. Let α1, . . . , αk, t ∈ K◦(IX)

be algebraic K-theory classes. Consider the natural Sn-action on Mg,k+n(X,β) defined
by permuting the last n marked points. We define the permutation-equivariant quantum
K-invariant with the insertions α1, . . . , αk, and n repeated insertion t by〈

θr(L̃) · α1, . . . , θ
r(L̃) · αk, θr(L̃) · t, . . . , θr(L̃) · t

〉Sn
g,k+n,β

:= p∗

Ovir
Mg,k+n(X,β)

·
k∏
i=1

(
ev∗i (αi) · θri(L̃i)

)
·
n+k∏
j=k+1

(
ev∗j (t) · θrj (L̃j)

) ,

where Ovir
Mg,k+n(X,β)

∈ K◦(Mg,k+n(X,β)) is the virtual structure sheaf and p∗ is the proper

pushforward along the projection

p :
[
Mg,k+n(X,β)/Sn

]
→ SpecC.

We refer the reader to Section 2.5 for an alternate definition. Quantum K-invariants with
topological K-theory class insertions are defined in Definition 2.5.
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Let us recall the definition of the orbifold quantum K-ring using genus-zero quantum
K-invariants. Let {Φa} be a C-basis for Korb(X). We define the genus-zero potential of
quantum K-invariants by

F0(t) =
∑

β∈Eff(X)

∑
n≥0

Qβ〈θr(L̃) · t, . . . , θr(L̃) · t〉Sn0,n,β,

where t =
∑

a t
aΦa and Eff(X) is the semigroup of effective curve classes on X. The

quantized pairing G on Korb(X) is defined by

G(Φa,Φb) := ∂0∂a∂bF0,

where ∂a = ∂/∂ta. The degree-zero piece of G is the Mukai pairing on Korb(X) defined
by (α, β) := χ(IX, α · ι∗β), where ι is the involution on IX reversing the banding. Let
Λ = C[[Q]] be the Q-adic completion of the semigroup ring on the effective curve classes on
X. Let Λ+ ⊆ Λ be the maximal ideal generated by Q of positive degrees. Set Korb(X)Λ :=
Korb(X)⊗̂Λ, where “̂” means the completion in the Λ+-adic topology. We assume the
Mukai pairing is non-degenerate. Then the quantum product •t on Korb(X)Λ is defined by

G(Φa •t Φb,Φc) = ∂a∂b∂cF0(t).

We refer to the algebra (Korb(X)Λ, •t) as the full orbifold quantum K-ring at t. The
restriction (Korb(X)Λ, •0) at t = 0 is called the small orbifold quantum K-ring of X.

1.4. Summary of main results. Let W be an affine variety with a right action of a
reductive group G. Let θ be a character of G such that the θ-stable locus W s(θ) is smooth,
nonempty, and coincides with the θ-semistable locus W ss(θ). We do not assume that G
acts freely on W s(θ) and consider the “stacky” GIT quotient

X = [W ss(θ)/G].

The K-theoretic small I-function of X is defined using the (0+)-stable quasimap graph
space (see Section 3.3). It is proved in [61] that the K-theoretic small I-function lies in the
range of the permutation-equivariant K-theoretic big J-function (see Proposition 3.13).

WhenX is a toric Deligne–Mumford stack (or simply toric stack), we follow the strategies
in [16] and use the stacky loop spaces to compute theK-theoretic small I-function. Consider
the action of K = (C∗)r on W = ⊕mi=1Cρi with weights ρ1, . . . , ρm ∈ L∨ := Hom(K,C∗).
Let θ ∈ L∨ ⊗ R be a stability condition and let X = [W ss(θ)/K] be the corresponding
toric stack. Any character ρ ∈ L∨ determines a line bundle Lρ := [(W ss × Cρ)/K] on X.
Consider the (ineffective) action of T = (C∗)m on X. Let Dj be the toric divisor defined
by

Dj := [{(z1, . . . , zm) ∈W ss(θ) | zj = 0}/K], 1 ≤ j ≤ m.
Let Uj be the T -equivariant line bundle OX(−Dj). Note that Uj is a T -equivariant lift of
Lρj .

For any effective class β, we define gβ := (e2π
√
−1β(Lπi ))i ∈ K. Let (W ss(θ))gβ be the

subset of W ss(θ) fixed by gβ and let Xgβ = [(W ss(θ))gβ/K] be the component of IX
corresponding to gβ.
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Theorem 1.1 (Theorem 4.8). The K-theoretic small I-function of the toric stack X is
given by

I(Q, q) = 1 +
∑
β>0

Qβ
m∏
j=1

∏
ν:〈ν〉=〈β(Lρj )〉,ν≤0(1− Ujqν)∏

ν:〈ν〉=〈β(Lρj )〉,ν≤β(Lρj )(1− Ujqν)
1g−1

β
,

where 〈ν〉 denotes the fractional part of ν and 1g−1
β

denotes the K-theory class of the

structure sheaf in KT (Xg−1
β ).

From this, we deduce the following result.

Corollary 1.2. The K-theoretic small I-function of the toric stack X satisfies the finite-
difference equations

m∏
j=1

∏mij−1
`=−∞(1− q−`Uj(PqQ∂Q))∏−1
`=−∞(1− q−`Uj(PqQ∂Q))

I(Q, q) = QiI(Q, q), i = 1, . . . , r.

Remark 1.3. Note that the K-theoretic I-function involves fractional powers of q. To
obtain such a result, it is crucial to define K-theoretic invariants using moduli spaces of
stable maps or quasimaps with trivialized gerbe markings.

Let J0(Q, q) be the small J-function of X (see Definition 3.4). The following proposition
gives a sufficient condition for the K-theoretic mirror map to be trivial.

Proposition 1.4 (Corollary 4.9). If β(detT[W/K]) =
∑m

j=1 β(Lρj ) > 1 for all effective

β 6= 0 and β(Lρj ) ≥ 0 for all j and effective β, then J0(Q, q) = (1− q)I(Q, q).

In the last section, we follow Iritani–Milanov–Tonita [39] and use the q-difference mod-
ule structure in quantum K-theory to compute the small quantum K-ring of weighted
projective spaces. Let n ∈ Z>0 and let w0, . . . , wn be a sequence of positive integers. Set
V = Cn+1. Let Pw = P(w0, . . . , wn) be the weighted projective space defined by

[(V − {0})/C∗],
where C∗ acts with weights −w0, . . . ,−wn. The components of the inertia stack IPw are
indexed by elements of the set

F =

{
j

wi

∣∣∣ 0 ≤ j < wi, 0 ≤ i ≤ n
}
.

For f ∈ F , let P(V f ) := [(V exp(2π
√
−1f)−{0})/C∗] be the component in IPw corresponding

to f . Recall that the full orbifold K-group is

Korb(Pw) =
⊕
f∈F

K(P(V f )).

Let 1f denote theK-theory class of the structure sheaf of P(V f ) inK(P(V f )). In particular,
10 is the unit class of Pw, which is sometimes denoted by 1. Let P ∈ Korb(Pw) be the
image of OPw(−1) ∈ K(Pw) under the inclusion K(Pw) ⊆ Korb(Pw).
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Set Λ = C[[Q1/lcm(w0,...,wn)]]. Let QKorb(Pw)Λ := (Korb(Pw)Λ, •0) denote the small orb-
ifold quantum K-ring of Pw. For simplicity, we denote by · the small quantum product. Let
f1, . . . fk be the elements of F arranged in increasing order. Set fk+1 = 1 and 11 = 10. For
f ∈ F , we define If := {i | wi · f ∈ Z}. We have the following description of QKorb(Pw)Λ.

Theorem 1.5 (see Corollaries 5.8 and 5.6). The small orbifold quantum K-ring QKorb(Pw)Λ

is the free Λ-module generated as a Λ-algebra by the classes

1f1 , 1f2 , . . . , 1fk , P, P−1

with identity element 1f1 = 10 and relations generated by

Qfi+1−fi1fi+1
=
∏
b∈Ifi

(1− Pwb)1fi

for 1 ≤ i ≤ k. In particular,

(2)

n∏
j=0

(1− Pwj )wj = Q10.

We also have the following relations in QKorb(Pw)Λ:

1fi · 1fj = Qfi,j−〈fi+fj〉
n∏
a=0

(1− Pwa)〈−fiwa〉+〈−fjwa〉−〈−(fi+fj)wa〉1fi,j ,

where fi,j is the smallest element in F ∪ {fk+1} such that fi,j ≥ 〈fi + fj〉.
If we invert Q, then the small orbifold quantum K-ring is generated by P, P−1, and we

have a ring isomorphism

QKorb(Pw)Λ
∼=

Λ[P, P−1]〈∏n
j=0(1− Pwj )wj −Q10

〉 .
Remark 1.6. We learned the above presentation of QKorb(Pw)Λ from Wei Gu (W Gu
2021, personal communication, May 11). He obtained the ring relation (2) using the
twisted effective superpotential of the 3d gauge theory for Pw. The ring relation (2) also
appears in [35].

1.5. Review of previous related work. Jarvis–Kaufmann–Kimura [40] defined a prod-
uct called orbifold product on Korb(X) using an orbifold obstruction bundle over the double
inertia stack of X. They refer to Korb(X) equipped with the orbifold product as the full
orbifold K-theory. A related construction was discovered by Adem–Ruan–Zhang [4] in the
topological category. The small orbifold quantum product •0 defined in this paper is a de-
formation of Jarvis–Kaufmann–Kimura’s orbifold product. More precisely, we recover the
orbifold product by specializing the small quantum product •0 at Q = 0 (see Section 2.8).
The full orbifold K-theory of Pw has been computed by Goldin–Harada–Holm–Kimura [34].
Theorem 1.5 is a generalization of their result.

Two different versions of orbifold quantum K-theory have been studied by Tonita–
Tseng [56] and González–Woodward [35]. Tonita–Tseng’s quantumK-invariants are special
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cases of the invariants studied in this paper; see Remark 2.8 for more details. They chose
K(ĪX) as the state space and used the moduli stack Kg,n(X,β) of stable maps without
sections at the gerbe markings to define quantum K-invariants. González–Woodward’s
quantum K-theory is also different from ours because they chose K(IX) as the state
space. They used K-theoretic affine gauged Gromov–Witten invariants to define a quantum
Kirwan map [35, Theorem 1.1]. By using the quantum Kirwan map, they gave an explicit
presentation of their version of the small quantum K-ring of weighted projective space [35,
Example 1.3], which is different from that in Theorem 1.5; see Remark 5.7 for more details.
Note that their quantum K-ring of weighted projective space does not specialize to the full
orbifold K-ring computed by Goldin–Harada–Holm–Kimura [34].

The quantum orbifold cohomology of weighted projective spaces has been computed by
Coates–Corti–Lee–Tseng [19]. Theorem 1.5 is a generalization of their result in K-theory.

1.6. Plan of the paper. This paper is organized as follows. In Section 2, we recall
the basic notation in K-theory and define permutation-equivariant quantum K-invariants
for smooth Deligne–Mumford stacks. Using the genus-zero invariants, we define the full
orbifold quantum K-ring. In Section 3, we recall the definitions of the K-theoretic J-
and I-functions and describe the finite-difference module structure of the range of the
K-theoretic big J-function. In Section 4, we compute the K-theoretic small I-functions
of toric Deligne–Mumford stacks. In Section 5, we compute the small orbifold quantum
K-ring of weighted projective spaces.

1.7. Acknowledgments. We would like to thank Wei Gu for many stimulating conversa-
tions and providing his conjecture of the relations in the small quantum K-ring of weighted
projective spaces. We would also like to thank Du Pei, Mark Shoemaker, Yaoxiong Wen,
Christopher Woodward, and Xiaohan Yan for helpful discussions.

2. Orbifold quantum K-theory

2.1. Basic notation in K-theory. Let X be a Deligne–Mumford (DM) stack. We de-
note by K◦(X) the Grothendieck group of coherent sheaves on X and by K◦(X) the
Grothendieck group of locally free sheaves on X. If X has a C∗-action, we denote by
KC∗
◦ (X) and K◦C∗(X) the equivariant K-groups. Let K(X) denote the Grothendieck group

of topological complex vector bundles on X with complex coefficients. Given a coherent
sheaf (or vector bundle) F , we denote by [F ] or simply F its associated K-theory class.
Tensor product makes K◦(X) a K◦(X)-module:

K◦(X)⊗K◦(X)→ K◦X,
(
[E], [F ]

)
7→ [E] · [F ] := [E ⊗OX F ].

We denote by 1X := [OX ] or simply 1 the class of the structure sheaf of X. Throughout the
paper, we consider Grothendieck groups with complex coefficients K◦(X)C := K◦(X)⊗C,
K◦(X)C := K◦(X) ⊗ C. Let pt := SpecC be a the point and let BG = [pt/G] be the
classifying stack of a reductive group G. Then K◦(BG) ∼= R(G), the representation ring
of G.
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When considering C∗-actions, we will use q to denote the equivariant parameter (or
weight). More precisely, the parameter q corresponds to the standard representation Cstd

of C∗. Recall that K◦C∗(pt) = K◦(BC∗) ∼= Z[q, q−1].
Let E be a vector bundle on X. We define the K-theoretic Euler class of E by

λ−1(E∨) :=
∑
i

(−1)i ∧i E∨ ∈ K◦(X),

where E∨ denotes the dual of E and ∧iE∨ denotes the i-th exterior power of E∨. If X has
a C∗-action and E is a C∗-equivariant vector bundle, we use the same formula to define its
C∗-equivariant K-theoretic Euler class λC

∗
−1(E∨) ∈ K◦C∗(X).

Let L be a line bundle and let r be an integer. We denote by Lr the r-th tensor power
of L. For r ∈ Z>0, the r-th Bott’s cannibalistic class of L is defined by θr(L) :=

∑r−1
i=0 L

i.
For a flat morphism f : X → Y , we have the flat pullback f∗ : K◦(Y ) → K◦(X). For

a proper morphism g : X → Y , we have the proper pushforward f∗ : K◦(X) → K◦(Y )
defined by

[F ] 7→
∑
n

(−1)n[Rnf∗F ].

In the case when X is proper and Y is a point, the proper pushforward can be identified
with the holomorphic Euler characteristic

χ(F ) :=
∑
i≥0

dimCH
i(X,F )

for F ∈ K◦(X).
We recall the analogue of the holomorphic Euler characteristic in topology K-theory. In

this paper, we will only consider target spaces that are quotient stacks coming from the
geometric invariant theory (GIT). To be more precise, we make the following

Assumption 2.1. We assume the target space X can be written as a “stacky” GIT
quotient

X = [W ss(θ)/G],

where

• W is an affine variety with a right action of a reductive group G,
• θ is a character of G and W ss(θ) is the θ-semistable locus.

We further assume that W has at worst local complete intersection singularities and the
θ-stable locus W s(θ) is smooth, nonempty, and coincides with W ss(θ).

Take W ⊆ Cn. Let H be a maximal compact subgroup of G. Let h be the Lie algebra of
H and let ( , ) be a Hermitian inner product on Cn, preserved by H. We have a Hamiltonian
action of H on W with moment map µ : W → h∗ for the action of H on W , given by
µ(w)(A) = (w,Aw) for w ∈W and A ∈ h. Let dθ be the restriction to h of the derivative of
θ at the identity in G. Note that the coadjoint orbit of −dθ in h∗ is trivial. The symplectic
orbifold quotient of W at −dθ is defined as [µ−1(−dθ)/H]. By a generalization of the
celebrated Kempf–Ness theorem, we have an equivalence of orbifolds:

[µ−1(−dθ)/H] = [W ss(θ)/G]
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(see [20, Corollary 3.1.4]).
Set Z := µ−1(−dθ). Then the topological K-group K([Z/H]) is isomorphic to the

equivariant K-group KH(Z) studied by Atiyah–Segal [9, 52], i.e. the Grothedieck group of
H-equivariant topological complex vector bundles on Z with complex coefficients. Suppose
that X is proper. Then Z is compact. Let f : Z → pt be the unique proper H-equivariant
map to a point. We recall the construction of the pushforward or equivariant Gysin map

f∗ : KH(Z)→ KH(pt) = R(H)⊗Z C

in topological K-theory. In general, for a locally compact topological space U with a
continuous H-action, Segal [52] introduced the H-equivariant topological K-cohomology
Kc
H(U) with compact supports in U . The functor U 7→ Kc

H(U) is covariant for open
embeddings. Recall that W ⊆ Cn and Z = µ−1(−dθ) ⊆ W . Let N be the normal bundle
of Z in Cn. Then the pushforward f∗ is given by the composition of the Thom isomorphism

KH(Z) ∼= Kc
H(N),

the natural extension homomorphism Kc
H(N)→ Kc

H(Cn) obtained by identifying the nor-
mal bundle N as a (H-equivariant) tubular neighbourhood of Z in Cn, and the Thom
isomorphism Kc

H(Cn) ∼= KH(pt).
We define the following Gysin map in topological K-theory

χtop : K(X) ∼= KH(Z)→ K(pt) ∼= C, F 7→ (f∗F )H ,

where (f∗F )H denotes the H-invariant part of the virtual H-representation f∗F . The
number χtop(F ) is sometimes referred to as the topological index of F and does not depend
on the orbifold quotient presentation [Z/H] of X. If F is an algebraic K-theory class in
K◦(X), then its holomorphic Euler characteristic coincides with the topological index of
the corresponding topological K-theory class (see [53, §5]).

2.2. The full orbifold K-group. Let X be a smooth projective DM stack over C, satis-
fying Assumption 2.1 . Let IX =

∐
r IrX be its cyclotomic inertia stack (c.f. [2, §3.1]).

Definition 2.2. The full orbifold K-group of X is defined by

Korb(X) := K(IX) =
⊕
r

K(IrX),

where K(IX) (resp. K(IrX)) is the Grothendieck group of topological complex vector
bundles on IX (resp. IrX) with complex coefficients.

Recall that objects in the category underlying IX are pairs (x, g) with x an object in
X and g ∈ Aut(x). Let IX =

∐
c∈I Xc be the connected component decomposition of IX

for some index set I. Then we have

Korb(X) =
⊕
c∈I

K(Xc).

Let V be a vector bundle on Xc. At a point (p, g) ∈ Xc, the fiber of V admits an action
of g, and therefore decomposes into a direct sum of eigenspaces of the g-action. Let r be
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the order of g and let ζr = exp(2π
√
−1/r) be a primitive r-th root of unity. Then V has a

canonical decomposition

V ∼=
⊕

0≤l<r
V (l)
r ,

where V
(l)
r is the subbundle of V on which g acts with eigenvalue ζ lr. Let K(IrX)(l) be the

Grothendieck group of topological complex vector bundles on IrX which are eigen-bundles
with eigenvalue ζ lr. Then we have decompositions

(3) K(IrX) ∼=
r−1⊕
l=0

K(IrX)(l)

and

Korb(X) ∼=
⊕
r≥1

r−1⊕
l=0

K(IrX)(l).

The Mukai pairing on Korb(X) is defined by

(4) (α, β) = χ(IX, α · ι∗β),

where ι is the involution on IX reversing the banding. For convenience, we make the
following

Assumption 2.3. The Mukai pairing (4) on Korb(X) is non-degenerate.

2.3. The symplectic loop space formalism. Let X be a smooth projective DM stack
satisfying Assumption 2.1. Let Eff(X) ⊆ H2(X,Q) denote the semigroup of effective curve
classes on X. We fix the ground coefficient ring to be a λ-algebra Λ, i.e. an algebra over
Q equipped with abstract Adams operations Ψk, k = 1, 2, . . . . Here Ψk : Λ → Λ are ring
homomorphisms satisfying ΨrΨs = Ψrs and Ψ1 = id. We assume that Λ is over C and
includes the Novikov variables Qβ, β ∈ Eff(X) and the torus-equivariant K-ring of a point
if we consider a torus-action on X. We also assume that Λ is equipped with a maximal
ideal Λ+ such that Ψi(Λ+) ⊆ (Λ+)2 for i > 1 and Λ is complete with respect to the Λ+-adic
topology. For example, one can choose

Λ = C[[N1, N2, . . . ]][[Q]][λ±1
1 , . . . , λ±1

N ],

where Ni are the Newton polynomials (in infinitely or finitely many variables), and λi
denote the torus-equivariant parameters. The Adams operations Ψr act on Nm and Q
via Ψr(Nm) = Nrm and Ψr(Qβ) = Qrβ , respectively, and they act trivially on the torus-
equivariant parameters. One can take Λ+ to be the maximal ideal generated by Ni, λi
and Novikov variables of positive degrees. When studying the small quantum K-ring of
weighted projective space in Section 5, we will choose the ground ring to be

Λ = C[[Q]],

which is the Q-adic completion of the semigroup ring on effective curve classes on X.
We generalize the symplectic loop space formalism in permutation-equivariant quantum

K-theory [27, 56].
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Definition 2.4. Define

Kr := [K(IrX)⊗ C(q1/r)]⊗̂Λ,

where C(q1/r) is the field of rational functions in q1/r and “̂” means the completion in
the Λ+-adic topology. The K-theoretic loop space is defined by

K :=
⊕
r

Kr.

By definition, an element f(q) in K is a tuple (fr(q
1/r))r such that for any r ≥ 1, modulo

any power of Λ+, fr(q) is a rational function in q with coefficients in K(IrX) ⊗ Λ. From
now on, we simplify refer to elements in K as rational functions.

By viewing elements in C(q1/r)⊗̂Λ, r ≥ 1, as coefficients, we extend the Mukai pairing
to K via linearity. There is a natural Λ-valued symplectic form Ω on K defined by

Ω(f, g) := [Resq=0 + Resq=∞](f(q), g(q−1))
dq

q
, where f, q ∈ K.

Consider the following subspaces of Kr:

Kr,+ = (K(IrX)⊗ C[q1/r, q−1/r])⊗̂Λ and Kr,− = {f ∈ Kr|f(0) 6=∞, f(∞) = 0}.

In other words, Kr,+ is the space of K(IrX) ⊗ Λ-valued Laurent polynomials in q1/r (in

the Λ+-adic sense) and Kr,− consists of proper rational functions in q1/r whose limits at 0
exist. With respect to Ω, there is a Lagrangian polarization K = K+ ⊕K−, where

K+ =
⊕
r

Kr,+ and K− =
⊕
r

Kr,−.

For any f(q) ∈ K, we write f(q) = [f(q)]+ +[f(q)]−, where [f(q)]+ ∈ K+ and [f(q)]− ∈ K−.

2.4. Quantum K-invariants. In a series of works [22–32], Givental developed the theory
of permutation-equivariant quantum K-invariants, which takes into account the Sn-action
on the moduli spaces of stable maps by permuting the markings. We introduce the basic
definitions in our setting. As before, X is a smooth projective DM stack satisfying As-
sumption 2.1. Let Mg,n(X,β) be the moduli stack of n-pointed genus-g orbifold stable
maps to X of curve class β with sections to all gerbes (see [1, §4.5]). For 1 ≤ i ≤ n, there
are an evaluation map

evi : Mg,n(X,β)→ IX

at the i-th marking and a locally constant function ri : Mg,n(X,β) → Z defined by the
index of the gerbe at the i-th marking. Let r be the locally constant function on IX that
takes value r on the component IrX. Then we have ri = (evi)

∗(r), for 1 ≤ i ≤ n.

Let L̃i denote the orbifold cotangent line bundle at the i-th marking. Let Li denote
the cotangent line bundle at the i-th marking of coarse curves. We have L̃⊗rii

∼= Li. For

this reason, we write L̃i = L
1/ri
i . By the general constructions in [46, 49], the perfect

obstruction theory of Mg,n(X,β) induces a virtual structure sheaf

Ovir
Mg,n(X,β)

∈ K◦(Mg,n(X,β)).



QUANTUM K-THEORY OF TORIC STACKS 13

Consider the Sn-action on Mg,n(X,β) defined by permuting the n markings and the
Sn-action on (IX)n via permutation. Then the total evaluation map

ev :=
n∏
i=1

evi : Mg,n(X,β)→ (IX)n

is Sn-equivariant and proper. Let pri : (IX)n → IX be the i-th projection.

Definition 2.5. For any Laurent polynomial t(q) =
∑

r≥1

∑
j∈Z tr,jq

j/r ∈ K+, we define
the permutation-equivariant quantum K-invariant by〈

t(L), . . . , t(L)
〉Sn
g,n,β

:=

χtop

(
[(IX)n/Sn],

∑
r1,...,rn≥1,
j1,...,jn

( n∏
i=1

pr∗i tri,ji

)
· ev∗

(
Ovir
Mg,n(X,β)

·
n∏
i=1

L̃jii

))
.

Remark 2.6. If tr,j are algebraic K-theory classes in K◦(IX), then we can remain in the
algebraic setting and give the following equivalent definition of the permutation-equivariant
quantum K-invariant:

(5)
〈
t(L), . . . , t(L)

〉Sn
g,n,β

= p∗
(
Ovir
Mg,n(X,β)

·
n∏
i=1

ev∗i (t(Li))
)
,

where p∗ is the proper pushforward along the projection

p :
[
Mg,n(X,β)/Sn

]
→ SpecC.

and ev∗i (t(Li)) :=
∑

r,j ev∗i (tr,j)L
j/r
i =

∑
r,j ev∗i (tr,j)L̃

j
i .

In the literature of (permutation-equivariant) quantum K-theory, the definition of quan-
tum K-invariants is usually given by (5), even if tr,j are topological K-theory classes. In
this case, the proper pushforward p∗ should be understood as the composition of ev∗ :
K◦([Mg,n(X,β)/Sn]) → K◦([(IX)n/Sn]), the map K◦([(IX)n/Sn]) → K([(IX)n/Sn])
from the algebraic K-group to the topological K-group, and the topological index map
χtop : K([(IX)n/Sn]) → C. In the rest of the paper, we will adopt this convention and
abuse the notation for proper pushforwards in K-theory.

Remark 2.7. Let Kg,n(X,β) be the moduli stack of n-pointed genus-g orbifold stable
maps to X of curve class β studied in [2, 3], where the sections at the markings are absent.
Let Gi be the i-th marking in the universal curve of Kg,n(X,β), which is a gerbe over
Kg,n(X,β). Then we have

Mg,n(X,β) = G1 ×
Kg,n(X,β)

· · · ×
Kg,n(X,β)

Gn.

Let ρ : Mg,n(X,β) → Kg,n(X,β) be the projection. Then ρ∗Ovir
Kg,n(X,β) = Ovir

Mg,n(X,β)

and ρ∗
(∏n

i=1 ev∗i (t(Li))
)

is an Sn-equivariant K-theory class on Kg,n(X,β). Hence by the
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projection formula, we have

〈
t(L), . . . , t(L)

〉Sn
g,n,β

= q∗

(
Ovir
Kg,n(X,β) · ρ∗

( n∏
i=1

ev∗i (t(Li))
))
,

where q∗ is the proper pushforward along the projection

q :
[
Kg,n(X,β)/Sn

]
→ SpecC.

For any j ∈ Z, we define j̄r ∈ {0, . . . , r − 1} to be the remainder of j divided by r. Let

t
(j̄r)
r,j ∈ Korb(X)(j̄r) be the component of tr,j under the decomposition (3). Then we have

ρ∗
( n∏
i=1

ev∗i (t(Li))
)

=
∑
r,j

ρ∗
( n∏
i=1

ev∗i (t
(j̄r)
r,j )L̃ji

)
.

This is because any generator of the automorphism group at the i-th marking acts on

ev∗i (t
(l)
r,j) with eigenvalue ζ l and on L̃ji with weight ζ−j , where ζ is a primitive r-th root

of unity. The pushforward of the class ev∗i (t
(l)
r,j)L̃

j
i along Gi → Kg,n(X,β) is zero unless

l ≡ j mod r. In sum, we have〈
t(L), . . . , t(L)

〉Sn
g,n,β

=
〈
t(L), . . . , t(L)

〉Sn
g,n,β

,

where t(q) :=
∑

r≥1

∑
j∈Z t

(j̄r)
r,j q

j/r.

Remark 2.8. In [56], Tonita–Tseng studied non-permutation-equivariant quantum K-
invariants for DM stacks. They chose the moduli stack Kg,n(X,β) instead of Mg,n(X,β).

Since the orbifold cotangent line bundles L̃i do not exist over Kg,n(X,β), Tonita–Tseng
only considered the coarse cotangent line bundles Li when defining descendant invariants.
Hence, our definition is a generalization of Tonita–Tseng’s orbifold quantum K-invariants.

Definition 2.5 can be generalized to the case when there are different insertions. Suppose
that we are given several Laurent polynomials ta =

∑
r,m(ta)r,mq

m/r with a = 1, . . . s.

Let (k1, . . . , ks) be a partition of n. We define the permutation-equivariant quantum K-
invariant with symmetry group Sk1 × · · · × Sks by〈

t1, . . . , t1, t2, . . . , t2, . . . , ts, . . . , ts
〉Sk1×···×Sks
g,n,β :=

π∗
(
Ovir
Mg,n(X,β)

·
s∏

a=1

ka∏
i=1

(∑
r,m

ev∗i ((ta)r,m)L̃mi
))
,

where π∗ is the proper pushforward along the projection

π :
[
Mg,n(X,β)/Sk1 × · · · × Sks

]
→ SpecC.
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We have the following permutation-equivariant multinomial formula:〈 m∑
i=1

ti, . . . ,

m∑
i=1

ti
〉Sn
g,n,β

=

∑
k1+k2+···+km=n

〈
t1, . . . , t1, t2, . . . , t2, . . . , tm, . . . , tm

〉Sk1×Sk2×···Skm
g,n,β ,

where t1, . . . tm ∈ K+.

2.5. Genus-0 theory. Let t ∈ Korb(X). Using the decomposition (3), we can uniquely

write t =
∑∞

r=1

∑r−1
j=0 tr,j , where tr,j ∈ K(IrX)(j). We define an injective linear map

trq : Korb(X)→ K+,

t 7→
∞∑
r=1

r−1∑
j=0

tr,jq
j/r.

Remark 2.9. Recall that for any line bundle L and r ∈ Z>0, the r-th Bott’s cannibalistic
class of L is defined by θr(L) =

∑r−1
i=0 L

i. Let α1, . . . , αk, t ∈ Korb(X). The discussion in
Remark 2.7 implies the following〈

θr(L̃) · α1, . . . , θ
r(L̃) · αk, θr(L̃) · t, . . . , θr(L̃) · t

〉Sn
g,k+n,β

=〈
trq(α1), . . . , trq(αk), trq(t), . . . , trq(t)

〉Sn
g,k+n,β

.

Let {Φa} be a C-basis for Korb(X). We define the genus-zero potential of quantum
K-invariants by

F0(t) =
∑

β∈Eff(X)

∑
n≥0

Qβ〈trq(t), . . . , trq(t)〉Sng,n,β,

where t =
∑

a t
aΦa. For any α1, . . . , αk, t ∈ Korb(X), we use double brackets to denote the

generating series of genus-0 invariants:

〈〈α1L̃
m1
1 , . . . , αkL̃

mk
k 〉〉

S∞
t :=

∑
n,β

Qβ〈α1L̃
m1
1 , . . . , αkL̃

mk
k , trq(t), . . . , trq(t)〉Sn0,k+n,β.

We restrict the above summation to the stable cases (or introduce by hand terms that
correspond to tuples (k + n, β) which are unstable).

We define the quantized pairing G by

G(Φa,Φb) := ∂0∂a∂bF0,

where ∂a = ∂/∂ta. More explicitly, we have

G(α, β) = (α, β) + 〈〈trq(α), trq(β)〉〉S∞t , α, β ∈ Korb(X).

Let {Φa} be the dual basis of {Φa} with respect to the non-degenerate Mukai pairing (see
Assumption 2.3). Set Gab := G(Φa,Φb). Then the inverse is given by

Gab = (Φa,Φb)−〈〈trq(Φa), trq(Φ
b)〉〉S∞t +

∑
c

〈〈trq(Φa), trq(Φ
c)〉〉S∞t 〈〈trq(Φc), trq(Φ

b)〉〉S∞t −· · ·
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The orbifold quantum K-theory defined in this paper shares the same properties as the
quantum K-theory with manifold target spaces. We collect some facts here, whose proofs
are given in [60].

Let U ⊆ M0,n+1(X,β) be the open and closed substack for which the last marking is

untwisted. Then the forgetful morphism π : U →M0,n(X,β) forgetting the last marking is

naturally identified with the universal curve over M0,n(X,β) (see [2, §8.1]). Let L̃i and L̃′i
denote the orbifold cotangent line bundles on M0,n+1(X,β) and M0,n(X,β), respectively.

Proposition 2.10 (String equation). We have

π∗

(
Ovir

( n∏
i=1

1

1− q1/riL̃i

))
=

(
1 +

n∑
i=1

qi
1− qi

)(
Ovir

( n∏
i=1

1

1− q1/riL̃′1

))
,

where qi are formal variables.

Proposition 2.11 (Topological recursion relations). Let α, β, γ ∈ Korb(X). We have

〈〈α(L1 − 1)a+1L̃d1, βL̃
b
2, γL̃

c
3〉〉S∞t =∑
µ,ν

〈〈αL1(L1 − 1)aL̃b1, trq(Φµ)〉〉S∞t Gµν〈〈trq(Φν), βL̃b2, γL̃
c
3〉〉

S∞
t

for a, b, c, d ≥ 0.

Proposition 2.12 (WDVV equation). Let ti(q) ∈ K+, i = 1, 2, 3, 4. We have∑
ab

〈〈t1(L), t2(L), trq(Φa)〉〉S∞t Gab〈〈trq(Φb), t3(L), t4(L)〉〉S∞t

=
∑
ab

〈〈t1(L), t3(L), trq(Φa)〉〉S∞t Gab〈〈trq(Φb), t2(L), t4(L)〉〉S∞t .

2.6. The full orbifold quantum K-ring.

Definition 2.13. Under Assumption 2.3, we define the quantum product •t at t ∈ Korb(X)
by

G(Φa •t Φb,Φc) = ∂a∂b∂cF0(t).

Remark 2.14. Let α, β ∈ Korb(X). As observed in [46, Remark 10] and [14, Remark 5.3],
an equivalent definition of the quantum product at t is given by

α •t β =
∑

β∈Eff(X)

∑
n≥0

Qβ(ěv3)∗

((
Ovir

[M0,3+n(X,β)/Sn]
−Ovir

[D/Sn]

)

· ev∗1(trq(α)) · ev∗2(trq(β)) ·
n+3∏
l=4

ev∗l (trq(t))

)
,

where ěv3 : [M0,3+n(X,β)/Sn]→ IX is the evaluation map at the third marking composed

with the involution on IX, and D is the virtual divisor on M0,3+n(X,β) which parametrizes
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stable maps such that the first two markings are separated from the third marking by a
node in the domain curves. This definition of the quantum product does not rely on
Assumption 2.3.

By definition, we have α •t β ∈ Korb(X)Λ := Korb(X)⊗̂Λ. By extending the quantum
product •t bilinearly over Λ, we define the full orbifold quantum K-ring (Korb(X)Λ, •t) at
t. It satisfies the following properties

(a) the quantum product is commutative and associative;
(b) the pairing G is multiplicatively invariant, i.e. G(Φa •t Φb,Φc) = G(Φa,Φb •t Φc);
(c) 1X is the identity of the quantum product;
(d) the classicial limit Q→ 0 of the quantum product is the product of the full orbifold

K-ring defined in [40].

The commutativity of the quantum product follows from the definition and the associativity
is due to theK-theoretic WDVV equation stated in Proposition (2.12). Property (b) follows
from the definition. Property (c) follows from the string equation stated in Proposition 2.10.
Property (d) will be discussed in detail in Section 2.8.

We will refer to the restriction (Korb(X)Λ, •0) at t = 0 as the small orbifold quantum
K-ring of X.

2.7. Smooth Deligne–Mumford stacks with good torus actions. If X is not proper
but has a good torus-action, one may still define a good theory of torus-equivariant quan-
tum K-invariants. Let X = [W ss(θ)/G] be a stacky GIT quotient stack. We assume there
is an algebraic torus T ∼= (C∗)m acting on W and this action commutes with the G-action.

Let
RT := KT (pt) = C[λ±1

1 , . . . , λ±1
m ]

be the equivariant K-group of a point and let ST := C(λ1, . . . , λm) = KT,loc(pt) be the
localized equivariant K-group of a point.

Assumption 2.15. We assume the following conditions:

(a) The T -fixed locus XT is proper.
(b) The T -equivariant topological K-group KT (IX) is a free module over RT and one

has an isomorphism of RT -modules KT (IX) ∼= K(IX)⊗C RT .

We define the T -equivariant full orbifold K-group by

Korb,T (X) = KT (IX).

By letting the ground λ-algebra Λ contain the equivariant parameters for T (see the dis-
cussion in Section 2.4), we can define the K-theoretic loop space, denoted by KT , in the
T -equivariant setting.

It follows from Conditions (a) of Assumption 2.15 that the T -fixed loci in the moduli
spaces of stable maps are proper. Let t(q) ∈ KT . We define the T -equivariant permutation-
equivariant quantum K-invariant via the virtual K-theoretic localization formula:〈

t(L), . . . , t(L)
〉Sn
g,n,β

:= pT∗

(Ovir
Mg,n(X,β)T

· ι∗ (
∏n
i=1 ev∗i (t(Li)))

λT−1((Nvir
ι )∨)

)
,
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where ι : Mg,n(X,β)T ↪→ Mg,n(X,β) is the inclusion of the fixed point loci, λT−1((Nvir
ι )∨)

is the T -equivariant K-theoretic Euler class of the virtual normal bundle, and pT∗ is the
proper pushforward along the projection

pT :
[
Mg,n(X,β)T /Sn

]
→ [(SpecC)/T ].

Using the formula in Remark 2.14, we can define the quantum product •t on Korb,T (X)

at a point t ∈ Korb,T (X). Note that ev3 : M0,3+n(X,β)→ IX is proper, and therefore the
pushforward along ěv3 is well-defined. It follows that

α •t β ∈ Korb,T (X)⊗̂RTΛ

for α, β ∈ Korb,T (X). In particular, the non-equivariant limit of •t exists, and this limit
defines the non-equivariant full orbifold quantum K-ring (Korb(X)Λ, •t).

2.8. Relation to Jarvis–Kaufmann–Kimura. In [40], Jarvis–Kaufmann–Kimura in-
troduced the full orbifold K-group Korb(X) and used the orbifold obstruction bundle over
the double inertia stack of X to define an orbifold product on Korb(X). It is shown in
the proofs of Theorem 9.5 and Theorem 9.10 of [40] that the double inertia stack of X
is isomorphic to the moduli stack M0,3(X, 0) of degree-zero, genus-zero, 3-pointed stable
maps into X, and the orbifold product can be defined using the standard obstruction bun-
dle on M0,3(X, 0) coming from the orbifold Gromov-Witten theory. More precisely, let

π : C →M0,3(X, 0) be the universal curve and let f : C → X be the universal stable map.
Then R := R1π∗(f

∗TX) is the obstruction (vector) bundle and we have

Ovir
M0,3(X,0)

= λ−1

(
R∨
)
.

The orbifold product •orb in [40, Definition 9.3] is equivalent to

α •orb β := ( ˇev3)∗
(
ev∗1(trq(α)) · ev∗1(trq(β)) · λ−1

(
R∨
))
, α, β ∈ Korb(X).

Hence we recover the above orbifold product by specializing the small quantum product
•0 defined in Section 2.6 at Q = 0.

3. Generating functions for genus-zero quantum K-invariants

3.1. Quantum connection and fundamental solution. Let X be a smooth projective
DM stack satisfying Assumption 2.1. Suppose dim Korb(X) = M . Let {Φa}0≤a≤M−1 be a
C-basis for Korb(X) such that Φ0 = 1X . Let t =

∑
a t
aΦa ∈ Korb(X) be a generic point.

The quantum connection is defined by

∇qa := (1− q)∂a + Φa•t, 0 ≤ a ≤M − 1,

where ∂a := ∂/∂ta. As a formal consequence of WDVV equation, the connection ∇qa is flat
(see [21, 46]). We recall the explicit construction of its fundamental solution.
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Definition 3.1. Let γ, t ∈ Korb(X). The S-operator is defined by2

St(q)(γ) := γ +
∑

(k,β)6=(0,0)

Qβ(ěv1)∗

Ovir
[M0,2+k(X,β)/Sk]

1− q1/r1L̃1

· ev∗2(trq(γ)) ·
k+2∏
i=3

ev∗i (trq(t))

 ,

where ěv1 : [M0,2+k(X,β)/Sk]→ IX is the evaluation map at the first marking composed
with the involution on IX.

By definition, we have St(q) ∈ ⊕r
(
End(K(IrX))⊗ C(q1/r)

)
⊗̂Λ. The S-operator can

also be written as follows:

St(q)(γ) =
∑
a

Φa

〈〈
Φa

1− q1/r1L̃1

, trq(γ)

〉〉S∞
t

,

where the unstable terms are defined as in Definition 3.1. By definition, the S-operator
has the asymptotic expansion

St(q)(γ) = γ + rγ(Q, q),

where rγ(Q, q) ∈ K−.
We define the L-operator by

Lt(q)(γ) :=
∑
a,b

ΦaG
ab

〈〈
γ

1− q−1/r1L̃1

, trq(Φb)

〉〉S∞
t

.

Note that it has a similar asymptotic expansion to the S-operator:

Lt(q)(γ) = γ + r′γ(Q, q),

where r′γ(Q, q) ∈ K−. The following proposition is a direct generalization of the results
in [21, 46] and it follows from the WDVV equation and the string equation.

Proposition 3.2. The endomorphism-valued functions Lt = Lt(q) and St = St(q) satisfy
the differential equations

(1− q)∂aLt + Φa •t Lt = 0,

(1− q)∂aSt = St(Φa•t).

Equivalently, we have ∇qa ◦ Lt = Lt ◦ (1− q)∂a and St ◦ ∇qa = (1− q)∂a ◦ St.

The following proposition is a direct generalization of [39, Proposition 2.3], whose proof
again relies on the WDVV equation and the string equation.

Proposition 3.3. We have the following:

(1) St(q) = (Lt(q))
−1.

(2)
(
St(q

−1)(Φa),St(q)(Φb)
)

= Gab.

(3) G(Lt(q
−1)(Φa),Lt(q)(Φb)) = (Φa,Φb).

2The S-operator defined in this paper is the inverse of that in [39].
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3.2. The J-function and the finite-difference module structure. Let

ěv1 : M0,1+k(X,β)→ IX

be the evaluation map at the first marking composed with the involution on IX. It descends
to a map [M0,1+k(X,β)/Sk]→ IX which we also denote by ěv1.

Definition 3.4. Let t(q) ∈ K+. The permutation-equivariant K-theoretic big J-function
is

J(t(q), Q) := 1− q + t(q)

+
∑

(k,β)6=(0,0),(1,0)

Qβ(ěv1)∗

Ovir
[M0,1+k(X,β)/Sk]

1− q1/r1L̃1

·
k+1∏
i=2

ev∗i (t(Li))

 ,

or, equivalently,

J(t(q), Q) =
∑
a

Φa

〈〈
Φa

1− q1/r1L̃1

〉〉S∞
t(q)

.

The K-theoretic small J-function J(0, Q) is defined by putting t(q) = 0 in the K-theoretic
big J-function.

For simplicity, we will refer to J(t(q), Q) as the K-theoretic big J-function. As explained
in [61, §2.3], the K-theoretic big J-function is an element of the loop space K. Let LX ⊆ K
be the range of the K-theoretic big J-function t(q) 7→ J(t(q), Q), t(q) ∈ K+. In the case
when X is a manifold, Givental showed in [27] that the range LX is an overruled cone (but
not Lagrangian) and has a finite-difference module structure. These properties still hold
when X is a DM stack, and the details will be given below.

Let p1, . . . , pr be a nef integral basis of H2(X). Let Pi be a line bundle such that
pi = −c1(Pi) for 1 ≤ i ≤ r. Let Q1, . . . , Qr be the Novikov variables dual to P1, . . . , Pr.

We write Qβ :=
∏r
i=1Q

βi
i , where βi = 〈β, pi〉. Because of the choices of Pi’s, the expression

Qβ does not contain negative powers of Q1, . . . , Qr if β ∈ Eff(X).

Definition 3.5. For 1 ≤ i ≤ r, the qQi∂Qi acts on functions in Q1, . . . , Qr as

f(Q1, . . . , Qr) 7→ f(Q1, . . . , Qi−1, qQi, Qi+1, . . . , Qr).

The following proposition is a generalization of [27, Theorem 2].

Proposition 3.6 ([60]).

LX =
⋃

t∈Korb(X)⊗̂Λ+

(1− q)St(q)K+.

Proposition 3.7 ([60]). The range LX is preserved by the operator Piq
Qi∂Qi for all 1 ≤

i ≤ r.
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Let Lt = Lt(q) and St = St(q) be the endormphism-valued functions defined in the
previous subsection. Following [39], we define an endomorphism Ai by

Ai = Lt ◦ (Piq
Qi∂QiL−1

t ) = S−1
t ◦ (Piq

Qi∂QiSt), 1 ≤ i ≤ r.

It follows from Proposition 3.7 that Ai lies in ⊕r
(

End(K(IrX))⊗ C[q1/r, q−1/r]
)
⊗̂Λ. The

operator Ai := Aiq
Qi∂Qi is referred to as the q-shift operator in [39]. We have

Lt ◦ PiqQi∂Qi = Ai ◦ Lt, Piq
Qi∂Qi ◦ St = St ◦ Ai.

By using the same arguments as in the proof of [39, Proposition 2.10], one can show
that the endomorphism Ai has an expansion of the form

(6) Ai = Pi +
∑

β∈Eff(X)
βi>0

Ai,β(q)Qβ,

where the first term is the tensor product with Pi and Ai,β(q) ∈ ⊕r
(

End(K(IrX)) ⊗
C[q1/r]

)
.

Lemma 3.8. The operators ∇qa,Ai = Aiq
Q∂Qi satisfy the compatibility equations

[∇qa,∇
q
b ] = [Ai,Aj ] = [∇qa,Ai] = 0

for all 0 ≤ a, b < M and 1 ≤ i, j ≤ r.

Proof. As explained in the proof of [39, Proposition 2.6], the compatibility equations follow
from

∇qa ◦ Lt = Lt ◦ (1− q)∂a, Ai ◦ Lt = Lt ◦ PiqQi∂Qi

and the fact that (1− q)∂a and Piq
Qi∂Qi commute with each other. �

Corollary 3.9. For 1 ≤ i ≤ r, we define Ai,com = Ai|q=1 ∈ End(K(IX))⊗̂Λ. Then
Ai,com, i = 1, . . . , r commute with the quantum multiplication Φa•t, 0 ≤ a ≤M − 1.

Proof. The compatibility equation [∇qa,Ai] = 0 implies that

(1− q)∂aAi = Ai
(
qQi∂Qi ◦ (Φa•t)

)
− (Φa•t) ◦Ai.

The corollary follows from the above equation by setting q = 1. �

Remark 3.10. We will apply the following strategy in Section 5 to compute quantum
products. Let α ∈ Korb(X). Suppose that we can find a polynomial Fα ∈ Q[x1, . . . , xr]
such that Fα(A1, . . . , Ar)1X = α. Then for β ∈ Korb(X), we can obtain α•tβ by computing
Fα(A1,com, . . . , Ar,com)β. This is because

Fα(A1,com, . . . , Ar,com)β = Fα(A1,com, . . . , Ar,com)(β •t 1X)

= β •t (Fα
(
A1,com, . . . , Ar,com)1X

)
= β •t α.
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For later application in computing the small quantum K-ring, we introduce the following
restriction of the K-theoretic big J-function:

Jt(Q, q) := J(trq(t), Q), t ∈ Korb(X).

We will simply refer to Jt(Q, q) as the J-function. The following proposition is a familiar
result which relates the J-function to the S-operator.

Proposition 3.11. Let t ∈ Korb(X). Then Jt(Q, q) = (1− q)St(q)(1).

Proof. The claim follows easily from the string equation stated in Proposition 2.10. �

3.3. Quasimap theory and the K-theoretic small I-function. In this subsection, we
recall the definition of the K-theoretic small I-function, which is a generating series of
K-theoretic (0+)-stable quasimap invariants. By the genus-zero mirror theorem in [61],
the K-theoretic small I-function and J-function agree up to a change of variable.

We fix a GIT presentation X = [W ss(θ)/G]. Let (C, x1, . . . , xn) be a n-pointed, genus g
twisted curve with balanced nodes and gerbe markings (see [2, §4]). Here we do not assume
the gerbe markings are trivialized. A map [u] : C → X corresponds to a pair (P, u) with

P → C

a principal G-bundle on C and

u : C → P ×GW
a section of the fiber bundle P ×GW → C. The map [u] is called a quasimap to X if [u]
is representable and [u]−1([W us/G]) is zero-dimensional. Here W us denotes the unstable
locus. The locus [u]−1([W us/G]) is called the base locus of [u] and points in the base locus
are called base points.

The class β of a quasimap is defined to be the group homomorphism

β : Pic([W/G])→ Q, L 7→ deg([u]∗(L)).

We refer to the rational number deg(β) = deg([u]∗(Lθ)) as the degree of the quasimap [u].
A group homomorphism β : Pic([W/G]) → Q is called an effective curve class if it is the
class of some quasimap [u]. We denote by Eff(W,G, θ) the semigroup of Lθ-effective curve
classes on X. For convenience, we write β ≥ 0 if β ∈ Eff(W,G, θ) and β > 0 if the effective
curve class is nonzero.

Fix a positive rational number ε. A quasimap is called ε-stable if the following three
conditions hold:

(1) The base points are disjoint from the gerbe markings and nodes of (C, x1, . . . , xn).
(2) For every y ∈ C, we have l(y) ≤ 1/ε, where l(y) is the length at y of the subscheme

[u]−1([W us(θ)/G]).
(3) The Q-line bundle (u∗Lθ)

⊗ε ⊗ ωC,log is positive, where ωC,log := ωC(
∑

i xi) is the
log dualizing sheaf.

A quasimap is called (0+)-stable if it is ε-stable for every sufficiently small positive rational
number ε, and ∞-stable if it is ε-stable for every sufficiently large ε.
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Let Qε
g,n

(X,β) be the moduli stack of genus-g ε-stable quasimaps to X of curve class

β with n gerbe markings. It is a Deligne–Mumford stack, proper over the affine quotient
W//0G, with a perfect obstruction theory (see [16]). The moduli stack of (0+)-stable
quasimaps is denoted by Q0+

g,n
(X,β). According to the general constructions in [46, 49],

the perfect obstruction theory induces a virtual structure sheaf

Ovir
Qε
g,n

(X,β) ∈ K◦(Q
ε
g,n

(X,β)).

To define the K-theoretic small I-function for the genus-0 theory, we will also need
quasimap graph spaces. Given an effective curve class β, choose ε ∈ Q>0 and A ∈ Z>0 such
that 1/A < ε < 1/ deg(β). We view P1 as the GIT quotient C2//C∗ with the polarization
OP1(A). Then the (0+)-stable quasimap graph space is defined by

QG0+
0,1

(X,β) := Qε
0,1

(X × P1, β × [P1]).

The definition is independent of the choice of A and ε. This moduli stack parametrizes
quasimaps to X × P1 with a unique rational component whose coarse moduli is mapped
isomorphically onto P1.

Consider the C∗-action on P1 given by

t[ζ0, ζ1] = [tζ0, ζ1], t ∈ C∗.

Set 0 := [1 : 0] and ∞ := [0 : 1]. The above C∗-action on P1 induces an action on

QG0+
0,1

(X,β). We denote the unique marking by x?. Let F 0,β
?,0 be the distinguished fixed-

point component consisting of C∗-fixed quasimaps such that the marking x? is over∞ and
the entire class β is over 0 ∈ P1.

Let QG0+
0,1(X,β) be the moduli stack of (0+)-stable graph quasimaps with sections of

the unique gerbe marking x?. Then QG0+
0,1(X,β) is the universal gerbe over QG0+

0,1
(X,β)

corresponding to the unique marking x?. Let F 0,β
?,0 be the distinguished fixed-point com-

ponent in QG0+
0,1(X,β) consisting of C∗-fixed quasimaps such that the marking x? is over

∞ and the entire class β is over 0 ∈ P1. Then the forgetful map ρ : F 0,β
?,0 → F 0,β

?,0 exhibits

F 0,β
?,0 as the trivial gerbe over F 0,β

?,0 banded by µa.

Let πIX be the projection to IX from IX × P1, ι be the involution on IX reversing
the banding, and ev? : QG0+

0,1(X,β) → IX × P1 be the evaluation map at the marking

x?. Recall that ĪX denotes the rigidified inertia stack of X. Let πĪX : ĪX × P1 → ĪX,
ι : ĪX → ĪX, and ev? : QG0+

0,1
(X,β)→ ĪX × P1 be similarly defined maps. Write

ẽv? := ι ◦ πIX ◦ ev? and ẽv? := ι ◦ πĪX ◦ ev?.
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We have the following diagram

F 0,β
?,0 IX

F 0,β
?,0 ĪX,

ẽv?

ρ $σ

ẽv?

ẽv?

where the outer square commutes. Here σ is the section of the gerbe ρ associated with the
trivial µa-torsor, and ẽv? is defined as the composition of ẽv? and σ.

The restriction of the absolute perfect obstruction theory of QG0+
0,1

(X,β) to F 0,β
?,0 decom-

poses into the moving and fixed parts. The fixed part of the obstruction theory defines

a perfect obstruction theory on F 0,β
?,0 (c.f. [36]), which induces a virtual structure sheaf

Ovir
F 0,β
?,0

∈ K◦(F 0,β
?,0 ). The moving part of the obstruction theory defines the virtual normal

bundle Nvir
F 0,β
?,0/QG

0+
0,1

(X,β)
∈ K◦C∗(F

0,β
?,0 ), whose dual is denoted by Nvir,∨

F 0,β
?,0/QG

0+
0,1

(X,β)
.

We define the K-theoretic small I-function by

(7) I(Q, q) := 1 + (1− q−1) ·
∑
β>0

Qβ(ẽv?)∗

 Ovir
F 0,β
?,0

λC
∗
−1

(
Nvir,∨
F 0,β
?,0/QG

0+
0,1

(X,β)

)
 .

Remark 3.12. Let Ovir
F 0,β
?,0

be the virtual structure sheaf of F 0,β
?,0 and let Nvir

F 0,β
?,0 /QG

0+
0,1(X,β)

be the virtual normal bundle of F 0,β
?,0 in QG0+

0,1(X,β). Since the pullback of the perfect

obstruction theory of F 0,β
?,0 coincides with that of F 0,β

?,0 , we have

ρ∗Ovir
F 0,β
?,0

= Ovir
F 0,β
?,0

and ρ∗Nvir
F 0,β
?,0/QG

0+
0,1

(X,β)
= Nvir

F 0,β
?,0 /QG

0+
0,1(X,β)

.

Since σ is a section of the trivial gerbe ρ, we have

σ∗

(
O
F 0,β
?,0

)
= θr?(L̃?),

where θr?(L̃?) =
∑r?−1

i=0 L̃? is the r?-th Bott’s cannibalistic class of the orbifold cotangent

line bundle L̃? at x?. An equivalent definition of the K-theoretic small I-function using
the moduli stack of quasimap graph space with a trivialized gerbe marking is given by

I(Q, q) = 1 + (1− q−1) ·
∑
β>0

Qβ(ẽv?)∗

 θr?(L̃?) · Ovir
F 0,β
?,0

λC
∗
−1

(
Nvir,∨
F 0,β
?,0 /QG

0+
0,1(X,β)

)
 .

As explained in [61, §2.3], the K-theoretic small I-function is an element of the loop
space K. We define

µ>0(Q, q) := [(1− q)I(Q, q)− (1− q)]+ ∈ K+.
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The following proposition is a special case of the mirror theorem proved in [61, Theorem
5.15]. It shows that (1−q)I(Q, q) is a point in the range LX of the permutation-equivariant
K-theoretic big J-function.

Proposition 3.13 ([61]). We have

J(µ>0(Q,L), Q) = (1− q)I(Q, q).

Remark 3.14. If X is only quasiprojective but has a torus-action satisfying Assump-
tion 2.15, we can define the torus-equivariantK-theoretic I-function and J-function. Propo-
sition 3.13 still holds in the torus-equivariant setting.

4. K-theoretic small I-functions of Toric Deligne–Mumford stacks

4.1. Set-up. In this subsection, we recall some basic facts about toric DM stacks intro-
duced in [10]. Let K be the algebraic torus (C∗)r, r ≥ 0. We denote by L = Hom(C∗,K)
the cocharacter lattice of K. We fix a finite collection ρ1, . . . , ρm ∈ L∨ = Hom(K,C∗) of
(not necessarily distinct) characters of K. For a subset I ⊆ {1, 2, . . . ,m}, we denote by Ī
the complement of I. Define

∠I = {
∑
i∈I

aiρi | ai ∈ R>0} ⊆ L∨ ⊗ R

and

(C∗)I × CĪ = {(z1, . . . , zm) | zi 6= 0 for i ∈ I} ⊆ Cm.
Set ∠∅ := {0}.

Let Cρi denote the 1-dimensional representation of K corresponding to the character ρi.
We consider the action of K on W = ⊕mi=1Cρi . For a stability condition θ ∈ L∨ ⊗ R, we
define the set of anti-cones to be

Aθ = {I ⊆ {1, 2, . . . ,m} | θ ∈ ∠I}.
Then the semistable locus W ss = W ss(θ) is given by

W ss =
⋃
I∈Aθ

(C∗)I × CĪ .

We make the following assumption on the stability condition θ:

Assumption 4.1. We assume that

(1) {1, 2, . . . ,m} ∈ Aθ.
(2) For each I ∈ Aθ, the set {ρi | i ∈ I} spans L∨ ⊗ R over R.

Under the above assumptions, the GIT quotient X = [W ss/K] is a non-empty toric
Deligne–Mumford stack (in the sense of [10]), with quasi-projective coarse moduli space.

The action of T = (C∗)m on W ss descends to a T ′ := T/K-action on X. We also
consider the ineffective T -action on X induced by the projection T → T ′. Let λi ∈ RT
denote the equivariant parameter given by the projection πi : T ∼= (C∗)m → C∗ to the i-th
factor. Then RT = Q[λ±1

1 , . . . , λ±1
m ].
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For a character ρ ∈ L∨, the associated line bundle

[(W ss × Cρ)/K]

on X will be denoted by Lρ. For 1 ≤ i ≤ r, we define Pi := L∨πi . These line bundles are
equipped with the T -linearization [z, v] 7→ [t · z, v], t ∈ T . Note that the classes Pi generate
the equivariant K-group KT (X).

Let Dj be the toric divisor

Dj := {(z1, . . . , zm) ∈W ss | zj = 0}/K,
for j ∈ {1, . . . ,m}. Let Uj be the T -equivariant line bundle OX(−Dj). As the character
of K is the free abelian group generated by πi, there are unique integers mij such that

ρj =
∑
i

mijπi.

Then we have the multiplicative relations

Uj =

r∏
i=1

P
mij
i λ−1

j .

According to [11], the ring KT (X) is described by Kirwan’s relations∏
j /∈I

(1− Uj) = 0 whenever I /∈ Aθ.

Remark 4.2. According to [18, Remark 4.4], the first condition in Assumption 2.15 holds
for the T -action on X. The second condition holds if we replace T by an n-fold cover
T̃ → T , for some positive integer n.

There are canonical isomorphisms K ∼= L ⊗ C∗ and Lie(K) ∼= L ⊗ C. The exponential
map Lie(K)→ K is give by L⊗C→ L⊗C∗, `⊗ c→ `⊗ exp(2π

√
−1c). The kernel of the

exponential map is L ⊆ L⊗ C. Define K ⊆ L⊗Q to be the set of f ∈ L⊗Q such that

If := {i ∈ {1, 2, . . . ,m} | ρi · f ∈ Z} ∈ Aθ.
The lattice L acts on K via translation. According to [18, §4.8], the set {g ∈ K | (W ss)g 6=
∅} can be identified with K/L via the exponential map.

The components of the inertia stack IX are indexed by elements of K/L. Let f ∈ K/L
and let g = exp(2π

√
−1f). Then (W ss)g = CIf ∩W ss. Set

Xf := [(CIf ∩W ss)/K].

Then

IX =
∐

f∈K/L

Xf .

Recall that the T -equivariant full orbifold K-group is given by

Korb,T (X) =
⊕
f∈K/L

KT (Xf ).
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We write 1f for the unit class in KT (Xf ).
Let S ⊆ {1, 2, . . . ,m} denote the set of indices i such that {1, . . . ,m}\{i} /∈ Aθ. Then

every element of Aθ contains S as a subset. We define

A′θ = {I\S | I ∈ Aθ}.

We have

H2(X,R) ∼= (L∨ ⊗ R)/
∑
i∈S

RDi.

Let D′i denote the image of Di in H2(X,R). Then the ample cone of X is given by

C ′θ =
⋂
I∈A′θ

∠′I ,

where ∠′I :=
∑

i∈I R>0D
′
i is an open cone in H2(X,R), and Mori cone, the dual cone of

C ′θ, is given by

NE(X) = {β ∈ H2(X,R) | α · β ≥ 0 for all α ∈ C ′θ}
We have Eff(X) = NE(X) ∩H2(X,Z).

4.2. Stacky loop spaces and K-theoretic toric I-functions. In this subsection, we
will compute the K-theoretic toric I-functions using the stacky loop spaces introduced
in [16]. Let a be a positive integer. The weighted projective line P1,a is the quotient stack
[C2\{0}/C∗], where C∗ acts on C2 by weights 1 and a. Note that 0 := [1, 0] is a schematic
point, while ∞ := [0, 1] ∼= Bµa is a stacky point for a > 1.

We first consider a general stacky GIT quotient X = W//θG. Let X := [W/G]. We
denote by Homrep

β (P1,a,X) the Hom-stack consiting of representable 1-morphisms P1,a → X

with class β ∈ HomZ(Pic(X),Q). Let T (G) denote a maximal torus of G. We recall the
following lemma on the non-emptiness of Homrep

β (P1,a,X) from [16].

Lemma 4.3 ([16, Lemma 4.6]). Every morphism [u] ∈ Homrep
β (P1,a,X) induces a canonical

homomophism β̃ : χ(T (G))→ Q, well-defined up to the Weyl group action on the character
group χ(T (G)). Furthermore, the moduli stack Homrep

β (P1,a,X) is empty unless a is the

minimal positive integer such that aβ̃(η) ∈ Z for all η ∈ χ(T (G)).

Convention 4.4. In the rest of this subsection, we assume a is the unique positive integer
associated to β as described in Lemma 4.3.

Given β ∈ Eff(W,G, θ), we define

QP1,a
(X,β) ⊆ Homrep

β (P1,a, X)

to be the substack parametrizing representable morphisms [u] : P1,a → X, mapping the
generic point of P1,a into X. This moduli stack is referred to as the stacky loop space
in [16]. Let F β be the distinguished C∗-fixed closed substack of QP1,a

(X,β) parametrizing

elements such that the class β is exactly supported at 0.



28 M. ZHANG

For simplicity, we write QG := QG0+
0,1

(X,β) and QP1,a
:= QP1,a

(X,β). Let πP1 denote

the projection to P1 from ĪX × P1 and let ev? : QG→ ĪX × P1 be the evaluation map at
the marking x?. The following lemma is a straightforward generalization of [16, Lemma
4.8 (2)] in K-theory.

Lemma 4.5. (a) There is a natural isomorphism between an open neighborhood of F 0,β
?,0

in the closed substack (πP1 ◦ ev?)
−1(∞) of QG and an open neighborhood of F β in

QP1,a
, under which F 0,β

?,0
∼= F β. This isomorphism preserves the C∗×T -equivariant

perfect obstruction theories.

(b) Under the natural isomorphism between F 0,β
?,0 and F β, we have

(1− q−1) · Ovir
F 0,β
?,0

λC
∗×T
−1

(
Nvir,∨
F 0,β
?,0/QG

) =
Ovir
Fβ

λC
∗×T
−1

(
Nvir,∨
Fβ/QP1,a

) .
Proof. Statement (a) is Lemma 4.8 (2) in [16]. Statement (b) is the counterpart of [16,
Lemma 4.8 (2)] in K-theory. The factor (1− q−1) is introduced to cancel the K-theoretic
Euler class of the 1-dimensional deformation corresponding to shifting the image of x? away
from ∞ ∈ P1. We leave the easy details to the reader. �

By choosing a section of the gerbe at ∞ ∈ P1,a, we obtain an evaluation map ev∞ :
QP1,a

→ IX at ∞. Set ěv∞ := ι ◦ ev∞. By Lemma 4.5 and (7), we obtain the following.

Proposition 4.6.

I(Q, q) = 1 +
∑
β>0

Qβ(ěv∞)∗

 Ovir
Fβ

λC
∗×T
−1

(
Nvir,∨
Fβ/QP1,a

)
 .

In the rest of this subsection, we focus on the case of toric DM stacks. Let X = W//θK
be the toric DM stack introduced in the previous subsection. Here K is the algebraic
torus (C∗)r which acts on W = ⊕mi=1Cρi with weights ρ1, . . . ρm. We recall the explicit
descriptions of QP1,a

(X,β) and F β from [16].

Consider the graded ring C[x, y] with deg x = 1, deg y = a and denote by C[x, y]m
its subspace of degree m. For β ∈ HomZ(χ(K),Q), we consider the finite-dimensional
K-module

Wβ :=
m⊕
i=1

(
C[x, y]aβ(Lρi )

⊗ Cρi
)
.

According to [16, Corollary 5.2], we have

(8) QP1,a
(X,β) ∼= [W ss

β /K]

Define
Zβ :=

⊕
i:β(Lρi )∈Z≥0

C · yβ(Lρi ) ⊆Wβ
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and Zssβ := Zβ ∩ W ss
β . Under the natural identification of Zβ with the K-submodule

⊕i:β(Lρi )∈Z≥0
Cρi , we have

Zβ =
⋂

i:β(Lρi )<0 orβ(Lρi )/∈Z≥0

Dρi .

The distinguished C∗-fixed point component F β in QP1,a
(X,β) satisfies

F β
∼= [Zssβ /K]

under the isomorphism (8).3

Define gβ = (e2π
√
−1β(Lπi ))i ∈ K which acts on W = ⊕mi=1Cρi as (e2π

√
−1β(Lρi ))i ∈ (C∗)m.

The component of IX corresponding to gβ is

Xgβ = [(W ss)gβ/K] =

W ss ∩
⋂

i:β(ρi)/∈Z

Dρi

 /K

 .
Note that the evaluation map ev∞ : F β → IX is a closed embedding and factors through
Xgβ . The normal bundle of F β = [Zssβ /K] in Xgβ = [(W ss)gβ/K] satisfies

(9) λC
∗×T
−1

(
Nvir,∨

[Zssβ /K]/[(W ss)
gβ /K]

)
=

∏
j:ρ(Lρj )∈Z<0

(1− Uj).

Let 〈ν〉 denote the fractional part of a rational number ν.

Proposition 4.7.

λC
∗×T
−1

(
Nvir,∨
Fβ/QP1,a

)
= λC

∗×T
−1

(
Nvir,∨

[Zssβ /K]/[W ss
β /K]

)
=

∏
ν:〈ν〉=〈β(Lρj )〉,0<ν≤β(Lρj )(1− Ujqν)∏
ν:〈ν〉=〈β(Lρj )〉,β(Lρj )<ν<0(1− Ujqν)

and Ovir
Fβ

= OFβ = O[Zssβ /K].

Proof. The proposition follows from the analysis of weights in the proof of [16, Proposition
5.3]. For the reader’s convenience, we sketch the proof here. Let [u] : QP1,a

× P1,a → X

be the universal map and let π : QP1,a
× P1,a → QP1,a

be the projection. As explained

in [16, §5.2], the virtual normal bundle Nvir
Fβ/QP1,a

is the moving part of ⊕mi=1R
•π∗[u]∗Lρi ,

3Our description of Zβ is different from that in [16]. This is because we use P1,a while the authors of [16]
use Pa,1. To obtain the statements recalled in this subsection, the reader should just switch x and y in the
corresponding statements in [16, §5].
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and the virtual structure sheaf of F β is defined by the fixed part of the obstruction bundle

⊕mi=1R
1π∗[u]∗Lρi . According to [16], we have(

m⊕
i=1

R•π∗[u]∗Lρi

)∣∣∣∣
Fβ

=
⊕

i:β(Lρi )≥0

(
U−1
j ⊗H

0(P1,a,O(aβ(Lρi)))
)
⊕

⊕
i:β(Lρi )<0

(
U−1
j ⊗H

1(P1,a,O(aβ(Lρi)))
)
.

In the case β(Lρ) ≥ 0, the C∗-weights of the C∗-module H0(P1,a,O(aβ(Lρ))) are

−β(Lρ),−β(Lρ) + 1, . . . ,−β(Lρ) + bβ(Lρ)c.
In the case β(Lρ) < 0, the C∗-weights of the C∗-module H1(P1,a,O(aβ(Lρ))) are

−β(Lρ)− 1,−β(Lρ)− 2, . . . ,−β(Lρ) + bβ(Lρ) + 1c.
This implies the formula of the K-theoretic Euler class of the virtual normal bundle.

Since the restriction of the obstruction bundle has no C∗-fixed part, we conclude that
Ovir
Fβ

= OFβ .

�

Theorem 4.8.

I(Q, q) = 1 +
∑
β>0

Qβ
m∏
j=1

∏
ν:〈ν〉=〈β(Lρj )〉,ν≤0(1− Ujqν)∏

ν:〈ν〉=〈β(Lρj )〉,ν≤β(Lρj )(1− Ujqν)
1g−1

β
,

where 1g−1
β

denotes the unit class in KT (Xg−1
β ).

Proof. Recall that the map ěv∞ is the composition of the closed embedding [Zssβ /K] ↪→ Xgβ

and the involution on IX. Then the theorem follows from Proposition 4.6, Proposition 4.7,
and (9). �

Let J0(Q, q) := J(0, Q) be the K-theoretic small J-function.

Corollary 4.9. If β(detT[W/K]) =
∑m

j=1 β(Lρj ) > 1 for all effective β 6= 0 and β(Lρj ) ≥ 0

for all j and effective β, then µ>0(Q, q) = 0 and J0(Q, q) = (1− q)I(Q, q).

Proof. By the assumption that β(Lρj ) ≥ 0 for all j and effective β, we can write the
K-theoretic I-function as

I(Q, q) = 1 +
∑
β>0

Qβ

pβ(q)
1g−1

β
,

where pβ(q) is a polynomial in q1/a whose constant term is 1. Here a is the order of gβ.
Note that (1− q)/pβ(q) ∈ K−. This is because pβ(q) has a nonzero constant term and the
highest power of q in pβ(q) is greater than or equal to

∑m
j=1 β(Lρj ), which is greater than

1 by assumption. Hence

µ>0(Q, q) = [(1− q)I(Q, q)− (1− q)]+ = 0.
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By the K-theoretic mirror theorem stated in Proposition 3.13, we have J0(Q, q) = (1 −
q)I(Q, q). �

Remark 4.10. It is well-known that the cohomological small I and J-functions coincide
if the first assumption in Corollary 4.9 holds, i.e., β(detT[W/K]) > 1 for all effective β 6= 0.
In K-theory, we also need the second assumption in Corollary 4.9 because of the following.
Suppose there exists j such that β(L)ρj < 0. The coefficient of Qβ in (1 − q)I(Q, q) is of
the form

r(q)

qwp(q)
,

where r(q) and p(q) are polynomials in q1/a with nonzero constant terms and w is a positive
multiple of 1/a. The projection of the above rational function onto K+ is in general nonzero

because its partial fraction decomposition contains terms which are negative powers of q1/a.
Hence the function µ>0(Q, q) is nontrivial.

5. The small orbifold quantum K-ring of weighted projective spaces

In this section, we focus on weighted projective spaces. Let n ∈ Z>0 and let w0, . . . , wn
be a sequence of positive integers. Set V = Cn+1. The weighted projective space Pw =
P(w0, . . . , wn) is defined as the quotient

[(V − {0})/C∗],

where C∗ acts with weights −w0, . . . ,−wn. Here we follow the convention of [19]; see [19,
Remark 2.1] for an explanation of the choice of negative weights.

The components of the inertia stack IPw are indexed by elements of the set

F =

{
j

wi

∣∣∣ 0 ≤ j < wi, 0 ≤ i ≤ n
}
.

For f ∈ F , we denote by V f the linear subspace of V fixed by exp(2π
√
−1f) ∈ C∗, i.e.

V f = CIf where If := {i | wi · f ∈ Z}. Define P(V f ) := [(V f − {0})/C∗]. Then we have

IPw =
∐
f∈F

P(V f ).

Note that the connected component P(V f ) itself is a weighted projective space. The

involution ι on IPw exchanges P(V f ) with P(V 〈−f〉), f 6= 0, and is the identity on P(V 0).
Recall that the full orbifold K-group of Pw is

Korb(Pw) =
⊕
f∈F

K(P(V f )).

Its dimension is M :=
∑n

j=0w
wj
j . With respect to the tensor product on K(Pw), we have

an algebra isomorphism

K(Pw) ∼=
C[P, P−1]

〈(1− Pw0) · · · (1− Pwn)〉
.
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The relation corresponds to the K-theory class defined by the Koszul complex associated
to the morphism ⊕nj=0OPw(−wj)→ OPw . Similarly, for each f ∈ F , we have

K(P(V f )) ∼=
C[P, P−1]〈∏
i∈If (1− Pwi)

〉 .
Set

Nf =
∑

wi:wi∈If

wi.

Then Nf = dimK(P(V f )).
Let Q be the Novikov variable dual to OPw(1). We choose the ground λ-algebra to be

Λ = C[[Q1/lcm(w0,...,wn)]].

Let f1, . . . fk be the elements of F arranged in increasing order. Set fk+1 = 1. We define
an ordered basis of Korb(Pw)Λ as follows. Let 1f denote the unit class in K(P(V f )). In
particular, 10 is the K-theory class of the structure sheaf of Pw, which is also denoted by
1. Let P ∈ Korb(Pw) be the image of OPw(−1) ∈ K(Pw) under the inclusion K(Pw) ⊆
Korb(Pw). For each fi, let a

(fi)
1 , a

(fi)
2 , . . . , a

(fi)
Nfi

be the sequence obtained by arranging the

terms
m

wj
, where wj ∈ Ifi and m ∈ {0, . . . , wj − 1},

in increasing order. We define a basis for K(P(V fi)) by

v
(fi)
1 = 1fi , v

(fi)
j =

j−1∏
m=1

(
1− ξ

a
(fi)
m
P )1fi for 1 < j ≤ Nfi ,

where ξ
a
(fi)
m

:= e2π
√
−1a

(fi)
m is a root of unity. We thus obtain the following Λ-basis for

Korb(Pw)Λ:

v
(f1)
1 , v

(f1)
2 . . . v

(f1)
Nf1

,

v
(f2)
1 , v

(f2)
2 . . . v

(f2)
Nf2

,

. . . ,

v
(fk)
1 , v

(fk)
2 . . . v

(fk)
Nfk

,

where the terms in the i-th row form a basis for K(P(V fi)).
Let JPw(Q, q) be the K-theoretic small J-function of Pw. Since Pw satisfies the condi-

tions in Corollary 4.9, we have JPw(Q, q) = (1 − q)I(Q, q). It follows from Theorem 4.8
and Corollary 1.2 that the K-theoretic small J-function of Pw is given by

JPw(Q, q) = (1− q)
∑

d:d≥0,〈d〉∈F

Qd∏n
j=0

∏
ν:〈ν〉=〈dwj〉,0<ν≤dwj (1− P

wjqν)
1〈d〉,
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satisfying finite-difference equation

(10)
n∏
j=0

wj−1∏
`=0

(1− q−`(PqQ∂Q)wj )JPw(Q, q) = QJPw(Q, q).

We denote the operator on the left hand side by

D(1) :=
n∏
j=0

wj−1∏
`=0

(1− q−`(PqQ∂Q)wj ).

Note that

D(1) =
n∏
j=0

wj−1∏
`=0

wj−1∏
m=0

(1− ζmwjq
−`/wjPqQ∂Q),

where ζr = exp(2π
√
−1/r) is a primitive r-th root of unity. For each i ∈ {1, . . . , k} we

define the operators

D̃
(fi)
j =

{
id j = 1,∏j−1
m=1

(
1− ξ

a
(fi)
m
q−fiPqQ∂Q

)
2 ≤ j ≤ Nfi + 1,

and

D
(fi)
j = D̃

(fi)
j ·

∏
`:`<i

D̃
(f`)
Nf`+1.

By definition, we have D
(fi+1)
1 = D

(fi)
Nfi+1, i < k and D(1) = D

(fk)
Nfk+1.

Recall that Λ+ ⊆ Λ is the maximal ideal generated byQ of positive degrees. For d ∈ Q>0,
we denote by Λ≥d (resp. Λ>d) the ideal of Λ generated by Q of degree ≥ d (resp. > d).

Lemma 5.1. We have

(11)
1

1− q
D

(fi)
j JPw(Q, q) = Qfiv

(fi)
j mod Λ>fiK−

for 1 ≤ i ≤ k and 1 ≤ j ≤ Nfi and

(12)
1

1− q
D(1)JPw(Q, q) = Q10 mod Λ>1K−.

Proof. Equation (12) follows from the finite-difference equation (10) and the asymptotic
expansion

QJPw(Q, q)/(1− q) = Q10 mod Λ>1K−.
We write

JPw(Q, q)/(1− q) =
k∑

m=1

Qfm∏n
j=0

∏
ν:〈ν〉=〈fmwj〉,0<ν≤fmwj (1− P

wjqν)
1fm + r(Q, q),
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where r(Q, q) ∈ Λ≥1K−. For 1 ≤ m ≤ k, consider the coefficient of 1fm in the above
expression:

(13) gm(Q, q) :=
Qfm∏n

j=0

∏
ν:〈ν〉=〈fmwj〉,0<ν≤fmwj (1− P

wjqν)
.

It follows from (12) that D(1)gm(Q, q) = 0 for 1 ≤ m ≤ k and D(1)r(Q, q) = Q10 modulo

Λ>1K−. Note that for 1 ≤ i ≤ k, 1 ≤ j ≤ Nfi , and f ≥ 1, D
(fi)
j Qf is a polynomial in q,

and its degree in q is strictly less than that of D(1)Qf . Hence

D
(fi)
j r(Q, q) = 0 mod Λ≥1K−.

To prove (11), we only need to analyze the Laurent polynomial part of D
(fi)
j gm(Q, q) for

1 ≤ m ≤ k. We have

(14) D
(fi)
j Qfm =

∏
`:`<i

Nf∏̀
c=1

(
1− ξ

a
(f`)
c
qfm−f`P

) ·(j−1∏
c=1

(1− ξ
a
(fi)
c
qfm−fiP

))
Qfm .

If i < m, then (14) is a polynomial in q, and by Lemma 5.2, its degree in q is less than

that of the denominator of (13). Hence D
(fi)
j gm(Q, q) ∈ Λ>fiK− if m > i.

If i > m, then the RHS of (14) contains a factor

Nfm∏
c=1

(
1− ξ

a
(fm)
c

P
)

=
∏
i∈Ifm

(1− Pwi)

which vanishes as an element in K(P(V fm)). Hence (14) and, therefore, D
(fi)
j gm(Q, q) are

zero if i > m.
If i = m, by Lemma 5.2, the degree of (14) in q is equal to that of the denominator

of (13). We have

D
(fi)
j Qfi1fi =

∏
`:`<i

Nf∏̀
c=1

(
1− ξ

a
(f`)
c
qfi−f`P

) ·(j−1∏
c=1

(
1− ξ

a
(fi)
c
P
))

Qfi1fi

=Qfiv
(fi)
j ·

n∏
j=0

∏
ν:〈ν〉=〈fiwj〉
0<ν≤fiwj

(1− Pwjqν).

In the second line, we used the definition of v
(fi)
j and the second identity in Lemma 5.2.

This concludes the proof of the lemma.
�
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Lemma 5.2. We have the following identities

n∑
j=0

∑
ν:〈ν〉=〈fmwj〉
0<ν≤fmwj

ν =
m−1∑
`=1

(fm − f`)Nf`

and
n∏
j=0

∏
ν:〈ν〉=〈fmwj〉
0<ν≤fmwj

(1− Pwjqν) =
m−1∏
`=1

Nf∏̀
c=1

(
1− ξ

a
(f`)
c
qfm−f`P

)
for 1 ≤ m ≤ k.

Proof. We obtain the first identity by taking the degrees of both sides of the second identity.
It suffices to prove the second identity. We have

n∏
j=0

∏
ν:〈ν〉=〈fmwj〉
0<ν≤fmwj

(1− Pwjqν) =
n∏
j=0

∏
a:0≤a<fmwj

a∈Z

(1− Pwjqfmwj−a)

=
n∏
j=0

∏
f :0≤f<fm
wjf∈Z

(1− Pwjqwj(fm−f))

=
∏

f :0≤f<fm

( ∏
wj∈If

(1− Pwjqwj(fm−f))
)

=
m−1∏
`=1

Nf∏̀
c=1

(
1− ξ

a
(f`)
c
qfi−f`P

)
.

�

Let S := S0(q) be the restriction of the S-operator of Pw at t = 0. By definition, we
have

(15) S = id + S′,

where id denotes the identity map and S′ ∈ ⊕r
(
End(K(IrX))⊗ C(q1/r)

)
⊗̂Λ+ satisfying

S′(γ) ∈ Λ+K− for any γ ∈ Korb(X). Let A = S−1(PqQ∂QS)qQ∂Q be the q-shift operator
defined in Section 3.2.

Lemma 5.3. We have

(16)
1

1− q
D

(fi)
j JPw(Q, q) = QfiS(v

(fi)
j )

for 1 ≤ i ≤ k, 1 ≤ j ≤ Nfi and

(17)
1

1− q
D(1)JPw(Q, q) = QS(10).
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Proof. Equation (17) follows from the finite-difference equation (10) and Proposition 3.11.
We prove (16) by induction. For i = j = 1, the formula (16) follows from Proposition 3.11.
Assume that (16) holds for some (i, j) with 1 ≤ i ≤ k, 1 ≤ j ≤ Ni. There are two cases. In
the first case, we assume j < Ni. By definition, we have

D
(fi)
j+1 =

(
1− ξ

a
(fi)
j

q−fiPqQ∂Q
)
D

(fi)
j .

Then it follows that

1

1− q
D

(fi)
j+1JPw(Q, q) =

1

1− q
(
1− ξ

a
(fi)
j

q−fiPqQ∂Q
)
D

(fi)
j JPw(Q, q)

=
(
1− ξ

a
(fi)
j

q−fiPqQ∂Q
)
QfiS(v

(fi)
j )

= Qfi
(
1− ξ

a
(fi)
j

PqQ∂Q
)
S(v

(fi)
j )

= QfiS
((

1− ξ
a
(fi)
j

A
)
v

(fi)
j

)
= QfiS

((
1− ξ

a
(fi)
j

P
)
v

(fi)
j + r(Q, q)

)
= QfiS

(
v

(fi)
j+1

)
+QfiS

(
r(Q, q)

)
,

where r(Q, q) ∈ Λ+K+. In the fifth line, we used the asymptotic expansion of the q-shift
operator in (6). To prove the induction step in this case, we show that r(Q, q) = 0. By the
asymptotic expansion (15), we have

S(v
(fi)
j+1) = v

(fi)
j+1 + u(Q, q),

where u(Q, q) ∈ Λ+K−, and

S
(
r(Q, q)

)
= r(Q, q) + w(Q, q),

where w(Q, q) ∈ Λ+K, and the lowest degree of Q in w(Q, q) is larger than that in r(Q, q).
Suppose r(Q, q) 6= 0. Let Qd0f(q) be the (nonzero) term in r(Q, q) with the lowest degree
of Q. Then Qd0f(q) is also the term with the lowest degree of Q in S(r(Q, q)). Note that
f(q) is a Laurent polynomial in q. Then it follows from Lemma 5.1, (11) that Qd0f(q) = 0,
which is a contradiction. Hence r(Q, q) = 0.

In the second case, we assume j = Nfi , i < k. We have

1

1− q
D

(fi+1)
1 JPw(Q, q) =

1

1− q
(
1− ξ

a
(fi)
Nfi

q−fiPqQ∂Q
)
D

(fi)
Nfi

JPw(Q, q)

=
(
1− ξ

a
(fi)
Nfi

q−fiPqQ∂Q
)
QfiS(v

(fi)
Nfi

)

= Qfi
(
1− ξ

a
(fi)
Nfi

PqQ∂Q
)
S(v

(fi)
Nfi

)

= QfiS
((

1− ξ
a
(fi)
Nfi

A
)
v

(fi)
Nfi

)
.
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Note that
(
1− ξ

a
(fi)
Nfi

P
)
v

(fi)
Nfi

= 0 in K(P(V fi)). By the asymptotic expansion of the q-shift

operator in (6), we write(
1− ξ

a
(fi)
Nfi

A
)
v

(fi)
Nfi

= Qd0f(q) + r(Q, q) ∈ Λ+K+,

where Qd0f(q), d0 > 0 is the term with the lowest degree of Q. We claim that

r(Q, q) = 0 and Qfi+d0f(q) = Qfi+1v
(fi+1)
1 .

The above equalities imply the induction step. Suppose r(Q, q) is nonzero. Let Qd1g(q) be
the term with the lowest degree of Q in r(Q, q). We have d1 > d0. Note that Qfi+d0f(q)

and Qfi+d1g(q) are the terms with the two lowest degrees in QfiS
((

1−ξ
a
(fi)
Nfi

A
)
v

(fi)
Nfi

)
. Since

f(q) and g(q) are Laurent polynomial in q, it follows from Lemma 5.1 that

Qfi+d0f(q) +Qfi+d1g(q) = Qfi+1v
(fi+1)
1 .

This implies that Qfi+d0f(q) = Qfi+1v
(fi+1)
1 and g(q) = 0. The latter is a contradiction

and therefore r(Q, q) = 0. This concludes the proof of the claim.
Finally, we note that the above argument also implies that(

1− ξ
a
(fk)

Nfk

A
)
v

(fk)
Nfk

= Q1−fk10.

This gives another proof of (17). �

Set fk+1 := 1 and v
(fk+1)
1 := 10. The following corollary follows from the proof of the

above lemma.

Corollary 5.4. (a) (1− ξ
a
(fi)
j

A)v
(fi)
j = v

(fi)
j+1, 1 ≤ i ≤ k, 1 ≤ j < Nfi .

(b) (1− ξ
a
(fi)
Nfi

A)v
(fi)
Nfi

= Qfi+1−fiv
(fi+1)
1 , 1 ≤ i ≤ k.

Theorem 5.5. We have

(a) v
(f1)
1 = 10.

(b) (1− ξ
a
(fi)
j

P ) •0 v(fi)
j = v

(fi)
j+1, 1 ≤ i ≤ k, 1 ≤ j < Nfi .

(c) (1− ξ
a
(fi)
Nfi

P ) •0 v(fi)
Nfi

= Qfi+1−fiv
(fi+1)
1 , 1 ≤ i ≤ k.

Proof. Statement (a) follows from the definition. By the proof of Lemma 5.3, we have

(1− ξ
a
(fi)
j

A)10 = 1− ξ
a
(fi)
j

P.

Then statements (b) and (c) follow from Corollary 5.4 and Remark 3.10.
�
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Let QKorb(Pw)Λ := (Korb(Pw)Λ, •0) denote the small orbifold quantum K-ring of Pw.
In the rest of the section, we will only consider QKorb(Pw)Λ. For simplicity, we denote the
small quantum product by · and write

n∏
i=1

αmii = α1 · . . . · α1︸ ︷︷ ︸
m1

· . . . · αn · . . . · αn︸ ︷︷ ︸
mn

.

Corollary 5.6. We have the following relation in QKorb(Pw)Λ

(18)
n∏
j=0

(1− Pwj )wj = Q10

and a ring isomorphism

(19) QKorb(Pw)Λ
∼=

Λ[P, P−1]〈∏n
j=0(1− Pwj )wj −Q10

〉 .
Proof. By Theorem 5.5, we have

k∏
i=1

Nfi∏
j=1

(1− ξ
a
(fi)
j

P ) · 10 = Q10

in QKorb(Pw)Λ. We obtain the quantum ring relation by observing that

k∏
i=1

Nfi∏
j=1

(1− ξ
a
(fi)
j

P ) =
n∏
j=0

(1− Pwj )wj .

The ring isomorphism (19) follows from the fact that both sides have the same dimension
M =

∑n
j=0w

wj
j . �

Remark 5.7. The relation (18) was also obtained by González–Woodward in [35, Example
1.3], where they denote Pwj by X−1

j for 0 ≤ j ≤ n. However, their small quantum K-ring

is generated by P±w0 , . . . , P±wn and, therefore, can be viewed as a subring of QKorb(Pw)Λ.
We expect that for a general orbifold target space, González–Woodward’s quantum K-ring
is a subring of the full orbifold quantum K-ring introduced in this paper.

Let dfe denote the least integer greater than or equal to f . Recall that we set fk+1 = 1
and 11 := 10.

Corollary 5.8. For 1 ≤ i, j ≤ k, we have the following relations in QKorb(Pw)Λ:

(a) Qfi+1−fi1fi+1
=
∏
b∈Ifi

(1− Pwb)1fi .
(b) Qfi1fi =

∏
`<i

∏
b∈If`

(1− Pwb) =
∏n
a=0(1− Pwa)dfiwae.

(c) Furthermore,

(20) 1fi · 1fj = Qfi,j−〈fi+fj〉
n∏
a=0

(1− Pwa)〈−fiwa〉+〈−fjwa〉−〈−(fi+fj)wa〉1fi,j ,
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where fi,j is the smallest element in F ∪ {fk+1} such that fi,j ≥ 〈fi + fj〉.

Proof. (a) and the first identity in (b) follow easily from Theorem 5.5 and the identity

Nf∏̀
m=1

(
1− ξ

a
(f`)
m
P ) =

∏
b∈If`

(1− Pwb).

The second identity in (b) follows from the fact that for any a ∈ {0, . . . , n}, we have a
bijection

{` | 1 ≤ ` < i, a ∈ If`} →
{
c

wa

∣∣∣∣ c ∈ Z≥0,
c

wa
< fi

}
, ` 7→ f`.

The cardinality of the latter set is dfiwae.
To prove (20), we assume Q 6= 0. Then by using (b), we rewrite the left hand side of (20)

as

(21) 1fi · 1fj = Q−fi−fj
n∏
a=0

(1− Pwa)dfiwae+dfjwae

and the right hand side as

Qfi,j−〈fi+fj〉
n∏
a=0

(1− Pwa)〈−fiwa〉+〈−fjwa〉−〈−(fi+fj)wa〉1fi,j

=Q−〈fi+fj〉
n∏
a=0

(1− Pwa)〈−fiwa〉+〈−fjwa〉−〈−(fi+fj)wa〉 ·
n∏
a=0

(1− Pwa)dfi,jwae

=Q−〈fi+fj〉
n∏
a=0

(1− Pwa)〈−fiwa〉+〈−fjwa〉−〈−(fi+fj)wa〉+dfi,jwae.(22)

By comparing (21) and (22) and using the relation (18), we see that (20) follows from
the following claim.

Claim 5.9. For any a, the following identities hold:

dfiwae+ dfjwae = 〈−fiwa〉+ 〈−fjwa〉 − 〈−(fi + fj)wa〉+ dfi,jwae,

if fi + fj < 1, and

dfiwae+ dfjwae = 〈−fiwa〉+ 〈−fjwa〉 − 〈−(fi + fj)wa〉+ dfi,jwae+ wa,

if fi + fj ≥ 1.

Set m = d(fi + fj)wae. By definition, we have m − 1 < (fi + fj)wa ≤ m, which is
equivalent to

m− 1

wa
< fi + fj ≤

m

wa
.

This implies that

(m− 1)/wa < fi,j ≤ m/wa,
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if fi + fj < 1, and
(m− 1)/wa < fi,j + 1 ≤ m/wa,

if fi + fj ≥ 1. Hence we have

d(fi + fj)wae = dfi,jwae, if fi + fj < 1, and

d(fi + fj)wae = dfi,jwae+ wa, if fi + fj ≥ 1.

We conclude the proof of the claim by using the identity dxe − 〈−x〉 = x, for any x ∈ Q.
�

Remark 5.10. The relations of the full orbifold K-ring of Pw have been computed by
Goldin–Harada–Holm–Kimura [34]. Set ` := lcm(w0, . . . , wn). Then the class 1f , f ∈ F
corresponds to α`〈−f〉 in [34, §4]. By setting Q to zero in the identities in (a) and (c) of
Corollary 5.8, we recover the relations (4.4) and (4.1) in [34].

Example 5.11. We illustrate the structure of the small orbifold quantum K-ring of P(2, 1),
the stacky GIT quotient of C2 by the C∗-action

t · (z0, z1) := (t−2z0, t
−1z1)

for t ∈ C∗ and (z0, z1) ∈ C2. Note that 0 := [1 : 0] ∈ P(2, 1) is a stacky point and

isomorphic to Bµ2. Let Λ = C[[Q1/2]]. We have

IP(2, 1) = P(2, 1)
∐

Bµ2

and
Korb(P(2, 1))Λ = K(P(2, 1))Λ ⊕K(Bµ2)Λ.

Let 10 and 1 1
2

be the K-theory classes of the structure sheaves of P(2, 1) and Bµ2, respec-

tively. One can generate a basis of Korb(P(2, 1))Λ from 10 by multiplying 1± P using the
small quantum product:

10 (1− P )10 (1− P )210

Q
1
2 1 1

2
Q

1
2 (1− P )1 1

2

Q10

(1− P )· (1− P )·

(1 + P )·

(1− P )·

(1 + P )·

The three elements in the first line form a basis for K(P(2, 1))Λ and the two elements in
the second line form a basis for K(Bµ2)Λ. If we invert Q, then we have the following ring
isomorphism

QKorb(P(2, 1))Λ
∼=

C[P, P−1]

〈(1− P )(1− P 2)2 −Q10〉
.

Using Corollary 5.8, we obtain the relations

Q
1
2 1 1

2
= (1− P 2)(1− P )10 and 1 1

2
· 1 1

2
= (1− P )10.
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