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Lie group variational integrators for the full body problem
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Abstract

We develop the equations of motion for full body models that describe the dynamics of rigid bodies, acting under their mutual gravity.
The equations are derived using a variational approach where variations are defined on the Lie group of rigid body configurations. Both
continuous equations of motion and variational integrators are developed in Lagrangian and Hamiltonian forms, and the reduction from
the inertial frame to a relative frame is also carried out. The Lie group variational integrators are shown to be symplectic, to preserve
conserved quantities, and to guarantee exact evolution on the configuration space. One of these variational integrators is used to simulate
the dynamics of two rigid dumbbell bodies.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Overview

The full body problem studies the dynamics of rigid
bodies interacting under their mutual potential, and the
mutual potential of distributed rigid bodies depends on
both the position and the attitude of the bodies. Therefore,
the translational and the rotational dynamics are coupled
in the full body problem. The full body problem arises in
numerous engineering and scientific fields. For example,
in astrodynamics, the trajectory of a large spacecraft
around the Earth is affected by the attitude of the space-
craft, and the dynamics of a binary asteroid pair is charac-
terized by the non-spherical mass distributions of the
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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bodies. In chemistry, the full rigid body model is used to
study molecular dynamics. The importance of the full body
problem is summarized in [1], along with a preliminary dis-
cussion from the point of view of geometric mechanics.

The full two body problem was studied by Maciejewski
[2], and he presented equations of motion in inertial and
relative frames and discussed the existence of relative equi-
libria in the system. However, he does not derive the equa-
tions of motion, nor does he discuss the reconstruction
equations that allow the recovery of the inertial dynamics
from the relative dynamics. Scheeres derived a stability
condition for the full two body problem [3], and he studied
the planar stability of an ellipsoid-sphere model [4].
Recently, interest in the full body problem has increased,
as it is estimated that up to 16% of near-earth asteroids
are binaries [5]. Spacecraft motion about binary asteroids
have been discussed using the restricted three body model
[6,7], and the four body model [8].

Conservation laws are important for studying the
dynamics of the full body problem, because they describe
qualitative characteristics of the system dynamics. The rep-
resentation used for the attitude of the bodies should be
globally defined since the complicated dynamics of such
systems would require frequent coordinate changes when
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Fig. 1. Eight types of equations of motion for the full body problem.
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using representations that are only defined locally. General
numerical integration methods, such as the Runge–Kutta
scheme, do not preserve first integrals nor the exact geom-
etry of the full body dynamics [9]. A more careful analysis
of computational methods used to study the full body
problem is crucial.

Variational integrators and Lie group methods provide
a systematic method of constructing structure-preserving
numerical integrators [9]. The idea of the variational
approach is to discretize Hamilton’s principle rather than
the continuous equations of motion [10]. The numerical
integrator obtained from the discrete Hamilton’s principle
exhibits excellent energy properties [11], conserves first
integrals associated with symmetries by a discrete version
of Noether’s theorem, and preserves the symplectic struc-
ture. Many interesting differential equations, including full
body dynamics, evolve on a Lie group. Lie group methods
consist of numerical integrators that preserve the geometry
of the configuration space by automatically remaining on
the Lie group [12].

Moser and Vesselov [13], Wendlandt and Marsden [14]
developed numerical integrators for a free rigid body by
imposing an orthogonal constraint on the attitude vari-
ables and by using unit quaternions, respectively. The idea
of using the Lie group structure and the exponential map
to numerically compute rigid body dynamics arises in the
work of Simo et al. [15], and in the work by Krysl [16].
A Lie group approach is explicitly adopted by Lee, Leok,
and McClamroch in the context of a variational integrator
for rigid body attitude dynamics with a potential depen-
dent on the attitude, namely the 3D pendulum dynamics,
in [17].

The motion of full rigid bodies depends essentially on
the mutual gravitational potential, which in turn depends
only on the relative positions and the relative attitudes of
the bodies. Marsden et al. introduce discrete Euler–Poin-
caré and Lie–Poisson equations in [18,19]. They reduce
the discrete dynamics on a Lie group to the dynamics on
the corresponding Lie algebra. Sanyal, Shen and McClam-
roch develop variational integrators for mechanical sys-
tems with configuration dependent inertia and they
perform discrete Routh reduction in [20]. A more intrinsic
development of discrete Routh reduction is given in [21,22].

1.2. Contributions

The purpose of this paper is to provide a complete set of
equations of motion for the full body problem. The equa-
tions of motion are categorized by three independent prop-
erties: continuous/discrete time, inertial/relative frame, and
Lagrangian/Hamiltonian forms. Therefore, a total of eight
types of equations of motion for the full body problem are
given in this paper. The relationships between these equa-
tions of motion are shown in Fig. 1, and are further sum-
marized in Fig. 7.

Continuous equations of motion for the full body prob-
lem are given in [2] without any formal derivation of the
equations. We show, in this paper, that the equations of
motion for the full body problem can be derived from
Hamilton’s principle. The proper form for the variations
of Lie group elements in the configuration space lead to a
systematic derivation of the equations of motion.

This paper develops discrete variational equations of
motion for the full body model following a similar varia-
tional approach but carried out within a discrete time
framework. Since numerical integrators are derived from
the discrete Hamilton’s principle, they exhibit symplectic
and momentum preserving properties, and good energy
behavior. They are also constructed to conserve the Lie
group geometry on the configuration space. Numerical
simulation results for the interaction of two rigid dumbbell
models are given.

This paper is organized as follows. The basic idea of the
variational integrator is given in Section 2. The continuous
equations of motion and variational integrators are devel-
oped in Section 3 and 4. Numerical simulation results are
given in Section 5. An appendix contains several technical
details that are utilized in the main development.

2. Background

2.1. Hamilton’s principle and variational integrators

The procedure to derive the Euler–Lagrange equations
and Hamilton’s equations from Hamilton’s principle is
shown in Fig. 2. When deriving the equations of motion,
we first choose generalized coordinates q, and a corre-
sponding configuration space Q. We then construct a
Lagrangian from the kinetic and the potential energy. An
action integral G ¼

R tf
t0

Lðq; _qÞdt is defined as the path inte-
gral of the Lagrangian along a time-parameterized trajec-
tory. After taking the variation of the action integral,
and requiring it to be stationary, we obtain the Euler–
Lagrange equations. If we use the Legendre transformation
defined as

p � d _q ¼ FLðq; _qÞ � d _q ¼ d

d�

����
�¼0

Lðq; _qþ �d _qÞ; ð1Þ



Fig. 2. Procedures to derive the continuous and discrete equations of
motion.
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where d _q 2 T qQ, then we obtain Hamilton’s equations
in terms of momenta variables p ¼ FLðq; _qÞ 2 T �Q. These
equations are equivalent to the Euler–Lagrange equations
[23].

There are two issues that arise in applying this proce-
dure to the full body problem. The first is that the config-
uration space for each rigid body is the semi-direct
product, , where SO(3) is the Lie
group of orthogonal matrices with determinant 1. There-
fore, variations should be carefully chosen such that they
respect the geometry of the configuration space. For exam-
ple, a varied rotation matrix R� 2 SOð3Þ can be expressed
as

R� ¼ Re�g;

where � 2 R, and g 2 soð3Þ is a variation represented by a
skew-symmetric matrix. The variation of the rotation
matrix dR is the part of R� that is linear in �

R� ¼ Rþ �dRþ Oð�2Þ:
More precisely, dR is given by

dR ¼ d

d�

����
�¼0

R� ¼ Rg: ð2Þ

The second issue is that reduced variables can be used to
obtain equations of motion expressed in relative coordi-
nates. The variations of the reduced variables are con-
strained as they must arise from the variations of the
unreduced variables while respecting the geometry of the
configuration space. The proper variations of Lie group
elements and reduced quantities are computed while deriv-
ing the continuous equations of motion.
Generally, numerical integrators are obtained by
approximating the continuous Euler–Lagrange equation
using a finite difference rule such as _qk ¼ ðqkþ1 � qkÞ=h,
where qk denotes the value of qðtÞ at t = hk for an integra-
tion step size h 2 R and an integer k. A variational integra-
tor is derived by following a procedure shown in the right
column of Fig. 2. When deriving a variational integrator,
the velocity phase space ðq; _qÞ 2 TQ of the continuous
Lagrangian is replaced by ðqk; qkþ1Þ 2 Q� Q, and the dis-
crete Lagrangian Ld is chosen such that it approximates a
segment of the action integral

Ldðqk; qkþ1Þ �
Z h

0

Lðqk;kþ1ðtÞ; _qk;kþ1ðtÞÞdt;

where qk;kþ1ðtÞ is the solution of the Euler–Lagrange
equation satisfying boundary conditions qk;kþ1ð0Þ ¼ qk

and qk;kþ1ðhÞ ¼ qkþ1. Then, the discrete action sum Gd ¼P
Ldðqk; qkþ1Þ approximates the action integral G. Taking

the variations of the action sum, we obtain the discrete
Euler–Lagrange equation

Dqk
Ldðqk�1; qkÞ þDqk

Ldðqk; qkþ1Þ ¼ 0;

where Dqk
Ld denotes the partial derivative of Ld with

respect to qk. This yields a discrete Lagrangian map
F Ld : ðqk�1; qkÞ 7! ðqk; qkþ1Þ. Using a discrete analogue of
the Legendre transformation, referred to as a discrete fiber
derivative FLd : Q� Q! T �Q, variational integrators can
be expressed in Hamiltonian form as

pk ¼ �Dqk
Ldðqk; qkþ1Þ; ð3Þ

pkþ1 ¼ Dqkþ1
Ldðqk; qkþ1Þ: ð4Þ

This yields a discrete Hamiltonian map ~F Ld : ðqk; pkÞ 7!
ðqkþ1; pkþ1Þ. A complete development of variational inte-
grators can be found in [10].

2.2. Notation

Variables in the inertial and the body fixed frames are
denoted by lower-case and capital letters, respectively. A
subscript i is used for variables related to the ith body.
The relative variables have no subscript and the kth dis-
crete variables have the second level subscript k. The letters
x; v;X and R are used to denote the position, velocity,
angular velocity and rotation matrix, respectively.

The trace of A 2 Rn�n is denoted by

tr½A� ¼
Xn

i¼1

½A�ii;

where [A]ii is the i, ith element of A. It can be shown that

tr½AB� ¼ tr½BA� ¼ tr½BTAT� ¼ tr½ATBT�; ð5Þ

tr½ATB� ¼
X3

p;q¼1

½A�pq½B�pq; ð6Þ

tr½PQ� ¼ 0 ð7Þ
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for matrices A;B 2 Rn�n, a skew-symmetric matrix P ¼
�P T 2 Rn�n, and a symmetric matrix Q ¼ QT 2 Rn�n.

The map S : R3 7!R3�3 is defined by the condition that
SðxÞy ¼ x� y for x; y 2 R3. For x ¼ ðx1; x2; x3Þ 2 R3, SðxÞ
is given by

SðxÞ ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
64

3
75:

It can be shown that

SðxÞT ¼ �SðxÞ; ð8Þ
Sðx� yÞ ¼ SðxÞSðyÞ � SðyÞSðxÞ ¼ yxT � xyT; ð9Þ
SðRxÞ ¼ RSðxÞRT; ð10Þ
SðxÞTSðxÞ ¼ ðxTxÞI3�3 � xxT ¼ tr½xxT�I3�3 � xxT ð11Þ

for x; y 2 R3 and R 2 SOð3Þ.
Using homogeneous coordinates, we can represent an

element of SEð3Þ as follows:

R x

0 1

� �
2 SEð3Þ

for x 2 R3 and R 2 SOð3Þ. Then, an action on SEð3Þ is
given by the usual matrix multiplication in R4�4. For
example

R1 x1

0 1

� �
R2 x2

0 1

� �
¼

R1R2 R1x2 þ x1

0 1

� �

for x1; x2 2 R3 and R1;R2 2 SOð3Þ.
The action of an element of SEð3Þ on R3 can be

expressed using a matrix–vector product, once we identify
R3 with R3 � f1g � R4. In particular, we see from

R x1

0 1

� �
x2

1

� �
¼

Rx2 þ x1

1

� �

that x2 7!Rx2 þ x1.

3. Continuous time full body models

In this section, the continuous time equations of motion
for the full body problem are derived in inertial and relative
frames, and are expressed in both Lagrangian and in Ham-
iltonian form.

We define O� e1e2e3 as an inertial frame, and
OBi � Ei1 Ei2 Ei3 as a body fixed frame for the ith body, Bi.
The origin of the ith body fixed frame is located at the center
of mass of body Bi. The configuration space of the ith rigid
body is . We denote the position of the
center of mass of Bi in the inertial frame by xi 2 R3, and we
denote the attitude of Bi by Ri 2 SOð3Þ, which is a rotation
matrix from the ith body fixed frame to the inertial frame.

3.1. Inertial frame

Lagrangian: To derive the equations of motion, we first
construct a Lagrangian for the full body problem. Given
ðxi;RiÞ 2 SEð3Þ, the inertial position of a mass element of
Bi is given by xi þ Riqi, where qi 2 R3 denotes the position
of the mass element in the body fixed frame. Then, the
kinetic energy of Bi can be written as

T i ¼
1

2

Z
Bi

k _xi þ _Riqik
2dmi:

Using the fact that
R
Bi

qidmi ¼ 0 and the kinematic equa-
tion _Ri ¼ RiSðXiÞ, the kinetic energy Ti can be rewritten as

T ið _xi;XiÞ ¼
1

2

Z
Bi

k _xik2 þ kSðXiÞqik
2dmi

¼ 1

2
mik _xik2 þ 1

2
tr½SðXiÞJ di SðXiÞT�; ð12Þ

where mi 2 R is the total mass of Bi, Xi 2 R3 is the angular
velocity of Bi in the body fixed frame, and
J di ¼

R
Bi

qiq
T
i dmi 2 R3�3 is a nonstandard moment of iner-

tia matrix. Using (11), it can be shown that the standard
moment of inertia matrix J i ¼

R
Bi

SðqiÞ
TSðqiÞdmi 2 R3�3 is

related to J di by

J i ¼ tr½J di �I3�3 � J di ;

and that the following condition holds for any Xi 2 R3

SðJ iXiÞ ¼ SðXiÞJ di þ J di SðXiÞ: ð13Þ

We first derive equations using the nonstandard moment of
inertia matrix J di , and then express them in terms of the
standard moment of inertia Ji by using (13).

The gravitational potential energy U : SEð3Þn 7!R is
given by

Uðx1; x2; . . . ; xn;R1;R2; . . . ;RnÞ

¼ � 1

2

Xn

i;j¼1
i6¼j

Z
Bi

Z
Bj

Gdmidmj

kxi þ Riqi � xj � Rjqjk
; ð14Þ

where G is the universal gravitational constant.
Then, the Lagrangian for n full bodies can be written as

Lðx; _x;R;XÞ ¼
Xn

i¼1

1

2
mik _xik2þ1

2
tr½SðXiÞJ di SðXiÞT��Uðx;RÞ;

ð15Þ

where bold type letters denote ordered n-tuples of vari-
ables. For example, x 2 ðR3Þn, R 2 SOð3Þn, and X 2 ðR3Þn
are defined as x ¼ ðx1; x2; . . . ; xnÞ, R ¼ ðR1;R2; . . . ;RnÞ,
and X ¼ ðX1;X2; . . . ;XnÞ, respectively.

Variations of variables: Since the configuration space is
SEð3Þn, the variations should be carefully chosen such that
they respect the geometry of the configuration space. The
variations of xi : ½t0; tf � 7!R3 and _xi : ½t0; tf � 7!R3 are trivial,
namely

x�i ¼ xi þ �dxi þ Oð�2Þ;
_x� ¼ _xi þ �d _xi þ Oð�2Þ;
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where dxi : ½t0; tf � 7!R3, d _xi : ½t0; tf � 7!R3 vanish at the ini-
tial time t0 and at the final time tf. The variation of Ri :
½t0; tf � 7! SOð3Þ, as given in (2), is

dRi ¼ Rigi; ð16Þ
where gi : ½t0; tf � 7! soð3Þ is a variation with values repre-
sented by a skew-symmetric matrix (gT

i ¼ �gi) vanishing
at t0 and tf. The variation of Xi can be computed from
the kinematic equation _Ri ¼ RiSðXiÞ and (16) to be

SðdXiÞ ¼
d

d�

����
�¼0

R�T
i

_R�
i ¼ dRT

i
_Ri þ RT

i d _Ri

¼ �giSðXiÞ þ SðXiÞgi þ _gi: ð17Þ
3.1.1. Equations of motion: Lagrangian form

If we take variations of the Lagrangian using (16) and
(17), we obtain the equations of motion from Hamilton’s
principle. We first take the variation of the kinetic energy
of Bi

dT i ¼
d

d�

����
�¼0

T ið _xi þ �d _xi;Xi þ �dXiÞ

¼ mi _xT
i d _xi þ

1

2
tr½SðdXiÞJ di SðXiÞT þ SðXiÞJ di SðdXiÞT�:

Substituting (17) into the above equation and using (5), we
obtain

dT i ¼ mi _xT
i d _xi þ

1

2
tr � _gifJ di SðXiÞ þ SðXiÞJ dig½ �

þ 1

2
tr giSðXiÞfJ di SðXiÞ þ SðXiÞJ dig½ �

� 1

2
tr½gifJ di SðXiÞ þ SðXiÞJ digSðXiÞ�:

Using (9) and (13), dTi is given by

dT i ¼ mi _xT
i d _xi þ

1

2
tr½� _giSðJ iXiÞ þ giSðXi � J iXiÞ�: ð18Þ

The variation of the potential energy is given by

dU ¼ d

d�

����
�¼0

Uðxþ �dx;Rþ �dRÞ;

where dx ¼ ðdx1; dx2; . . . ; dxnÞ, dR ¼ ðdR1; dR2; . . . ; dRnÞ.
Then, dU can be written as

dU ¼
Xn

i¼1

X3

p¼1

oU
o½xi�p

½dxi�p þ
X3

p;q¼1

oU
o½Ri�pq

½Rigi�pq

 !

¼
Xn

i¼1

oU T

oxi
dxi � tr giR

T
i

oU
oRi

� �� �
; ð19Þ

where [A]pq denotes the p,qth element of a matrix A, and
oU
oxi
; oU

oRi
are given by oU

oxi

h i
p
¼ oU

o½xi�p
, oU

oRi

h i
pq
¼ oU

o½Ri�pq
, respectively.

The variation of the Lagrangian has the form

dL ¼
Xn

i¼1

dT i � dU ; ð20Þ

which can be written more explicitly by using (18) and (19).
The action integral is defined to be

G ¼
Z tf

t0

Lðx; _x;R;XÞdt: ð21Þ

The variation of the action integral can be written as

dG ¼
Xn

i¼1

Z tf

t0

mi _xT
i d _xi �

oU T

oxi
dxi þ

1

2
tr½� _giSðJ iXiÞ�

þ 1

2
tr gi SðXi � J iXiÞ þ 2RT

i

oU
oRi

� �� �
dt:

Using integration by parts,

dG ¼
Xn

i¼1

mi _xT
i dxijtft0 �

1

2
tr½giSðJ iXiÞ�jtf

t0
þ
Z tf

t0

�mi€xT
i dxi

þ 1

2
tr½giSðJ i

_XiÞ�dt þ
Z tf

t0

� oU T

oxi
dxi dt

þ 1

2
tr gi SðXi � J iXiÞ þ 2RT

i

oU
oRi

� �� �
dt:

Using the fact that dxi and gi vanish at t0 and tf, the first two
terms of the above equation vanish. Then, dG is given by

dG ¼
Xn

i¼1

Z tf

t0

�dxT
i mi€xi þ

oU
oxi

� �

þ 1

2
tr gi SðJ i

_Xi þ Xi � J iXiÞ þ 2RT
i

oU
oRi

� �� �
dt:

From Hamilton’s principle, dG should be zero for all
possible variations dxi : ½t0; tf � 7!R3 and gi : ½t0; tf � 7! soð3Þ.
Therefore, the expression in the first brace should be zero.
Furthermore, since gi is skew symmetric, we have by (7),
that the expression in the second brace should be symmet-
ric. Then, we obtain the continuous equations of motion as

mi€xi ¼ �
oU
oxi

;

SðJ i
_Xi þ Xi � J iXiÞ þ 2RT

i

oU
oRi

¼ SðJ i
_Xi þ Xi � J iXiÞT þ 2

oU T

oRi
R:

ð22Þ

Using (8), we can simplify (22) to be

SðJ i
_Xi þ Xi � J iXiÞ ¼

oUT

oRi
R� RT

i

oU
oRi

:

Note that the right hand side expression in the above equa-
tion is also skew symmetric. Then, the moment due to the
gravitational potential on the ith body, Mi 2 R3 is given by
SðMiÞ ¼ oUT

oRi
Ri � RT

i
oU
oRi

. This moment Mi can be expressed
more explicitly as the following computation shows:

SðMiÞ ¼
oU T

oRi
Ri � RT

i

oU
oRi

¼ uT
ri1

uT
ri2

uT
ri3

	 
 ri1

ri2

ri3

2
64

3
75� rT

i1
rT

i2
rT

i3

	 
 uri1

uri2

uri3

2
64

3
75

¼ ðuT
ri1

ri1 � rT
i1

uri1Þ þ ðuT
ri2

ri2 � rT
i2

uri2Þ þ ðuT
ri3

ri3 � rT
i3

uri3Þ;
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where rip ; urip 2 R1�3 are the pth row vectors of Ri and oU
oRi

,
respectively. Substituting x ¼ rT

ip
, y ¼ uT

rip
into (9), we

obtain

SðMiÞ ¼ Sðri1 � uri1Þ þ Sðri2 � uri2Þ þ Sðri3 � uri3Þ
¼ Sðri1 � uri1 þ ri2 � uri2 þ ri3 � uri3Þ; ð23Þ

Then, the gravitational moment Mi is given by

Mi ¼ ri1 � uri1 þ ri2 � uri2 þ ri3 � uri3 : ð24Þ

In summary, the continuous equations of motion for the

full body problem, in Lagrangian form, can be written for
i 2 ð1; 2; . . . ; nÞ as

_vi ¼ �
1

mi

oU
oxi

; ð25Þ

J i
_Xi þ Xi � J iXi ¼ Mi; ð26Þ

_xi ¼ vi; ð27Þ
_Ri ¼ RiSðXiÞ; ð28Þ

where the translational velocity vi 2 R3 is defined as vi ¼ _xi.

3.1.2. Equations of motion: Hamiltonian form

We denote the linear and angular momentum of the ith
body Bi by ci 2 R3, and Pi 2 R3, respectively. They are
related to the linear and angular velocities by ci ¼ mivi,
and Pi ¼ J iXi. Then, the equations of motion can be
rewritten in terms of the momenta variables. The continu-

ous equations of motion for the full body problem, in Hamil-

tonian form, can be written for i 2 ð1; 2; . . . ; nÞ as

_ci ¼ �
oU
oxi

; ð29Þ

_Pi þ Xi �Pi ¼ Mi; ð30Þ

_xi ¼
ci

mi
; ð31Þ

_Ri ¼ RiSðXiÞ: ð32Þ
3.2. Relative frame

The motion of the full rigid bodies depends only on the
relative positions and the relative attitudes of the bodies.
This is a consequence of the property that the gravitational
potential can be expressed using only these relative vari-
ables. Physically, this is related to the fact that the total lin-
ear momentum and the total angular momentum about the
mass center of the bodies are conserved. Mathematically,
the Lagrangian is invariant under a left action of an ele-
ment of SEð3Þ. So, it is natural to express the equations
of motion in one of the body fixed frame. In this section,
the equations of motion for the full two body problem
are derived in the relative frame. This result can be readily
generalized to the n body problem.

Reduction of variables: In [2], the reduction is carried out
in stages, by first reducing position variables in R3, and
then reducing attitude variables in SOð3Þ. This is equiva-
lent to directly reducing the position and the attitude vari-
ables in SEð3Þ in a single step, which is a result that can be
explained by the general theory of Lagrangian reduction by
stages [24]. The reduced position and the reduced attitude
variables are the relative position and the relative attitude
of the first body with respect to the second body. In other
words, the variables are reduced by applying the inverse of
ðR2; x2Þ 2 SEð3Þ given by ðRT

2 ;�RT
2 x2Þ 2 SEð3Þ, to the fol-

lowing homogeneous transformations:

RT
2 �RT

2 x2

0 1

" #
R1 x1

0 1

� �
;

R2 x2

0 1

� �� �

¼ RT
2 R1 RT

2 ðx1 � x2Þ
0 1

" #
;

RT
2 R2 RT

2 ðx2 � x2Þ
0 1

" # !

¼ RT
2 R1 RT

2 ðx1 � x2Þ
0 1

" #
;

I3�3 0

0 1

� � !
: ð33Þ

This motivates the definition of the reduced variables as

X ¼ RT
2 ðx1 � x2Þ; ð34Þ

R ¼ RT
2 R1; ð35Þ

where X 2 R3 is the relative position of the first body with
respect to the second body expressed in the second body
fixed frame, and R 2 SOð3Þ is the relative attitude of the
first body with respect to the second body. The correspond-
ing linear and angular velocities are also defined as

V ¼ RT
2 ð _x1 � _x2Þ; ð36Þ

X ¼ RX1; ð37Þ

where V 2 R3 represents the relative velocity of the first
body with respect to the second body in the second body
fixed frame, and X 2 R3 is the angular velocity of the first
body expressed in the second body fixed frame. Here, the
capital letters denote variables expressed in the second
body fixed frame.

For convenience, we denote the inertial position and the
inertial velocity of the second body, expressed in the second
body fixed frame by X 2; V 2 2 R3

X 2 ¼ RT
2 x2; ð38Þ

V 2 ¼ RT
2 _x2: ð39Þ

Reduced lagrangian: The equations of motion in the rel-
ative frame are derived in the same way used to derive the
equations in the inertial frame. We first construct a reduced
Lagrangian. The reduced Lagrangian l is obtained by
expressing the original Lagrangian (15) in terms of the
reduced variables. The kinetic energy is given by

T 1 þ T 2 ¼
1

2
m1k _x1k2 þ 1

2
m2k _x2k2 þ 1

2
tr½SðX1ÞJ d1

SðX1ÞT�

þ 1

2
tr½SðX2ÞJ d2

SðX2ÞT�

¼ 1

2
m1kV þ V 2k2 þ 1

2
m2kV 2k2

þ 1

2
tr½SðXÞJ dR SðXÞT� þ 1

2
tr½SðX2ÞJ d2

SðX2ÞT�;
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where (10) is used, and J dR 2 R3�3 is defined as
J dR ¼ RJ d1

RT, which is an expression of the nonstandard
moment of inertia matrix of the first body with respect to
the second body fixed frame. Note that J dR is not a con-
stant matrix. Using (10), it can be shown that J dR also sat-
isfies a property similar to (13), namely

SðJ RXÞ ¼ SðXÞJ dR þ J dR SðXÞ; ð40Þ

where J R ¼ RJ 1RT 2 R3�3 is the standard moment of inertia
matrix of the first body with respect to the second body
fixed frame.

Using (14), the gravitational potential U of the full two
bodies is given by

Uðx1; x2;R1;R2Þ ¼ �
Z
B1

Z
B2

Gdm1dm2

kx1 þ R1q1 � x2 � R2q2k
;

and it is invariant under an action of an element of SEð3Þ.
Therefore, the gravitational potential can be written as
a function of the relative variables only. By applying the
inverse of ðR2; x2Þ 2 SEð3Þ as given in (33), we obtain

Uðx1; x2;R1;R2Þ ¼ UðRT
2 ðx1 � x2Þ; 0;RT

2 R1; I3�3Þ

¼ �
Z
B1

Z
B2

Gdm1dm2

kRT
2 ðx1 � x2Þ þ RT

2 R1q1 � I3�3q2k

¼ �
Z
B1

Z
B2

Gdm1dm2

kX þ Rq1 � q2k
,UðX ;RÞ:

Here we abuse notation slightly by using the same letter U

to denote the gravitational potential as a function of the
relative variables.

Then, the reduced Lagrangian l is given by

lðR;X ;X; V ;X2; V 2Þ ¼
1

2
m1kV þ V 2k2 þ 1

2
m2kV 2k2

þ 1

2
tr½SðXÞJ dR SðXÞT�

þ 1

2
tr½SðX2ÞJ d2

SðX2ÞT� � UðX ;RÞ:

ð41Þ

Variations of reduced variables: The variations of the
reduced variables must be restricted to those that can arise
from the variations of the original variables. For example,
the variation of the relative attitude R is given by

dR ¼ d

d�

����
�¼0

R�T
2 R�

1 ¼ dRT
2 R1 þ RT

2 dR1:

Substituting (16) into the above equation,

dR ¼ �g2RT
2 R1 þ RT

2 R1g1 ¼ �g2Rþ gR;

where a reduced variation g 2 soð3Þ is defined as
g ¼ Rg1RT. The variations of other reduced variables can
be obtained in a similar way. The detailed derivations are
given in A.1, and we summarize the results as follows:

dR ¼ gR� g2R; ð42Þ
dX ¼ v� g2X ; ð43Þ
SðdXÞ ¼ _g� SðXÞgþ gSðXÞ þ SðXÞg2 � g2SðXÞ
þ SðX2Þg� gSðX2Þ; ð44Þ

dV ¼ _vþ SðX2Þv� g2V ; ð45Þ
SðdX2Þ ¼ _g2 þ SðX2Þg2 � g2SðX2Þ; ð46Þ
dV 2 ¼ _v2 þ SðX2Þv2 � g2V 2; ð47Þ

where v; v2 : ½t0; tf � 7!R3 and g; g2 : ½t0; tf � 7! soð3Þ are vari-
ations that vanish at the end points. These Lie group vari-
ations are the key elements required to obtain the
equations of motion in the relative frame.

3.2.1. Equations of motion: Lagrangian form

The reduced equations of motion can be computed from
the reduced Lagrangian using the reduced Hamilton’s prin-
ciple. By taking the variation of the reduced Lagrangian
(41) using the constrained variations given by (42)–(47),
we can obtain the equations of motion in the relative
frame.

Following a similar process to the derivation of dT i; dU
as in (18) and (19), the variation of the reduced Lagrangian
dl can be obtained as

dl ¼ _vT½m1ðV þ V 2Þ� � vT½m1X2 � ðV þ V 2Þ�
þ _vT

2 ½m1ðV þ V 2Þ þ m2V 2�
� vT

2 ½m1X2 � ðV þ V 2Þ þ m2X2 � V 2�

þ 1

2
tr½� _gSðJ RXÞ þ gSðX2 � J RXÞ�

þ 1

2
tr½� _g2SðJ 2X2Þ þ g2SðX2 � J 2X2Þ� � vT oU

oX

þ tr g2X
oUT

oX

� �
þ tr g2R

oUT

oR
� gR

oUT

oR

� �
; ð48Þ

where we used the identities (9), (13) and (40), and the
constrained variations (42)–(47).

The action integral in terms of the reduced Lagrangian
is

G ¼
Z tf

t0

lðR;X ;X; V ;X2; V 2Þdt: ð49Þ

Using integration by parts together with the fact that
v; v2; g and g2 vanish at t0 and tf, the variation of the
action integral can be expressed from (48) as (50).

dG ¼ �
Z tf

t0

vT m1ð _V þ _V 2Þ þ m1X2 � ðV þ V 2Þ þ
oU
oX

� �
dt

�
Z tf

t0

vT
2 fm1ð _V þ _V 2Þ þ m2

_V 2

þ m1X2 � ðV þ V 2Þ þ m2X2 � V 2gdt

þ 1

2

Z tf

t0

tr g Sð _ðJ RXÞ þ X2 � J RXÞ � 2R
oUT

oR

� �� �
dt

þ 1

2

Z tf

t0

tr g2 SðJ 2
_X2 þ X2 � J 2X2Þ þ 2X

oUT

oX
þ 2R

oUT

oR

� �� �
dt:

ð50Þ

From the reduced Hamilton’s principle, dG ¼ 0 for all pos-
sible variations v; v2 : ½t0; tf � 7!R3 and g; g2 : ½t0; tf � 7! soð3Þ
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that vanish at t0 and tf. Therefore, in (50), the expressions
in the first two braces should be zero and the expressions in
the last two braces should be symmetric since g; g2 are skew
symmetric. Then, we obtain the following equations of
motion:

m1ð _V þ _V 2Þ þ m1X2 � ðV þ V 2Þ ¼ �
oU
oX

; ð51Þ

m2
_V 2 þ m2X2 � V 2 ¼

oU
oX

; ð52Þ

Sð _ðJ RXÞ þ X2 � J RXÞ ¼ �SðMÞ;

SðJ 2
_X2 þ X2 � J 2X2Þ ¼

oU
oX

X T � X
oUT

oX
þ SðMÞ; ð53Þ

where M 2 R3 is defined by the relation
SðMÞ ¼ oU

oR RT � RoU
oR

T
. By a procedure analogous to the

derivation of (23), M can be written as

M ¼ r1 � ur1
þ r2 � ur2

þ r3 � ur3
; ð54Þ

where rp; urp 2 R3 are the pth column vectors of R and oU
oR,

respectively.
Eq. (51) can be simplified using (52) as

_V þ X2 � V ¼ �m1 þ m2

m1m2

oU
oX

:

For reconstruction of the motion of the second body, it is
natural to express the motion of the second body in the
inertial frame. Since _V 2 ¼ _RT

2 _x2 þ RT
2 €x2 ¼ �SðX2ÞV þ RT

2 _v2,
(52) can be written as

m2RT
2 _v2 ¼

oU
oX

:

Eq. (53) can be simplified using the property
oU
oX X T � X oU

oX
T ¼ SðX � oU

oXÞ from (9). The kinematics equa-

tions for _R and _X can be derived in a similar way.
In summary, the continuous equations of relative motion

for the full two body problem, in Lagrangian form, can be
written as

_V þ X2 � V ¼ � 1

m
oU
oX

; ð55Þ
_ðJ RXÞ þ X2 � J RX ¼ �M ; ð56Þ

J 2
_X2 þ X2 � J 2X2 ¼ X � oU

oX
þM ; ð57Þ

_X þ X2 � X ¼ V ; ð58Þ
_R ¼ SðXÞR� SðX2ÞR; ð59Þ

where m ¼ m1m2

m1þm2
. The following equations can be used for

reconstruction of the motion of the second body in the
inertial frame:

_v2 ¼
1

m2

R2

oU
oX

; ð60Þ

_x2 ¼ v2; ð61Þ
_R2 ¼ R2SðX2Þ: ð62Þ
These equations are equivalent to those given in [2].
However, (60) is not given in [2]. (55)–(62) give a complete
set of equations for the reduced dynamics and reconstruc-
tion. Furthermore, they are derived systematically in the
context of geometric mechanics using proper variational
formulas given in (42)–(47). This result can be readily gen-
eralized for n bodies.

3.2.2. Equations of motion: Hamiltonian form
Define the linear momenta C; c2 2 R3, and the angular

momenta P;P2 2 R3 as

C ¼ mV ;

c2 ¼ mv2;

P ¼ J RX ¼ RJ 1X1;

P2 ¼ J 2X2:

Then, the equations of motion can be rewritten in terms of
these momenta variables. The continuous equations of rela-

tive motion for the full two body problem, in Hamiltonian

form, can be written as

_Cþ X2 � C ¼ � oU
oX

; ð63Þ
_Pþ X2 �P ¼ �M ; ð64Þ

_P2 þ X2 �P2 ¼ X � oU
oX
þM ; ð65Þ

_X þ X2 � X ¼ C
m
; ð66Þ

_R ¼ SðXÞR� SðX2ÞR; ð67Þ

where m ¼ m1m2

m1þm2
. The following equations can be used to

reconstruct the motion of the second body in the inertial
frame:

_c2 ¼ R2
oU
oX

; ð68Þ

_x2 ¼
c2

m2

; ð69Þ

_R2 ¼ R2SðX2Þ: ð70Þ
4. Lie group variational integrators

A variational integrator discretizes Hamilton’s principle
rather than the continuous equations of motion. Taking
variations of the discretization of the action integral leads
to the discrete Euler–Lagrange or discrete Hamilton’s
equations. The discrete Euler–Lagrange equations can be
interpreted as a discrete Lagrangian map that updates the
variables in the configuration space, which are the posi-
tions and the attitudes of the bodies. A discrete Legendre
transformation relates the configuration variables with
the linear and angular momenta variables, and yields a dis-
crete Hamiltonian map, which is equivalent to the discrete
Lagrangian map.

In this section, we derive both a Lagrangian and Ham-
iltonian form of variational integrators for the full body
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problem in inertial and relative frames. The second level
subscript k denotes the value of variables at t ¼ khþ t0

for an integration step size h 2 R and an integer k. The
integer N satisfies tf ¼ kN þ t0, so N is the number of
time-steps of length h to go from the initial time t0 to the
final time tf.

4.1. Inertial frame

Discrete Lagrangian: In continuous time, the structure
of the kinematics Eqs. (28), (59) and (62) ensure that Ri,
R and R2 evolve on SOð3Þ automatically. Here, we intro-
duce a new variable F ik 2 SOð3Þ defined such that
Rikþ1

¼ Rik F ik , i.e.

F ik ¼ RT
ik

Rikþ1
: ð71Þ

Thus, F ik represents the relative attitude between two inte-
gration steps, and by requiring that F ik 2 SOð3Þ, we guar-
antee that Rik evolves in SOð3Þ.

Using the kinematic equation _Ri ¼ RiSðXiÞ, the skew-
symmetric matrix SðXkÞ can be approximated as

SðXik Þ ¼ RT
ik

_Rik � RT
ik

Rikþ1
� Rik

h
¼ 1

h
ðF ik � I3�3Þ: ð72Þ

The velocity, _xik can be approximated simply by
ðxikþ1

� xik Þ=h. Using these approximations of the angular
and linear velocity, the kinetic energy of the ith body given
in (12) can be approximated as

T ið _xi;XiÞ � T i
1

h
ðxikþ1

� xik Þ;
1

h
ðF ik � I3�3Þ

� �

¼ 1

2h2
mikxikþ1

� xikk
2

þ 1

2h2
tr½ðF ik � I3�3ÞJ diðF ik � I3�3ÞT�

¼ 1

2h2
mikxikþ1

� xikk
2 þ 1

h2
tr½ðI3�3 � F ik ÞJ di �;

where (5) is used. A discrete Lagrangian Ldðxk; xkþ1;Rk;FkÞ
is constructed such that it approximates a segment of the
action integral (21),

Ld ¼
h
2

L xk;
1

h
ðxkþ1 � xkÞ;Rk;

1

h
ðFk � IÞ

� �

þ h
2

L xkþ1;
1

h
ðxkþ1 � xkÞ;Rkþ1;

1

h
ðFk � IÞ

� �

¼
Xn

i¼1

1

2h
mikxikþ1

� xikk
2 þ 1

h
tr½ðI3�3 � F ik ÞJ di �

� h
2

Uðxk;RkÞ �
h
2

Uðxkþ1;Rkþ1Þ; ð73Þ

where xk 2 ðR3Þn, Rk 2 SOð3Þn, and Fk 2 ðR3Þn, and
I 2 ðR3�3Þn are defined as xk ¼ ðx1k ; x2k ; . . . ; xnk Þ,
Rk ¼ ðR1k ;R2k ; . . . ;Rnk Þ, Fk ¼ ðF 1k ; F 2k ; . . . ; F nk Þ, and
I ¼ ðI3�3; I3�3; . . . ; I3�3Þ, respectively.

This discrete Lagrangian is self-adjoint [9], and self-
adjoint numerical integration methods have even order,
so we are guaranteed that the resulting integration method
is at least second-order accurate.

Variations of discrete variables: The variations of the dis-
crete variables are chosen to respect the geometry of the
configuration space SEð3Þ. The variation of xik is given by

x�ik ¼ xik þ �dxik þ Oð�2Þ;

where dxik 2 R3 and vanishes at k = 0 and k ¼ N . The var-
iation of Rik is given by

dRik ¼ Rik gik ; ð74Þ

where gik 2 soð3Þ is a variation represented by a skew-sym-
metric matrix and vanishes at k = 0 and k ¼ N . The varia-
tion of F ik can be computed from the definition
F ik ¼ RT

ik
Rikþ1

to give

dF ik ¼ dRT
ik

Rikþ1
þ RT

ik
dRikþ1

¼ �gik R
T
ik

Rikþ1
þ RT

ik
Rikþ1

gikþ1

¼ �gik F ik þ F ik gikþ1
: ð75Þ
4.1.1. Discrete equations of motion: Lagrangian form

To obtain the discrete equations of motion in Lagrang-
ian form, we compute the variation of the discrete
Lagrangian from (19), (74) and (75), to give

dLd ¼
Xn

i¼1

1

h
miðxikþ1

� xik Þ
Tðdxikþ1

� dxik Þ

þ 1

h
tr½ðgik F ik � F ik gikþ1

ÞJ di �

� h
2

oU T
k

oxik

dxik þ
oUT

kþ1

oxikþ1

dxikþ1

� �

þ h
2

tr gik RT
ik

oU k

oRik

þ gikþ1
RT

ikþ1

oUkþ1

oRikþ1

� �
; ð76Þ

where U k ¼ Uðxk;RkÞ denotes the value of the potential at
t ¼ khþ t0.

Define the action sum as

Gd ¼
XN�1

k¼0

Ldðxk; xkþ1;Rk;FkÞ: ð77Þ

The discrete action sum Gd approximates the action inte-
gral (21), because the discrete Lagrangian approximates a
segment of the action integral.

Substituting (76) into (77), the variation of the action
sum is given by

dGd ¼
XN�1

k¼0

Xn

i¼1

dxT
ikþ1

1

h
miðxikþ1

� xik Þ �
h
2

oU kþ1

oxikþ1

� �

þ dxT
ik
� 1

h
miðxikþ1

� xik Þ �
h
2

oU k

oxik

� �

þ tr gikþ1
� 1

h
J di F ik þ

h
2

RT
ikþ1

oU kþ1

oRikþ1

� �� �

þ tr gik

1

h
F ik J di þ

h
2

RT
ik

oU k

oRik

� �� �
:
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Using the fact that dxik and gik vanish at k = 0 and k ¼ N ,
we can reindex the summation, which is the discrete ana-
logue of integration by parts, to yield

dGd ¼
XN�1

k¼1

Xn

i¼1

�dxik

1

h
miðxikþ1

� 2xik þ xik�1
Þ

�
þ h

oU k

oxik

�

þ tr gik

1

h
ðF ik J di � J di F ik�1

Þ þ hRT
ik

oUk

oRik

� �� �
:

Hamilton’s principle states that dGd should be zero for
all possible variations dxik 2 R3 and gik 2 soð3Þ that vanish
at the endpoints. Therefore, the expression in the first brace
should be zero, and since gik is skew-symmetric, the expres-
sion in the second brace should be symmetric. Thus, we
obtain the discrete equations of motion for the full body

problem, in Lagrangian form, for i 2 ð1; 2; . . . ; nÞ as

1

h
ðxikþ1

� 2xik þ xik�1
Þ ¼ �h

oU k

oxik

; ð78Þ

1

h
ðF ikþ1

J di � J di F
T
ikþ1
� J di F ik þ F T

ik
J diÞ ¼ hSðMikþ1

Þ; ð79Þ

Rikþ1
¼ Rik F ik ; ð80Þ

where Mik 2 R3 is defined in (24) as

Mik ¼ ri1 � uri1 þ ri2 � uri2 þ ri3 � uri3 ; ð81Þ
where rip ; urip 2 R1�3 are pth row vectors of Rik and oUk

oRik
,

respectively. Given the initial conditions ðxi0 ;Ri0 ; xi1 ;Ri1Þ,
we can obtain xi2 from (78). Then, F i0 is computed from
(80), and F i1 can be obtained by solving the implicit Eq.
(79). Finally, Ri2 is found from (80). This yields an update
map ðxi0 ;Ri0 ; xi1 ;Ri1Þ 7! ðxi1 ;Ri1 ; xi2 ;Ri2Þ, and this process can
be repeated.

4.1.2. Discrete equations of motion: Hamiltonian form
As discussed above, (78)–(80) defines a discrete

Lagrangian map that updates xik and Rik . The discrete
Legendre transformation given in (3) and (4) relates the
configuration variables xik , Rik and the corresponding
momenta. This induces a discrete Hamiltonian map that
is equivalent to the discrete Lagrangian map. The discrete
Hamiltonian map is particularly convenient if the initial
conditions are given in terms of the positions and momenta
at the initial time ðxi0 ; vi0 ;Ri0 ;Xi0Þ.

Before deriving the variational integrator in Hamilto-
nian form, consider the momenta conjugate to xi and Ri,
namely P vi 2 R3 and PXi 2 R3�3. From the definition (1),
Fvi L is obtained by taking the derivative of L, given in
(15), with _xi while holding other variables fixed.

d _xT
i P vi ¼ Fvi Lðx; _x;R;XÞ ¼ d

d�

����
�¼0

Lðx; _xþ �d _xi;R;XÞ

¼ d

d�

����
�¼0

T ið _xi þ �d _xi;XiÞ ¼ d _xT
i ðmi _xiÞ;

where d _xi 2 ðR3Þn denotes ð0; 0; . . . ; d _xi; . . . ; 0Þ, and Ti is
given in (12). Then, we obtain

P vi ¼ mivi ¼ ci; ð82Þ
which is equal to the linear momentum of Bi. Similarly,

tr½SðdXiÞTPXi � ¼ FXi Lðx; _x;R;XÞ ¼ d

d�

����
�¼0

T ið _xi;Xi þ �dXiÞ

¼ 1

2
tr½SðdXiÞTSðJ iXiÞ�;

where (5) and (13) are used. Now, we obtain

tr SðdXiÞT PXi �
1

2
SðJ iXiÞ

� �� �
¼ 0:

Since SðXiÞ is skew-symmetric, the expression in the braces
should be symmetric. This implies that

PXi � P T
Xi
¼ SðJ iXiÞ ¼ SðPiÞ: ð83Þ

Eqs. (82) and (83) give expressions for the momenta con-
jugate to xi and Ri. Consider the discrete Legendre trans-
formations given in (3) and (4). Then,

dxT
ik

Dxi;k Ldðxk; xkþ1;Rk;FkÞ

¼ d

d�

����
�¼0

Ldðxk þ �dxik ; xkþ1;Rk;FkÞ

¼ �dxT
ik

1

h
miðxikþ1

� xik Þ þ
h
2

oUk

oxik

� �
; ð84Þ

where dxik 2 ðR3Þn denotes ð0; 0; . . . ; dxik ; . . . ; 0Þ. Therefore,
we have

Dxi;k Ldðxk; xkþ1;Rk;FkÞ ¼ �
1

h
miðxikþ1

� xik Þ �
h
2

oU k

oxik

: ð85Þ

From the discrete Legendre transformation given in (3),
P vi;k ¼ �Dxi;k Ld . Using (82) and (85), we obtain

cik ¼
1

h
miðxikþ1

� xik Þ þ
h
2

oUk

oxik

: ð86Þ

Using the discrete Legendre transformation given in (4),
P vi;kþ1

¼ Dxi;kþ1
Ld , we can derive the following equation

similarly:

cikþ1
¼ 1

h
miðxikþ1

� xik Þ �
h
2

oUkþ1

oxikþ1

: ð87Þ

Eqs. (86) and (87) define the variational integrator in
Hamiltonian form for the translational motion. Now,
consider the rotational motion. We have

tr½gik DRi;k LT
d � ¼ tr gik

1

h
F ik J di þ

h
2

RT
ik

oU k

oRik

� �� �
; ð88Þ

where the right side is obtained by taking the variation of
Ld with respect to Rik , while holding other variables fixed.
Since gik is skew-symmetric,

�DRi;k Ld þDRi;k LT
d ¼

1

h
ðF ik J di � J di F

T
ik
Þ � h

2
SðMik Þ; ð89Þ

where Mii 2 R3 is defined in (81).
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From the discrete Legendre transformation given in (3),
PXi;k ¼ �DRi;k Ld , we obtain the following equation by using
(83) and (89),

SðPik Þ ¼
1

h
ðF ik J di � J di F

T
ik
Þ � h

2
SðMik Þ: ð90Þ

Using the discrete Legendre transformation given in (4),
PXi;kþ1

¼ DRi;kþ1
Ld , we can obtain the following equation:

SðPikþ1
Þ ¼ 1

h
F T

ik
ðF ik J di � J di F

T
ik
ÞF ik þ

h
2

SðMikþ1
Þ: ð91Þ

By using (10) and substituting (90), we can reduce (91) to
the following equation in vector form.

Pikþ1
¼ F T

ik
Pik þ

h
2

F T
ik

Mik þ
h
2

Mikþ1
: ð92Þ

Eqs. (90) and (92) define the variational integrator in
Hamiltonian form for the rotational motion.

In summary, using (86), (87), (90) and (92), the discrete
equations of motion for the full body problem, in Hamilto-

nian form, can be written for i 2 ð1; 2; . . . ; nÞ as

xikþ1
¼ xik þ

h
mi

cik �
h2

2mi

oUk

oxik

; ð93Þ

cikþ1
¼ cik �

h
2

oU k

oxik

� h
2

oU kþ1

oxikþ1

; ð94Þ

hS Pik þ
h
2

Mik

� �
¼ F ik J di � J di F

T
ik
; ð95Þ

Pikþ1
¼ F T

ik
Pik þ

h
2

F T
ik

Mik þ
h
2

Mikþ1
; ð96Þ

Rikþ1
¼ Rik F ik : ð97Þ

Given ðxi0 ; ci0 ;Ri0 ;Pi0Þ, we can find xi1 from (93). Solving the
implicit Eq. (95) yields F i0 , and Ri1 is computed from (97).
Then, (94) and (96) gives ci1 , and Pi1 . This defines the dis-
crete Hamiltonian map, ðxi0 ; ci0 ;Ri0 ;Pi0Þ7!ðxi1 ; ci1 ;Ri1 ;Pi1Þ,
and this process can be repeated.

4.2. Relative frame

In this section, we derive the variational integrator for
the full two body problem in the relative frame by follow-
ing the procedure given before. This result can be readily
generalized to n bodies.

Reduction of discrete variables: The discrete reduced
variables are defined in the same way as the continuous
reduced variables, which are given in (34)–(39). We intro-
duce F k 2 SOð3Þ such that Rkþ1 ¼ RT

2kþ1
R1kþ1

¼ F T
2k

F kRk. i.e.

F k ¼ RkF 1k RT
k : ð98Þ

Discrete reduced Lagrangian: The discrete reduced
Lagrangian is obtained by expressing the original discrete
Lagrangian given in (73) in terms of the discrete reduced
variables.
From the definition of the discrete reduced variables
given in (34) and (38), we have

x1kþ1
� x1k ¼ R2kþ1

ðX kþ1 þ X 2kþ1
Þ � R2k ðX k þ X 2k Þ

¼ R2kfF 2k ðX kþ1 þ X 2kþ1
Þ � ðX k þ X 2k Þg; ð99Þ

x2kþ1
� x2k ¼ R2kfF 2k X 2kþ1

� X 2kg: ð100Þ

From (72), SðX1k Þ and SðX2k Þ are expressed as

SðX1k Þ ¼
1

h
ðF 1k � I3�3Þ

¼ 1

h
RT

k ðF k � I3�3ÞRk; ð101Þ

SðX2k Þ ¼
1

h
ðF 2k � I3�3Þ: ð102Þ

Substituting (99)–(102) into (73), we obtain the discrete
reduced Lagrangian

ldk ¼ ldðX k;X kþ1;X 2k ;X 2kþ1
;Rk; F k; F 2k Þ

¼ 1

2h
m1kF 2k ðX kþ1 þ X 2kþ1

Þ � ðX k þ X 2k Þk
2

þ 1

2h
m2kF 2k X 2kþ1

� X 2kk
2 þ 1

h
tr½ðI3�3 � F kÞJ dRk �

þ 1

h
tr½ðI3�3 � F 2k ÞJ d2

� � h
2

UðX k;RkÞ �
h
2

UðX kþ1;Rkþ1Þ;

ð103Þ

where J dRk 2 R3�3 is defined to be J dRk ¼ RkJ d1
RT

k , which
gives the nonstandard moment of inertia matrix of the first
body with respect to the second body fixed frame at
t ¼ khþ t0.

Variations of discrete reduced variables: The variations
of the discrete reduced variables can be derived from those
of the original variables. The variations of Rk, Xk, and F 2k

are the same as given in (42), (43), and (75), respectively.
The variation of Fk is computed in (A.2).

In summary, the variations of discrete reduced variables
are given by

dRk ¼ gkRk � g2k
Rk; ð104Þ

dX k ¼ vk � g2k
X k; ð105Þ

dF k ¼ �g2k
F k þ F 2k gkþ1F T

2k
F k þ F kð�gk þ g2k

Þ; ð106Þ

dX 2k ¼ v2k
� g2k

X 2k ; ð107Þ

dF 2k ¼ �g2k
F 2k þ F 2k g2kþ1

: ð108Þ

These Lie group variations are the main elements required
to derive the variational integrator equations.

4.2.1. Discrete equations of motion: Lagrangian form

As before, we can obtain the discrete equations of
motion in Lagrangian form by computing the variation
of the discrete reduced Lagrangian which, by using
(104)–(108), is given as (109).
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dldk ¼
1

h
vT

kþ1½m1ðX kþ1 þ X 2kþ1
Þ �m1F T

2k
ðX k þ X 2k Þ�

þ 1

h
vT

k ½m1ðX k þ X 2k Þ �m1F 2k ðX kþ1 þ X 2kþ1
Þ�

þ 1

h
vT

2kþ1
½m1ðX kþ1 þ X 2kþ1

Þ �m1F T
2k
ðX k þ X 2k Þ

þm2X 2kþ1
�m2F T

2k
X 2k � þ

1

h
vT

2k
½m1ðX k þ X 2k Þ

�m1F 2k ðX kþ1 þ X 2kþ1
Þ þm2X 2k �m2F 2k X 2kþ1

�

� 1

h
tr½gkþ1F T

2k
F kJ dRk F 2k � þ

1

h
tr½gkF kJ dRk �

� 1

h
tr½g2kþ1

J d2
F 2k � þ

1

h
tr½g2k

F 2k J d2
�

� h
2
vT

k

oU k

oX k
þ h

2
tr g2k

X k
oUT

k

oX k

� �
� h

2
vT

kþ1

oU kþ1

oX kþ1

þ h
2

tr g2kþ1
X kþ1

oUT
kþ1

oX kþ1

� �
þ h

2
tr g2k

Rk
oU T

k

oRk
� gkRk

oU T
k

oRk

� �

þ h
2

tr g2kþ1
Rkþ1

oU T
kþ1

oRkþ1

� gkþ1Rkþ1

oU T
kþ1

oRkþ1

� �
: ð109Þ

The action sum expressed in terms of the discrete
reduced Lagrangian has the form

Gd ¼
XN�1

k¼0

ldðX k;X kþ1;X 2k ;X 2kþ1
;Rk; F k; F 2k Þ: ð110Þ

The discrete action sum Gd approximates the action inte-
gral (49), because the discrete Lagrangian approximates a
piece of the integral. Using the fact that the variations
vk; v2k

; gk; g2k
vanish at k = 0 and k ¼ N , the variation of

the discrete action sum can be expressed as (111).

dGd ¼
XN�1

k¼1

1

h
vT

k

�
�m1F T

2k�1
ðX k�1 þ X 2k�1

Þ þ 2m1ðX k þ X 2k Þ

� m1F 2k ðX kþ1 þ X 2kþ1
Þ � h2 oUk

oX k

�

þ
XN�1

k¼1

1

h
vT

2k
�m1F T

2k�1
ðX k�1 þ X 2k�1

Þ þ 2m1ðX k þ X 2k Þ
n

� m1F 2k ðX kþ1 þ X 2kþ1
Þ � m2F T

2k�1
X 2k�1

þ 2m2X 2k � m2F 2k X 2kþ1

o

þ
XN�1

k¼1

tr gk
1

h
ð�F T

2k�1
F k�1Rk�1J d1

RT
k�1F 2k�1

þ F kRkJ d1
RT

k Þ � hRk
oU T

k

oRk

� �� �

þ
XN�1

k¼1

tr g2k

1

h
ð�J d2

F 2k�1
þ F 2k J d2

Þ þ hX k
oU T

k

oX k
þ hRk

oU T
k

oRk

� �� �
:

ð111Þ

From Hamilton’s principle, dGd should be zero for all
possible variations vk; v2k

2 R3 and gk,g2k
2 soð3Þ which

vanish at the endpoints. Therefore, in (111), the expressions
in the first two braces should be zero, and the expressions
in the last two braces should be symmetric since gk,g2k

are skew-symmetric. After some simplification, we obtain
the discrete equations of relative motion for the full two body

problem, in Lagrangian form, as

F 2k X kþ1 � 2X k þ F T
2k�1

X k�1 ¼ �
h2

m
oU k

oX k
; ð112Þ
F kþ1J dRkþ1
� J dRkþ1

F T
kþ1

¼ F T
2k
ðF kJ dRk � J dRk F

T
k ÞF 2k � h2SðMkþ1Þ; ð113Þ

F 2kþ1
J d2
� J d2

F T
2kþ1
¼ F T

2k
ðF 2k J d2

� J d2
F T

2k
ÞF 2k

þ h2X kþ1 �
oUkþ1

oX kþ1

þ h2SðMkþ1Þ;

ð114Þ
Rkþ1 ¼ F T

2k
F kRk; ð115Þ

R2kþ1
¼ R2k F 2k : ð116Þ

It is natural to express equations of motion for the second
body in the inertial frame.

x2kþ1
� 2x2k þ x2k�1

¼ h2

m2

Rk
oU k

oX k
: ð117Þ

Given ðX 0;R0;R20
;X 1;R1;R21

Þ, we can determine F0 and F 20

from (115) and (116). Solving the implicit equations (113)
and (114) gives F1 and F 21

. Then X 2, R2 and R22
are found

from (112), (115) and (116), respectively. This yields the
discrete Lagrangian map ðX 0;R0;R20

;X 1;R1;R21
Þ 7!

ðX 1;R1;R21
;X 2;R2;R22

Þ and this process can be repeated.
We can separately reconstruct x2k using (117).
4.2.2. Discrete equations of motion: Hamiltonian form

Using the discrete Legendre transformation, we can
obtain the Hamiltonian map, in terms of reduced variables,
that is equivalent to the Lagrangian map given in (112)–
(117). We will only sketch the procedure as it is analogous
to the approach of the previous section. First, we find
expressions for the conjugate momenta variables corre-
sponding to (82) and (83). We compute the discrete Legen-
dre transformation by taking the variation of the discrete
reduced Lagrangian as in (84) and (88). Then, we obtain
the discrete equations of motion in Hamiltonian form
using (3) and (4).

The discrete equations of relative motion for the full two

body problem, in Hamiltonian form, can be written as

X kþ1 ¼ F T
2k

X k þ h
Ck

m
� h2

2m
oUk

oX k

� �
; ð118Þ

Ckþ1 ¼ F T
2k Ck �

h
2

oU k

oX k

� �
� h

2

oU kþ1

oX kþ1

; ð119Þ

Pkþ1 ¼ F T
2k

Pk �
h
2

Mk

� �
� h

2
Mkþ1; ð120Þ

P2kþ1
¼ F T

2k
P2k þ

h
2

X k �
oUk

oX k
þ h

2
MT

k

� �

þ h
2

X kþ1 �
oU kþ1

oX kþ1

þ h
2

Mkþ1; ð121Þ

Rkþ1 ¼ F T
2k

F kRk; ð122Þ

hS Pk �
h
2

Mk

� �
¼ F kJ dRk � J dRk F T

k ; ð123Þ

hS P2k þ
h
2

X k �
oU
oX k
þ h

2
Mk

� �
¼ F 2k J d2

� J d2
F T

2k
: ð124Þ
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It is natural to express equations of motion for the second
body in the inertial frame for reconstruction:

x2kþ1
¼ x2k þ h

c2k

m2

þ h2

2m2

Rk
oU k

oX k
; ð125Þ

c2kþ1
¼ c2k

þ h
2

Rk
oU k

oX k
þ h

2
Rkþ1

oU kþ1

oX kþ1

; ð126Þ

R2kþ1
¼ R2k F 2k : ð127Þ

Given ðR0;X 0;P0;C0;P20
Þ, we can determine F0 and F 20

by
solving the implicit Eqs. (123) and (124). Then, X1 and R1

are found from (118) and (122), respectively. After that, we
can compute C1, P1, and P21

from (119)–(121). This yields
a discrete Hamiltonian map ðR0;X 0;P0;C0;P20

Þ 7!
ðR1;X 1;P1;C1;P21

Þ, and this process can be repeated. x2k ,
c2k

and R2k can be updated separately using (125)–(127),
respectively, for reconstruction.
4.3. Numerical considerations

Properties of the variational integrators: Variational inte-
grators exhibit a discrete analogue of Noether’s theorem
[10], and symmetries of the discrete Lagrangian result in
conservation of the corresponding momentum maps. Our
choice of discrete Lagrangian is such that it inherits the
symmetries of the continuous Lagrangian. Therefore, all
the conserved momenta in the continuous dynamics are
preserved by the discrete dynamics.

The proposed variational integrators are expressed in
terms of Lie group computations [12]. During each integra-
tion step, F ik 2 SOð3Þ is obtained by solving an implicit
equation, and Rik is updated by multiplication with F ik .
Since SOð3Þ is closed under matrix multiplication, the atti-
tude matrix Rikþ1

remains in SO(3). We make this more
explicit in Section 4.4 by expressing F ik as the exponential
function of an element of the Lie algebra soð3Þ.

An adjoint integration method is the inverse map of the
original method with reversed time-step. An integration
method is called self-adjoint or symmetric if it is identical
to its adjoint; a self-adjoint method always has even order.
Our discrete Lagrangian is chosen to be self-adjoint, and
therefore the corresponding variational integrators are
second-order accurate.

Higher-order methods: While the numerical methods we
present in this paper are second-order, it is possible to
apply the symmetric composition methods, introduced in
[25], to construct higher-order versions of the Lie group
variational integrators introduced here. Given a basic
numerical method represented by the flow map Uh, the
composition method is obtained by applying the basic
method using different step sizes,

Wh ¼ Uksh 	 � � � 	 Uk1h;

where k1; k2; . . . ; ks 2 R. In particular, the Yoshida sym-
metric composition method for composing a symmetric
method of order 2 into a symmetric method of order 4 is
obtained when s = 3, and
k1 ¼ k3 ¼
1

2� 21=3
; k2 ¼ �

21=3

2� 21=3
:

Alternatively, by adopting the formalism of higher-
order Lie group variational integrators introduced in [21]
in conjunction with the Rodrigues formula, one can
directly construct higher-order generalizations of the Lie
group methods presented here.

Reduction of orthogonality loss due to roundoff error: In
the Lie group variational integrators, the numerical solu-
tion is made to automatically remain on the rotation group
by requiring that the numerical solution is updated by
matrix multiplication with the exponential of a skew sym-
metric matrix.

Since the exponential of the skew symmetric matrix is
orthogonal to machine precision, the numerical solution
will only deviate from orthogonality due to the accumula-
tion of roundoff error in the matrix multiplication, and this
orthogonality loss grows linearly with the number of time-
steps taken.

One possible method of addressing this issue is to use
the Baker–Campbell–Hausdorff (BCH) formula to track
the updates purely at the level of skew symmetric matri-
ces (the Lie algebra). This allows us to find a matrix CðtÞ,
such that,

expðtAÞ expðtBÞ ¼ exp CðtÞ:

This matrix CðtÞ satisfies the following differential
equation,

_C ¼ Aþ Bþ 1

2
½A� B;C� þ

X
kP2

Bk

k!
adk

CðAþ BÞ;

with initial value Cð0Þ ¼ 0, and where Bk denotes the
Bernoulli numbers, and adCA ¼ ½C;A� ¼ CA� AC.

The problem with this approach is that the matrix CðtÞ is
not readily computable for arbitrary A and B, and in prac-
tice, the series is truncated, and the differential equation is
solved numerically.

An error is introduced in truncating the series, and
numerical errors are introduced in numerically integrating
the differential equations. Consequently, while the BCH
formula could be used solely at the reconstruction stage
to ensure that the numerical attitude always remains in
the rotation group to machine precision, the truncation
error would destroy the symplecticity and momentum pre-
serving properties of the numerical scheme.

However, by combining the BCH formula with the
Rodrigues formula in constructing the discrete variational
principle, it might be possible to construct a Lie group var-
iational integrator that tracks the reconstructed trajectory
on the rotation group at the level of a curve in the Lie alge-
bra, while retaining its structure-preservation properties.

4.4. Computational approach

The structure of the discrete equations of motion
given in (79), (95), (113), (114), (123), and (124) suggests



Fig. 3. Dumbbell model of the full body problem.
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a specific computational approach. For a given g 2 R3, we
have to solve the following Lyapunov-like equation to find
F 2 SOð3Þ at each integration step.

FJ d � J dF T ¼ SðgÞ: ð128Þ

We now introduce an iterative approach to solve (128)
numerically. An element of a Lie group can be expressed
as the exponential of an element of its Lie algebra, so
F 2 SOð3Þ can be expressed as an exponential of
Sðf Þ 2 soð3Þ for some vector f 2 R3. The exponential can
be written in closed form, using Rodrigues’ formula,

F ¼ eSðf Þ ¼ I3�3 þ
sin kf k
kf k Sðf Þ þ 1� cos kf k

kf k2
Sðf Þ2: ð129Þ

Substituting (129) into (128), we obtain

SðgÞ ¼ sin kf k
kf k SðJf Þ þ 1� cos kf k

kf k2
Sðf � Jf Þ;

where (9) and (13) are used. Thus, (128) is converted
into the equivalent vector equation g ¼ Gðf Þ, where
G : R3 7!R3 is

Gðf Þ ¼ sin kf k
kf k Jf þ 1� cos kf k

kf k2
f � Jf :

We use the Newton method to solve g ¼ Gðf Þ, which gives
the iteration

fiþ1 ¼ fi þrGðfiÞ�1ðg � GðfiÞÞ: ð130Þ

We iterate until kg � GðfiÞk < � for a small tolerance � > 0.
The Jacobian rGðf Þ in (130) can be expressed as

rGðf Þ ¼ cos kf kkf k � sin kf k
kf k3

Jff T þ sin kf k
kf k J

þ sin kf kkf k � 2ð1� cos kf kÞ
kf k4

ðf � Jf Þf T

þ 1� cos kf k
kf k2

f�SðJf Þ þ Sðf ÞJg:

Numerical simulations show that 3 or 4 iterations are suf-
ficient to achieve a tolerance of � ¼ 10�15.

5. Numerical simulations

The variational integrator in Hamiltonian form given in
(118)–(127) is used to simulate the dynamics of two simple
dumbbell bodies acting under their mutual gravity.

5.1. Full body problem defined by two dumbbell bodies

Each dumbbell model consists of two equal rigid spheres
and a massless rod as shown in Fig. 3. The gravitational
potential of the two dumbbell models is given by

UðX ;RÞ ¼ �
X2

p;q¼1

Gm1m2=4

kX þ q2p
þ Rq1q

k ;
where G is the universal gravitational constant, mi 2 R is
the total mass of the ith dumbbell, and qip 2 R3 is a vector
from the origin of the body fixed frame to the pth sphere of
the ith dumbbell in the ith body fixed frame. The vectors
qi1 ¼ ½li=2; 0; 0�T, qi2 ¼ �qi1 , where li is the length between
the two spheres.

Normalization: Mass, length and time dimensions are
normalized as follows:

�mi ¼
mi

m
;

X i ¼
X i

l
;

�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

l3

s
t;

where m ¼ m1m2

m1þm2
, and l is chosen as the initial horizontal

distance between the center of mass of the two dumbbells.
The time is normalized so that the orbital period is of order
unity. Over-bars denote normalized variables. We can ex-
presses the equations of motion in terms of the normalized
variables. For example, (55) can be written as

V 0 þ X2 � V ¼ � oU

oX
;

where 0 denotes a derivative with respect to �t. The normal-
ized gravitational potential and its partial derivatives are
given by

U ¼ � 1

4

X2

p;q¼1

1

kX þ �q2p þ R�q1qk
;

oU

oX
¼ 1

4

X2

p;q¼1

X þ �q2p þ R�q1q

kX þ �q2p þ R�q1qk
3
;

oU
oR
¼ 1

4

X2

p;q¼1

ðX þ �q2pÞ�qT
1q

kX þ �q2p þ R�q1qk
3
:

Conserved quantities: The total energy E is conserved:

E ¼ 1

2
m1kV þ V 2k2 þ 1

2
m2kV 2k2 þ 1

2
tr½SðXÞJ dR SðXÞT�

þ 1

2
tr½SðX2ÞJ d2

SðX2ÞT� þ UðX ;RÞ:

The total linear momentum cT 2 R3, and the total angular
momentum about the mass center of the system pT 2 R3, in
the inertial frame, are also conserved:
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cT ¼ R2fm1ðV þ V 2Þ þ m2V 2g;
pT ¼ R2fmX � V þ J RXþ J 2X2g:
Fig. 4. Trajectory in the inertial frame.
5.2. Simulation results

The properties of the two dumbbell bodies are chosen to
be

�m1 ¼ 1:5; �l1 ¼ 0:25; J 1 ¼ diag½0:0004; 0:0238; 0:0238�;
�m2 ¼ 3; �l2 ¼ 0:5; J 2 ¼ diag½0:0030; 0:1905; 0:1905�:

The mass and length of the second dumbbell are twice that
of the first dumbbell. The initial conditions are chosen such
that the total linear momentum in the inertial frame is zero
and the total energy is positive.

X 0 ¼ ½1; 0; 0:3�; V 0 ¼ ½0; 1; 0�;
X10
¼ ½0; 0; 9�; R0 ¼ I3�3;

�x20
¼ ½�0:33; 0;�0:1�; �v20

¼ ½0;�0:33; 0�;
X20
¼ ½0; 0; 0�; R20

¼ I3�3:

Simulation results obtained using the Lie group varia-
tional integrator are given in Figs. 4 and 5. Fig. 4 shows
the trajectory of the two dumbbells in the inertial frame.
Fig. 5(a) shows the evolution of the normalized energy,
where the upper figure gives the history of the translational
kinetic energy and the rotational kinetic energy, and the
lower figure shows the interchange between the total
kinetic energy and the gravitational potential energy.
Fig. 5(b) shows the evolution of the theoretically conserved
quantities, where the upper figure is the history of the total
energy, and the lower figure is the error in the rotation
matrix.

Initially, the first dumbbell rotates around the vertical e3

axis, and the second dumbbell does not rotate. Since the
angular velocity of the first dumbbell is relatively large,
the rotational kinetic energy initially exceeds the transla-
tional kinetic energy. As the two dumbbells orbit around
Fig. 5. Lie group variational integrator: (a) interc
each other, the second dumbbell starts to rotate, the rota-
tional kinetic energy increases, and the translational kinetic
energy decreases slightly for about 6 normalized units of
time. At 9 units of time, the distance between the two
dumbbells reaches its minimal separation, and the potential
energy is transformed into kinetic energy, especially trans-
lational kinetic energy. After that, two dumbbells continue
to move apart, and the translational energy and the rota-
tional energy equalize. (A simple animation of this motion
can be found at http://www.umich.edu/
tylee.) This shows
some of the interesting dynamics that the full body prob-
lem can exhibit. The non-trivial interchange between rota-
tional kinetic energy, translational kinetic energy, and
potential energy may yield complicated motions that can-
not be observed in the classical two body problem.

The Lie group variational integrator preserves the total
energy and the geometry of the configuration space. The
maximum deviation of the total energy is 2:6966� 10�7,
and the maximum value of the rotation matrix error
kI � RTRk is 2:8657� 10�13.

As a comparison, Fig. 6 shows simulation results
obtained by numerically integrating the continuous equa-
tions of motion (63)–(70) using a standard Runge–Kutta
hange of energy and (b) conserved quantities.

http://www.umich.edu/tylee
http://www.umich.edu/tylee


Fig. 6. Runge–Kutta method: (a) interchange of energy and (b) conserved quantities.

Fig. 7. Commutative cube of the equations of motion.
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method. The rotational and the translational kinetic energy
responses are similar to those given in Fig. 5 prior to the
close encounter. However, it fails to simulate the rapid
interchange of the energy near the minimal separation of
the two dumbbells. The deviation of the total energy is rel-
atively large, with a maximum deviation of 1:1246� 10�2.
Also, the energy transfer is quite different from that given
in Fig. 5(a). The Runge–Kutta method does not preserve
the geometry of the configuration space, as the discrete
trajectory rapidly drifts off the rotation group to give a
maximum rotation matrix error of 2:2435� 10�2. As the
gravity and momentum between the two dumbbells depend
on the relative attitude, the errors in the rotation matrix
limits the applicability of standard techniques to long time
simulations.

An extensive computational comparison between the
Lie group variational integrator to other geometric integra-
tors such as symplectic Runge–Kutta method and Lie
group method can be found in [26].
6. Conclusions

Eight different forms of the equations of motion for the
full body problem are derived. The continuous equations
of motion and variational integrators are derived both in
the inertial and relative frames, and each set of equations
of motion is expressed in both Lagrangian and Hamilto-
nian form. The relationships between these equations of
motion are summarized in Fig. 7. This commutative cube
was originally given in [22]. In the figure, dashed arrows
represent discretization from the continuous systems on
the left face of the cube to the discrete systems on the right
face. Vertical arrows represent reduction from the full
(inertial) equations on the top face to the reduced (relative)
equations on the bottom face. Front and back faces repre-
sent Lagrangian and Hamiltonian forms, respectively. The
corresponding equation numbers are also indicated in
parentheses.

It is shown that the equations of motion for the full
body problem can be derived systematically, using proper
Lie group variations, from Hamilton’s principle. The pro-
posed variational integrators preserve the momenta and
symplectic form of the continuous dynamics, exhibit good
energy properties, and they also conserve the geometry of
the configuration space since they are based on Lie group
computations. The main contribution of this paper is the
combination of variational integrators and Lie group com-
putations, developed for the full body problem. Hence, the
resulting numerical integrators conserve the first integrals
as well as the geometry of the configuration space of the
full body dynamics.
Appendix A. Variations of reduced variables

A.1. Continuous variables

The variations of the reduced variables given in (43)–
(47) are derived in this section. The variations of the
reduced variables can be obtained from the definitions of
the reduced variables, and the variations of the original
variables.

The variation of X ¼ RT
2 ðx1 � x2Þ is given by

dX ¼ dRT
2 ðx1 � x2Þ þ R2ðdx1 � dx2Þ:
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Substituting (16) into the above equation, we obtain

dX ¼ �g2RT
2 ðx1 � x2Þ þ R2ðdx1 � dx2Þ ¼ �g2X þ v;

where the reduced variation v : ½t0; tf � 7!R3 is defined to be
v ¼ R2ðdx1 � dx2Þ.

From the definition of X ¼ RX1 and (10), SðdXÞ is given
by

SðdXÞ ¼ d

d�

����
�¼0

SðR�X�
1Þ ¼

d

d�

����
�¼0

R�SðX�
1ÞR�T

¼ dRSðX1ÞRT þ RSðdX1ÞRT þ RSðX1ÞdRT:

Substituting (42) and (17) into the above equation, we
obtain

SðdXÞ ¼ fg� g2gRSðX1ÞRT þ Rf _g1 þ SðX1Þg1 � g1SðX1ÞgRT

þ RSðX1ÞRTf�gþ g2g
¼ fg� g2gSðRX1Þ þ R _g1RT þ SðRX1ÞRg1RT

� Rg1RTSðRX1Þ þ SðRX1Þf�gþ g2g:

Since g ¼ Rg1RT and X ¼ RX1, the above equation reduces
to

SðdXÞ ¼ �g2SðXÞ þ R _g1RT þ SðXÞg2: ðA:1Þ
From the definition of R ¼ RT

2 R1, _R is given by

_R ¼ _RT
2 R1 þ RT

2
_R1 ¼ �SðX2ÞRþ SðXÞR: ðA:2Þ

Then, _g can be written as

_g ¼ R _g1RT þ _Rg1RT þ Rg1
_RT

¼ R _g1RT þ fSðXÞ � SðX2Þgg� gfSðXÞ � SðX2Þg: ðA:3Þ

Substituting (A.3) into (A.1), we obtain SðdXÞ in terms of
g; g2 as

SðdXÞ ¼ _g� SðXÞgþ gSðXÞ þ SðXÞg2 � g2SðXÞ þ SðX2Þg
� gSðX2Þ;

which is equivalent to (44).
The variation of V ¼ RT

2 ð _x1 � _x2Þ is given by

dV ¼ dRT
2 ð _x1 � _x2Þ þ RT

2 ðd _x1 � d _x2Þ
¼ �g2V þ RT

2 ðd _x1 � d _x2Þ: ðA:4Þ

From the definition of v ¼ RT
2 ðdx1 � dx2Þ, _v is given by

_v ¼ _RT
2 ðdx1 � dx2Þ þ RT

2 ðdx1 � dx2Þ
¼ �SðX2Þvþ RT

2 ðdx1 � dx2Þ: ðA:5Þ

Substituting (A.5) into (A.4), we obtain

dV ¼ �g2V þ _vþ SðX2Þv;
which is equivalent to (45). The variation dV 2 can be de-
rived in the same way, and SðdX2Þ is given in (17).

A.2. Discrete variables

The variation of the reduced variables dF k given in (106)
is derived in this section. From (75) and (98), the variation
dF 1k is written as
dF 1k ¼ �g1k
F 1k þ F 1k g1kþ1

¼ �RT
k gkF kRk þ RT

k F kRkRT
kþ1gkþ1Rkþ1;

where gk 2 soð3Þ is defined as gk ¼ Rkg1k
RT

k . Since
F kRkRT

kþ1 ¼ F kRkðRT
k F T

k F 2k Þ ¼ F 2k , we have

dF 1k ¼ RT
k ð�gkF k þ F 2k gkþ1F T

2k
F kÞRk:

Then, the variation dF k is given by

dF k ¼ dRkF 1k R
T
k þ RkdF 1k R

T
k þ RkF 1k dRT

k

¼ �g2k
F k þ F 2k gkþ1F T

2k
F k þ F kð�gk þ g2k

Þ;

which is equivalent to (106).
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