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Abstract

We develop the equations of motion for full body models that describe the dynamics of rigid bodies, acting under their mutual gravity.
The equations are derived using a variational approach where variations are defined on the Lie group of rigid body configurations. Both
continuous equations of motion and variational integrators are developed in Lagrangian and Hamiltonian forms, and the reduction from
the inertial frame to a relative frame is also carried out. The Lie group variational integrators are shown to be symplectic, to preserve
conserved quantities, and to guarantee exact evolution on the configuration space. One of these variational integrators is used to simulate

the dynamics of two rigid dumbbell bodies.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Overview

The full body problem studies the dynamics of rigid
bodies interacting under their mutual potential, and the
mutual potential of distributed rigid bodies depends on
both the position and the attitude of the bodies. Therefore,
the translational and the rotational dynamics are coupled
in the full body problem. The full body problem arises in
numerous engineering and scientific fields. For example,
in astrodynamics, the trajectory of a large spacecraft
around the Earth is affected by the attitude of the space-
craft, and the dynamics of a binary asteroid pair is charac-
terized by the non-spherical mass distributions of the
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bodies. In chemistry, the full rigid body model is used to
study molecular dynamics. The importance of the full body
problem is summarized in [1], along with a preliminary dis-
cussion from the point of view of geometric mechanics.

The full two body problem was studied by Maciejewski
[2], and he presented equations of motion in inertial and
relative frames and discussed the existence of relative equi-
libria in the system. However, he does not derive the equa-
tions of motion, nor does he discuss the reconstruction
equations that allow the recovery of the inertial dynamics
from the relative dynamics. Scheeres derived a stability
condition for the full two body problem [3], and he studied
the planar stability of an ellipsoid-sphere model [4].
Recently, interest in the full body problem has increased,
as it is estimated that up to 16% of near-earth asteroids
are binaries [5]. Spacecraft motion about binary asteroids
have been discussed using the restricted three body model
[6,7], and the four body model [8].

Conservation laws are important for studying the
dynamics of the full body problem, because they describe
qualitative characteristics of the system dynamics. The rep-
resentation used for the attitude of the bodies should be
globally defined since the complicated dynamics of such
systems would require frequent coordinate changes when
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using representations that are only defined locally. General
numerical integration methods, such as the Runge-Kutta
scheme, do not preserve first integrals nor the exact geom-
etry of the full body dynamics [9]. A more careful analysis
of computational methods used to study the full body
problem is crucial.

Variational integrators and Lie group methods provide
a systematic method of constructing structure-preserving
numerical integrators [9]. The idea of the variational
approach is to discretize Hamilton’s principle rather than
the continuous equations of motion [10]. The numerical
integrator obtained from the discrete Hamilton’s principle
exhibits excellent energy properties [11], conserves first
integrals associated with symmetries by a discrete version
of Noether’s theorem, and preserves the symplectic struc-
ture. Many interesting differential equations, including full
body dynamics, evolve on a Lie group. Lie group methods
consist of numerical integrators that preserve the geometry
of the configuration space by automatically remaining on
the Lie group [12].

Moser and Vesselov [13], Wendlandt and Marsden [14]
developed numerical integrators for a free rigid body by
imposing an orthogonal constraint on the attitude vari-
ables and by using unit quaternions, respectively. The idea
of using the Lie group structure and the exponential map
to numerically compute rigid body dynamics arises in the
work of Simo et al. [15], and in the work by Krysl [16].
A Lie group approach is explicitly adopted by Lee, Leok,
and McClamroch in the context of a variational integrator
for rigid body attitude dynamics with a potential depen-
dent on the attitude, namely the 3D pendulum dynamics,
in [17].

The motion of full rigid bodies depends essentially on
the mutual gravitational potential, which in turn depends
only on the relative positions and the relative attitudes of
the bodies. Marsden et al. introduce discrete Euler—Poin-
caré and Lie-Poisson equations in [18,19]. They reduce
the discrete dynamics on a Lie group to the dynamics on
the corresponding Lie algebra. Sanyal, Shen and McClam-
roch develop variational integrators for mechanical sys-
tems with configuration dependent inertia and they
perform discrete Routh reduction in [20]. A more intrinsic
development of discrete Routh reduction is given in [21,22].

1.2. Contributions

The purpose of this paper is to provide a complete set of
equations of motion for the full body problem. The equa-
tions of motion are categorized by three independent prop-
erties: continuous/discrete time, inertial/relative frame, and
Lagrangian/Hamiltonian forms. Therefore, a total of eight
types of equations of motion for the full body problem are
given in this paper. The relationships between these equa-
tions of motion are shown in Fig. 1, and are further sum-
marized in Fig. 7.

Continuous equations of motion for the full body prob-
lem are given in [2] without any formal derivation of the
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Fig. 1. Eight types of equations of motion for the full body problem.

equations. We show, in this paper, that the equations of
motion for the full body problem can be derived from
Hamilton’s principle. The proper form for the variations
of Lie group elements in the configuration space lead to a
systematic derivation of the equations of motion.

This paper develops discrete variational equations of
motion for the full body model following a similar varia-
tional approach but carried out within a discrete time
framework. Since numerical integrators are derived from
the discrete Hamilton’s principle, they exhibit symplectic
and momentum preserving properties, and good energy
behavior. They are also constructed to conserve the Lie
group geometry on the configuration space. Numerical
simulation results for the interaction of two rigid dumbbell
models are given.

This paper is organized as follows. The basic idea of the
variational integrator is given in Section 2. The continuous
equations of motion and variational integrators are devel-
oped in Section 3 and 4. Numerical simulation results are
given in Section 5. An appendix contains several technical
details that are utilized in the main development.

2. Background
2.1. Hamilton’s principle and variational integrators

The procedure to derive the Euler-Lagrange equations
and Hamilton’s equations from Hamilton’s principle is
shown in Fig. 2. When deriving the equations of motion,
we first choose generalized coordinates ¢, and a corre-
sponding configuration space Q. We then construct a
Lagrangian from the kinetic and the potential energy. An
action integral ® = f;o’ L(q,q)dt is defined as the path inte-
gral of the Lagrangian along a time-parameterized trajec-
tory. After taking the variation of the action integral,
and requiring it to be stationary, we obtain the Euler—
Lagrange equations. If we use the Legendre transformation
defined as

. .. d
p-8q="FL(q,q) - 8q = —

Q L(q,q + €dq), (1)

e=0
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Fig. 2. Procedures to derive the continuous and discrete equations of
motion.

where 64 € T,0, then we obtain Hamilton’s equations
in terms of momenta variables p = FL(q,q) € T*Q. These
equations are equivalent to the Euler-Lagrange equations
[23].

There are two issues that arise in applying this proce-
dure to the full body problem. The first is that the config-
uration space for each rigid body is the semi-direct
product, SE(3) = R?(® SO(3), where SO(3) is the Lie
group of orthogonal matrices with determinant 1. There-
fore, variations should be carefully chosen such that they
respect the geometry of the configuration space. For exam-
ple, a varied rotation matrix R € SO(3) can be expressed
as

RE — Refﬂ’

where € € R, and 5 € s0(3) is a variation represented by a
skew-symmetric matrix. The variation of the rotation
matrix dR is the part of R® that is linear in ¢

R =R+ 3R + O().
More precisely, OR is given by

or=2

RS = Ry. 2
i n (2)

e=0

The second issue is that reduced variables can be used to
obtain equations of motion expressed in relative coordi-
nates. The variations of the reduced variables are con-
strained as they must arise from the variations of the
unreduced variables while respecting the geometry of the
configuration space. The proper variations of Lie group
elements and reduced quantities are computed while deriv-
ing the continuous equations of motion.

Generally, numerical integrators are obtained by
approximating the continuous Euler-Lagrange equation
using a finite difference rule such as ¢x = (g, — q4)/h,
where ¢, denotes the value of ¢(¢) at t = hk for an integra-
tion step size 4 € R and an integer k. A variational integra-
tor is derived by following a procedure shown in the right
column of Fig. 2. When deriving a variational integrator,
the velocity phase space (¢,q) € TQ of the continuous
Lagrangian is replaced by (g;,¢,,,) € O x O, and the dis-
crete Lagrangian L, is chosen such that it approximates a
segment of the action integral

h
Ld(qkaqk-#l)%/() L(qy 41 (1), Guar1 (2)) dt,

where ¢;,.,(t) is the solution of the Euler-Lagrange
equation satisfying boundary conditions ¢, ;,,(0) = g,
and ¢, ,.,(h) = q,,,. Then, the discrete action sum ¢, =
> La(q;, qi,,) approximates the action integral ®. Taking
the variations of the action sum, we obtain the discrete
Euler-Lagrange equation

Dqud(qk—l 3 Qk) + Dqud(qka qk+1) = 07

where D, L, denotes the partial derivative of L, with
respect to ¢i. This yields a discrete Lagrangian map
Fr, : (q4_1,9:) — (g qps1)- Using a discrete analogue of
the Legendre transformation, referred to as a discrete fiber
derivative FL; : Q x Q — T*Q, variational integrators can
be expressed in Hamiltonian form as

Pr = _Dtlde(qk’qu)? (3)
Pir1 = quLd(Qka ‘Ik+1)- 4)

This yields a discrete Hamiltonian map F,, : (q,, ;) —
(9s15Pis1)- A complete development of variational inte-
grators can be found in [10].

2.2. Notation

Variables in the inertial and the body fixed frames are
denoted by lower-case and capital letters, respectively. A
subscript i is used for variables related to the ith body.
The relative variables have no subscript and the kth dis-
crete variables have the second level subscript k. The letters
x,v,Q and R are used to denote the position, velocity,
angular velocity and rotation matrix, respectively.

The trace of 4 € R is denoted by

n

trfd] = Z[A]m

i=1

where [A]; is the i, ith element of A. It can be shown that

tr[4B] = tr[BA] = tr[BTA"] = tr[4"B"], (5)
tr[4"B] = Z[A]pq[B]W (6)
ripg) = 0 ™
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for matrices 4,B € R™", a skew-symmetric matrix P =
—PT € R™", and a symmetric matrix Q = Q" € R"™".

The map S : R*—R>? is defined by the condition that
S(x)y =x x y for x,y € R’. For x = (x1,x3,x3) € R®, S(x)
is given by

O —X3 X2
Sx)=1xs 0 —x
—X X1 0

It can be shown that

S(x)" = —=S(x), (8)
S(x x y) = S(x)S(y) = S()S(x) =" —xp", 9)
S(Rx) = RS(x)R", (10)
S(x)'S(x) = (x"x) 305 — xxT = trpex"| I35 — xx" (11)

for x,y € R* and R € SO(3).
Using homogeneous coordinates, we can represent an
element of SE(3) as follows:

[R x} € SE(3)
0 1

for x € R* and R € SO(3). Then, an action on SE(3) is
given by the usual matrix multiplication in R**. For
example

Rl X1 R2 X2 . R1R2 Rlxz + X
0 1//l0 1] | 0 1
for x;,x, € R* and R\, R, € SO(3).
The action of an element of SE(3) on R® can be

expressed using a matrix—vector product, once we identify
R’ with R* x {1} ¢ R*. In particular, we see from

R x][x] [Ru+x
0o 1]|1] 1
that X2 '—>RX2 + Xxi.

3. Continuous time full body models

In this section, the continuous time equations of motion
for the full body problem are derived in inertial and relative
frames, and are expressed in both Lagrangian and in Ham-
iltonian form.

We define O —eje;e; as an inertial frame, and
Oy, — E, E,E;, as a body fixed frame for the ith body, %;
The origin of the ith body fixed frame is located at the center
of mass of body 4,;. The configuration space of the ith rigid
bodyis SE(3) = R? (8 SO(3). We denote the position of the
center of mass of 4; in the inertial frame by x; € R*, and we
denote the attitude of %; by R; € SO(3), which is a rotation
matrix from the ith body fixed frame to the inertial frame.

3.1. Inertial frame

Lagrangian: To derive the equations of motion, we first
construct a Lagrangian for the full body problem. Given

(x;, R;) € SE(3), the inertial position of a mass element of
2, is given by x; + R;p,, where p, € R’ denotes the position
of the mass element in the body fixed frame. Then, the
kinetic energy of %, can be written as

1 .
=5 [ vt RipPm,
2 B

Using the fact that |, 4, Pidm; = 0 and the kinematic equa-

tion R, = R;S(%;), the kinetic energy T; can be rewritten as
:.2) =3 [ 11+ IS@)pPdm
1 .2 1 T
_Emi”xiH +§tf[5(9i)fdfs(9i) I, (12)

where m; € R is the total mass of %;, Q; € R? is the angular
velocity of %; in the body fixed frame, and
Ja, = [, pip;dm; € R** is a nonstandard moment of iner-
tia matrix. Using (11), it can be shown that the standard
moment of inertia matrix J; = [, S(p) " S(p,)dm; € R¥ is
related to J,, by

Ji =ty = Jas
and that the following condition holds for any Q; € R®
S(J:9Q) = S(Q)J 4, + J4,S(Q)). (13)

We first derive equations using the nonstandard moment of
inertia matrix J,, and then express them in terms of the
standard moment of inertia J; by using (13).

The gravitational potential energy U : SE(3)"— R is
given by

U(xl,xz,... xn,Rl,Rz,...,R”)

% Ja Hxi‘f'RfP,- —x; — Rp; ||

lj 1
i#]

where G is the universal gravitational constant.
Then, the Lagrangian for n full bodies can be written as

n 1 1
Lx%RQ)=)" EmiH)'c,-Hz +§tr[S(Qi)JdiS(Q[)T] ~U(x,R),
i=1

(15)

where bold type letters denote ordered n-tuples of vari-
ables. For example, x € (R*)", R € SO(3)", and Q € (R*)"
are defined as x= (x;,x2,...,%,), R=(R,Ry,...,R,),
and Q = (Q,Q,,...,Q,), respectively.

Variations of variables: Since the configuration space is
SE(3)", the variations should be carefully chosen such that
they respect the geometry of the configuration space. The
variations of x; : [fo, #/] — R’ and x; : [to, t/] — R} are trivial,
namely

= x; + €dx; + O(€%),
=X, + ed; + (),

F
l
6
l
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where ox; : [ty, t7] — R?, &%; : [to, tr]— R3 vanish at the ini-
tial time #, and at the final time ¢ The variation of R, :
[t0,t7] — SO(3), as given in (2), is

OR; = Rin;, (16)
where #, : [to,t;]— s0(3) is a variation with values repre-
sented by a skew-symmetric matrix (] = —p;) vanishing

at ty and ¢ The Variat@on of Q; can be computed from
the kinematic equation R; = R;S(€;) and (16) to be

S(59;) = di RTRS = SR'R; + RT3R,
€le=o

= —1,S(Qi) + S(Q)n; + il (17)

3.1.1. Equations of motion: Lagrangian form

If we take variations of the Lagrangian using (16) and
(17), we obtain the equations of motion from Hamilton’s
principle. We first take the variation of the kinetic energy
of %,

87‘,:i

de T,(x, + EBJ.CI', Qi -+ ESQZ')

e=0

= m! Ok, + ltr[S(SQ,—)Jd,S(Q,-)T + 8(2,)J4,5(32)"].

2

Substituting (17) into the above equation and using (5), we
obtain

8T = mx 8% + %tr[fﬁi{Jd,S(Q,-) +5(2)J4 1]
+ULS(@){4S(@) + S}
L S(@) + S(2)74)5(Q)]

Using (9) and (13), 87; is given by

Q)+ S(

1
6T,‘ = m,x;ré\)x, + Etr[f

The variation of the potential energy is given by

1S (J:Q:) + 1:S(Q: x J:))]. (18)

d
dU =—| U(x+ edx,R + €5R),
de|
where 6x = (dxy,06x2,...,0x,), OR = (3R|,0R,,...,0R,).
Then, dU can be written as
n 3
U =
32 (3 b o 3 e e
", (oUT oU
= —3 R! 19
;(@x,— * {”aRD (19)
where [A4],, denotes the p,gth element of a matrix 4, and
&Y, &k are given by { = a?x(,j]p’ [275’] o _a[?e%pq’ respectively.
The variation of the Lagrangian has the form
8L = 8T, —3U, (20)
=1

which can be written more explicitly by using (18) and (19).

The action integral is defined to be
l/‘
G = / L(x,x,R,Q)dr. (21)
i1

The variation of the action integral can be written as
1
oG = Z / mxTle 5x, 3

1 U
A {Sm o2

Using integration by parts,

tr{-35(/,0)

n 1 t/
86 = myk o[}l — S UlnS(iQ, Mt / —mix ] dx;
i=1 fo

1 : voaut

1 roU
+§tr [ni{S(Q x Ji;) + 2R, R H ds.
Using the fact that 6x; and #; vanish at ¢y and #;, the first two
terms of the above equation vanish. Then, d® is given by

o oU
o T .
6(6 = Z_l: A) —5xl. {m[xi + a—xl}

1 roU
+2tr[17,-{S(JQ + Q; x J: Q) + 2R, R, H dr.

From Hamilton’s principle, d® should be zero for all
possible variations &x; : [fy, ;] — R and n; : [ty, /] — s0(3).
Therefore, the expression in the first brace should be zero.
Furthermore, since #; is skew symmetric, we have by (7),
that the expression in the second brace should be symmet-
ric. Then, we obtain the continuous equations of motion as

ou
ox;’

)
SUQ+ @ ><JQ)+2RlTag

m,-jé,- = —

(22)

aUT

:S(JIQ,+Q,XJ1Q) aR

Using (8), we can simplify (22) to be
ouT oU
OR; "OR;
Note that the right hand side expression in the above equa-

tion is also skew symmetric. Then, the moment due to the
gravitational potential on the ith body, M; € R? is given by

S(J,Q, + Q,’ X J,’Qi) =

T
S(M;) = %R, — R} . This moment M; can be expressed
more explicitly as the following computation shows:
ou” oU
S(M;) =——R, — R
OR; OR;
ri Uy,
T T T T T T
= [uril Mriz ri3 ] i - [rl'l rlz ri} ] Uriy
ri_; uri3
_ T T T T T T
= (”mril - rilu"il) + (“n'zriz - rizuriz) + (uri3ri3 - ri3uri3)a
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where Fiys Uy, € R are the pth row vectors of R; and g—g,
T T

respectively. Substituting x = Fos Y=y into (9), we
obtain

S(M;) = S(ri, X wy,) + S(riy, X thyy) + S(riy X thyiy)

= S(ri, X tyi, +7iy X iy + 7oy X Uyiy), (23)
Then, the gravitational moment M, is given by
M; =1, X Uy, + Fiy X Uy +Fiy X Uiy (24)

In summary, the continuous equations of motion for the
Sfull body problem, in Lagrangian form, can be written for
i€ (l,2,...,n) as

. 1 dU

b = T (25)
JiQ+ Q x J,Q; = M, (26)
X = v, (27)
Ri = RS(Q), (28)

where the translational velocity v; € R? is defined as v; = x;.

3.1.2. Equations of motion: Hamiltonian form

We denote the linear and angular momentum of the ith
body %; by y, € R?, and II, € R?, respectively. They are
related to the linear and angular velocities by 7y, = m,v;,
and I1; = J;Q;. Then, the equations of motion can be
rewritten in terms of the momenta variables. The continu-
ous equations of motion for the full body problem, in Hamil-

tonian form, can be written for i € (1,2,...,n) as

. oU
Yi=— axi ) (29)
ﬁ,——‘y—Q,—XH,-:M,-, (30)
. Vi

=1L 31
=2, G1)

3.2. Relative frame

The motion of the full rigid bodies depends only on the
relative positions and the relative attitudes of the bodies.
This is a consequence of the property that the gravitational
potential can be expressed using only these relative vari-
ables. Physically, this is related to the fact that the total lin-
ear momentum and the total angular momentum about the
mass center of the bodies are conserved. Mathematically,
the Lagrangian is invariant under a left action of an ele-
ment of SE(3). So, it is natural to express the equations
of motion in one of the body fixed frame. In this section,
the equations of motion for the full two body problem
are derived in the relative frame. This result can be readily
generalized to the n body problem.

Reduction of variables: In [2], the reduction is carried out
in stages, by first reducing position variables in R*, and
then reducing attitude variables in SO(3). This is equiva-
lent to directly reducing the position and the attitude vari-

ables in SE(3) in a single step, which is a result that can be
explained by the general theory of Lagrangian reduction by
stages [24]. The reduced position and the reduced attitude
variables are the relative position and the relative attitude
of the first body with respect to the second body. In other
words, the variables are reduced by applying the inverse of
(Ry,x,) € SE(3) given by (R;,—R;x;) € SE(3), to the fol-
lowing homogeneous transformations:

Rl —Rix <[R1 x1:| {Rz xz})
0 1 0 1]°10 1
_ R;Rl R;(xl — Xz) R;RZ R;(Xz — XQ)
0 1 1o 1

([ e o)

This motivates the definition of the reduced variables as
X = R;(xl —)Cz), (34)
R=R)Ry, (35)

where X € R? is the relative position of the first body with
respect to the second body expressed in the second body
fixed frame, and R € SO(3) is the relative attitude of the
first body with respect to the second body. The correspond-
ing linear and angular velocities are also defined as

V = RI(x| — %), (36)
Q =RQ, (37)

where ¥ € R® represents the relative velocity of the first
body with respect to the second body in the second body
fixed frame, and Q € R? is the angular velocity of the first
body expressed in the second body fixed frame. Here, the
capital letters denote variables expressed in the second
body fixed frame.

For convenience, we denote the inertial position and the
inertial velocity of the second body, expressed in the second
body fixed frame by X», V, € R’

Xz = R—zr)Q, (38)
Vy =R}, (39)

Reduced lagrangian: The equations of motion in the rel-
ative frame are derived in the same way used to derive the
equations in the inertial frame. We first construct a reduced
Lagrangian. The reduced Lagrangian / is obtained by

expressing the original Lagrangian (15) in terms of the
reduced variables. The kinetic energy is given by

1 . 1 . 1
I+T1T,= 5’"1||x1||2 +§m2||x2||2 + §tf[S(Ql)JdIS(QI)T]

S U[S(2)74,5(@)"

1 1
= 5"11||VJr v +§m2|\V2||2

+ %tr[S(Q)JdRS(Q)T] + %tr[S(Qz)szS(QZ)TL
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where (10) is used, and J, € R¥® is defined as
Ja, = RJd]RT, which is an expression of the nonstandard
moment of inertia matrix of the first body with respect to
the second body fixed frame. Note that J,, is not a con-
stant matrix. Using (10), it can be shown that J,, also sat-
isfies a property similar to (13), namely

S(JrQ) = S(Q)J 4, +J4,5(Q), (40)

where Jz = RJ,R" € R is the standard moment of inertia
matrix of the first body with respect to the second body
fixed frame.

Using (14), the gravitational potential U of the full two
bodies is given by

del dm2

//}1 /jz X1 4+ Ripy —x2 — Raps ||’

and it is invariant under an action of an element of SE(3).
Therefore, the gravitational potential can be written as
a function of the relative variables only. By applying the
inverse of (R, x;) € SE(3) as given in (33), we obtain

U(XI,XZ,R],RZ

U(x1,%2, R1, Ry) = U(Ry (x1 — x2),0, Ry Ry, [3,3)
/ / deldM2
%> HR (x1 —x2) RTRI.OI — I33p|
Gdmd
/ / MM __2yU(x,R).
By J By X+Rp1 p2||

Here we abuse notation slightly by using the same letter U
to denote the gravitational potential as a function of the
relative variables.

Then, the reduced Lagrangian / is given by

1 1
Z(R7Xa Qa V7927 VZ) = EmIHV + V2||2 + EWIZHVZH2
1
+5 tr[S(Q)J,4,S(2)"]

+%tr[S(Qz)szS(Qz)T] ~ U(X,R).
(41)

Variations of reduced variables: The variations of the
reduced variables must be restricted to those that can arise
from the variations of the original variables. For example,
the variation of the relative attitude R is given by

d

OR = —

i RY'RS = 3Ry R, + R, OR;.

e=0
Substituting (16) into the above equation,

SR = —nyRyRy + RyRiny = —n,R + 1R,

where a reduced variation # € so(3) is defined as
n = Ry, RT. The variations of other reduced variables can
be obtained in a similar way. The detailed derivations are
given in A.1, and we summarize the results as follows:

OR = R — )R, (42)
X =y — X, (43)

S(8Q) =i — S(Q)n +nS(Q) + S(Q)n,

—1,8(Q)

+8(2)n —nS(2s), (44)
3 =j+S(Q)yr—mV, (45)
S(6€) = iy + S(Q2)1, — 1,5(22), (46)
Va2 =jo+ S(Q)x, — MoV, (47)

where y, 1, : [to, ;] R? and 1,1, : [to, ]+ s0(3) are vari-
ations that vanish at the end points. These Lie group vari-
ations are the key elements required to obtain the
equations of motion in the relative frame.

3.2.1. Equations of motion: Lagrangian form

The reduced equations of motion can be computed from
the reduced Lagrangian using the reduced Hamilton’s prin-
ciple. By taking the variation of the reduced Lagrangian
(41) using the constrained variations given by (42)—(47),
we can obtain the equations of motion in the relative
frame.

Following a similar process to the derivation of 87;, 6U
as in (18) and (19), the variation of the reduced Lagrangian
&/ can be obtained as

8 = 7T m (V4 V2)] — 1 [miQ x (V + V)]
+ il (V +Va) +myVs)
- Xg[lez X (V+ Vz) + my 2y X Vz]

1
+ Etr[_ﬁS(JRQ) +1S(22 x Q)]

1 . roU
+ Etr[fnzS(Jz.Qz) + l’]ZS(Qz X Jz.Qz)] X 6)(
U Ut ouT

where we used the identities (9), (13) and (40), and the
constrained variations (42)—(47).

The action integral in terms of the reduced Lagrangian
is

iy
® = / IRX,Q,V, 0, V3)dr. (49)

Using integration by parts together with the fact that
% 72,0 and n, vanish at ty and 5 the variation of the
action integral can be expressed from (48) as (50).

i . . ou
5(6:—/ XT{WZ](V+ V2)+m192><(V+ V2)+—}dt
" [0 ¢
I R . .
—/ LAV + V) +myVs
fo

+m192 X (V+ Vz) +M292 X V2}dt

1 [ . ou”
+§ / tr n S((JRQ)JFQZ XJRQ) 2R—— dt
Jiy

OR
[ ouT ouT
+§‘/to tr|:}12{S(J292+QQ XJ292)+2X67+2R67R}:| dr.
(50)

From the reduced Hamilton’s principle, 8® = 0 for all pos-
sible variations y, y, : [to, ¢/] — R* and n, 1, : [to, ]+ s0(3)
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that vanish at 7y and . Therefore, in (50), the expressions
in the first two braces should be zero and the expressions in
the last two braces should be symmetric since 7, 17, are skew
symmetric. Then, we obtain the following equations of
motion:

.. ou
ml(V+ V2)+I11192X(V+ VQ):faix, (51)
. oUu
14 QD xV,=— 52
myVy + mpldy X V> ox (52)
S((JrQ) + Q, x JgQ) = —S(M),
. oU ou”r
Q+Q Q)=—X"-X M
S(J22; + Q25 X J5£2) e e +S(M), (53)
where M cR® is defined by the relation
S(M) :a—URT—Ra—%T. By a procedure analogous to the

derivation of (23), M can be written as

M =r Xt + 12 X Uty +73 X Uy, (54)

where 7, u,, € R® are the pth column vectors of R and 2%,
respectively.
Eq. (51) can be simplified using (52) as

my + my oU

Vit QxV=-— .
T+ x mimp oX

For reconstruction of the motion of the second body, it is
natural to express the motion of the second body in the
inertial frame. Since V, = R}xz + Ry = —S(Qy)V + Ry i,
(52) can be written as

. ou
M2R;FUZ = ﬁ .
Eq. (53) can be simplified using the property
WxT-x¥ aU = S(X x &) from (9). The kinematics equa-

tions for R and X can be derived in a similar way.

In summary, the continuous equations of relative motion
for the full two body problem, in Lagrangian form, can be
written as

1 oU

V4 Q =——

+Q xV m ox’ (55)

(JRQ) +QZ X JRQ - —]‘47 (56)
. 0

J292+QZ Xngz :XX%—FM, (57)

X+ xX=V, (58)

R =S(Q)R — S(2)R, (59)

mlm2

where m = . The following equations can be used for
reconstructlon of the motion of the second body in the
inertial frame:

. 1 _oU
Uy = m—2 267, (60)
Xy = v, (61)

= RoS(Q). (62)

These equations are equivalent to those given in [2].
However, (60) is not given in [2]. (55)—-62) give a complete
set of equations for the reduced dynamics and reconstruc-
tion. Furthermore, they are derived systematically in the
context of geometric mechanics using proper variational
formulas given in (42)—(47). This result can be readily gen-
eralized for n bodies.

3.2.2. Equations of motion: Hamiltonian form
Define the linear momenta I',y, € R*, and the angular
momenta IT, IT, € R* as

I =mV,

V2 = mvy,

I1 = JrQ2 = RJ,£2,
11, = J,8Q,.

Then, the equations of motion can be rewritten in terms of
these momenta variables. The continuous equations of rela-
tive motion for the full two body problem, in Hamiltonian
form, can be written as

. ou

F+@xr=—-, (63)

IT+QxII=-M, (64)

I+ Q, x I an—U—i-M (65)

2 2 2 — oxX

. r

X+92XX:—7 (66)
m

R =S(Q)R — S(2,)R, (67)

where m = ™2 The following equations can be used to

my+my” . R . .
reconstruct the motion of the second body in the inertial

frame:

. oU

72 =Ry o (68)

L _h

Xy = "y s (69)
= R,S(Q,). (70)

4. Lie group variational integrators

A variational integrator discretizes Hamilton’s principle
rather than the continuous equations of motion. Taking
variations of the discretization of the action integral leads
to the discrete Euler-Lagrange or discrete Hamilton’s
equations. The discrete Euler—Lagrange equations can be
interpreted as a discrete Lagrangian map that updates the
variables in the configuration space, which are the posi-
tions and the attitudes of the bodies. A discrete Legendre
transformation relates the configuration variables with
the linear and angular momenta variables, and yields a dis-
crete Hamiltonian map, which is equivalent to the discrete
Lagrangian map.

In this section, we derive both a Lagrangian and Ham-
iltonian form of variational integrators for the full body
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problem in inertial and relative frames. The second level
subscript k denotes the value of variables at ¢t = kh + ¢
for an integration step size # € R and an integer k. The
integer N satisfies ¢, = kN +t, so N is the number of
time-steps of length / to go from the initial time ¢, to the
final time ¢,

4.1. Inertial frame

Discrete Lagrangian: In continuous time, the structure
of the kinematics Eqgs. (28), (59) and (62) ensure that R;,
R and R, evolve on SO(3) automatically. Here, we intro-
duce a new Variable F; € SO(3) defined such that
R, , =R, F;

ikt ir>

Fi, =RR, (71)

Tk+1°

Thus, F;, represents the relative attitude between two inte-
gration steps, and by requiring that F; € SO(3), we guar-
antee that R, evolves in SO(3).

Using the kinematic equation R; = R;S(%;), the skew-
symmetric matrix S(€2;) can be approximated as

~ R;Tk‘ R—ikH _ Rik = 1([7

p 7 i —I33). (72)
The velocity, %, can be approximated simply by
(X4, —x;,)/h. Using these approximations of the angular
and linear velocity, the kinetic energy of the ith body given
in (12) can be approximated as

=1 3><3)>

1 1
_I3><3)T]

S(Qik) - R;Ele

Ti(xivgi) ~ Ti (Z (xi/;+1 _xik)7Z(Fik

2
= —zminiHl — X ”

2h

1
+2—thr[(F,-k - I3><3)‘]di(Fik

= —milx;., tr[(Z3.3

2h
where (5) is used. A discrete Lagrangian L, (X, X¢+1, Re, Fy)
is constructed such that it approximates a segment of the
action integral (21),

h 1 !
L;= EL(szz (Xes1 = X), Rkaz (Fx — U)

1
_xik||2+ﬁ _Fik)‘]di]?

h 1 1
+ EL(XI(+1;Z (Xp1 — Xk)7 Ry " (Fr — I))
n 1 , 1
= ; ﬂminxikﬂ - xik|| +Etr[(13x3 — Fik)‘]di]

*%U(Xk,Rk) 7§U(xk+],Rk+l)’ (73)
where x; € (R*)", R, €SO(3)", and F; < (R’)", and
1€ (R™)" are defined as x; = (x1,,%5,. - %)
Rk:(le,sz...?Rnk), Fk:(FIHFZ/n"‘;Fnk)s and
I = (I3x3,13x3, . - -, I3x3), respectively.

This discrete Lagrangian is self-adjoint [9], and self-
adjoint numerical integration methods have even order,

so we are guaranteed that the resulting integration method
is at least second-order accurate.

Variations of discrete variables: The variations of the dis-
crete variables are chosen to respect the geometry of the
configuration space SE(3). The variation of x;, is given by

X =x;, +€edx;, + 0(€),

1)

where 8x;, € R® and vanishes at k =0 and k = N. The var-
iation of R, is given by

6Rik = le nikv (74)

where 1, € s0(3) is a variation represented by a skew-sym-
metric matrix and vanishes at k =0 and & = N. The varia-

tion of F;, can be computed from the definition
F;, =R[R,_, to give
8F;, = 3R R, +RI3R;_,

= —n, RiR;., +RIR,_1,.,

= -, Fy +Fyn, (75)

4.1.1. Discrete equations of motion: Lagrangian form

To obtain the discrete equations of motion in Lagrang-
ian form, we compute the variation of the discrete
Lagrangian from (19), (74) and (75), to give

oa=2, % (i, —x5)" (83, — 8x,)
i=1

1
+ Ztr[(nikFi/( - Fiﬂ’IiH,)de]
Uy gy, aU[+l .
2 Ox;, 6le Y
h T aUk T aUk-H
+§tr|: llek aR + ’1«+1le+1 aR,AH (76)
where U, = U(xy, R;) denotes the value of the potential at
t=kh+t.
Define the action sum as
N-1
©, = ZLd(Xk; Xer1, R, ). (77)
k=0

The discrete action sum &, approximates the action inte-
gral (21), because the discrete Lagrangian approximates a
segment of the action integral.

Substituting (76) into (77), the variation of the action
sum is given by

, ) hoU
56, = ZZax,kl{ o =50 = 5o}
2 . Tk+1
1 h oU
T mix,  —x;) — = —*

1 h T aU]H,]
+tr |:;7ik+1 {— ZJd'Flk + §Ri/f+1 oR.
/s

1 oU
+ tr |:rlik{zFide' + 2R5 6Rk}:|
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Using the fact that dx;, and #, vanish at k=0 and k = N,
we can reindex the summation, which is the discrete ana-
logue of integration by parts, to yield

n aU
06, = Z Z 5x,k{ m;(x;,,, — 2x;, +x;, ) +ha k}

Xiy

1 oU,
+tr |:'1ik {Z (Fik‘]di - JdiFik—l) + hR?,: R, }:|

Hamilton’s principle states that 6®, should be zero for
all possible variations &x; € R® and 1, € s0(3) that vanish
at the endpoints. Therefore, the expression in the first brace
should be zero, and since 7, is skew-symmetric, the expres-
sion in the second brace should be symmetric. Thus, we
obtain the discrete equations of motion for the full body

problem, in Lagrangian form, for i € (1,2,...,n) as

1 oU,

Z (xfk+1 - 2xik +xik—l) =—h ox: (78)
L

1

; (Fioda, —JaFy | —JaFi +FJa) =hSM,,,),  (79)

Rik“ = RikFi“ (80)

where M; € R? is defined in (24) as

M, =1y, Xty + Fiy X Uiy + Fiy X Uy, (81)

R'"* are pth row vectors of R, and gg’,

respectively. Given the initial conditions (x;,,R;,,x;,R;, )
we can obtain x;, from (78). Then, F,, is computed from
(80), and F; can be obtained by solving the implicit Eq.
(79). Finally, R;, is found from (80). This yields an update
map (x;,, Ry, Xi,, Ri,) — (xi,, Ri,, xi,, R;,), and this process can
be repeated.

where 7, u,, €

4.1.2. Discrete equations of motion: Hamiltonian form

As discussed above, (78)—(80) defines a discrete
Lagrangian map that updates x; and R,. The discrete
Legendre transformation given in (3) and (4) relates the
configuration variables x;, R; and the corresponding
momenta. This induces a discrete Hamiltonian map that
is equivalent to the discrete Lagrangian map. The discrete
Hamiltonian map is particularly convenient if the initial
conditions are given in terms of the positions and momenta
at the initial time (x;,, v;,, Ry, 25, )-

Before deriving the varlatlonal integrator in Hamilto-
nian form, consider the momenta conjugate to x; and R,
namely P, € R* and Py, € R*”. From the definition (1),
F,.L is obtained by taking the derivative of L, given in
(15), with x; while holding other variables fixed.

6x' P, = F,L(x,%x,R, Q) = L(x, X + 3%, R, Q)

a e=0
= — T,(Xl + 665(1‘, Q,) = 5xlT(m,x,),
de| _,
where 8x; € (R*)" denotes (0,0,...,8%,...,0), and T} is
given in (12). Then, we obtain
Py, = miv; = y;, (82)

which is equal to the linear momentum of 4;. Similarly,

tr[S(SQ,)TPQ’] = ”:QiL(X, X, R, Q) = di Ti(xi; Qi + GSQI')
€le=0
1
=5 tr[S(82)"S(/:2)],

where (5) and (13) are used. Now, we obtain

tr [S(SQ,-)T{PQ. - ;S(J[Q[)H =0.

Since S(Q;) is skew-symmetric, the expression in the braces
should be symmetric. This implies that

Pgo, — Py, = S(J:2;) = S(1II,). (83)

Egs. (82) and (83) give expressions for the momenta con-
jugate to x; and R;. Consider the discrete Legendre trans-
formations given in (3) and (4). Then,

5.7( Dx,de(X/m Xit1, Rk, Fk)

d€ e=0

Ly(x + €%, Xpq1, Ri, Fi)

h U,
2 ax,-k ’

1
- 76}&- [me(xikﬂ - xik) + (84)

where 8x;, € (R*)" denotes (0,0,...,3x,,...,0). Therefore,

we have

oUy

h
Dy, La(Xk; Xi11, Ry, Fr) = 3o
ik

=5 i, = x) = (85)
From the discrete Legendre transformation given in (3),
P,, = —D, L, Using (82) and (85), we obtain

h oUy

2 A, (86)

1
Vlk h (x1A+l xik)

Using the discrete Legendre transformation given in (4),

P,,,, =D, Ls; we can derive the following equation
similarly:
h 0Ujqy
View = 7 Mi(Xiey, — Xi,) — (87)
k41 h k+1 k 2 axlkﬂ

Eqgs. (86) and (87) define the variational integrator in
Hamiltonian form for the translational motion. Now,
consider the rotational motion. We have

1 oU;
tr[’/likDRi,kL;] =1tr [”ik {%F Ja + 2R,]; R, }} (88)
where the right side is obtained by taking the variation of
L, with respect to R;,, while holding other variables fixed.
Since 7, is skew-symmetric,

"oy, (89)

1
_(ka‘]d 2

h
where M;, € R? is defined in (81).

—Dy, Ly +Dg, Lj = —JaF}) —

iy
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From the discrete Legendre transformation given in (3),

Pg,, = —Dg,, L,, we obtain the following equation by using
(83) and (89),

1 ™ A
S(Hik) :z(Fi/(Jdi _Jd,Fi,,) _ES(MI'A)' (90)

Using the discrete Legendre transformation given in (4),

Pg,.,., = Dg,,,, L4, we can obtain the following equation:
1 T h
S(Hik+1) = ZFik<Fidez _Jd,Fik)Fik +§S(Mik+l)' (91)

By using (10) and substituting (90), we can reduce (91) to
the following equation in vector form.

h h
=F I, +=FiM;, +=M

11 2 2 /S

ikl (92)
Egs. (90) and (92) define the variational integrator in
Hamiltonian form for the rotational motion.

In summary, using (86), (87), (90) and (92), the discrete
equations of motion for the full body problem, in Hamilto-

nian form, can be written for i € (1,2,...,n) as
h " U,
Xy =Xjp +—;, — 35— ) (93)
kel k m; k 2m,- ax,-k
h 6Uk h GUH]
. =YY, —— — = 94
’ylk“ ))Ik 2 6x,vk 2 ax,-kﬂ ' ( )
h
hS (H,—k + EM,-,{) =FyJaq, —J4F}, (95)
T h T h
IO, = Fi Il + S F M + oM, (96)
Rik+1 == RikFik' (97)

Given (x;, 7,,, Ris, I;,), we can find x;, from (93). Solving the
implicit Eq. (95) yields F;,, and R;, is computed from (97).
Then, (94) and (96) gives v, , and II;,. This defines the dis-
crete Hamiltonian map, (x;,,7;,, Rig> Iiy )= (i, vi, > Riy, Iy ),

and this process can be repeated.

ip»

4.2. Relative frame

In this section, we derive the variational integrator for
the full two body problem in the relative frame by follow-
ing the procedure given before. This result can be readily
generalized to n bodies.

Reduction of discrete variables: The discrete reduced
variables are defined in the same way as the continuous
reduced variables, which are given in (34)—(39). We intro-
duce Fk € SO(3) such that Rk+1 = RT le“ = F;FkRk ie.

241

Fy = RF1,R]. (98)

Discrete reduced Lagrangian: The discrete reduced
Lagrangian is obtained by expressing the original discrete
Lagrangian given in (73) in terms of the discrete reduced
variables.

From the definition of the discrete reduced variables
given in (34) and (38), we have

X — X = R2/¢+1 (Xk+1 +X2A+l) _RZk(Xk +X2k)
= RZk{FZk(XkH +)(Z;fﬂ) - (Xk +X2k)}7 (99)

Xop = Xo, = Ry {F2, X5, — X5, }. (100)
From (72), S(Qy,) and S(,,) are expressed as
S(Q,) = %(F]k —I33)

:%R,{(Fk—lgxg)Rk, (101)
S(€,) = %(sz —I5x3). (102)

Substituting (99)—(102) into (73), we obtain the discrete
reduced Lagrangian

Loy = La(Xi, Xis1, X2, X ooy, Rics Fiey Foy )
1
= E’ansz(XkH +Xo,,) — (Xi + X))
1 , 1
+ﬂm2||F2kX2k+1 — Xo || +th[(13x3 = Fi)J aw,]

1 h h
+th[(13x3 — o) 4] _EU(XkyRk) - EU(Xk+1aRk+l)7

(103)

where Jz, € R is defined to be Juz, = RiJ4 R}, which
gives the nonstandard moment of inertia matrix of the first
body with respect to the second body fixed frame at
t=kh+ to.

Variations of discrete reduced variables: The variations
of the discrete reduced variables can be derived from those
of the original variables. The variations of Ry, X, and F»,
are the same as given in (42), (43), and (75), respectively.
The variation of Fj is computed in (A.2).

In summary, the variations of discrete reduced variables
are given by

OR: = MRy — 1y, Ri, (104)
Xy =y — N2 X ks (105)
OFy = =y, F +F2k17k+1F;ka + Fie(=n +1,)s (106)
X, = 1o, — My X2y (107)
OFy, = =1y Fy + Fomy, - (108)

These Lie group variations are the main elements required
to derive the variational integrator equations.

4.2.1. Discrete equations of motion: Lagrangian form

As before, we can obtain the discrete equations of
motion in Lagrangian form by computing the variation
of the discrete reduced Lagrangian which, by using
(104)—(108), is given as (109).
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1
Bldk :EXI-{+1[m1(Xk+1 +X2k+l) - mIF;rk(Xk +X2k)]

1
+ 4 [ (X + X)) —miFa (X + X5, )]

h
1
+ZX;’+' [y (X1 + X)) — miFy (Xi + Xo,)

1
+maXo,,, —maFy Xo,] +z%§k [m (Xx +X2,)
—miFo (Xpp1 + X0, ) +moXo, —moFo X, ||

1
tr[i 1 F o, Fid ar, Fa,] + Ztr[nkaJde]

1
[772H1Jd2F2k] +- tr[”’Z,(szJdv}

h h

h U, h U1 h ¢ 0Uiy

—_—= X — T

2 lay, TR [”’ x| T ax,,,

h ouT h U} ou}
ot {”zkﬂXk“ X +1] ol {”ZkRk R, WReaR, ]

h ouUT oUT

t R ket R adl 109
+2 r{ﬂzm M+l A Ry = M 148%+1 GRHJ ( )

The action sum expressed in terms of the discrete
reduced Lagrangian has the form

N-1
(ﬁd:Zld(Xk,XkH,sz,XzMaRkaFk7F2k)- (110)
k=0

The discrete action sum ®, approximates the action inte-
gral (49), because the discrete Lagrangian approximates a
piece of the integral. Using the fact that the variations
Xks X2, N> Mo, vVanish at k=0 and k = N, the variation of
the discrete action sum can be expressed as (111).

’Vll

36, Z
=1

—mFy (X +X5,,,) —

Li { m1F2 (Xt + X, )+ 2m (X + X5,)

aUk
==
an}

N-1
1
+ Z 8 {—mngH (Xeor +Xa )+ 2my (Xy + X5,)

— mlFZA (Xk+] +X’A+l) ’”ZFZ,,XZH + szXZA - szszZAH }

] aUT
+Ztr[r]k{f(—F;HFk,le,lelR \Fo + FuRJ 4 RY) — hRy aRkH

out U}
+Ztr[ﬂzk{ —JayFa |+ Fs, ‘,)+tha + hR, —~ R, H

(111)

From Hamilton’s principle, 6®, should be zero for all
possible variations y, 1, € R’ and nn,, € s0(3) which
vanish at the endpoints. Therefore, in (111), the expressions
in the first two braces should be zero, and the expressions
in the last two braces should be symmetric since #y,1,,
are skew-symmetric. After some simplification, we obtain
the discrete equations of relative motion for the full two body
problem, in Lagrangian form, as
h* U,

Fo X o

72Xk+F~2r/‘71Xk,1: (112)

Frodare,, —Jar Fion
=F} (FiJar, = Jag, FL)F, — BS(Mi), (113)
F2k+l‘]d2 _‘]sz—ZFkH = ng (sz‘]dz _szF;k)sz
0
+ WX X L RS(My ),
0X i
(114)
Ris1 = F3 FiRy, (115)
Ry, = Ry F,. (116)

It is natural to express equations of motion for the second
body in the inertial frame.

h

U
k
X2 — 20, + x5, = Rk

o, (117)

Given (X, Ro, Ra,, X1, R1, Ry, ), we can determine Fj and F,
from (115) and (116). Solving the implicit equations (113)
and (114) gives F| and F,,. Then X,, R, and R,, are found
from (112), (115) and (116), respectively. This yields the
discrete  Lagrangian map  (Xo,Ro,Ra,, X1,R1,Ry) —
(X1,R1,R2,, X2, R, Ry,) and this process can be repeated.
We can separately reconstruct x,, using (117).

4.2.2. Discrete equations of motion: Hamiltonian form

Using the discrete Legendre transformation, we can
obtain the Hamiltonian map, in terms of reduced variables,
that is equivalent to the Lagrangian map given in (112)-
(117). We will only sketch the procedure as it is analogous
to the approach of the previous section. First, we find
expressions for the conjugate momenta variables corre-
sponding to (82) and (83). We compute the discrete Legen-
dre transformation by taking the variation of the discrete
reduced Lagrangian as in (84) and (88). Then, we obtain
the discrete equations of motion in Hamiltonian form
using (3) and (4).

The discrete equations of relative motion for the full two
body problem, in Hamiltonian form, can be written as

r, K U,
X =F(Xp+h——— — 118
k1 2k< kT m  2m oX, (118)
h oU, h 0U;
Ni=Fy (i —% ) —= 119
o 2k< ) ax,) 20X (119)
. h h
iy = Fy | i _EM" _§Mk+17 (120)
h aUk h
h aU h
+ 5Kk X an:ll+2Mk+1, (121)
Rip1 = F) FiRy, (122)
h
hS(Hk _EMk) =FiJar, —Jar,Fy s (123)
h oUu h
hS(H2k+§Xan—/Yk+§Mk> :ngszdezF;;. (124)
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It is natural to express equations of motion for the second
body in the inertial frame for reconstruction:

) n U
= h="* 4 —R 125
X241 Xy + "y + 2m, k oX, , ( )
h_0oU, h OU
Vo = V% +§R"6—Xk 5 Rkt Koy (126)
Ry, =Ry Fs,. (127)

Given (R, Xy, ITo, I'y, IT5, ), we can determine Fy and F,, by
solving the implicit Egs. (123) and (124). Then, X; and R,
are found from (118) and (122), respectively. After that, we
can compute I'y, I1,, and I1,, from (119)—(121). This yields
a discrete Hamiltonian map (Ry,Xo, o, [y, II5,) —
(Ry,X1,II,,T'1,IT,), and this process can be repeated. x,,,
7,, and R, can be updated separately using (125)—(127),
respectively, for reconstruction.

4.3. Numerical considerations

Properties of the variational integrators: Variational inte-
grators exhibit a discrete analogue of Noether’s theorem
[10], and symmetries of the discrete Lagrangian result in
conservation of the corresponding momentum maps. Our
choice of discrete Lagrangian is such that it inherits the
symmetries of the continuous Lagrangian. Therefore, all
the conserved momenta in the continuous dynamics are
preserved by the discrete dynamics.

The proposed variational integrators are expressed in
terms of Lie group computations [12]. During each integra-
tion step, F;, € SO(3) is obtained by solving an implicit
equation, and R; is updated by multiplication with F; .
Since SO(3) is closed under matrix multiplication, the atti-
tude matrix R, , remains in SO(3). We make this more
explicit in Section 4.4 by expressing F';, as the exponential
function of an element of the Lie algebra so(3).

An adjoint integration method is the inverse map of the
original method with reversed time-step. An integration
method is called self-adjoint or symmetric if it is identical
to its adjoint; a self-adjoint method always has even order.
Our discrete Lagrangian is chosen to be self-adjoint, and
therefore the corresponding variational integrators are
second-order accurate.

Higher-order methods: While the numerical methods we
present in this paper are second-order, it is possible to
apply the symmetric composition methods, introduced in
[25], to construct higher-order versions of the Lie group
variational integrators introduced here. Given a basic
numerical method represented by the flow map &, the
composition method is obtained by applying the basic
method using different step sizes,

¥, = ‘Disho"'odj/llhy

where Ay, 4s,..., 4 € R. In particular, the Yoshida sym-
metric composition method for composing a symmetric
method of order 2 into a symmetric method of order 4 is
obtained when s = 3, and

1/3
U T P
2237 2253

Alternatively, by adopting the formalism of higher-
order Lie group variational integrators introduced in [21]
in conjunction with the Rodrigues formula, one can
directly construct higher-order generalizations of the Lie
group methods presented here.

Reduction of orthogonality loss due to roundoff error: In
the Lie group variational integrators, the numerical solu-
tion is made to automatically remain on the rotation group
by requiring that the numerical solution is updated by
matrix multiplication with the exponential of a skew sym-
metric matrix.

Since the exponential of the skew symmetric matrix is
orthogonal to machine precision, the numerical solution
will only deviate from orthogonality due to the accumula-
tion of roundoff error in the matrix multiplication, and this
orthogonality loss grows linearly with the number of time-
steps taken.

One possible method of addressing this issue is to use
the Baker—Campbell-Hausdorff (BCH) formula to track
the updates purely at the level of skew symmetric matri-
ces (the Lie algebra). This allows us to find a matrix C(),
such that,

exp(td) exp(¢B) = exp C(t).

This matrix C(¢)
equation,

satisfies the following differential

. 1 Br
C=4+B+5[4-B.C]| +; 1 ade(d +B),

with initial value C(0) =0, and where B, denotes the
Bernoulli numbers, and adc4 = [C,4] = CA — AC.

The problem with this approach is that the matrix C(¢) is
not readily computable for arbitrary 4 and B, and in prac-
tice, the series is truncated, and the differential equation is
solved numerically.

An error is introduced in truncating the series, and
numerical errors are introduced in numerically integrating
the differential equations. Consequently, while the BCH
formula could be used solely at the reconstruction stage
to ensure that the numerical attitude always remains in
the rotation group to machine precision, the truncation
error would destroy the symplecticity and momentum pre-
serving properties of the numerical scheme.

However, by combining the BCH formula with the
Rodrigues formula in constructing the discrete variational
principle, it might be possible to construct a Lie group var-
iational integrator that tracks the reconstructed trajectory
on the rotation group at the level of a curve in the Lie alge-
bra, while retaining its structure-preservation properties.

4.4. Computational approach

The structure of the discrete equations of motion
given in (79), (95), (113), (114), (123), and (124) suggests
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a specific computational approach. For a given g € R?, we
have to solve the following Lyapunov-like equation to find
F € SO(3) at each integration step.

FJg—JFT = S(g). (128)

We now introduce an iterative approach to solve (128)
numerically. An element of a Lie group can be expressed
as the exponential of an element of its Lie algebra, so
F €SO(3) can be expressed as an exponential of
S(f) € so(3) for some vector f € R, The exponential can
be written in closed form, using Rodrigues’ formula,

sin || f]| 1 —cos||f]l 2

S —S8(f)".

SO e SV

Substituting (129) into (128), we obtain
sinlfl] oy, 1= cos /]

S(g) = J —S Jf),

&) = S+ SV )

where (9) and (13) are used. Thus, (128) is converted
into the equivalent vector equation g = G(f), where
G:RP—Ris
sin —cos
I/ f+ 2||fH
I/ 1711

We use the Newton method to solve g = G(f), which gives
the iteration

fiet = fi+VG(f) (g - G(f)).

We iterate until ||g — G(f;)|| < € for a small tolerance ¢ > 0.
The Jacobian VG(f) in (130) can be expressed as

F=e&V) =I5+

(129)

G(f) = S Jf.

(130)

cos |£[11L71] = sin [I£] sinlfl
VG
() = AR T
o S =200 = oS o e
171
+1‘”"+|Sz”f”{_suf) +S(f)}.

Numerical simulations show that 3 or 4 iterations are suf-
ficient to achieve a tolerance of e = 1071,

5. Numerical simulations

The variational integrator in Hamiltonian form given in
(118)—(127) is used to simulate the dynamics of two simple
dumbbell bodies acting under their mutual gravity.

5.1. Full body problem defined by two dumbbell bodies

Each dumbbell model consists of two equal rigid spheres
and a massless rod as shown in Fig. 3. The gravitational
potential of the two dumbbell models is given by

_ i Gm1m2/4

Pyt [X + ps, +Rpy ||

off

NIE

my ll

2
my
2

Fig. 3. Dumbbell model of the full body problem.

where G is the universal gravitational constant, m; € R is
the total mass of the ith dumbbell, and p; € R’ is a vector
from the origin of the body fixed frame to the pth sphere of
the ith dumbbell in the ith body fixed frame. The vectors
pi, = [7;/2,0,0]", pi, = —p;,» Where /; is the length between
the two spheres.

Normalization: Mass, length and time dimensions are
normalized as follows:

I A m b
X, =2
1= l )
_ G(m; +m
= %f
where m = ™2 and / is chosen as the initial horizontal

my+my’

distance between the center of mass of the two dumbbells.
The time is normalized so that the orbital period is of order
unity. Over-bars denote normalized variables. We can ex-
presses the equations of motion in terms of the normalized
variables. For example, (55) can be written as
- = - oU
V/ + Q X V = — >

? X
where ’ denotes a derivative with respect to . The normal-
ized gravitational potential and its partial derivatives are
given by

_ 1 & 1
U:_Zp; X+ o, + Ror, ||
U 1L )?+ﬁzp+Rp1q
X 4 L5 X +po, + R,
U 1& X +p,)p

OR 4p‘q:l |‘)_(+ﬁzp+Rﬁ]q||3.
Conserved quantities: The total energy E is conserved:
1 1 1
E=smllV +Valf +5mlVa ] + 5 t(S(2)74,5(@)"]
1
+ Etr[S(Qz)szS(Qz)T] + U(X,R)

The total linear momentum 7, € R?, and the total angular
momentum about the mass center of the system 7, € R?, in
the inertial frame, are also conserved:



T. Lee et al. | Comput. Methods Appl. Mech. Engrg. 196 (2007) 2907-2924

Yr = Rz{l’l’l](V + Vz) + szz},
Ty = Rz{mX X V+JRQ +J292}

5.2. Simulation results

The properties of the two dumbbell bodies are chosen to
be

I, =0.25, 7T, = diag0.0004,0.0238,0.0238],
1, =0.5, 7T, = diag[0.0030,0.1905,0.1905).

m = 1.5,

m; =3,

The mass and length of the second dumbbell are twice that
of the first dumbbell. The initial conditions are chosen such
that the total linear momentum in the inertial frame is zero
and the total energy is positive.

Xo=1[1,0,0.3], 7, =][0,1,0],

ﬁl0 = [07079]7 R() = 13><3a

Xy, = [—0.33,0,-0.1], 7, =[0,-0.33,0],
§20 = [07070]7 Ryy = I3x3.

Simulation results obtained using the Lie group varia-
tional integrator are given in Figs. 4 and 5. Fig. 4 shows
the trajectory of the two dumbbells in the inertial frame.
Fig. 5(a) shows the evolution of the normalized energy,
where the upper figure gives the history of the translational
kinetic energy and the rotational kinetic energy, and the
lower figure shows the interchange between the total
kinetic energy and the gravitational potential energy.
Fig. 5(b) shows the evolution of the theoretically conserved
quantities, where the upper figure is the history of the total
energy, and the lower figure is the error in the rotation
matrix.

Initially, the first dumbbell rotates around the vertical ez
axis, and the second dumbbell does not rotate. Since the
angular velocity of the first dumbbell is relatively large,
the rotational kinetic energy initially exceeds the transla-
tional kinetic energy. As the two dumbbells orbit around

2921

Fig. 4. Trajectory in the inertial frame.

each other, the second dumbbell starts to rotate, the rota-
tional kinetic energy increases, and the translational kinetic
energy decreases slightly for about 6 normalized units of
time. At 9 units of time, the distance between the two
dumbbells reaches its minimal separation, and the potential
energy is transformed into kinetic energy, especially trans-
lational kinetic energy. After that, two dumbbells continue
to move apart, and the translational energy and the rota-
tional energy equalize. (A simple animation of this motion
can be found at http://www.umich.edu/~tylee.) This shows
some of the interesting dynamics that the full body prob-
lem can exhibit. The non-trivial interchange between rota-
tional kinetic energy, translational kinetic energy, and
potential energy may yield complicated motions that can-
not be observed in the classical two body problem.

The Lie group variational integrator preserves the total
energy and the geometry of the configuration space. The
maximum deviation of the total energy is 2.6966 x 107,
and the maximum value of the rotation matrix error
|[I — RTR|| is 2.8657 x 107",

As a comparison, Fig. 6 shows simulation results
obtained by numerically integrating the continuous equa-
tions of motion (63)—(70) using a standard Runge-Kutta

b3

SO(3) error
[3e]

I of
2+ o o \J/ q 1F R B,
4 L o= o L

0 5 10 15 0 5 10 15

~+I

Sl

Fig. 5. Lie group variational integrator: (a) interchange of energy and (b) conserved quantities.
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Fig. 6. Runge-Kutta method: (a) interchange of energy and (b) conserved quantities.

method. The rotational and the translational kinetic energy
responses are similar to those given in Fig. 5 prior to the
close encounter. However, it fails to simulate the rapid
interchange of the energy near the minimal separation of
the two dumbbells. The deviation of the total energy is rel-
atively large, with a maximum deviation of 1.1246 x 1072,
Also, the energy transfer is quite different from that given
in Fig. 5(a). The Runge-Kutta method does not preserve
the geometry of the configuration space, as the discrete
trajectory rapidly drifts off the rotation group to give a
maximum rotation matrix error of 2.2435 x 1072, As the
gravity and momentum between the two dumbbells depend
on the relative attitude, the errors in the rotation matrix
limits the applicability of standard techniques to long time
simulations.

An extensive computational comparison between the
Lie group variational integrator to other geometric integra-
tors such as symplectic Runge-Kutta method and Lie
group method can be found in [26].

6. Conclusions

Eight different forms of the equations of motion for the
full body problem are derived. The continuous equations
of motion and variational integrators are derived both in
the inertial and relative frames, and each set of equations
of motion is expressed in both Lagrangian and Hamilto-
nian form. The relationships between these equations of
motion are summarized in Fig. 7. This commutative cube
was originally given in [22]. In the figure, dashed arrows
represent discretization from the continuous systems on
the left face of the cube to the discrete systems on the right
face. Vertical arrows represent reduction from the full
(inertial) equations on the top face to the reduced (relative)
equations on the bottom face. Front and back faces repre-
sent Lagrangian and Hamiltonian forms, respectively. The
corresponding equation numbers are also indicated in
parentheses.

It is shown that the equations of motion for the full
body problem can be derived systematically, using proper

Discrete Hamilton
(93)-(97)

Hamilton

(29)-(32)

Euler-Lagrange Discrete Euler-Lagrange

(25)—(28) —> (78)—(80) Reduction
v v
Reduced H >Reduced DH
(63)-(70) (118)-(127)
V v egendre trans.
Reduced EL >Reduced DEL
(55)—(62) Discretization (112)—(117)

Fig. 7. Commutative cube of the equations of motion.

Lie group variations, from Hamilton’s principle. The pro-
posed variational integrators preserve the momenta and
symplectic form of the continuous dynamics, exhibit good
energy properties, and they also conserve the geometry of
the configuration space since they are based on Lie group
computations. The main contribution of this paper is the
combination of variational integrators and Lie group com-
putations, developed for the full body problem. Hence, the
resulting numerical integrators conserve the first integrals
as well as the geometry of the configuration space of the
full body dynamics.

Appendix A. Variations of reduced variables
A.1. Continuous variables

The variations of the reduced variables given in (43)—
(47) are derived in this section. The variations of the
reduced variables can be obtained from the definitions of
the reduced variables, and the variations of the original
variables.

The variation of X = R] (x; — x,) is given by

0X = SR;F(Xl —XQ) +R2(5)C1 — 6)(2).
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Substituting (16) into the above equation, we obtain
8X = =Ry (x1 — x2) + Ry(3x) — 8xy) = —mpX + 1,
where the reduced variation y : [ty, ;] — R’ is defined to be
1= R2(5x1 — 8)(2).

From the definition of Q = RQ, and (10), S(5Q) is given
by
S(dQ) = 4 S(RQ)) = 4 R°S(Q)RT

~de 0 V7 de —0 !

= SRS(Q))R" + RS(3Q,)R" + RS(€2,)5R".

Substituting (42) and (17) into the above equation, we
obtain

S(8Q) = {n — ny}RS(QUR" + R{in + S(21)m — i S(Q1)}IR"
+RS(Q)R™{—n+n,}
= {n— m}S(RQ) + RinR" + S(RQ1 )Ry, RT
— R RTS(RQ,) + S(RQ){—n + 1, }-

Since n = Rn;R" and Q = RQ,, the above equation reduces
to

S(8Q) = —1,8(Q) + RinR" + 5(Q)n,. (A.1)
From the definition of R = R)R), R is given by
R =RIR, +RIR, = —S(Q,)R + S(Q)R. (A.2)
Then, 5 can be written as
i = RinR" + Ry R™ + Ry, R"

— RiNR" +{S(2) — S(22)}n — n{S(2) - S(2)}.  (A3)

Substituting (A.3) into (A.1), we obtain S(3€2) in terms of
1,1, as

S(8Q) =i —S(Q)n +nS(Q) + S()n, —n,S(L) + S(2)n
- ”S(‘Q2)7

which is equivalent to (44).

The variation of ¥ = R} (X; — x») is given by
8V = 8R; (X — %3) + R, (&% — &%3)

= —n,V + R} (8% — 8%2). (A4)

From the definition of y = R, (8x; — 8x3), j is given by
7= RY(8x; — 8xy) + RI(8x; — dx,)

= —S(Qy)y + R} (8x; — dx3). (A.5)
Substituting (A.5) into (A.4), we obtain
8V = —mV + i+ S(2)7,
which is equivalent to (45). The variation 3V, can be de-
rived in the same way, and S(8€,) is given in (17).

A.2. Discrete variables

The variation of the reduced variables 0F; given in (106)
is derived in this section. From (75) and (98), the variation
OF;, is written as

6F1k = _WlkFlk + Flkrllkﬂ
= =R FiRe + R{FeRR 1y Ry,

where 5, € s0(3) is defined as n, =Ry R}.
FiRR}, | = FiR(R{F[Fy) = F»,, we have

8F1, = Ry (—mF i + Fo 1 Fy Fio)Ry.

Since

Then, the variation 8F is given by
8F) = SRyF R} + R.OF R} + RF1,5R}
= =1 Fi + F2k’7k+1F;,¢Fk + Fi(=n +my,),

which is equivalent to (106).
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