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ABSTRACT

COMPUTATIONAL GEOMETRIC MECHANICS AND CONTROL
OF RIGID BODIES

by

Taeyoung Lee

This dissertation studies the dynamics and optimal control of rigid bodies from two complemen-
tary perspectives, by providing theoretical analyses that respect the fundamental geometric charac-
teristics of rigid body dynamics and by developing computational algorithms that preserve those
geometric features. This dissertation is focused on developing analytical theory and computational
algorithms that are intrinsic and applicable to a wide class of multibody systems.

A geometric numerical integrator, referred to as a Lie group variational integrator, is devel-
oped for rigid body dynamics. Discrete-time Lagrangian and Hamiltonian mechanics and Lie group
methods are unified to obtain a systematic method for constructing numerical integrators that pre-
serve the geometric properties of the dynamics as well as the structure of a Lie group. It is shown
that Lie group variational integrators have substantial computational advantages over integrators
that preserve either one of none of these properties. This approach is also extended to mechanical
systems evolving on the product of two-spheres.

A computational geometric approach is developed for optimal control of rigid bodies on a Lie
group. An optimal control problem is discretized at the problem formulation stage by using a
Lie group variational integrator, and discrete-time necessary conditions for optimality are derived
using the calculus of variations. The discrete-time necessary conditions inherit the desirable com-
putational properties of the Lie group variational integrator, as they are derived from a symplectic
discrete flow. They do not exhibit the numerical dissipation introduced by conventional numerical
integration schemes, and consequently, we can efficiently obtain optimal controls that respect the
geometric features of the optimality conditions.

The approach that combines computational geometric mechanics and optimal control is illus-
trated by various examples of rigid body dynamics, which include a rigid body pendulum on a
cart, pure bending of an elastic rod, and two rigid bodies connected by a ball joint. Since all of
the analytical and computational results developed in this dissertation are coordinate-free, they are
independent of a specific choice of local coordinates, and they completely avoid any singularity,
ambiguity, and complexity associated with local coordinates. This provides insight into the global

dynamics of rigid bodies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Goal

This dissertation studies dynamics and optimal control problems for rigid bodies from two com-
plementary perspectives, by providing theoretical analyses that respect the fundamental geometric
characteristics of rigid body dynamics and by developing computational algorithms that preserve
those geometric characteristics.

In control systems engineering, the underlying geometric features of a dynamic system are often
not considered carefully. For example, many control systems are developed for the standard form
of ordinary differential equations, namely & = f(x,u), where the state and the control input are
denoted by x and u, respectively (see, for example, Khalil|2002; Nijmeijer and van der Schaft|1990).
It is assumed that the state and the control input lie in Euclidean spaces, and the system equations
are defined in terms of smooth functions between Euclidean spaces. However, for many interesting
mechanical systems, the configuration space cannot be expressed globally as a Euclidean space. In
addition, general purpose numerical algorithms may not accurately respect fundamental geometric
properties (see |Hairer et al.2000; Leimkuhler and Reich|[2004).

In this dissertation, dynamics and optimal control problems for rigid bodies are studied, in-
corporating careful consideration of their geometric features. We explicitly consider the following
research questions: what are the geometric properties of dynamics of rigid bodies, how should
the configuration of rigid bodies be described, how are the geometric properties utilized in control
system analysis and design, and how can the geometric characteristics be preserved in numerical
computations. The goal of this dissertation is to develop both analytical tools and computational

algorithms for rigid body dynamics and control that respect the fundamental geometric features.

1.1.1 Fundamental Geometric Properties of Rigid Body Dynamics

Lie Group Configuration Manifold. The configuration of a rigid body can be described by the
location of its mass center and the orientation of the rigid body in a three-dimensional space. The
location of the rigid body can be expressed in Euclidean space, but the attitude evolves in a nonlinear
space that has a certain geometry.

More precisely, the attitude of a rigid body is defined as the direction of a body-fixed frame
with respect to a reference frame, considered as a linear transformation on the vector space R?;

the attitude can be represented mathematically by a 3 x 3 orthonormal matrix. We require that its



determinant is positive in order to preserve the ordering of the orthonormal axes according to the
right-hand rule. The set of 3 x 3 orthonormal matrices with positive determinant is a manifold as
it is locally diffeomorphic to a Euclidean space, and it also has a group structure with the group
action of matrix multiplication. A smooth manifold with a group structure is referred to as a Lie
group; the Lie group of 3 x 3 orthonormal matrices with positive determinant is referred to as the
special orthogonal group, SO(3) (see, for example, Murray et al.[[1993} Varadarajan |1984). The
configuration manifold for the combined translational and rotational motion of a rigid body is the
special Euclidean group SE(3), which is a semidirect product SE(3) = SO(3)®R3. A direct
product of the Lie groups SE(3), SO(3), and R" can represent the configuration of multiple rigid
bodies, and it is also a Lie group since a product of Lie groups is also a Lie group. Therefore, the

configuration manifold of an interconnection of rigid bodies is also a Lie group.

Lagrangian/Hamiltonian System. Mechanics studies the dynamics of physical bodies acting un-
der forces and potential fields (see |Arnold|1989; (Goldstein et al.|2001; [Meirovitch/[2004). In La-
grangian mechanics, the trajectories are obtained by finding the paths that minimize the integral of a
Lagrangian over time, called the action integral. In classical problems, the Lagrangian is chosen as
the difference between kinetic energy and potential energy. The Legendre transformation provides
an alternative description, referred to as Hamiltonian mechanics.

Rigid body dynamics are characterized by Lagrangian/Hamiltonian dynamics. The dynamics of
a Lagrangian or Hamiltonian system has unique geometric properties; the Hamiltonian flow is sym-
plectic, the total energy is conserved in the absence of non-conservative forces, and the momentum
map associated with a symmetry of the system is preserved. By quotienting out the symmetry, a

reduced Lagrangian/Hamiltonian system can be developed (see |[Marsden|[1992)).

1.1.2 Computational Geometric Mechanics and Control

Geometric mechanics is a modern description of classical mechanics from the perspective of dif-
ferential geometry (see, for example, |/Abraham and Marsden| 1978}, Bloch|[2003a}; Bullo and Lewis
2005; Jurdjevic|1997; Marsden and Ratiu|[1999). It explores the geometric structure of a Lagrangian
or Hamiltonian system through the concept of vector fields, symplectic geometry, and symmetry
techniques. Geometric mechanics provides fundamental insights into mechanics and yields use-
ful tools for dynamics and control theory. For example, geometric mechanics led to the energy-
momentum method in |Simo et al.| (1990), reduction/reconstruction in Marsden et al. (1990, 2000),
and the controlled Lagrangian method in |Bloch et al.| (2000, [2001])).

The goal of computational geometric mechanics is to construct computational algorithms that
preserve the geometric properties (see [Leok||2004). It applies the fundamental principles of geo-
metric mechanics to discrete-time mechanical system to construct geometric structure-preserving
numerical schemes. Since the computational algorithms are developed from discrete-time ana-
logues of physical principles, the geometric properties of the dynamics are preserved naturally.

This is in contrast with the perspective that considers a numerical method as an approximation to a



continuous-time equation.

In summary, this dissertation is focused on computational geometric mechanics and control of
rigid bodies. We develop computational methods for rigid bodies, that preserve the underlying
Lagrangian/Hamiltonian system structure of rigid body dynamics as well as the Lie group struc-
ture of the configurations. These methods are applied to numerical integration and optimal control
problems. Prior work related to computational geometric mechanics and control of rigid bodies is

summarized below, followed by an outline and the contributions of this dissertation.

1.2 Literature Review

1.2.1 Geometric Numerical Integration

Geometric numerical integration deals with numerical integration methods that preserve geometric
properties of the flow of a differential equation, such as invariants, symplecticity, and the configura-
tion manifold (see Hairer et al.|2000; |[Leimkuhler and Reich|2004}; | McLachlan and Quispel/2001}).

Numerical methods that conserve energy and momentum for mechanical systems are referred
to as energy-momentum integrators (see |[LaBudde and Greenspan||1976;|Simo et al.[[1992). In these
methods, a free parameter is selected to maintain constant angular momentum; energy conservation
is typically enforced by a momentum-preserving projection onto the manifold of constant energy.

Numerical integration methods that preserve the symplecticity of a Hamiltonian system have
been studied in [Lasagni| (1988)); Sanz-Sernal (1992, [1988). Qualitative properties of symplectic in-
tegrators are given in|Gonzalez and Simo|(1996); |Gonzalez et al.| (1990), and long-time behavior of
symplectic methods is addressed in|Benettin and Giorgilli| (1994); [Hairer| (1994);|Hairer and Lubich
(2000). Coefficients of certain Runge-Kutta methods can be chosen to satisfy a symplecticity crite-
rion and order conditions to obtain symplectic Runge-Kutta methods. However, it can be difficult
to construct such integrators, and it is not guaranteed that other invariants of the system, such as a
momentum map, are preserved.

Alternatively, variational integrators are constructed by discretizing Hamilton’s principle, rather
than discretizing the continuous Euler-Lagrange equations (see [Marsden and West [2001)). This
approach provides a systematic method to develop geometric numerical integrators for Lagrangian /
Hamiltonian systems. The resulting integrators have the desirable property that they are symplectic
and momentum preserving, and they exhibit good energy behavior for exponentially long times.

The idea of developing a discrete-time mechanical system that conserves the constants of motion
appears in the work by |Greenspan| (1981} [1972); [LaBudde and Greenspan| (1974), and a discrete-
time mechanical system has been developed according to Hamilton’s principle by Moser and Veselov
(1991); |Veselov| (1988). The variational view of discrete-time mechanics is further developed
by [Kane et al.| (1999, 2000); (Wendlandt and Marsden| (1997), and an intrinsic form of discrete-time
variational principles is established by [Marsden and West (2001)).

Geometric integrators that preserve the manifold or Lie group structure have been studied (see,



for example, |Budd and Iserles|[1999; [Hairer and Wanner||1996; [serles et al.|[2000). A natural ap-
proach to the numerical solution of differential equations on a manifold is by projection. In the work
by [Dieci et al.[(1994), a solution is updated by a one-step integration method and it is projected to
the manifold on which the system evolves at each time step. This projection may destroy desirable
long-time behavior of one-step methods, since the projection typically corrupts the numerical tra-
jectory. Numerical methods based on local coordinates of the manifold often result in unnecessary
singularities (see|[Potra and Rheinbold|1991). Differential algebraic approaches have been proposed
to solve nonlinear constrained equations at each time step in |Hairer and Wanner| (1996)).

For differential equations that evolve on a Lie group, a group element can be updated by the
corresponding group action so that the group structure is preserved naturally. This is referred to as
a Lie group method (see [Iserles et al.|[2000). Among the Lie group methods, the Crouch-Grossman
method updates the group elements by multiple evaluations using the exponential map (see Crouch
and Grossman|/1993), and the Munthe-Kaas method is based on a differential equation on the Lie
algebra and uses a single evaluation of the exponential map (see Munthe-Kaas|[1995). A homoge-
neous manifold is a manifold on which a Lie group acts continuously in a transitive way. Lie group
methods are extended to homogeneous manifolds in Munthe-Kaas and Zanna (1997).

For mechanical systems evolving on a Lie group, a discrete-time Euler-Poincaré equation has
been introduced for a left-invariant Lagrangian by Marsden et al.[(1999), with application to the free
attitude dynamics of a rigid body. A similar development is presented for the attitude dynamics of
an axially symmetric rigid body acting under a gravitational potential in Bobenko and Suris|(1999).
The idea of using the Lie group structure and the exponential map to numerically compute rigid
body dynamics arises in Krysl (2005); |Simo et al.[ (1992). Symplectic integrators with explicit
constraints on the Lie group structure are applied to rigid body dynamics in Leimkuhler and Reich
(2004).

1.2.2 Geometric Optimal Control

Optimal control problems deal with finding trajectories, such that a certain optimality condition is
satisfied under prescribed constraints (see, for example, Bryson and Ho|1975; Kirk|1970; |Sussmann
and Willems|[1997). This is typically based on Pontryagin’s minimum principle or the calculus of
variations. Geometric optimal control forms a theoretical foundation for extensions of the minimum
principle to optimal control problems defined on arbitrary differentiable manifolds (see Jurdjevic
1997).

A geometric, intrinsic formulation of the minimum principle is presented in a coordinate-free
fashion in|Sussmann| (1998alb). A general formulation of optimal control theory for nonholonomic
systems on a Riemannian manifold is presented in Bloch and Crouch| (1993} 1998l 1995). This ap-
proach is applied to both kinematic sub-Riemannian optimal control problems and optimal control
problems for mechanical systems by Bloch| (2003alb)). A dynamic interpolation problem on a Rie-
mannian manifold is formulated as an optimal control problem in [Hussein and Bloch| (2004b)), and

this approach is extended to an optimal control problem on a Riemannian manifold with a potential



in \Hussein and Bloch| (2004a). An optimal control problem for nonholonomic and under-actuated
mechanical systems is considered in |Hussein and Bloch|(2006).

Controllability, observability and optimal control problems on a Lie group have been studied
by Brockett| (1973,/1972). A simple closed-form analytic solution for an optimal control problem of
right-invariant systems evolving on a matrix Lie group is presented in Baillieul (1978)). An optimal
control problem for a generalized rigid body on SO(n) is considered in Bloch and Crouch (1996). A
general theory of optimal control problems is developed inJurdjevic| (1998albl [1997) together with
reachability and controllability conditions; these approaches are based on kinematics equations, and
assume that group elements are directly controlled by elements in the Lie algebra. Optimal control
problems for the dynamics of a rigid body with application to dynamic coverage problem are studied
by [Hussein| (2005)); [Hussein and Bloch| (2005alb)).

Computational geometric optimal control approaches apply optimal control theory to discrete-
time mechanical systems obtained using geometric numerical integrators. A discrete version of the
generalized rigid body equations and their formulation as an optimal control problem are presented
in [Bloch et al.| (1998}, 12002). Discrete-time optimal control problems for the attitude dynamics of
a rigid body on SO(3) are considered in Bloch et al. (2007); Hussein et al.| (2006) based on the
variational integrator. A direct optimal control approach is applied to discrete-time mechanical

systems in|Junge et al.| (2005)), referred to as Discrete Mechanics and Optimal Control.

1.3 Outline of Dissertation

In this dissertation, geometric mechanics and optimal control for rigid bodies are studied, emphasiz-
ing computational geometric methods. The outline of the dissertation is summarized by
Results on geometric mechanics for rigid bodies on a Lie group are presented in and

results on geometric optimal control problems are presented in [Chapter 4] [Chapter 3|and [Chapter 5|

present computational geometric algorithms for mechanics and optimal control problems; they can

be considered as discrete-time analogues of [Chapter 2] and [Chapter 4] respectively. In each chapter,

a general theory is developed first for dynamic systems on an arbitrary Lie group; this general theory

is illustrated by several rigid body systems. The content of each chapter is summarized as follows.

Geometric Mechanics of Rigid Bodies on a Lie Group. Euler-Lagrange equations for mechani-
cal systems evolving on an abstract Lie group are developed according to Hamilton’s principle.
The equivalent Hamilton’s equations are presented in The essential idea is to express
variations of a curve on a Lie group in terms of Lie algebra elements using the exponential map.
Properties of the Euler-Lagrange equations are discussed, and they are applied to several rigid body
systems evolving on a Lie group in These results are extended to mechanical systems

on a product of two-spheres in corresponding examples are given in

Computational Geometric Mechanics of Rigid Bodies on a Lie Group. This chapter is a discrete-
time version of [Chapter 2| Discrete-time Euler-Lagrange equations and discrete-time Hamilton’s

5



Introduction
continuous-time [ discrete-time
cometric [Chapter 3
Geometric Mechanics iec hanics Computational Geometric Mechanics
for Rigid Bodies on a Lie Group ' for Rigid Bodies on a Lie Group
[Chapter 4 -
Geometric Optimal Control ?:) ZZSI Computational Geometric Optimal Control
of Rigid Bodies on a Lie Group of Rigid Bodies on a Lie Group
Conclusions

Figure 1.1: Outline of dissertation (solid/dotted: continuous/discrete-time, thin/thick: mechanics/control)

equations, referred to as Lie group variational integrators, are developed in[Section 3.1|according to

a discrete-time analogue of Hamilton’s principle. They are applied to mechanical systems presented

in|Section 2.3} computational results are summarized in [Section 3.3] These results are extended to

mechanical systems on a product of two-spheres, to obtain Lie homogeneous variational integrators

in[Section 3.2} computational results are given in[Section 3.4

Geometric Optimal Control for Rigid Bodies on a Lie Group. Based on geometric mechanics on

a Lie group developed in geometric optimal control problems are considered. In
tion 4.1} Euler-Lagrange equations are extended to include the effect of control inputs and optimal

control problems are formulated. The corresponding necessary conditions for optimality are devel-
oped, and they are applied to several optimal control problems for rigid bodies in

Computational Geometric Optimal Control for Rigid Bodies on a Lie Group. This chapter is a

discrete-time version of [Chapter 4} In [Section 3.1} discrete-time forced Euler-Lagrange equations

are developed, and a discrete-time optimal control problem is formulated. According to a discrete-
time analogue of the calculus of variations, discrete-time necessary conditions for optimality are
developed, and they are applied to several discrete-time optimal control problems for rigid bodies
in[Section 5.2]



1.4 Contributions

1.4.1 Summary of Contributions

Coordinate-free approach. One of the common features of the developments in this dissertation
is that the analytical theory and computational methods are developed in terms of a Lie group
representation of the configuration of a rigid body system. Therefore, all of the results presented
in this dissertation are coordinate-free. Representing geometric objects in terms of coordinates can
frequently lead to confusion and complexity, and the corresponding derivations rely on specific
choice of coordinates. This dissertation completely avoids local coordinates, thereby expressing the
results globally in a compact and elegant manner.

For example, consider the attitude dynamics of a single rigid body. The configuration manifold
is SO(3), but there are numerous attitude parameterizations available (see, for example, Shuster
1993 [Stuelpnagel||[1964). One of the most popular attitude parameterizations is Euler angles. In
addition to the associated singularities, the use of Euler angles can cause confusions since there
are 24 types of Euler angles. The use of Euler angles also leads to complicated trigonometric
expressions. Other minimal attitude representations have similar difficulties.

Non-minimal representations such as quaternions have no coordinate singularities, but they also
introduce certain complications. The group of unit quaternions SU(2) ~ S? double covers SO(3), so
there is an ambiguity in representing the attitude. While the ambiguity of quaternions is the choice
of the sign, there is no consistent way to choose the sign continuously, that is globally valid for
SO(3) (see Marsden and Ratiu/[1999). More importantly, the Hamiltonian structure of the attitude
dynamics is complicated when it is expressed in terms of quaternions. For instance, it is difficult to
express the kinetic energy of a rigid body in terms of a quaternion and its time derivative. It is stated
by Leimkuhler and Reich|(2004) that although symplectic integration methods based on quaternions
can be formulated, approaches based on the rotation matrix are more efficient and conceptually
easier to implement. For optimal rigid body control problems, the multiplier equations in necessary
conditions for optimality become more complicated if they are written in terms of quaternions (see,
for example, Modgalya and Bhat/2006). Therefore, quaternions result in inherent complications
when applied to dynamics and control problems for rigid bodies. In many engineering applications,
quaternions appear to be simple since they are incorrectly considered to evolve on a flat space,
namely R*, with little attention paid to the unit-length constraint.

In this dissertation, the attitude of a rigid body is represented by a rotation matrix. Geometric
numerical integration algorithms and optimal control approaches are directly developed on SO(3).
The rotation matrix is often avoided, since it is thought that representing a 3-dimensional attitude
using 9 real elements with 6 constraints is inefficient. This redundancy is eliminated by using the
exponential map that allows analysis to be carried out in the Lie algebra that is isomorphic to R3.
For example, necessary conditions for optimality are expressed as compact vector equations on R3;
these equations are more compact than the necessary conditions expressed in terms of quaternions.

They also have the advantage of not having singularity or ambiguity.



In summary, this dissertation develops intrinsic, coordinate-free algorithms for computational
geometric mechanics and optimal control problems for rigid bodies. All of the analytical and com-
putational results are independent of a specific choice of local coordinates, and they completely

avoid any singularity, ambiguity, complexity, and confusion associated with local coordinates.

Geometric Numerical Integrators on a Lie Group. The Lie group variational integrators presented
in are geometric numerical integrators for dynamic systems that evolve on a Lie group,
such as rigid body dynamics. The variational integrators given in Marsden and West (2001)) are
geometric integrators that preserve geometric properties of dynamics, but they do not necessarily
conserve the nonlinear structure of the configuration manifold. The Lie group method presented
in [[serles et al.| (2000) is for kinematics equations on a Lie group, so it does not guarantee that the
geometric properties of the dynamics are preserved.

This dissertation unifies discrete-time Lagrangian or Hamiltonian mechanics and the Lie group
method. A variational integrator is developed in the context of the Lie group method, so that the
resulting Lie group variational integrator preserves the geometric properties of the dynamics as
well as the structure of the Lie group. For a mechanical system with a Lie group configuration
manifold, such as rigid body dynamics, it is shown that the Lie group variational integrator has
important computational advantages compared to other geometric integrators that preserve either
none or one of these properties (see the numerical example in[Section 3.3.6). Due to these superior
computational properties, the Lie group variational integrator has been used to study the dynamics of
the binary near-Earth asteroid 66391 (1999 K'WW,) in joint work between the University of Michigan
and the Jet Propulsion Laboratory, NASA (see Scheeres et al.[20006).

Compared with other geometric integrators for a rigid body, as in the work of [Hulbert| (1992);
Krysl (2005); |[Lewis and Simo, (1994)); Simo and Wong| (1991), the Lie group variational integra-
tor provides a systematic method to obtain a class of numerical integrators that preserve all of the
geometric features, rather than developing a specific numerical integrator that preserves only a few
geometric characteristics. Compared with discrete-time mechanics on a Lie group developed by
Bobenko and Suris (1999); Marsden et al.| (1999); Moser and Veselov| (1991)), the Lie group vari-
ational integrator can be applied to a wide class of rigid body dynamics acting under a potential
field.

Optimal Control for Rigid Bodies on a Lie Group. In optimal control problems for
mechanical systems on a Lie group are formulated, and an intrinsic form of necessary conditions
for optimality are developed. Most existing optimal control theory on a Lie group is established
based on kinematics equations. For example, an optimal attitude control problem of a rigid body is
considered in Jurdjevic| (1997) by viewing the angular velocity as a control input. This dissertation
deals with optimal control problems of dynamic systems with a Lie group configuration manifold.
More precisely, it may be considered as an optimal control problem on a tangent bundle of a Lie

group. Compared with the work by Hussein (2005), where optimal control problems on SO(3) and



SE(3) are considered, the necessary conditions presented in are applied to a more
general class of dynamic systems on an abstract Lie group.

A direct optimal control approach has been applied to discrete-time mechanical systems ob-
tained by variational integrators in Junge et al.| (2005| [2006)), where control input parameters are
optimized using a general constrained parameter optimization scheme such as sequential quadratic
programming. The computational geometric optimal control approach presented in uses
a discrete-time analogue of the calculus of variations to derive an intrinsic form of discrete-time
optimality conditions, and a computational approach to solve the optimality conditions is presented.
Compared with the geometric structure-preserving optimal control approach on SO(3) by Bloch
et al.|(2007); [Hussein et al.| (2006)), the discrete-time optimality conditions presented in|Section 5.1
can be applied to general optimal control problems on an arbitrary Lie group; they are applied to

nontrivial rigid body optimal control problems in[Section 5.2

Examples of Nontrivial Rigid Body Systems. In this dissertation, the abstract theory for computa-
tional geometric mechanics and optimal control is applied to several nontrivial rigid body systems.
For example, in Lie group variational integrators are developed for a rigid body pen-
dulum, a pendulum with an internal proof mass, a pendulum on a moving cart, rigid bodies acting
under mutual potential, and connected rigid bodies. Computational results are also presented for
each system. In several mechanical systems from various scientific fields, such as an
elastic rod, magnetic dipoles, and molecular dynamics, are considered. Computational geomet-
ric optimal control is applied to minimum time, and minimum fuel optimal control problems of a
rigid body, and extended to optimal control problems with symmetry and a combinatorial optimal
formation reconfiguration problem in

New theoretical results in geometric mechanics and control are developed in an abstract form.
This dissertation also studies numerous nontrivial rigid body systems that have engineering impor-

tance.
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CHAPTER 2

GEOMETRIC MECHANICS FOR RIGID BODIES ON A LIE
GROUP

This chapter deals with geometric mechanics for rigid bodies that evolve on a Lie group. The
goal is to develop an intrinsic form of Euler-Lagrange equations on an arbitrary Lie group, and
to show several properties of Lagrangian flows. These are applied to several rigid body systems

evolving on a Lie group, and extended to mechanical systems on a product of two-spheres.

[2.3 Examples of mechanical systems

[2.1| Lagrangian mechanics on a Lie group on a Lie group

[2:31]Planar pendulum
Euler-Lagrange equations
[2:3:2]3D pendulum
[ [2:3:3]3D pendulum with an internal mass
[2.1.3| Legendre transformation 3D pendulum on a cart
2.3.5|Single rigid body
l
Properties of the Lagrangian flow [2.3.6Full body problem
Reduction and reconstruction [2:3.7 Two rigid bodies connected by a ball joint

[2.4 Examples of mechanical systems
on two-spheres

Double spherical pendulum
Euler-Lagrange equations 42 n-body problem on a sphere
Interconnection of spherical pendula
[ p p
Pure bending of elastic rod
244 g

Legendre transformation [2:43] Spatial array of magnetic dipoles
[2-4.6]Molecular dynamics

2.2 Lagrangian mechanics on two-spheres

This chapter is organized as follows. In we develop geometric mechanics on a
Lie group; Euler-Lagrange equations are developed and several properties of Lagrangian flow are
discussed. These results are applied to several rigid body dynamics in The remaining
part of this chapter develops geometric mechanics on a product of two-spheres. Since the two-
sphere is a homogeneous manifold on which a Lie group acts transitively, the Lagrangian mechanics
on a Lie group developed in can be easily extended to the two sphere. Euler-Lagrange
equations on a product of two-spheres are developed in and they are applied to several

11



mechanical systems in [Section 2.4

2.1 Lagrangian Mechanics on a Lie Group

Geometric mechanics is a modern description of classical mechanics from the perspective of dif-
ferential geometry (see, for example, |/Abraham and Marsden||1978}, [Bloch|[2003a; Bullo and Lewis
2005}; Jurdjevic[1997;Marsden and Ratiu|1999). It explores the geometric structure of a Lagrangian
or Hamiltonian system through the concept of vector fields, symplectic geometry, and symmetry
techniques. This section develops Lagrange mechanics on a Lie group; Euler-Lagrange equations
for a mechanical system evolving on an abstract Lie group are derived, and the symplectic property
and symmetry of Lagrangian flow are discussed.

The dynamics of rigid bodies evolve on a Lie group. For example, the configuration manifold for
the attitude dynamics of a rigid body is the special orthogonal group SO(3), and the configuration
manifold for combined translational and rotational motion of a rigid body is the special Euclidean
group SE(3). A direct product of Lie groups SE(3), SO(3), and R"™ can represent a configuration
manifold of multiple rigid bodies, which is also a Lie group.

However, much of the literature on dynamics of rigid bodies relies on local coordinates of a
Lie group. For example, a time optimal attitude maneuver of a rigid body is studied in terms
of Euler angles by [Bilimoria and Wie| (1993), and constrained equations of motion in multibody
dynamics are developed in terms of local coordinates on a manifold by Yen| (1993). As discussed
in representing geometric objects in terms of local coordinates frequently leads to
confusion and complexity.

The analytical results of this section are coordinate-free; they are independent of a specific
choice of local coordinates, and they completely avoid any singularity, ambiguity, and confusion
associated with local coordinates. The resulting intrinsic form of the Euler-Lagrange equations are
more compact that equations expressed in terms of local coordinates. Since these are developed for
mechanical systems that evolves on an arbitrary Lie group, they provides a general framework that
can be uniformly applied to dynamics of multiple rigid bodies.

This section is organized as follows. provides preliminaries on a Lie group.
Euler-Lagrange equations and Hamilton’s equations on an arbitrary Lie group are developed in
Section 2.1.2|and in[Section 2.1.3| respectively. Properties of Lagrangian flow and Lagrange-Routh

reduction are described in[Section 2.1.4{ and [Section 2.1.51

2.1.1 Preliminaries on a Lie Group

We first summarize basic definitions and properties of a Lie group (see, for example, [Bloch/2003a;
Bullo and Lewis|2005; Marsden and Ratiu||1999; |Varadarajan|1984). A Lie group is a differentiable
manifold that has a group structure such that the group operation is a smooth map. A Lie algebra is
the tangent space of the Lie group G at the identity element e € G, with a Lie bracket [-,-] : gxg — g
that is bilinear, skew symmetric, and satisfies the Jacobi identity.
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Configuration manifold
(2.9) €TQ

Lagrangian
L(q.4)

[
Y

Action integral
® = ffof L(q,q)dt

Variation Legendre transform.
66 = Lo =0 p=TFL(q,q)
Euler-Lagrange eqn. Hamilton’s Eqn.
d 9L _ 9L _ C_ -
Eaiq_aiqfo ¢=Hy, p=—-H,

Figure 2.1: Procedures to derive Euler-Lagrange equations

For g, h € G, the left translation map L, : G — G is defined as Lpg = hg. Similarly, the
right translation map Ry : G — G is defined as Rpg = gh. Given £ € g, define a vector field
X¢ : G — TG such that X¢(g) = Tel, - £, and let the corresponding unique integral curve passing
through the identity e at t = 0 be denoted by ~¢(t). The exponential map exp : g — G is defined
by exp{ = 7¢(1). The exp is a local diffeomorphism from a neighborhood of zero in g onto a
neighborhood of e in G.

Define the inner automorphism |, : G — G as l,(h) = ghg~!. The adjoint operator Ad, :
g — g is the differential of |,(h) with respect to h at h = e along the direction n € g, i.e.
Adygn = Tely - n. The ad operator ad¢ : g — g is obtained by differentiating Ad,n with respect
to g at e in the direction &, i.e. aden = To(Adgn) - £ This corresponds to the Lie bracket, i.e.
aden = [€, 7).

Let (-, -) be a pairing between a tangent vector and a cotangent vector. The coadjoint operator
Ad; : G x g* — g" is defined by <Ad;a, §> = (a, Ady€) for a € g*. The co-ad operator
ad® : g x g* — g* is defined by <ad;';a, n) = (a, ad,é) for a € g*.

2.1.2 Euler-Lagrange Equations

Consider a mechanical system evolving on a Lie group G. We develop the corresponding Euler-
Lagrange equations. The procedures to derive Euler-Lagrange equations of a mechanical system are
summarized by the trajectory of the object is derived by finding the path that minimizes
the integral of a Lagrangian over time, called the action integral. The Legendre transformation
provides an alternative description of mechanical systems, referred to as Hamiltonian mechanics.
The essential idea in applying these procedures on a Lie group G is expressing the variation of group

elements in terms of the Lie algebra g using the exponential map.
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Configuration Manifold and Lagrangian

The configuration manifold is a Lie group G. We identify the tangent bundle TG with G x g by left
trivialization. For example, a tangent vector (g, ) € T,G is expressed as

g=Tely-£=9¢ 2.1

for £ € g. We assume the Lagrangian of the mechanical system is given by L(g,§) : G x g — R.

Action Integral

Define the action integral as

tr
&= [ L(g,&)dt.

to

Hamilton’s principle states that the variation of the action integral is equal to zero.
Ly
06 = 6/ L(g,§) dt. (2.2)
to

Variations

Let g(t) be a differential curve in G defined for ¢ € [tg,t¢]. The variation is a differentiable mapping
g°(t) : (—c,¢) x [to,tf] — G for ¢ > 0 such that g°(¢) = g(t) for any ¢ € [to,ts], and g°(t9) =
g(to), g°(ty) = g(ty) for any € € (—c, c). We express the variation using the exponential map as

g°(t) = gexpen(t), (2.3)

for a curve 7)(t) in g. It is easy to show that is well defined for some constant c as the exponen-
tial map is a local diffeomorphism between g and G, and it satisfies the properties of the variation
provided n(to) = n(ty) = 0. Since this is obtained by a group operation, it is also guaranteed that
the variation lies on G for any 7(¢).

The corresponding infinitesimal variation of g is given by

dl . d
dg(t) = 2 6:Og (t) = Telg) - = » exp en(t)
= g(t)n(t). (2.4)

For each t € [to,ts], the infinitesimal variation dg(¢) lies in the tangent space Ty(t)G. Using this
expression and || the infinitesimal variation of £(t) is obtained as follows (see Bloch et al.|1996;
Marsden and Ratiu/[1999, and Appendix [A.4).

6&(t) = n(t) + adgyn(t). (2.5)

Equations (2.4) and (2.5) are infinitesimal variations of (g(t),&(t)) : [to,t¢] — G x g, respectively.
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Euler-Lagrange Equations

The variation of the Lagrangian can be written as

where Dy L € T*G denotes the derivative of the Lagrangian L with respect to g, given by

d
% ezoL(gevg) = DgL(97§> : 597

and D¢L(g, &) € g* is defined similarly. Since T(LgoL,-1) = TLy o TL -1 is equal to the identity

map on TG, this can be written as

6L(g,8) = (DygL(g,&), 6g) + (DeL(g,§), o)
= (DyL(g,€), (TekyoTyly1)-dg) + (DeL(g, &), 6€) .

Substituting (2.4) and (2.5)), we obtain

0L(g,¢) = (DyL(g,¢), Telg-n) + (D¢L(g, ), 1+ aden)
= <T:Lg ’ DgL(gaf) + adg ’ DEL(gaé.)’ 77> + <D§L(g7£)a 77> . (2.6)

Since variation and integration commute, the variation of the action integral is given by

t

f
§& = | SL(g,€)dL.
to

Substituting (2.6) and using integration by parts, the variation of the action integral is given by

ty
06 = (Tilg -DyL(g,&) +adi - DeL(g,£), n) + (DeL(g, €), ) dt
to
ty

ty d
= (D¢L(g,6), m) +/ (Tilyg-DyL(g,&) +adf - DL, 1) — <D§L(g,£), n> dt.

to to dt

2.7

Since 7)(t) = O at t = to and ¢ = ty, the first term of the above equation vanishes. Thus, we obtain

ty

d
06 = t (Tily - DyL(g,€) +adg - DeL(g,€), ) — <dtD5L(g,£), 77> dt. (2.8)

From Hamilton’s principle, & = 0 for all € g, which yields the Euler-Lagrange equations on G.

Proposition 2.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent
bundle TG with G x g by left trivialization. Suppose that the Lagrangian is defined as L(g,¢&) :
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G x g — R. The corresponding Euler-Lagrange equations are given by

d
7D§L(97£) - adz : DgL(gaé) - TZLQ : DgL(g,f) = 07 (29)

dt
9= g€ (2.10)

Remark 2.1 The essential idea of this development is expressing the variation of a curve in G using
the exponential map, as given by (2.3). The expression for the variation is carefully chosen such that
the varied curve lies on the configuration manifold G. The use of the exponential map exp : g — G
is desirable in two aspects: (i) since the variation is obtained by a group operation, it is guaranteed

to lie on G, and (ii) the variation is parameterized by a curve in a linear vector space g.

Remark 2.2 If the Lagrangian is not dependent on G, the third term of (2.9) vanishes. The resulting
equation is equivalent to the Euler-Poincaré equation, and (2.10) is a reconstruction equation (see
Marsden and Ratiu||1999). Therefore, can be considered as a generalization of the Euler-

Poincaré equation.

Remark 2.3 These equations are obtained using the left trivialization. Therefore, the velocity &
may be considered as a quantity expressed in the body fixed frame. We can develop similar equa-
tions using the right trivialization to obtain the equations of motion expressed in the reference frame.

This is summarized by the following corollary.

Corollary 2.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent
bundle TG with G x g by right trivialization. Suppose that the Lagrangian is defined as L(g,<) :

G x g — R. The corresponding Euler-Lagrange equations are given by

d
ﬁDgL(g,g) +ad? - D¢L(g,s) — T,Ry - DyL(g,<) =0, (2.11)

g=sg. (2.12)

2.1.3 Legendre Transformation

We identify the tangent bundle TG with G x g using the left trivialization. Using this, the cotangent
bundle T*G can be identified with G x g*. For the given Lagrangian, the Legendre transformation
FL:Gx g— G x g*is defined as

FL(g,8) = (9, 1), (2.13)
where p € g* is given by

1 =D¢L(g,§). (2.14)

If the Legendre transformation is a diffeomorphism, the corresponding Lagrangian is called a
hyperregular Lagrangian, which induces a Hamiltonian system on G x g*.
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Corollary 2.2 Consider a mechanical system evolving on a Lie group G. We identify the tangent
bundle TG with G x g by left trivialization. Suppose that the Lagrangian given by L(g,§) : G X
g — R is hyperregular. Then, the Legendre transformation yields Hamilton’s equations that are

equivalent to the Euler-Lagrange equations presented in Proposition 2.1

d * *
—p—adip—TiLy - DyL(g,§) =0, (2.15)

dt
9= 9§ (2.16)
where 1 = D¢L(g,&) € g*.

2.1.4 Properties of the Lagrangian Flow

Here we show two properties of the Lagrangian flow, namely symplecticity and momentum preser-
vation. The subsequent development can be considered as a special form of the general properties

of Lagrangian flows, applied to a Lie group configuration manifold (see Marsden and West|2001)).

Symplecticity

Let ©f, be the Lagrangian one-form on G x g given by

©L(9.€) - (69,0¢) = (DeL(g,€), g~ '8g) (2.17)

The Lagrangian symplectic two-form €2, is the exterior derivative of the Lagrangian one-forme, i.e.
Q, = dOp. We define the Lagrangian flow map F7, : (G x g) x [0,¢; —to] — (G x g) as the flow
of (2.9) and (2.10).

Proposition 2.2 The Lagrangian flow preserves the Lagrangian symplectic two-form as follows
(FL)*QL = (2.18)

forT =ty —tg.

Proof. Define the solution space Cy, to be the set of solutions g(t) : [to,ty] — G of and
(2-10). Since an element of Cy, is uniquely determined by the initial condition (g(0),£(0)) € G x g,
we can identify C;, with the space of initial conditions G x g. Define the restricted action map
®:Gxg— Rby

&(g0, &) = B(g(t)),

where g(t) € Cy, with (g(0), g71(0)g(0)) = (go, &o). Since the curve g(t) satisfies (2.9) and (2.10)),
2.7) reduces to

dé - w=((F1)*0, —01) - w (2.19)
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for any w = (dg0,0&) € T(G x g). We take the exterior derivative of (2.19). Since exterior

derivatives and pull back commute, we obtain
d?6 = (FI)*de, —dey).
Since d2® = 0 for any zero-form &, we obtain (2.18). n

Noether’s Theorem

Suppose that a Lie group H, with the Lie algebra §, acts on G. A left action of H on G is a smooth
mapping ® : H x G — G such that (e, g) = g, and ®(h, ®(h, g)) = ®(hh/, g) for any g € G and
h,h' € H. Let @}, : G — G be defined such that ®,(g) = ®(h, g).

Let ¢r : TG — G x g be the left trivialization given by ¢1.(g,d) = (9,97 'g). For ¢ € b, the
infinitesimal generators (g : G — G x g, and {gxq : G x g — T(G x g) for the action are defined
by

d
Celg) =L o0 de (I)epo 6((9)7 (2.20)
e=0
d
CGXg(gvg) = & (bL Oqu)epo 6((9) ' (¢Zl(gag)) (221)
e=0

We define the Lagrangian momentum map Jz, : G X g — h* to be

JL(gvé) 'CZGL'gGXg(g7§)- (222)

Proposition 2.3 Suppose that the Lagrangian is infinitesimally invariant under the lifted action, i.e.
dL(g,&) - Coxg = 0 for any ¢ € b. Then, the Lagrangian flow preserves the momentum map.

This is referred to as Noether’s theorem.

Proof. Since the action is the integral of the Lagrangian, dL(g,§) - (axg = 0 implies that d& -
Caxg = 0, where we consider that the group action @y, is applied to each point of a curve. The
invariance of the action integral implies that the action maps a solution curve to another solution

curve. Thus, we can restrict d® - (x4 = 0 to the solution space to obtain
But, from (2.19), we have

d& - (oxg = (FE)'OL —O1) - Caxg =0 (2.24)
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for any ¢ € f. Substituting the definition of the momentum map given by (2.22) into this, we obtain
:23). n

2.1.5 Reduction and Reconstruction

We have shown that if the Lagrangian is infinitesimally invariant under the lifted action of a Lie
group H on G, the corresponding momentum map is preserved along the Lagrangian flow. Suppose
that the Lie group H acts freely and properly on G, and the Lagrangian is invariant under the action
H. This is referred to as the symmetry of the Lagrangian. Then, the configuration manifold can
be reduced to a quotient space G/H, referred to as the shape space. Because the action is free and
proper, it is guaranteed that the shape space is a smooth manifold.

More precisely, for a given curve g(t) in the solution space Cy, and the corresponding value of
the momentum map, there exists a unique curve in the shape space G/H satisfying reduced Euler-
Lagrange equations. If the initial condition g(¢) is known, the curve g(¢) in G can be reconstructed
from the solution of the reduced Euler-Lagrange equations in the shape space G/H. These are
referred to as reduction and reconstruction for mechanical systems.

The procedure for the Lagrangian-Routh reduction and reconstruction is as follows (see [Mars-
den et al.[2000). We define a mechanical connection A : G X g — b from the momentum map. This
yields a one-form A, on G x g paired with the value of the momentum map v € h*. The Routhian
R” : G x g — R is defined by subtracting the one-form A, from the Lagrangian. The Routhian
satisfies the Lagrange-d’ Alembert principle with the magnetic two-form obtained from the exterior
derivative of the one-form .4,. This form of the variational principle and the Routhian reduce onto
the v-level set of the momentum map, which provides the reduced Euler-Lagrange equations on the
shape space.

For a given solution of the reduced Euler-Lagrange equations, we find the horizontal lift of the
curve on G. Applying the mechanical connection to the time derivatives of the lifted curve provides a
reconstruction equation. A particular example for the Lagrange-Routh reduction and reconstruction

is presented in Appendix [A.3]

2.2 Lagrangian Mechanics on Two-Spheres

In the previous section, we have developed Euler-Lagrange equations for mechanical systems evolv-
ing on a Lie group, and the symplectic property and symmetry of the Lagrangian flow are discussed.
The essential idea in developing the Euler-Lagrange equations on a Lie group is to express the vari-
ation of a curve on a Lie group in terms of a curve on the corresponding Lie algebra using the
exponential map.

In this section, we develop Euler-Lagrange equations for mechanical systems evolving on a

product of two-spheres

S?={geR3|q-q=1}.
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The two-sphere S? is not a Lie group, but the special orthogonal group SO(3) = {R € R*3 | RTR =
I,det R = 1} acts on the two-sphere transitively, i.e. for any q;, g2 € S, there exists a R € SO(3)
such that go = Rq;. Therefore, we can express the variation of a curve on S2 in terms of a curve
on 50(3) ~ R3 using the exponential map of SO(3), from which Euler-Lagrange equations can be
developed.

In most of the literature that treats dynamic systems on (S?)", either 2n angles or n explicit
equality constraints enforcing unit length are used to describe the configuration of the system (see,
for example, Bendersky and Sandler|2006; Marsden et al.[1993)). These descriptions involve compli-
cated trigonometric expressions and introduce additional complexity in analysis and computations.

In this section, we develop Euler-Lagrange equations on (S?)" without need of local parame-
terizations, constraints, or reprojections. This yields a remarkably compact form of the equations
of motion, and also provides insight into the global dynamics on (S?)”. A manifold on which a
Lie group acts in a transitively way is referred to as a homogeneous manifold. The key idea of this

development can be generalized to an abstract homogeneous manifold.

2.2.1 Euler-Lagrange equations

The procedures to derive Euler-Lagrange equations are summarized by the trajectory of
the object is derived by finding the path that minimizes the integral of a Lagrangian over time, called
the action integral. The Legendre transformation provides an alternative description of mechanical
systems, referred to as Hamiltonian mechanics. The essential idea is to express the variation of a

curve on S? in terms of the Lie algebra s0(3) using the exponential map.

Configuration Manifold and Lagrangian

The two-sphere is the set of points that have unit length from the origin of R3, i.e. S? = {q €
R?|q - ¢ = 1}. The tangent space T,S? for ¢ € S? is a plane tangent to the two-sphere at the point
q. Thus, a curve g : R — S? and its time derivative satisfy g - ¢ = 0. The time-derivative of a curve

can be written as
g =wXaq, (2.25)

where the angular velocity w € R? is constrained to be orthogonal to ¢, i.e. ¢ - w = 0. The time
derivative of the angular velocity is also orthogonal to ¢, i.e. ¢ - w = 0.

We consider a mechanical system evolving on an n product of two-spheres, S x --- x §? =
(S?)". We assume that the Lagrangian L : T(S%)" — R is given by the difference between a
quadratic kinetic energy and a configuration-dependent potential energy as follows.

: SN R o
L(Qlw")QTMQh"')QTL) = 5 Z MZ]QZ QJ - U(Qla"'vQﬂ)) (226)
1,7=1

where (q;, ;) € TS? fori € {1,...,n}, and M;; € Ris the i, j-th element of a symmetric positive
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definite inertia matrix M € R™*™ for i,j € {1,...,n}. The configuration dependent potential is
denoted by U : (S?)" — R. Here, we assume the inertia matrix is constant, but it can be readily

generalized to mechanical systems with a configuration dependent inertia.

Action Integral

Define the action integral as
tr
QS: L(q17"'7QN7q17'"7QN)dt-
to

Hamilton’s principle states that the variation of the action integral is equal to zero.

Variations

Let ¢;(t) be a differentiable curve in S? defined for t € [to,ts]. The variation is a differentiable
mapping ¢S (t) : (—c¢,¢) X [to,tf] — S? for ¢ > 0 such that ¢{(¢) = ¢;(¢) for any ¢ € [to, ] and
¢ (to) = qi(to), ¢ (ts) = q(ts) for any € € (—c, c). Since the special orthogonal group SO(3) acts
on S? in a transitive way, we can express the variation of ¢;(t) using the exponential map on SO(3)

as follows.
qs (t) = exp eni(t) qi(t) (2.27)

for a curve 7;(t) in R3. It is easy to show that (2.27) is well defined since the exponential map is a
local diffeomorphism between so(3) and SO(3), and SO(3) acts on S2. It satisfies other properties
of the variation provided that 7);(to) = 7;(ty) = 0. We assume 7;(t) - ¢;(t) = 0 for t € [to,ty].

The corresponding infinitesimal variation is given by

d

6q;(t) = T
e=0

q“(t) = mi(t)q(i) = mi(t) x q:(t). (2.28)

Since the variation and the differentiation commute, the expression for the infinitesimal variation of

gi(t) is given by
6qi(t) = mi(t) x qi(t) +mi(t) x ¢i(t). (2.29)
These expressions are key elements to derive the Euler-Lagrange equations on (S?)".

Euler-Lagrange Equations

The variation of the Lagrangian can be written as

0L = Z 0G; - M;jq; — Z(S(h : zga
i=1 v

ij=1
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where the symmetric property M;; = Mj; is used. Substituting (2.28) and (2.29) into this, and
using the vector identity (a x b) - ¢ = a - (b x ¢) for any a, b, c € R3, we obtain

n
. . . oU
SL="Y i+ (g x Mijdy) +m; - (d; x M) Zm : (qz o ) :
i,j=1 %

Using the above equation and integrating by parts, the variation of the action integral is given by

n ty n ) oU
—2/ mi | (g % Y Migig) + ai x | dt.
i=1"to j=1 q

06 = i (g X Mijdy)
ij=1

1

From Hamilton’s principle 6& = 0 for any 7); vanishing at ¢, and ¢ ;. Since 1) is orthogonal to ¢;,

the continuous equations of motion are given by

o ou
(g % D Mijdy) + i x 5 = cia (2.30)
=1 ‘

for a curve ¢;(t) in R for ¢ € {1,...,n}. Taking the cross product of (2.30) and ¢; yields

. . oU
¢ % (gi ¥ ;Miﬂj) +qi X (Qi X 8%> =0. (2.31)

From the vector identity a x (b x ¢) = (a - ¢)b — (a - b)c for any a, b, c € R3, we have

¢ % (qi X Gi) = (qi - Gi)qi — (@i - ¢i)Gi
= — (¢ 4:)qi — Gi,
where we use the properties %(qi ;) = qi - Gi + ¢i - ¢; = 0 and g; - ¢; = 1. Substituting these into

(2.31), we obtain an expression for §;, which is summarized as follows.

Proposition 2.4 Consider a mechanical system on (S?)"™ whose Lagrangian is expressed as .

The Euler-Lagrange equations are given by

. . ou
MG = q; x (qi % ZMW% i @) Miiqi + qi < (qz' X c‘?q) (2.32)
(]
J#l
fori € {1,...,n}. Equivalently, this can be written in a matrix form as
My I3xs —Miuqqr - —Muiqiqi| | @1 —(¢1- 1) Mg + G¢ 3;{
—M>s1G2G2 Maolzxsz -+ —MoanGaga| | G2 —(go )M22Q2 +43 gqUz
. . . = . (2.33)
n1GnGn  —Mp2Gngn - My I3x3 Gn _(Qn : Qn)Mann + (j?z gg
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Since ¢; = w; X g; for the angular velocity w; satisfying ¢; - w; = 0, we have
Gi = Wi X @i +wi X (Wi X q;) =w; X g — (Wi - w;)gGi-

Substituting this into (2.30) and using the fact that ¢; - w; = 0, we obtain the Euler-Lagrange

equations in terms of the angular velocity.

Corollary 2.3 The Euler-Lagrange equations on (S*)" given by can be written in terms of

the angular velocity as

n

. . ou
Miiwi = Z (MijQi X (q]' X w]’) + Mij (wj . wj)Qi X Qj) —q; X aq'7 (234)
=1 ‘
J#
Gi = w;i X qi (2.35)
fori e {1,...,n}. Equivalently, (2.34) can be written in a matrix form as
Milsxs  —Mi2qiga -+ —Minqign| |1 > i Mij(wj - wj)digs — ‘jlgTUl
—MnGeGr  Moalzxs -+ —MonGadn| |@2| | Dojo1 0 Maj(w) - wi)dag; — QQ%
A 5 4 - n—1 - .U
—Mn1qnq1 —Mnp2qnq2 - - MynI3x3 Wn, Zj:l Mnj(wj 'wj)qn(Jj - Qnﬂ
(2.36)

Equations (2.32)—(2.36) are global continuous equations of motion for a mechanical system on
(S?)". They avoid singularities completely, and they preserve the structure of T(S2)" automati-
cally, if an initial condition is chosen properly. These equations are useful to understand global
characteristics of the dynamics. In addition, these expressions are remarkably more compact than
the equations of motion written in terms of any local parametrization.

We need to check that the 3n x 3n matrices given by the first terms of (2.33) and (2.36) are
nonsingular. This is a property of the mechanical system itself, rather than a consequence of these

particular form of the equations of motion. For example, when n = 2, it can be shown that

M1 —Mi241G M1 —Mi9G1G
det 1143%x3 12Q1Q1] — det [ 11433 124142

—Mi2G2G2  Maalzxs —Mi2goqi  Maalzxs
= M7 M3 (Mi1May — Miy(qr - q2)) (M1 Moz — M7,).

Since the inertia matrix is symmetric positive definite, M11, Moo > 0, M1 Moo > M122, and from
the Cauchy-Schwarz inequality, (q1-¢2)? < (¢1-¢1)(q2-g2) = 1. Thus, the above matrices are non-
singular. One may show a similar property for n > 2. Throughout this dissertation, it is assumed
that the 3n x 3n matrices given by the first terms of (2.33) and (2.36)) are nonsingular.
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2.2.2 Legendre Transformation

The Legendre transformation of the Lagrangian gives an equivalent Hamiltonian form of equations
of motion in terms of conjugate momenta if the Lagrangian is hyperregular. Here, we find expres-
sions for the conjugate momenta, which are used in the following chapter for the discrete equations
of motion. For g; € S2, the corresponding conjugate momentum p; lies in the dual space TZiSQ. We
identify the tangent space TqiS2 and its dual space T;;Z,S2 by using the usual dot product in R3. The
Legendre transformation is given by

Di- 5% = quL<QI7 e 7Qn7q.17 e 7QTL) : 5q2

n
= Zszdj - 0q;,
j=1
which is satisfied for any d¢; perpendicular to ¢;. Here Dg, L denotes the derivative of the La-
grangian with respect to ¢;. The momentum p; is an element of the dual space identified with the
tangent space, and the component parallel to ¢; has no effect since dq; - g; = 0. As such, the vector
representing p; is perpendicular to ¢;, and p; is equal to the projection of Z;‘Zl M;;q; onto the

orthogonal complement to ¢;,

n n
pi= Y (Mijd; — (g Mij)ai) = > _((ai - 4:)Mijds — (ai - Mijis)ai)
j=1 j=1
n
= Mg — q; x (q; X ZMijdj)- (2.37)
j=1
J#i

The time derivative of p; is given by

n n n
Pi = Miidiy — Gi % (g x Y Mijds) — i x (4 x > Mijdy) — g x (qi x > Mijd)
j=1 j=1 j=1
J#i J#i J#i
Substituting (2.32)), and using the vector identity a x (b x ¢) = (a - ¢)b — (a - b)c, we obtain the

Hamilton’s equations.

Corollary 2.4 Consider a mechanical system on (S?)™ whose Lagrangian is expressed as .

The Hamilton’s equations are given by

pi = Miigi — q; % (q; X Z M;jd;), (2.38)
=1
i
: =~ . : - L oU
pi == (i Migd)ai — ) _(ai - Mijdj)ds + ;% | i % % (2.39)
j=1 j=1 ¢
J#i
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fori e {1,...,n}. Equivalently, can be written in a matrix form as

q1 M I3xs  —Migiqn -+ —Mingiga P1
G| —M1Gag2 Maolzxg -+ —MoapGaga D2
Qn _Mnl(jnﬁjn - n2éndn o MnnISXB n

25
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2.3 Examples of Mechanical Systems on a Lie Group

In we have developed Lagrangian mechanics on an abstract Lie group. Since the
configuration manifold of dynamics of rigid bodies is a Lie group, the result provides a unified
framework that can be applied to various rigid body dynamics.

In this section, we apply the general theory developed in[Section 2.1|to the following rigid body
dynamics. For each example, a rigid body model is defined, and the corresponding expression for

the Lagrangian is derived. Euler-Lagrange equations and Legendre transformations are obtained
from Proposition[2.1)and Corollary

Section Mechanical System G
2.3.1 Planar pendulum SO(2)
2.3.2 3D pendulum SO(3)
2.3.3 3D pendulum with an internal degree of freedom SO(3) xR
2.3.4 3D pendulum on a cart SO(3) x R?
2.3.5 Single rigid body SE(3)
2.3.6 Full body problem (SE(3))™
2.3.7 Two rigid bodies connected by a ball joint SO(3) x SO(3) x R?

2.3.1 Planar Pendulum

We consider a planar pendulum model; a mass particle with mass m, connected to a frictionless

pivot point by a rigid massless link with length [ under a uniform gravitational potential.

Configuration manifold. Consider a reference frame, and a body fixed frame that is attached to the
pendulum. We assume that the origin of these frames is located at the pivot point, and the second
axis of the body fixed frame is along the rigid link. The configuration manifold is the one-sphere
St = {q € R?|¢"q = 1}, and we identify it with SO(2) = {R € R?*?| RTR = I5x»,det[R] =
1}. A rotation matrix R € SO(3) represents the linear transformation from the body fixed frame to

the reference frame. The Lie algebra so(2) is identified with R by an isomorphism * : R — s0(2)

Qo [0 -Q
Q 0

for € R. We define an inner product on s0(2) using the standard inner product on R as
<Q1,Qg> = %tr [Q{Qg} = Qp - Qy. This defines an inner product on TSO(2) by the left-
trivialization as (X, Y) = (Tgrlp-1- X, TrLr-1-Y) for XY € TrSO(2). The dual space
T*SO(2) is identified with TSO(2) using this inner product. Let J : s0(2) — s0(2)* be defined as
J(€2) = mi%Q. This induces a metric on s0(2) as (€2, Qo)) = <J(Ql), QQ>. This defines a metric
on TSO(2) by the left-trivialization. The ad operation for SO(2) is zero, i.e. adg = 0.

given by

9
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Lagrangian. The Lagrangian L : SO(2) x so0(2) — R of the planar pendulum is given by

N

L(R, Q) = =, Q) + mge; Rp, (2.41)

| =

where p = les € R? is a vector from the pivot point to the mass in the body fixed frame, and

eo € R? is a unit vector along the gravity direction in the inertial frame.

Euler-Lagrange equations. The derivatives of the Lagrangian are given by
DoL(R, Q) - 60 = <J(Q), 5Q> = ml2Q - 50,
ady - DoL(R,Q) =0,
<T6L*R -DgL(R,Q), 77> = mgel Rijles = —mglel Rey - .
Substituting these into and (2.10), we obtain

mi?Q + mgle Rey = 0, (2.42)
R = RX. (2.43)

Legendre Transformation. From (2.14)), the Legendre transformation is given by II = Dql =
ml*Q € s0(2)* ~ R*, which represents the angular momentum of the pendulum. The Hamilton’s

equations are given by

I+ mglel Rey =0, (2.44)
. 1
R=R—II (2.45)
ml2

. ) . cosf) —sinb
If we parameterize the rotation matrix as R =

. for 6 € S', these equations are
sinf cosfd

equivalent to
mi%6 + mglsinf = 0. (2.46)

2.3.2 3D Pendulum

A 3D pendulum is a rigid body supported by a frictionless pivot acting under gravitational poten-
tial (see[Shen et al.[2004)). This is a generalization of a planar pendulum and a spherical pendulum,
as it has three rotational degrees of freedom. It has been shown that the 3D pendulum may exhibit

irregular, possibly chaotic, attitude dynamics (see (Chaturvedi et al.[2007)).
Configuration Manifold. Consider a reference frame, and a body fixed frame that is attached to

the 3D pendulum body. We assume that the origin of the body fixed frame is located at the pivot
point. The attitude of the pendulum is the orientation of the body fixed frame with respect to the
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€3

Figure 2.2: 3D Pendulum

reference frame, and it is described by a rotation matrix that represents the linear transformation
from the body fixed frame to the reference frame. The configuration manifold of the 3D pendulum

is the special orthogonal group
SO(3)={ReR¥*>3|RTR=1 detR=1}. (2.47)

The group operation for SO(3) corresponds to matrix multiplication.

The attitude kinematics equation is given by
R = RQ, (2.48)

where the angular velocity represented in the body fixed frame is denoted by 2 € R3, and the hat
map - : R? — 50(3) is an isomorphism between R3 and the set of 3 x 3 skew symmetric matrices,
the Lie algebra so(3), defined by

0 —Q3 Q
Q=193 0 - (2.49)
0 O 0

for Q = [€21;Q2; Q3] € R3. The Lie bracket on s0(3) corresponds to the cross product on R?, i.e.
[Q, Q] = Qx Y forQ, Q' e R3. Several properties of the hat map are summarized in Appendix
Using the kinematics equation, the tangent bundle TSO(3) is identified with SO(3) x s0(3), and it is
further identified with SO(3) x R3 using the hat map. This defines an inner product on so(3) using
the standard inner product on R3 as <Ql, QQ> = %tr [Q{Qg} = Q-Qy for 1, Qs € R3. The inner
product of TSO(3) is defined by the left trivialization as (X, Y) = (TgLr-1 - X, TrLg-1 - Y') for
X,Y € TgrSO(3). The cotangent bundle T*SO(3) is identified with TSO(3) using this inner
product. The ad operation on SO(3) is given by adoQ’ = Q€ ad5, Q) = —Q€Y'.
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Lagrangian. The Lagrangian L : SO(3) x s0(3) — R s the difference between the kinetic energy
T :SO(3) x s0(3) — R and the gravitational potential energy U : SO(3) — R.

L(R,Q) = T(R,Q) — U(R). (2.50)

Let p € R be the vector from the pivot to a mass element represented in the body fixed frame.

The mass element has a velocity €2 x p. Thus, the kinetic energy is given by
T(Q) = % /B 1201[* dm(p), 2.51)
where the body region is denoted by B. Since Qp = —pfQ, this can be written as
1) = 5 [ 15920 dm(p) = 5 [ @75 p2dm(p) = 50715 @52

where the inertia matrix J € R? is defined as J = [, p” pdm.

Alternatively, using the property ||z||* = 27z = tr [#2T] for any 2 € R3, equation (2.51) can

be written as

1 A A

T(Q) = 3 / tr[QppTQT] dm(p)
B
1 A o
= Jur [QJdQT} : (2.53)

where a nonstandard inertia matrix is defined as J; = |, B pp’ dm. Therefore, the kinetic energy
can be written in the standard form (2.52) or in a non-standard form (2.53). In (2.52) the kinetic
energy is expressed as a function of the angular velocity vector with the standard inertia matrix, and
in (2.53)) it is expressed as a function of the Lie algebra with the non-standard inertia matrix. The

relationship between the standard inertia matrix and the nonstandard inertia matrix is summarized
in Appendix It can be shown that

jﬁ = QJd+ JdQ

for any 2 € R3. Here, we use the nonstandard inertia matrix, since the corresponding development
has a similar structure with the discrete-time Euler-Lagrange equations presented in
The gravitational potential energy is given by

U(R) = —mgel Rp,, (2.54)

where the constants m, g are the mass of the pendulum and the gravitational constant, respectively,
and the vector from the pivot to the mass center represented in the body fixed frame is denoted by
pe € R3,

In summary, the Lagrangian of the attitude dynamics of the 3D pendulum is given by

L(R,Q) = %tr [QJdQT} _U(R). (2.55)
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Let J : s0(3) — s0(3)* be the inertia operator defined as
J(Q) = Qg+ J0 = T (2.56)

The Lagrangian can alternatively written as

L(R,Q) = % <J(Q), Q> — U(R). (2.57)

Euler-Lagrange Equations. We find expressions for the derivatives of the Lagrangian. We have
Dol - 6Q = —%tr [deQ + QJd(SQ} .
Since tr[AB] = tr[BA] for any A, B € R3*3, this can be written as
Dol - 64 = —%tr [5Q(Jd§z n QJd)] - —%tr [mjﬁ} _ <ﬁz 5Q> . (2.58)

This can be derived directly from (2.57) using the symmetry of the inertia operator.
The derivative of the potential is given by

3

d oU O[Rexpein],;
DrU(R) - 6R = aU(Rexp €n)) - - Z O[R]:; Oe 0
€ 17]:1 €
3
_ ou R o7 OU
= 32 s s = =735

where [A];; denotes the i, jth element of a matrix A, and g—% € R3*3 is defined such that [g—%] =

%[[]I_%ﬁ ) We use the following identity: since tr[zB] = —tr [Bsz] = —tr [:&BT] forany x € R3, B €
R3><3]
1
ulzB] = Jwli(B - B)] = —(B-B", &). (2.59)

Therefore, the derivative of the potential is given by
DRU(R) - 6R = (TiLp - DrU(R)) -1t = — (M.7). (2.60)

. . . - T
where the moment due to the potential M € R3 is determined by M = g—% R - RT%. More
ou

explicitly, let ; and u; € R'*3 be the ith row vectors of R and 35 respectively. We have

.ouT 7 OU
M = R-R —
OR OR
™ u1
— T T T T T T
— ul U;Q U3 T2 - Tl TQ 7’3 UQ
3 us

- (ulTn — rlTul) + (“2T7“2 - 7"2T“2) + (“§T3 n T3Tu3) ’
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. —_ .
Since (ul'r — rTu)" = 7 x u, we obtain

~

M = (ry X ug + 72 X ug + 173 X uz)". (2.61)

Thus, the moment due to the attitude-dependent potential is explicitly given by

M =1r1 Xup+ro X ug + 173 X us. (2.62)
For the gravitational potential given by ti g—% = —mgesp!l. Thus, the moment due to the

potential is M = mgp, x R es.
We substitute (2.58) and (2.60) into (2.9) and (2.10) to obtain the Euler-Lagrange equations of
the 3D pendulum as

JQ+Q x JQ = mgpe x Rl es, (2.63)
R = RQ. (2.64)

Legendre Transformation. The Legendre transformation FL : (SO(3) xs0(3)) — (SO(3) xs0(3))

is given by

. d
FL(R,) =

d

:de

L(R, Q) + €i)
e=0

1 7 . .
ftr[(Q + e T Jy(Q + eﬁ)}
e=0 2

— %tr [ﬁTJdQ + QTJdﬁ} = %tr[—(JdQ + QJd)ﬁ}
= %tr P?ZTﬁ} =JQ- 7.

This gives the expression for the momentum 1= FL(R, Q) = jS\), which is the angular momentum
expressed in the body fixed frame. Substituting this into (2.63)) and (2.64), we obtain Hamilton’s

equations for the 3D pendulum as

I+ J I x II = mgp, x R e, (2.65)
R = RJ-IL (2.66)

Symmetry. The Lagrangian of the 3D pendulum has a symmetry. It is invariant under an action of
H = SO(2) ~ S! given by @ : S! x SO(3) — SO(3)

®(0, R) = expsos)(0é3)R, (2.67)

which represents the rotation of the 3D pendulum about the gravity direction e3. The invariance fol-
lows from the fact that the kinetic energy is invariant under any left action, and that the gravitational
potential is invariant under a rotation about the gravity direction. As a result, the momentum map
is preserved, and the configuration manifold can be reduced to G/H = SO(3)/SO(2) ~ S%. Here
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we derive the expression for the momentum map of the 3D pendulum using the general expression

presented in we find the infinitesimal generator and the Lagrangian one-form from

(2.21)) and (2.17), respectively, and we combine them to obtain the momentum map from (2.22)).
We first find the expression for the infinitesimal generator. We identify h = so(2) with R using

the hat map introduced in[Section 2.3.1} and we identify h* with R. Using (2.21)), for ¢ € R ~ s0(2),

the infinitesimal generator (so(3)xso(3) : SO(3) X s0(3) — T(SO(3) x 50(3)) is given by

&L © TR®expgyy ¢ (R) - (R, RSY). (2.68)

A d
(s0(3)xso(3) (I, §2) = de|_,

The exponential map in SO(2) is the identity in R. Thus, ®expgq , cc(R) = Pe¢(R). From (2.67),
this is equal to @ (RR) = expso3)(€Cés) R. Its tangent map is given by

A . d
TRéexpSO@) GC(R) . (R, RQ) = <6Xpso(3)(€<€3)R, %
s=0

= (expso(3) (eCé3) R, expsp(3) (eCég)RQ) .

expso(3)(€Cé3) R expsos) (SQ)>

The left trivialization of this is given by

61 0 TrPexpon < (R) - (R, RQY) = <expso(3)(eCé3)R, Q) .
Substituting this into (2.68), we obtain the infinitesimal generator (so(3)xso(3) a$

A~

d . A . A
Gso@wsats) (o ) = | (expsogs(eCéa) R, @) = (¢ésRR, ©). (2.69)

e=0

Substituting (2.58)) into (2.17), we obtain the Lagrangian one-form © 7, on SO(3) x so(3) as
01(R, ) - (R, 6Q) = <J?z RT5R>. (2.70)

Now, the expressions for the infinitesimal generator and the Lagrangian one-form are given by

(2.69) and (2.70). Substituting these into (2.22)), we obtain
JL(R,Q) - ¢ = OL(R,Q) - Cso@man(s) = OL(R, Q) - (¢ésE, Q)
- <J?2 (RTé3R> - <JT2 gﬁT\eg> = T RIG.

Since this is satisfied for any ¢ € R, the momentum map of the 3D pendulum Jz, : SO(3) x s0(3) —
R* is given by

JL(R,Q) = el RIQ, (2.71)

which represents the angular momentum about the gravity direction. According to Noether’s theo-
rem, this is preserved along the solution of (2.63)) and (2.64).
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Reduced Euler-Lagrange Equations. Due to the symmetry of the Lagrangian, the configuration
manifold can be reduced to a shape space SO(3)/SO(2) ~ S? as discussed in Here,
we present the reduced Euler-Lagrange equations on S2, and the detailed procedure to derive the
reduced equations is summarized in Appendix [A.3]as well as the reconstruction equation (see also
Marsden et al.|[2000).

Let Y € S? be the direction of gravity expressed in the body fixed frame, i.e. T = RTes.
Suppose the fixed value of the momentum map is given by v. The reduced Euler-Lagrange equations

for the 3D pendulum are given by
T=—|TIPT+ 7 x %, (2.72)
where the vector ¥ € R3, constants ¢, b, T € R are defined as

S =bT+ 7! [(J(Txr)—bn) < (T % T) = bT) + T2JT x T — mgT x p— Y|,
2.73)

, .
177 } y_ JT- (T x ) v 074

C:T{tr[J]_QT-JT T =

T-JY T-JY
2.3.3 3D Pendulum with an Internal Degree of Freedom

A 3D pendulum is a rigid body supported by a frictionless pivot point acting under a uniform
gravitational potential. An internal degree of freedom is modeled as a single mass particle that
is constrained to move along a linear slot fixed in the pendulum body. We assume that the mass

particle is connected to a linear spring.

Configuration manifold. We define three frames; a reference frame, a body fixed frame for the 3D
pendulum whose origin is located at the pivot point, and a slot frame fixed to the pendulum body.
The origin of the slot frame is located at the point along the slot whose distance d to the mass center
is minimum. The first axis is aligned to the slot, the second axis is aligned to the mass center, and

the third axis is orthogonal to the first and the second axis. Define

R €S0O(3) Rotation matrix from the body fixed frame to the reference frame

QeR3 Angular velocity of the pendulum represented in the body fixed frame
@ € SO(3) Rotation matrix from the slot frame to the body fixed frame

deR Minimum distance from the slot to the mass center

reR Displacement of the mass particle along the slot

pe €R3 Vector from the pivot to the mass center of the pendulum

pz € R3 Vector from the pivot to the mass particle

m € R Mass of the pendulum

my € R Mass of the particle

keR spring constant
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€3

Figure 2.3: 3D Pendulum with an internal degree of freedom

The configuration manifold is SO(3) x R. We identify TSO(3) with SO(3) x s0(3) by left triv-
ialization, and the Lie algebra so(3) is identified with R3 by an isomorphism * : R?® — so(3).
We define an inner product on so(3) using the standard inner product on R? as <Q1, Q2> =

st {Q?Qg} = 3y - Q9. This defines an inner product on TSO(3) by the left-trivialization as
(X, Y)=(TrLg-1- X, TrLgr-1-Y) for X, Y € TRrSO(3). The dual space T*SO(3) is identified
with TSO(3) using this inner product. Let J : s0(3) — s0(3)* be defined as J(Q) = J;Q+QJ; =
JQ. The inertia matrix is denoted by J € R3*3, and the non-standard inertia matrix is defined
by Jg = it[J] I3x3 — J € R3*3. This induces a metric on s0(3) as (1, Q) = <J(Q1),f22>.
This defines a metric on TSO(3) by left trivialization. The ad operator on SO(3) x R is given by
ad (0,4 (%, &) = (Q,0), adq, 4 (Y, #') = (-2, 0).

Lagrangian. The rotation matrix () € SO(3) defines the orientation of the slot with respect to the
body fixed frame: its first column denotes the direction of the slot in the body fixed frame, and its
second column denotes the direction from the mass center of the pendulum to the origin of the slot
frame.

Let 7 € R3 be r = [z;d; 0] € R3. The vector from the mass center of the pendulum to the mass
particle is represented by @)r in the body fixed frame. Therefore, the vector from the pivot to the

particle in the body fixed frame is given by

px = pc‘i‘QT’

where p. € R3 is the vector from the pivot to the mass center expressed in the body fixed frame.
Note that p, = Qe since p., ), d are fixed quantities. Thus, the velocity of the mass particle in
the inertial frame is given by

d . .
%(RPI) = Rp; + Rpy = RQe1z + R p;.
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The kinetic energy is composed of the rotational kinetic energy of the 3D pendulum and the trans-

lational kinetic energy of the mass particle.

1 1 12

2
1 1 . R
= §QTJQ + imx(mQ — oI 2p, + 27 QT O, ).

The potential energy consists of the gravitational potential energy and the potential energy for the

linear spring,

1
U(R,z) = —mgel Rp. — mygel Rp, + 5/13:2.

Therefore, the Lagrangian L : (SO(3) x R) x (R? x R) — R is given by

1 1 A R
L(R,z,Q, &) = 5QTJQ + imx(i’Q — pE Py + 21 QT Qpyit)

1
+ mgengc + mxgengx — 551:2. 2.75)

Euler-Lagrange equations. The derivatives of the Lagrangian are given by
DoL - 6Q = (JQ — mgprQ + madpeQer) - 69,
—ad}, - DoL = Q(JQ — mep2Q 4+ meip.Qer),
(T;Lr-DgL) - i) = (mgp.R" €3+ magp. R e3) -1,
D.L- -0z = (—mwpgfleel + mmgegRQel — Kx) - o0,
D;L - 0% = (mai + meel QTQp,) - 6i.

Substituting these expressions into (2.9), we obtain the Euler-Lagrange equations.

(J - mfbﬁi)g + msza:Qeli‘ - mx(ée\lﬁx + ﬁ:rée\l)Qm

. (2.76)
+ QJQ — mepoQ + maipeQer) — (mgpeR" €3 + megp. R e3) =0,
R = RQ, (2.77)
Mgl — mmelTQTﬁxQ + mxngQQel — mxgegTRQel + rkx = 0. (2.78)
Legendre Transformations. From (2.14), the Legendre transformation is given by
pa _ J _A mxﬁ?gT ma:ﬁ:chl Q (2.79)
Dz (mxprel) mg x
From Corollary [2.2] this yields the Hamilton’s equations.
po+Qx pa — (mgpR e3 + magpa R es) = 0, (2.80)
Pz + mwpfﬂzQel — m$gegTRQ61 + rkx = 0. (2.81)
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Figure 2.4: 3D Pendulum on a cart

2.3.4 3D Pendulum on a Cart

Consider a 3D pendulum whose pivot is attached to a cart moving on a horizontal plane.

Configuration manifold. We define two frames; a reference frame and a body fixed frame for the

3D pendulum whose origin is located at the moving pivot point. Define

zeR Displacement of the cart along the e; direction in the reference frame
yeR Displacement of the cart along the ey direction in the reference frame

R €S0(3) Rotation matrix from the body fixed frame to the reference frame

QeR3 Angular velocity of the pendulum represented in the body fixed frame

pe € R3 Vector from the pivot to the mass center of the pendulum represented in
the body fixed frame

m e R Mass of the pendulum

M eR Mass of the cart

The configuration manifold is SO(3) x R2. The tangent bundle T(SO(3) x R?) is identified with
(SO(3) xR?) x (R? x R?) by using the left trivialization presented in|Section 2.3.3| The ad operator
on SO(3) x R? s given by ad(q,4.4) (Y, #,9/) = (2,0,0), adfq ; ;) (¥, 4',9) = (—Q,0,0).

Lagrangian. The Lagrangian L : (SO(3) x R?) x (R3 x R?) — R is the difference between the
kinetic energy 7 : (SO(3) x R?) x (R?® x R?) — R and the potential U : SO(3) x R? — R.

L(R7 z,Y, Q,.’L’,y) = T(R,.’L’,y, Q,I]Z’,y) - U(vaa y) (282)

The kinetic energy of the cart is given by T¢qrt = %M (2 +9?). Let p € R3 be the vector from
the mass center of the pendulum to a mass element represented in the body fixed frame. The vector
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to the mass element from the origin of the reference frame is given by ze; +yea + R(p. + p). Thus,

the kinetic energy of the pendulum can be written as

1
Tpend = 2/ ‘
B

1 y y ¢ A . A . A
=5 /B (x2 + 92 +1tr {Q(Pc +p)(pe + p)TQT] + 2iel RQ(pe + p) + 20l RO (pe + p)) dm(p).

. 2
te1 + yea + R(pe + p)H dm(p)

We have |, g Pdm = 0 from the definition of the mass center. Define the nonstandard moment of
inertia matrix with respect to the pivot as J; = [(pc + p)(pc + p)T dm. The kinetic energy of the

pendulum is given by
1 1 1A & A A
Tpena = 3m(i? + %) + S [90407] + mael ROpe + mijel ROp. (2.83)

Or equivalently, the second term of the above equation can be written as %QTJ Q for the standard
moment of inertia matrix J = tr[Jy] I — J4. The total kinetic energy is given by T = Teqrt + Tpend-
The gravitational potential energy of the pendulum is U(R) = —mgeng. Thus, the Lagrangian is
given by

1 1 A R
L(R,Q,%,9) = §(M +m) (& + %) + §QTJQ + mael RQp. + myel RQp. + mgel Rp..
(2.84)

Euler-Lagrange equations. We have
DoL -0 = (JQ+mip.R e1 + myp.R" ) - 69,
—adfy - DoL = Q(JQ + mip.R e; + myp.RE ea),
(T*Lg - DRL) -7 = (mg'cf/ZZCRTel + myfzp\cRT@ + mgp.RTe3) -,
D 5L (62,69) = (M +m)d +me] RQp) - 62 + (M +m)j + mej RQp,) - 63,
DL (6x,0y) = 0.

Substituting these into (2.9) and (2.10), we obtain the Euler-Lagrange equations.

JQ 4+ mip.RTer + mijpeR  es + QIO = mgp R es, (2.85)
R = RQ, (2.86)

(M + m)i — meT RpQ2 + mel RO%p, = 0, (2.87)

(M +m)ij — met RpS + mel RO?p. = 0. (2.88)

In a matrix form, these can be written as

J mpeRTer mp.RTes| [Q Qx JQ mgp.RTe3
(mpcRTe)T M +m 0 i| + |meTRO2p, | = 0 . (2.89)
(mpeRTex)T 0 M+m ] mel RO?p, 0
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Legendre Transformations. The Legendre transformation is given by

PQ J mpeRTer mp.RTes| [Q
pe| = |(mpe.RTe)T M +m 0 il . (2.90)
Dy (mpeR"ea)" 0 M +m (]

From Corollary [2.2] this yields the Hamilton’s equations.

pa +Q x po — (miQp.RTer + myQp.RT es + mgp.RTe3) = 0, (2.91)
Pz =0, (2.92)
py = 0. (2.93)

2.3.5 Single Rigid Body

Consider a rigid body acting under a potential that is dependent on the attitude and the position of
the body.

Configuration manifold. Consider a reference frame, and a body fixed frame that is attached to
the rigid body. We assume that the origin of the body fixed frame is located at the mass center.
The group of rigid transformation on R? is defined as the set of mappings g : R*> — R? of the form
g(p) = Ry+x, where R € SO(3) and z, y € R3. An element of SE(3) is written as (R, z) € SE(3),

and SE(3) is embedded in the general linear group GL (4, R) using homogeneous coordinates

R =«

7o 1

The rotation matrix R € SO(3) represents the linear transformation from the body fixed frame to
the reference frame, and the vector € R? represents the location of the origin of the body fixed
frame. The Lie algebra, denoted by se(3), is isomorphic to R3 @R3 via the mapping > : RS — se(3);
Qv

Q; V] = 0 o

)

where [Q; V] € R® and € s0(3). We use the same notation ° to denote the Lie algebra isomor-
phism of s0(3) and se(3).

We define an inner product on the Lie algebra se(3) using the standard inner product on R3
(€, &) =Vi-Va— %u[@lﬁz} = Vi Va+ Q- Qp where & = (Q:,V;) € se(3) fori € {1,2}.
This defines an inner product on TSE(3) by left-trivialization as (X, Y) = (TgL,1 X, T,L, 1Y)
for X,Y € T,SE(3). The dual space T*SE(3) is identified with TSE(3) using this inner product.

Let J : se(3) — se(3)* be defined as

JQ+QJ;, mV
0 0

jS\)mV

Hevy=|" "
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for the mass m € R3, and the inertia matrix J € R3*3 of the rigid body. The non-standard inertia
matrix is given by Jy = §tr[J] Isxs — J € R3*3. This induces a metric on se(3) as (€1, £2))se(3) =
(J(€1), &2). The corresponding metric on TSE(3) is obtained by left-trivialization as (X, Y'))1sg3)
— (TyLy 1 X, Tyly 1Y) aus) for X, Y € T,SE(3).

The ad operator for se(3) can be written in a matrix form as

adio,y) = 3 g » adigy) = [_OQ :g (2.94)
Lagrangian. The Lagrangian SE(3) x se(3) — R is given by
L(9,€) = 3 (&:€) - Ulg) 2.95)
for a configuration dependent potential U : SE(3) — R.
Euler-Lagrange equations. Derivatives of the Lagrangian are given by
D¢L(g,¢) - & = (&, 6€)) = (I(§),0€) ,
DyL(g,€) - 69 = o R ; RS _R;%g g~ 'og. (2.96)

Substituting these equations into (2.9), we obtain the continuous equation of motion for a rigid

body on SE(3) in homogeneous coordinates as

70 mv] [0 mov] [%TR-RT% -RT)
0 0 0 0 0 0 ’
R il |R z||Q V
0 o |o 1[]o o]
This can be written as
JO+Q x JQ =M, (2.97)
. oU
mV 4+mQ xV=—-RI —, (2.98)
ox
R = RQ, (2.99)
& =RV, (2.100)
where the moment due to the potential M € R? is determined by
T
n =9 g oY (2.101)

- OR OR’
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Legendre Transformation. From (2.14), the Legendre transformation for the single rigid body is
given by (I, T") = (JQ, mV'), which represents the angular momentum and the linear momentum

of the rigid body, represented with respect to the body fixed frame. This yields the Hamilton’s

equations.
H+QxI=M, (2.102)
F+QxI = —RTa—U, (2.103)
ox

R=RJT, (2.104)

1
& = —RT. (2.105)

m

2.3.6 Full Body Problem

A full body problem deals with the dynamics of non-spherical rigid bodies in space interacting
under their mutual potential. Since the mutual potential of distributed rigid bodies depends on both
the position and the attitude of the bodies, the translational and the rotational dynamics are coupled
in the full body problem. For example, the orbital motion and the attitude dynamics of a very large
spacecraft in the Earth’s gravity field are coupled, and the dynamics of a binary asteroid pair, with

non-spherical mass distributions of the bodies, involves coupled orbital and attitude dynamics.

Euler-Lagrange Equations. The configuration manifold of full n body problem is (SE(3))™. Since
the dynamics of each body is only coupled through the mutual potential, the development for a single
rigid body, presented in is readily extended to the full n body problem to obtain the
Euler-Lagrange equations for the full n-body problem.

JiQ + Q x JiQ = M;, (2.106)

miVi +miQ; x Vi = —RlTaUv
837i

(2.107)

where the subscript ¢ denotes variables for the i-th rigid body for i € {1,... n}.

Reduced Euler-Lagrange Equations. Suppose that the potential energy of the full body problem
is dependent only on the relative attitudes between rigid bodies. Then, the Lagrangian is invari-
ant under the action of SE(3), and the configuration manifold can be reduced to a quotient space
(SE(3))"~t. According to Noether’s theorem, the total linear momentum and the total angular
momentum are preserved. For example, the mutual gravitational potential depends on the relative
location and the relative attitude of the rigid bodies. In this case, it is desirable to write the equations
of motion in the body fixed frame of one rigid body.

Reduced Euler-Lagrange equations for a full two body problem have been developed by |Lee
et al.| (2007bic). Here, we present the resulting reduced Euler-Lagrange equations for the full two

body problem.
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The reduced variables are defined with respect to the body fixed frame of the second rigid body.
X = RI(zy —29), R=RIRy,

where X € R3 is the relative position of the first body with respect to the second body expressed in
the second body-fixed frame, and R € SO(3) is the relative attitude of the first body with respect to

the second body. The corresponding linear and angular velocities are also defined as
V = Rj (i1 —d2), Q= RQ,

where V' € R3 represents the relative velocity of the first body with respect to the second body in
the second body-fixed frame, and 2 € R3 is the angular velocity of the first body expressed in the
second body-fixed frame. We also define the velocity of the second body expressed in the second
body-fixed frame as Vo = RI'i5. The moment of inertia matrices of the first body are expressed
with respect to the second body-fixed frame. We define Jp = RJRT, Jip = RJg, RT ¢ R3%3,
Note that Jr and .J;,, are not constant.

The Lagrangian of the full two body problem can be written in terms of these reduced variables

as
1 , 1 s 1 A gl 1 A
L(R, X, Q,V,90,V3) = s [Vi + Vall* + Jma |Vall” + 5tr[QJdRQ } + §tr[92<]d2§22}
_U(R. X).

The variations of the reduced variables must be restricted to those that can arise from the variations

of the original variables. For example, the variation of the relative attitude R is given by
R =0RIR, + RLOR, = —iuR + iR,
where 7 = RAHR”. The variations of other reduced variables can be obtained in a similar way.

0X = x —mX,
5 =1 — O+ nQ + Oy — o + Qan — 0y,
5V =%+ Qox — mV,
5 = 12 + Qang — 2 Qo
0V = X2 + Qax2 — maVa,

where , x2 € R3. By taking the variation of the reduced Lagrangian using these constrained vari-

ations, we obtain the reduced Euler-Lagrange equations for the full two body problem as follows.

1 oU

/+Q - 2.108
V 4+ 2 X Vv maX, ( )
(JRQ) 4+ Qo x JpQ2 = —M, (2.109)

) oU
J292+QQXJ292:XX67+M7 (2.110)
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X+QxX=V, (2.111)
R=S(Q)R— S(M)R, (2.112)

mima2
mi+mgo

where m = € R, and the moment due to the gravity potential M € R? is obtained by

M =171 X Up, +72 X Upy + 73 X Upg, (2.113)

where 7, u, € R3 are the pth column vectors of R and g—%, respectively.

2.3.7 Two Rigid Bodies Connected by a Ball Joint

We consider two rigid bodies connected with a ball joint. We assume that the ball joint has three
rotational degrees of freedom. The relative equilibria structure of this rigid body dynamics has been
studied by Wang| (1990).

Configuration manifold. 'We define three frames; a reference frame, and two body fixed frames.
Define

r€R3 Position of the ball joint in a reference frame
R; € SO(3) Rotation matrix from the i-th body fixed frame to a reference frame
d; € R3 Vector from the joint to the mass center of the ¢-th body in the ¢-th body
fixed frame
m; € R Mass of the ¢-th body
fori € {1,2}.

The configuration manifold is SO(3) x SO(3) x R3. The tangent bundle T(SO(3) x SO(3) x R?)
is identified with (SO(3) x SO(3) x R3) x (R3 x R? x R?) by the left trivialization presented in

Lagrangian. Let p; € R3 be the vector from the mass center of the i-th body to a mass element
expressed in the ¢-th body fixed frame. The vector to the mass element from the origin of the

reference frame is given by x + R;(d; + p;). Thus, the kinetic energy of the i-th body is given by

1 . 2
Ti(Ri, x4, ) = 2/ H$ + Ri(d; + pi)|| dm(p;)
B;

1 1 o ~ ~
1 1 N
= §mzx - T+ §QZ - Ji Qi + mud - RiQidi,

where Jy, = m;d;d} + fBi pipl dm(p;) € R3*3, and J; = mzdszAl + fBl_ A pi dm(p;). It can be
shown that J;, = %tr[Ji] Isxs — J;. Using this expression, the Lagrangian of the connected two
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Figure 2.5: Two rigid bodies connected by a ball joint
rigid bodies L : (SO(3) x SO(3) x R3) x (R3 x R x R?) — R is given by
. 1 | 1
L(R17 R27:1:7 Qh 927:1:) = §(m1 + m2).’17 - T+ 591 . JlQl + 592 : JQQ2
+x- (mllelldl + mQRQQQdQ) — U(Rl, Rs, x) (2.114)
for a potential U : SO(3) x SO(3) x R® — R that depends on the configuration of the connected

rigid bodies.

Euler-Lagrange equations. Derivatives of the Lagrangian are given by

(D(Ql’QQ)L) . (5@1, 5QQ> = (Jlgl + mlle’{:ﬁ> <00 + <J292 + deAQRg‘i') - 09,

ad)((<91792) . D(QhQQ)L = <—Ql(JlQl + mlleTJb), —QQ(JQQQ + TTLQCzQRgi)) s
(TZL(Rl,Rg) . D(Rl,RQ)L) . (fl,fg) = <m191d1R{$ + M1> . 51 + (MQQQdQRgi + Mg) . 62,

DiL = (mq +mg)i — miRydiQy — moRodaQs,
oU
D,L=——,
ox

where M; € R? is obtained by the relationship, M; = %TRi — ng—g fort=1,2.

Substituting these into (2.9) and (2.10), we obtain the Euler-Lagrange equations.

Ji% + mid; RY i 4+ Qi — M; = 0, (2.115)
R; = R, (2.116)
. A R 5 ~ . AU
(m1 + mg)a: — m1R19%d1 + ngQQ%dg — m1R1d121 — moRada o + % =0 (2.117)
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for ¢« = 1, 2. In a matrix form, these can be written as

Jl 0 mlle? Ql Ql X Jlﬁl M1

0 J mady RY Q| + Qy x JoS2s = | M,
(mlle{)T (MQCigRg)T (m1 + m2)13><3 T m1R1@%d1 + ngQQ%dg U,
(2.118)

Legendre Transformation. The Legendre transformation is given by

P1 J1 0 mydi R o
po| = 0 Jo mady RY Qo . (2.119)
D3 (mldAlR{)T (mgngQT)T (ml + mg)fgxg T

From Corollary [2.2] this yields the Hamilton’s equations.

p1+ Q1 x p1 = miQd R + My, (2.120)
P2+ Qo X po = maQado RY & + M, (2.121)
Py = U (2.122)

ox

2.4 Examples of Mechanical Systems on Two-Spheres

In we have developed Lagrangian mechanics on a product of two-spheres. This result
can be applied to any mechanical system whose Lagrangian is expressed as a difference between a
kinetic energy with constant inertia terms, and a configuration dependent potential.

In this section, we apply the general theory developed in to the following mechan-
ical systems that evolve on a product of two-spheres. For each example, a mathematical model is

defined, and the corresponding expression for Lagrangian is derived. Euler-Lagrange equations are
obtained from Proposition[2.4]and Corollary

Section Mechanical System
2.4.1 Double Spherical Pendulum
2.4.2 n-body Problem on a Sphere
2.4.3 Interconnection of Spherical Pendula
2.4.4 Pure Bending of Elastic Rod
2.4.5 Spatial Array of Magnetic Dipoles
2.4.6 Molecular Dynamics on a Sphere

2.4.1 Double Spherical Pendulum

A double spherical pendulum is defined by two mass particles serially connected to frictionless
spherical joints by rigid massless links acting under a uniform gravitational potential. The dynamics
of a double spherical pendulum has been studied in|Marsden et al.|(1993).
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Let the masses and the lengths of the pendula be mq, mo, l1,ls € R, respectively, and let es =
[0,0, 1] € R3 be the direction of gravity. The vector q; € S? represents the direction from the pivot
to the first mass, and the vector g5 € S2 represents the direction from the first mass to the second
mass. The kinetic energy is given by

.. 1 ) 1 ) )
T(41,42) = 5™ 1hd1]1* + 5m2 1111 + laga]?

1 .. .. 1 ..
= §(m1 +m2)l{(g1 - ¢1) + malila(dr - ¢2) + imzlg(% “G2).

Thus, the inertia matrix is given by M1y = (my + ma2)l2, M2 = malyla, and Mas = myl3. The
gravitational potential is written as U (q1, g2) = —(mq1 + ma)glies - g1 — maglaes - qa.
Substituting these into (2.35)—(2.36)), the equations of motion for the double spherical pendulum

are given by

(m1 4+ m2)2I3x3 —molilaGide| |dn _ malila(wa - w2)d1g2 + (M1 +m2)gligies
—meal1l2G2q mal3I3x3 wo malyla(w - w1)Gaq1 + maglagoes
(2.123)

g1 = w1 X q1, ¢2= w3 X qo, (2.124)

which are more compact than if the equations were written in terms of angles. Another nice property
is that the same structure for the equations of motion is maintained for n > 2. Thus, it is easy
to generalize these equations of motion to a triple, or more generally, a multiple-link spherical

pendulum.

2.4.2 n-body Problem on a Sphere

An n-body problem on the two-sphere deals with the motion of n mass particles constrained to lie
on a two-sphere, acting under a mutual potential (see [Hairer et al.[2003). Let m; € R and ¢; € S?

be the mass and the position vector of the i-th particle, respectively. The kinetic energy is given by

n

. . 1 ..
T(qu---rdn) = D 5maldi - di).
=1

Thus, the ¢, j-th element of the inertia matrix is M;; = m; when 7 = j, and M;; = 0 otherwise.
In|Kozlov and Harin| (1992)), the following expression for the potential is introduced as an ana-
logue of a gravitational potential,

n

g 4i - gj
Ulqr,-- - qn) = —5 ——
2 132:31 1= (g - ;)
i#]

for a constant . Substituting these into (2.32), the equations of motion for the n-body problem on
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a sphere are given by

. . . - q;
miGi = —mi(gi - i) — qi ¥ (Qi Xy ) (2.125)
JZ_; (1= (qi - q5)%)
J#

fori e {1,...,n}.

2.4.3 Interconnection of Spherical Pendula

We now study the dynamics of n spherical pendula connected by linear springs. Each pendulum is a
mass particle connected to a frictionless two degree-of-freedom pivot by a rigid massless link acting
under a uniform gravitational potential. It is assumed that all of the pivot points lie on a common
horizontal plane, and some pairs of pendula are connected by linear springs at the centers of links.
Let the mass and the length of the i-th pendulum be m;, I; € R, respectively. The vector ¢; € S?

represents the direction from the i-th pivot to the i-th mass. The kinetic energy is given by

n

. . 1 .
T(qus- o gn) = Y 5milf (6 di).
i=1

Thus, the inertia matrix is given by M;; = milf when 7 = j, and M;; = 0 otherwise.

Let = be a set defined such that (i,5) € Z if the i-th pendulum and the j-th pendulum are
connected. For a connected pair (7,j) € =, define x;; € R and r;; € R? as the corresponding
spring constant and the vector from the ¢-th pivot to the j-th pivot, respectively. The direction

along the gravity is denoted by e3 = [0,0,1] € R?, and the horizontal plane is spanned by e; =

2
- Hmll) .

Substituting these into (2.34)—(2.35)), the equations of motion for the interconnection of spheri-

cal pendula are given by

[0,0,1],e2 = [0,1,0] € R3. The potential energy is given by

> Sri <

(i,5)€eE

1 1
rij + 5t — 5l

n
Ulgrs---qn) = — Y miglig; - €3 +
i=1

ml?0; = —q; X 8—U, (2.126)
dq;

G; = w;i X q; (2.127)
fori e {1,...,n}.

2.4.4 Pure Bending of an Elastic Rod

Consider a pure bending motion of a slender elastic rod. We approximate the elastic rod by n + 1
slender rigid rod elements that are serially connected by spherical joints. Each rigid rod element is
modeled as a line along which the mass is uniformly distributed. We assume that the ‘zeroth’ rod is

fixed to a rigid wall. The joint has two rotational degrees of freedom; the tip of the ¢-th rod lies on
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(a) Interconnection of spherical (b) Pure bending of an elastic (c) Spatial array of magnetic dipoles
pendula rod

Figure 2.6: Examples of mechanical systems on two-spheres

a sphere centered at the i-th joint. Let ¢; € S be the direction of the i-th rod in the inertial frame,

and let m;, I; € R be the mass and the length of the i-th rod. The configuration manifold is (S?)™.
The vector from the first joint to the ¢-th joint is given by l1q; + - - + li—1¢;—1 = Z;;ll liq;.

Let s; € [0,[;] be the distance from the i-th joint to a mass element dm; in the i-th rod. Since the

mass is uniformly distributed, we have dm; = %dsi. The kinetic energy of the ¢-th rod is given by

1m, [b i1
7= [N b+ s,
2l Jo '

1 1 i—1 1 i—1 ,
= ol (i ) + gmali Y Lids - di + 5mall D |
j=1 j=1

Using this, the total kinetic energy can be written as

1 ¢ .
T=3 > Mijdi - gj, (2.128)

ij=1

where constants M;; for j < 7 are defined as

1 n
Mij = gmilf + | myly, (2.129)
p=i+1
1 n
Mij =5 || D2 2mplils | +milji | - (2.130)
p=i+1

The potential energy is composed of a gravitational potential and a strain energy. The vector
from the first joint to the mass center of the i-th rod is given by lyg1 + - - - + l;—1¢q;—1 + %liqi. Thus,
the gravitational potential is given by

n i—1

1
Ug(ar, .- qn) = Y | —mug qulj—i—il,-qi ez . (2.131)
i=1 j=1
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The strain potential energy for pure bending of an elastic beam is given by

L BI

Ue = ) des,

where E is Young’s modulus, I is sectional area moment, and R is the radius of curvature. We

assume that the radius of curvature is constant along the ¢-th rod, and is approximated by R; =
smlT%/Q where 6; denotes the angle between the i-th rod and the ¢ — 1-th rod. The strain potential

energy is approximated as

n

ElIsin%(0;/2)

Uc(qry .- qn) = Z Tli b @(1 —cost;) = A @(1 — -1+ ¢i)- (2.132)
i=1 i i=1 i i1 i
Therefore, the total potential energy is given by
n i—1 1 Bl
U(qrs---yqn) = ; —mig ;lej +5ligi ) -es+ @(1 —qi-1°Gi)| - (2.133)

Substituting these expressions for the inertia matrix );; and the potential energy into (2.34)—
(2.35), we obtain the equations of motion for the finite element model of the pure bending motion
of the elastic rod.

n

. . oU
Midor =Y (Mijgi x (g5 % &) + Mij(wj - wj)gi X ¢5) — g 7 (2.134)
j=1 ‘
J#i
q.i = w; X @q; (2135)

fori e {1,...,n}.

2.4.5 Spatial Array of Magnetic Dipoles

We now study the dynamics of n magnetic dipoles uniformly distributed on a plane. Each magnetic
dipole is modeled as a spherical compass; a thin rod magnet supported by a frictionless, two degree-
of-freedom pivot. The n magnetic dipoles act under their mutual magnetic field. This can be
considered as a simplified model for the dynamics of micro-magnetic particles (see (Cheng et al.
2006).

The mass and the length of the i-th magnet are denoted by m;, [; € R, respectively. The mag-
netic dipole moment of the i-th magnet is denoted by v;¢q;, where v; € R is the constant magnitude
of the magnetic moment, and ¢; € S? is the direction of the north pole from the pivot point. Thus,
the configuration manifold is (5?)". The inertia matrix is given by M;; = %milf when 7 = j, and

M;; = 0 otherwise. Let r;; € R3 be the vector from the i-pivot point to the j-th pivot point. The
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mutual potential energy of the array of magnetic dipoles is given by

1 « nzz 3
U = - g o qi) — ———(q; i) (g i) |
(QD 7Qn) 22 47_‘_””‘”3 |:(Q’L QJ) HTi‘HZ(qz rlj)(qj ’I“zj)
ij=1 J J
J#i

where p is the permeability constant.
Substituting these into (2.34)—(2.35)), the equations of motion of the spatial array of magnetic

dipoles are given by

1 " pvy; 3
— il = —q x Yy [ = ———1ii(qj 1) | (2.136)
i T T 2 g | )
i
Gi = wi X ¢; (2.137)

forie {1,...,n}.

2.4.6 Molecular Dynamics on a Sphere

We now study molecular dynamics on S2. Each molecule is modeled as a particle moving on S2.
Molecules are subject to two distinct forces: an attractive force at long range and a repulsive force
at short range. Let m; € R and ¢; € S? be the mass and the position vector of the i-th molecule,
respectively. The i, j-th element of the inertia matrix is M;; = m; when i = j, and M;; = 0
otherwise.

The Lennard-Jones potential is often used in molecular dynamics (see |Lennard-Jones|[1931)

) =3 D s KH%_%‘)u_(M)T

zgl
J#i

where the first term models repulsion between nearby molecules according to the Pauli principle,
and the second term models attraction at long distances generated by Van der Waals forces. The
constants € and ¢ are molecular constants; € is proportional to the strength of the mutual potential,
and o characterizes inter-molecular forces.

Substituting these into (2.32)), the equations of motion for molecular dynamics on a sphere are

given by

- 1202 60"
lai = aill | g — g1l llai — g5l

miG; = —mi(gi - Gi)qi — (g x Z € ) (2.138)
J#Z

fori e {1,...,n}.
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2.5 Conclusions

In we have developed Euler-Lagrange equations for dynamic systems on an arbitrary
Lie group. The symplectic property of Lagrangian flow, symmetry, and Lagrange-Routh reduction
have been discussed. The Euler-Lagrange equations presented in Proposition [2.1] can be consid-
ered as either a generalized form of the Euler-Poincaré equation or a left-trivialized form of Euler-
Lagrange equations on a manifold. The tangent bundle of a Lie group TG is identified with G x g
by left trivialization, and the equations of motion are expressed in terms of Lie group elements and
Lie algebra elements. Even if the Lagrangian is not left invariant, this approach is still desirable:
since the Lie algebra is a linear vector space at the fixed identity element, there is no need to deal
with covariant derivatives or Christoffel symbols.

Since these expressions are coordinate-free, they are independent of a specific choice of local
coordinates, and they completely avoid any singularity, ambiguity, and confusion associated with
local coordinates. They provides a general framework that can be uniformly applied to dynamics of
multiple rigid bodies that evolve on a Lie group. In|Section 2.3 we have shown that the resulting
intrinsic form of the Euler-Lagrange equations are more compact than equations expressed in terms
of local coordinates, when applied to dynamics of rigid bodies.

In we have extended these results to mechanical systems evolving on a product of
two-spheres. The variation of a curve on S? is expressed in terms of so(3) using the fact that the
special orthogonal group acts on the two-sphere transitively. Using this property, we have derived
a coordinate-free form of the Euler-Lagrange equations on (S2)". Compared with the previous
literature, this approach does not require 2n angles or n explicit equality constraints.

As shown in this approach yields a compact form of the equations of motion, and
also provides insight into the global dynamics on (S?)". A manifold on which a Lie group acts in
a transitively way is referred to as a homogeneous manifold. The key idea of this development can

be generalized to an abstract homogeneous manifold.
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CHAPTER 3

COMPUTATIONAL GEOMETRIC MECHANICS FOR RIGID
BODIES ON A LIE GROUP

This chapter deals with computational geometric mechanics for rigid bodies that evolve on a
Lie group. The goal is to develop numerical integrators that preserve the geometric properties of
the rigid body dynamics. The core idea is constructing computational algorithms from discrete ana-
logues of physical principles, so that the physical properties of the dynamics are preserved naturally
by the numerical computations. In particular, we discretize Hamilton’s principle with careful con-
sideration for the Lie group structure in order to develop structure-preserving numerical integrators,
referred to as Lie group variational integrators or discrete-time Euler-Lagrange equations. Through-
out this dissertation, these are viewed as discrete-time mechanical systems. This is in contrast with
the perspective that considers numerical integration as an approximation for continuous-time equa-

tions.

3.3 Examples of mechanical systems

3.1 Lie group variational integrator on a Lie group

3.3.1|Planar pendulum
[3.I.1] Discrete-time Euler-Lagrange equations
[3:3:2]3D pendulum
[ 3D pendulum with an internal mass
Discrete Legendre transformation [3:3:4]3D pendulum on a cart
[ [3:3:3] Single rigid body
[B-1:3| Properties of the discrete Lagrangian flow Full body problem
.14 Discrete reduction and reconstruction 337 Two rigid bodies connected by a ball joint

3.4 Examples of mechanical systems

3.2 Lie homogeneous variational integrator
on two-spheres

[3:4d]Double spherical pendulum
2] Discrete-time Euler-Lagrange equations 42| n-body problem on a sphere
| [3:43]Interconnection of spherical pendula
[3:4.4Pure bending of elastic rod

[B:22 Discrete Legendre transformation [3:4:3 Spatial array of magnetic dipoles
3.4.6|Molecular dynamics

This chapter has a parallel structure with it may be considered as a discrete-time
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version of geometric mechanics on a Lie group presented in [Chapter 2| In[Section 3.1] we develop

discrete-time Euler-Lagrange equations for dynamic systems evolving on an abstract Lie group,
and several properties of the discrete Lagrangian flow are discussed. These results are applied to
several rigid body dynamics problems in and numerical results are presented. The
remaining part of this chapter develops computational geometric mechanics on a product of two-
spheres: discrete-time Euler-Lagrange equations are developed in[Section 3.2} and they are applied
to several mechanical systems in[Section 3.4]

Throughout this chapter, a subscript k& denotes the value of a variable at t = kh + ¢ for a fixed
time step size A > 0, and an integer [V is defined such thatt; — to = Nh.

3.1 Lie Group Variational Integrator

Geometric numerical integration deals with numerical integration methods that preserve geometric
properties of the flow of a differential equation, such as invariants, symplecticity, and the structure
of a configuration manifold (see Hairer et al.|2000; Leimkuhler and Reich|2004; McLachlan and
Quispel [2001)).

Numerical methods that conserve energy, momentum, or symplecticity of mechanical systems
have been developed (see, for example, LaBudde and Greenspan||1976} [Lasagni||1988; [Sanz-Serna
1992 1988}; [Simo et al.[[1992). But the conservation property is often enforced by nonlinear con-
straints or by a projection onto the manifold defined by the constant conserved quantity.

Alternatively, a discrete-time mechanical system has been developed according to Hamilton’s
principle by Moser and Veselov| (1991); |Veselov| (1988). The variational view of discrete-time me-
chanics is further developed by [Kane et al.| (1999 [2000); Wendlandt and Marsden| (1997), and an
intrinsic form of discrete-time variational principle is established by [Marsden and West|(2001). The
resulting geometric numerical integrators, referred to as variational integrators, have desirable prop-
erties; they are symplectic, momentum preserving, and they exhibit excellent energy conservation
property.

For differential equations that evolve on a Lie group, a group element can be updated by the
corresponding group action so that the group structure is preserved naturally. This is referred to
as a Lie group method (see [Iserles et al.[2000). For mechanical systems evolving on a Lie group,
a discrete-time Euler-Poincaré equation has been introduced for a left-invariant Lagrangian system
by Marsden et al.| (1999), with application to the free attitude dynamics of a rigid body. A simi-
lar work is presented for the attitude dynamics of an axially symmetric rigid body acting under a
gravitational potential in Bobenko and Suris| (1999).

In this section, we develop discrete-time Euler-Lagrange equations for a mechanical system
evolving on an abstract Lie group G. The Lie group method is explicitly adopted in the context
of a variational integrator to construct a unified geometric integrator, referred to as a Lie group
variational integrator. It preserves the geometric features of dynamics, such as symplecticity and any

momentum map, as well as the geometry of the configuration manifold by automatically remaining
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Configuration manifold Configuration manifold
(g,4) € TQ (g, qr+1) € A X Q
Lagrangian Discrete Lagrangian
L(q,q) La(qr, qrx+1)
[ [
Y Y
Action integral Action Sum
& = [,/ L(g,q) dt G4 = La(qr, gr+1)
Variation Legendre transform. Variation Legendre transform.
06 = 76 =0 p=TFL(q,q) §Ga = 65 =0 pe =FL(q,9)|,
Euler-Lagrange eqn. Hamilton’s Eqn. Dis. E-L Eqn. D‘; Ham‘};"“; Eqn.
d4 9L _ 9L _ i — 5 — _ k= —Dilaq,,
dt 8¢ ~ 8q 0 ¢=Hp, p=—H, D2Lg;_, +D1Lq, =0 pri1 = DaoLg,

Figure 3.1: Procedures to derive the continuous/discrete Euler-Lagrange equations

on a Lie group. This provides a unified geometric numerical integrator for rigid body systems whose

configuration manifold is expressed as a Lie group.

3.1.1 Discrete-time Euler-Lagrange Equations

Consider a mechanical system evolving on a Lie group G. The procedures to derive the discrete-
time Euler-Lagrange equations on G are summarized by the discrete-time trajectory is
derived such that it minimizes the summation of a discrete Lagrangian, called the action sum. The
discrete-time Legendre transformation provides an alternative description of mechanical systems,
referred to as discrete-time Hamiltonian mechanics. The essential ideas are discretizing Hamilton’s
principle, where the variations of group elements are expressed in term of the Lie algebra g using

the exponential map, and updating group elements using group operations.

Configuration Manifold and Discrete Lagrangian

Discrete-time Euler-Lagrange equations evolve on G x G. Define fj € G such that

Gk+1 = Gk fr- 3.1

This may be considered as a discrete-time kinematics equation, where the group element gg1
is obtained by a group action of f; on gi. This is the essential idea of Lie group methods (see
Iserles et al.[[2000): this guarantees that the discrete-time flow lies on G without need for additional
constraints or projections.

We choose the discrete Lagrangian L, : G x G — R such that it approximates the integral of the

Lagrangian along the exact solution of the Euler-Lagrange equations over a single time step, which
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is referred to as the exact discrete Lagrangian

h -
L5 (g fi) = /0 LG, (0§(0)) dt.

where §(t) : [0, h] — G satisfies the Euler-Lagrange equations (2.9), (2.10) over [0, ] with bound-
ary conditions §(0) = gg, g(h) = gi fx. The accuracy of the resulting variational integrator is equal

to the accuracy of the discrete Lagrangian (see Marsden and West|2001)).

Action Sum

Define the action sum as
Ga= > Lalge, fr)- (32)

Since the discrete Lagrangian approximates the integral of the Lagrangian over one time step, the
action sum approximates the action integral. Discrete Hamilton’s principle states that this action

sum does not vary to the first order for all possible variations of a curve in G.

N-1
664 ="> 6La(gk, fx) = 0. (3.3)
k=0

Variations

Similar to the continuous time case given by li the variation of a sequence { gk}szo is expressed
as

g = gk €Xp eny, (3.4)

for k € {0,..., N}, where {n;}Y_, is a sequence in g satisfying 79 = nn = 0. The corresponding

infinitesimal variation is given by

Ogk = GrMk- (3.5)

Using (3.1)), the infinitesimal variation of fj is given by

d

5fk:&

_ d _
(95) g1 = = exp(—enk) gy gr+1 exp(enk+1)
0 e=0

= _TeRfk Nk +T€Lfk *Mka1
= _(Tfk(Lfk o Lfgl) oTeRfk) M+ Telyp - Meg

= Tely, - {—Adfglnk + nkﬂ} : (3.6)
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Discrete-time Euler-Lagrange Equations

The variation of the discrete Lagrangian is given by

OLa(gk, fr) = Dy, La(gx, fx) - 09k + Dy, La(gk, fr) - 6 fr-

Using the definition of the cotangent map, we obtain

OLa(gk, fr) = <ngLd(gk7fk)v (TeLg, 0 TgLg1) - 5gk>
+ <kaLd(9ka fe)s (Tebp 0 Tglpr)- 5fk>
= (TiLy, Dy, Lalgrs fi): ToLyor 001 )
+ (TeLs - Dy Lalges fie), ToLyor - 0fi).

Substituting (3.5)) and into this, the variation of the Lagrangian is given by

0La(gk fi) = (Telgy, - Dy, La(gr, fr), me) + <T:|—fk Dy Lalgr: fr), —Ady-1mk + ?71c+1>
= <TZ|—gk "Dy, La(gk: fr) = Adjr - (Teb gy, - D La(ge: fi), 77k>

+(TiLs, - Dy La(gr, fr), Mrt1) - (3.7)

Therefore, the variation of the action sum is given by

N-1

§6q =) <T:|—gk "Dy La(gr, fu) = Adpr - (Teby, - Dy Lalgr, fi), le>
k=0

+(T;Lys, - Dyg La(grs fr)s M) - (3.8)

The summation index can be rewritten as

06 = <T2LfN71 .DfolLd(nglafol)a 77N>

+ <T:Lgo DyyLa(g0, fo) — Ad;(;l “(TeLyy - DyoLa(go, fo)), 770>
N-1

+) <T2Lgk "Dy, La(gk, fr) = Adjr - (Teby, - Dy La(ge, fi)), 77k>
k=1

+(Tils Dy Lalgr—1, fi1), M) - (3.9)

Since np = 0 at £ = 0, N, the first two terms of the above equation vanish. From discrete Hamil-
ton’s principle, &, = 0 for all possible variations, which yields the discrete-time Euler-Lagrange

equations on G.

Proposition 3.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-
matics equation is defined as (3.11), where the group element g1 is updated by the right group
action of fr, € G on gi. For the given discrete Lagrangian Ly(g, fx) : G x G — R, the corre-
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sponding discrete-time Euler-Lagrange equations are given by

T:Lfkfl ) ka—lLd(gkfla fkfl) - Ad;k—l : (T:Lfk : kaLd(gk‘v fk)) + T:Lgk 'ngLd(gka fk) =0,
(3.10)

k+1 = Gk [r- (3.11)

For given (gx—1, fr—1), we obtain g, = gx—1 fr—1 from , and we solve (@) to find fi. This
yields a discrete-time flow map (gx—1, fx—1) — (9k, fx), and this process is repeated.

Remark 3.1 If the discrete Lagrangian is not dependent on g, then the third term of (3.10) van-
ishes. The resulting equations are equivalent to the discrete Euler-Poincaré equations (see Marsden
et al.[1999). Therefore, (3.10) can be considered as a generalization of the discrete Euler-Poincaré

equations.

Remark 3.2 These equations are obtained using the right group action of fj, on g at (3.11). We
can develop similar equations using the left group action on g. This is summarized by the following

corollary.

Corollary 3.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-
matics equation is defined as (3.13), where the group element gy is updated by the left group
action of i, on gi. For the given discrete Lagrangian Ly(gk, %) : G X G — R the corresponding

discrete-time Euler-Lagrange equations are given by

TZRTk,l : Drk,lLd(gk—l, Tk—l) - Ad;k : (T:Rr‘k : Drde(gka ’I“k;)) + TZng ’ ngLd(gka Tk) = 07
(3.12)

Jk+1 = TkYk- (3.13)

3.1.2 Discrete Legendre Transformation

Equations (3.10) and (3.11)) yield the discrete-time Lagrangian flow map (gx, fx) — (gr+1, fe+1)-
But sometimes, it is more useful to express the discrete-time flow map in the cotangent bundle using

the discrete Legendre transformation.

Define discrete Legendre transforms F™ Ly, F~ Ly : G x G — G x g* as

F*La(gk, fr) = (g Srs br+1),
F~La(gk, fx) = (gr, k),

where p, ip+1 € g* are given by

fhs1 = TiLy, Dy, Ly, (3.15)
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These are well-defined, since can be expressed in terms of these discrete Legendre transforms

as
F*La(gk—1, fr-1) = F~ La(gr, fr)- (3.16)
For a given (gi, k) € G x g*, the inverse of the negative discrete Legendre transformation
gives (F~Lg) ' (gk, ux) = (gk, f), and the positive discrete Legendre transformation of this gives

F* La(gk, fx) = (gks1, pkr1). We combine these to obtain the discrete-time Hamiltonian flow
de:Gxg*ﬂGxg*as

Fr,=FTLgo(F Ly}, (3.17)
Using the discrete-time Lagrangian flow map Fr,, (gx, fx) = (gk+1, fr+1)s can be written as
F'Ly=TF Lyo Fp,.
Using this, the discrete-time Hamiltonian flow map can be alternatively written as
Fr, =F Lyo Fp, o (FELy) L. (3.18)
The Hamiltonian flow map that corresponds to ( is summarized as follows.

Corollary 3.2 Consider a mechanical system evolving on a Lie group G. The discrete-time kinemat-
ics equation is defined as ([3.11)), where the group element gy, is updated by the right group action
of fr € Gon gi. For the given discrete Lagrangian Ly(gy, fr) : G x G — R, the corresponding

discrete-time Hamilton’s equations are given by

AS L (TiLy, Dy La) = s+ Tily, - Dy, L, (3.19)
Gk+1 = Gk Srs (3.20)
Uk+1 = Ad}k : (,uk + T:Lgk : ngLdk)' (3.21)

For given (gi, i), we solve to find fi. Then, gi+1 and pgy1 are obtained from @) and
, respectively. This yields a discrete-time flow map (gi, pr.) — (gk+1, lk+1), and this process

is repeated.

3.1.3 Properties of the Discrete-time Lagrangian Flow

We show two properties of the discrete-time Lagrangian flow, namely symplecticity and momentum
preservation. The subsequent development can be considered as a special form of general properties
of discrete Lagrangian flows, applied to a Lie group configuration manifold (see|Marsden and West
2001).
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Symplecticity

Let @j{d, @Zd be the discrete Lagrangian one-forms on G x G given by

07 (gk, fr) - (3gk, 0 fk) = <T:|—fk Dy, La,, f;'0fi+ Adj '9;15gk>, (3.22)
@Zd(gkafk) ) (59k75fk) = - <T:Lgk ‘ngLdk - Ad;k—l : (T:Lf/c 'Dfchdk)v gk_l(sgk>- (3.23)

From (3.6), we have

Met1 = fo 6 fk + Adj - g5, 6.

. . . . . . . _ JF _ —
Substituting this into (3.22) and comparing with li it can be shown that dLq = © — O] .
Since the second-order exterior derivatives of any form is zero, i.e. d?> = 0, the exterior derivatives
of two discrete Lagrangian one-forms are the same d@j{d = dO] , which is defined to be the

discrete Lagrangian symplectic form {27, on G x G.
Qp, =dOf =dey . (3.24)

We define the discrete-time Lagrangian flow map Fr, : G x G — G x G as the flow of the discrete

Euler-Lagrange equations (3.10), (3.11).

Proposition 3.2 The discrete-time Lagrangian flow preserves the discrete Lagrangian two-form as

follows
(FOH Qu, = Q. (3.25)

Proof. Define the solution space Cr,, to be the set of solutions {g;, € G}ivzo of and .
Since an element of Cr,, is uniquely determined by the initial condition (go, fo) € G x G, we
can identify Cr,, with the manifold of initial conditions G x G. Define the restricted action map
B,:GxG— Rby

Balgo, fo) = Gal{gh}r ),

where { g;}szo € Cy, is the solution of the discrete-time Euler-Lagrange equations with the initial
conditions (g(), ¢1) = (g0, gofo)- Since this satisfies (3.10), (3.9) reduces to

d&,-w= ((F))*0f —ep ) w (3.26)

for any w = (0gg,dfx) € TG x TG. We take a derivative of (3.26). Since exterior derivatives and

pull backs commute, we obtain
d?6, = (F1,1)*dO} —dey ).

Since dzéﬁd = 0, we obtain (3.25)). []
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Discrete Noether’s theorem

Consider the action of a Lie group Hon G, ® : H x G — G introduced in[Section 2.1.4] Recall the
infinitesimal generator (g : G — G x g defined as (2.20) for { € H. Here, we define the infinitesimal
generator (Gxg : G X G— TG x TG as

CoxG(gr, fr) = (Tel—gk Calgr), Tely, - (—Adfk—lCG(gk) + CG(gk;fk))) : (3.27)

We define two discrete Lagrangian momentum map JZLd, J Ly " GxG—bh*as

J1 (g fr) - € = O] - Caxa(gr: fr); (3.28)
I, (gk, fr) - €= O, - Cex6(gk, fi)- (3.29)

Proposition 3.3 Suppose that the discrete Lagrangian is invariant under the lifted action, i.e. dL -
Cexc = 0 for any ¢ € h. Then, the two discrete Lagrangian momentum map are the same, J;d =
‘]de’ which is denoted by Jr,, : G x G — b*, and the discrete-time Lagrangian flow preserves the

discrete Lagrangian momentum map.

T, (FL (g0, f0)) = T, (g0, fo). (3.30)
This is called discrete Noether’s theorem.
Proof. Since dL,; = @Jer — @Zd’ we have
dLg-Cexc = (07, —O7,) - Cexc = (Ji, — J,) - ¢,

which is equal to zero for any { € § since the discrete Lagrangian is invariant under the lifted action.
+ _ —
Thus, JLd = JLd'
Since the action is the summation of the discrete Lagrangian, Lg(gk, fx) - (Gx implies that

B4 - (gxg = 0. We can restrict it to the solution space to obtain
d®, - (xc = 0.
But, from (3.26)), we obtain
d&, - (oxc = ((F,')"©F, —©5,) - Cexc
= (JL(FL T gk f) = T (g8 f1)) - € (3.31)
for any ¢ € b, which yields (3.30). [ |
3.1.4 Discrete Reduction and Reconstruction

In|Section 2.1.5] we have discussed that if there is a symmetry in the Lagrangian, the configuration
manifold can be reduced to a shape space. Similarly, if the discrete Lagrangian has a symmetry,
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discrete-time reduced Euler-Lagrange equations evolving on the shape space can be derived. The
discrete-time flow in the original configuration manifold can be reconstructed from the solution of
the discrete-time reduced Euler-Lagrange equations.

The procedure for the discrete Lagrange-Routh reduction is similar to that of continuous-time
Lagrange-Routh reduction (see Jalnapurkar et al.[2006). In essence, the discrete reduced Lagrangian
satisfies a reduced variational principle with a one-form derived from the connection. This yields the
discrete-time flow on the shape space. For a given trajectory on the shape space, we reconstruct the
flow on the original configuration manifold by finding the horizontal lift of the reduced trajectory
and applying the momentum map preservation property.

Discrete-time reduction and reconstruction for the full body problem has been studied in [Lee

et al| (2007¢), and the results are summarized in

3.2 Lie Homogeneous Variational Integrator on Two-Spheres

In this section, we develop discrete-time Euler-Lagrange equations for mechanical systems evolving
on a product of two-spheres. The goal is to develop geometric numerical integrators that preserve
the geometric properties of the Lagrangian/Hamiltonian dynamics as well as the structure of two-
spheres.

As discussed in the special orthogonal group SO(3) = {R € R¥>3|RTR =
I,det R = 1} acts on the two-sphere transitively, i.e. for any g1, g2 € S?, there exists a R € SO(3)
such that g = Rq;. The essential idea to derive discrete-time Euler-Lagrange equations on two-
spheres is to update elements in the two-sphere using the group action for the special orthogonal
group SO(3). Consequently, the discrete flow evolves on the two-spheres without need for con-
straints or reprojection. This is referred to as a Lie homogeneous variational integrator on two-
spheres.

Compared with geometric numerical integrators on S? developed by [Lewis and Nigam| (2003);
Lewis and Olver| (2001); Munthe-Kaas and Zanna| (1997), this approach conserves the geometric
properties of dynamic systems as well as the structure of two-spheres, and it does not require local
coordinates or explicit equality constraints. The subsequent development can also be generalized to

mechanical systems evolving on an abstract homogeneous manifold.

3.2.1 Discrete-time Euler-Lagrange Equations

The procedures to derive the discrete-time Euler-Lagrange equations on (S2)" are summarized by
the discrete-time trajectory is derived such that it minimizes the summation of a discrete
Lagrangian, called the action sum. The discrete-time Legendre transformation provides an alterna-
tive description of mechanical systems, referred to as discrete-time Hamiltonian mechanics. The
essential ideas are discretizing Hamilton’s principle, where the variations are expressed in term of
the Lie algebra so(3) using the exponential map, and updating elements in two-spheres using the

group operation of SO(3).
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Configuration Manifold and Discrete Lagrangian

We consider a mechanical system evolving on a product of n two-spheres (S?)" introduced in

Recalling (2.26), the Lagrangian has the following structure

: L ¢ .
Llgr, - tn 1y, G0) = 5 > Mijéi-d; - Ul . an) (3.32)
ij=1

for a constant symmetric positive definite inertia matrix {M; ]}f =1 and a configuration dependent
potential U : (5?)" — R.
According to the trapezoidal rule, we define a discrete Lagrangian Ly : (5%)" x (S?)" — R

1 < h h
Ld(qlk’ s lng s Qs - - 7an+1) = ﬁ Z Mij(qik+1 - Qik) : (qjk+1 - q]k) - §Uk - §Uk+1a
ij=1
(3.33)
where U}, denotes the value of the potential at the k-th step, i.e. Uy = U(qi,,...,qn,). Here,

we assume that the inertia matrix is constant and the discrete Lagrangian is obtained by using the
trapezoidal rule. The following development can be generalized to mechanical systems with a

configuration dependent inertia or a general form of the discrete Lagrangian.

Action Sum

Using the expression for the discrete Lagrangian, the action sum is defined as

N—-1
®d: Z Ld(Q1k>~'-7an,Q1k+1,...,an+1)
k=0
N—-1 n
! h, h
k=0 i,5=1

Since the discrete Lagrangian approximates the integral of the Lagrangian over one time step, the
action sum approximates the action integral. Discrete Hamilton’s principle states that the variation

of the action sum is zero.

Variations

Similar to the continuous time case given by |i the variation of a discrete-time curve {Qik}szo

is expressed as

for a discrete-time curve {n;, }2_, on R satisfying n;, = 7;, = 0 fori € {1,...,n}. We assume

Niy, € R3 is constrained to be orthogonal to iy,» 1.€. 15, - q;,, = 0. The corresponding infinitesimal
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variation of g;, is written as

Discrete-time Euler-Lagrange Equations

The variation of the discrete Lagrangian can be written as

n h — U, OUp 41
Z (5qik+1 - 5qik) ) Mij(qjk+1 - qjk) - 5 Z <5Qik ’ 87 + 5q¢k+1 ’ ) L ) :
Q=1

i— ik Tk+1

§Lq, =

SRS

(3.36)

Substituting (3.35) into (3.36), and using the vector identity (a X b) - ¢ = a - (b X ¢) for any

a,b,c € R3, we obtain

1 n
0Lg, = h Z (nikJrl ’ (qik+1 X Mij(qjk+1 = qji.)) — My - (@i, ¥ Mij(qjk+1 - qjk)))

3,j=1
hy U}, OUg 41

Y i, | i iee1 "\ @i . 3.37
2;<nk <q’“xaqik)+"’““ (q’““xaqm 637

Therefore, the variation of the action sum is given by

N—-1 n
1
064 =4 SN Uiy - @i X Mig( @iy — G2) = Wiy - (@i X M@, — 3,))

k=0 i,j=1
N—-1 n
h @Uk> ( 8Uk+1>>
—_ P X — + . . i X
9 — ; <772k <QZ1€ aQik i1 Qigiq 8(]ik+1
n
1 h oUn
=D iy [hqm X Mij(qjn = Gin-1) = 54in X 5 — ]
=1 i
- 1 h U
0
- Mio * |:hqi0 X Mij(le - qjo) - 5(1@'0 X a:|
ig=1 fio
N—-1 n n
1 Uy
+ My, - E(qzk X ZMij(_qijrl + 245, — _y)) — haiy, X dar.
k=1 i=1 =1 i
Since 1;, = n;, = 0fori € {1,...,n}, we obtain
N—-1 n 1 n 8Uk
06, = Z zmk ) E(q% X ZMij(_qij + 245, — @jy_,)) — haiy, % W : (3:38)
k=1 i=1 j=1 tk

From discrete Hamilton’s principle &, = 0 for any 7;, perpendicular to ¢;,. Using the same
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argument given in (2.30), the discrete-time equations of motion are given by

Ok _ (3.39)

1 n
7(Q7;k X E :Mij(_qij + 2qjk - qjkﬂ)) - hqik X =
h 04qi,

j=1

fori e {1,... n}.
In addition, we require that the unit length of the vector g;, be preserved. This is achieved
by viewing S? as a homogeneous manifold. Since the special orthogonal group SO(3) acts on S?

transitively, we can define a discrete update map for g;, as
Qi = Fiy iy,

for F;, € SO(3). Then, the unit length of the vector ¢; is preserved through the discrete-time

equations of motion, since g, - ¢, = qiTk FZZF% qi, = 1. These results are summarized as
follows.

Proposition 3.4 Consider a mechanical system on (S?)"™ whose Lagrangian is expressed as .

The discrete-time Euler-Lagrange equations are given by

n n
oUj,
M;iqi, % Fi, qi, + @), X ZMij(ij — I3x3)qj, = i), X ZMij(ij — Q1) — h2qik X g
j=1 J=1 "
J#i
(3.40)
Qipyr = Fiink (3.41)

fori € {1,...n}. For given (¢, _,,qi,), we solve to obtain F;, € SO(3). Then, q;, .,

is computed by . This yields a discrete-time flow map (q;,_,,Gi,) — (Giys iy, )> and this
process is repeated.

3.2.2 Discrete Legendre Transformation
The discrete Legendre transformation is given as follows.
1 ¢ h 80U},
“|n ;Mij(qjk+1 — ) + 5@ - 0Gi,

which can be directly obtained from (3.36). This is satisfied for any dg;, € T, S perpendicular to
gi, - Using the same argument used to derive (2.37), the conjugate momenta p;, is the projection of
the expression in brackets onto the orthogonal complement of ¢;, . Thus, we obtain

1 a h ou,
Piy = =78 X (@i X Y Mig(@0 — G3) = 50 % @ X 5 ) - (3.42)
h = 2 0qi,
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Similarly, we obtain

Pipyq - 5qik+1 La, - 5qik+1

- ink+1

h U1
2 aqik+1

1 n
| Z M;; (ij+1 = @) —
j=1

Qigyq-

Since p;, ., , is perpendicular to g;, _ ,, it is given by

1 = h OUk11
Pigy1 = _Eqik+l X (Qik+1 X ZMij(qij - qjk)) + §Qik+1 X <Qik+1 X aq, . (3.43)
j=1 k+1

This yields the discrete-time Hamilton’s equations as follows.

Corollary 3.3 Consider a mechanical system on (S*)" whose Lagrangian is expressed as .

The discrete-time Hamilton’s equations are given by

- 1 i h oU}
Pi. = =73 qi ¥ (gij, X ZMij(ij — I3x3)q5,) — 5 s X (G X 5~ | (3.44)
= Qiy,
Qiryr = Fir iy (3.45)
1 = h OUk11
Pip = _EQik+1 x (Qik+1 x ZMij(qij - qjk)) + §Qik+1 x <Qik+1 x 90 ~ (3.46)
j=1 Te+1

fori € {1,...,n}. For given (¢, ,pi,), we solve to obtain F;, € SO(3). Then, q;, .,

and p;, ., are computed by and (3.46), respectively. This yields a discrete-time flow map
(@i, Pi) — (Qik+17pik+l), and this process is repeated.

This provides a discrete-time flow map in terms of the conjugate momenta. Now, we find
a discrete-time flow map written in terms of the angular velocity. Comparing (3.44) to (2.37),

substituting ¢;, = w;, X ¢;,, and rearranging, we obtain

h oUj,

=@, X m— | =0.
5 dix 94,

n n
1
Gir X | Miawiy + (qi, X > Mij(wy, X ¢j,)) — 7 (@i % > Mij(gje, — ) —
j=1 j=1
J#i
Since the expression in the brackets is orthogonal to g;, , the left side is equal to zero if and only if

the expression in the brackets is zero. Thus,

n n
1 h oUy,
Miiwi, + (gi, ¥ Y Mij(wj, X ¢5,)) = 7 (i, % > M4y, — 4,)) + dix X G-
J=1 j=1 (3
J#i

(3.47)
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This provides a relationship between (g;,,w;, ) and (gi,, gi,,,). Comparing this with (3.39), we
obtain

B O
2qz’“ 0q

i

n 1 n
Miiwi, + (@i, X Y Mij(wy, x q5,)) = 7 (i, % > Mij(gj, — gj 1)) — , (3.48)

j:l j=1
JFi

which provides a relationship between (g;,,w;,) and (g;,_,,¢;,). Equations (3.47) and (3.48)
provide a discrete-time flow map in terms of the angular velocity; for a given (g, ,w;, ), we find

(@iy» @iy, ) by using (3.47). Substituting this into (3.48)) expressed at the & + 1th step, we obtain

(iy, 41> Wiy, )- This procedure is summarized as follows.

Corollary 3.4 The discrete-time equations of motion given by and can be written in

terms of the angular velocity as

n
Miiqi, X Fiy iy, + qiy % Z M;i(Fjy, — I3x3) 4,

j=1
7 (3.49)
- h? Uy,
= Mishwi, — (@i % Y Mij(qj, x hw;,)) — o e X 5
= iy
J#i
Qirer = Fir iy (3.50)
n
Miiwikﬂ - (qik+1 X Z Mij (ij+1 X wjk+1))
j=1
7 (3.51)
1 - h OUpy 1
= E(qikJrl X Z M (qjk+1 - qjk)) - §qik+1 X Jar
j=1 qZkJrl
fori € {1,...,n}. Equivalently, can be written in a matrix form as
Mi113x3 —Mi2G1,,1G2,1 0 —MinGidng., Wiy
_MQIqAQ;H_lquk_‘_l M2213X3 e _M2nd2k+1(jnk+1 w2k+1
- nl(jnquAlkH - n2‘jnk+1qA2k+1 o MnnL3><3 Wy
[ 1 h AUy ]
E(thﬂ X Z?:l Mlj(qjk+1 - qjk)) — 341, X ﬁ

1 h
E(q2k+1 X E?:l MQj(ijﬂ - QJk)) — 3542, X m

1 h
ﬁ(qmcﬂ X Z;'L:I Mnj(qjk+1 - qjk)) — 29nk41 X 3g,

For a given (g;, ,wj, ), we solve to obtain F;, € SO(3). Then, q;,_, and w;, ., are computed
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by (3.50) and (3.52), respectively. This yields a discrete-time flow map in terms of the angular

velocity (qi,,, wi;,) — (i, > Wiy, )» and this process is repeated.

The discrete-time Euler-Lagrange equations given by and are implicit equations:
we need to solve an implicit equation at each time step, in order to find the relative update rep-
resented by the rotation matrix F;, € SO(3). A computational approach to solve the implicit
equations is presented in [Section 3.4.7) where it is shown that the discrete-time Euler-Lagrange
equations become explicit when the inertia matrix is diagonal, i.e. M;; = 0 for ¢ # j. The explicit
form of the discrete-time Euler-Lagrange equations for mechanical systems evolving on a product

of two-spheres is summarized as follows.

Corollary 3.5 Consider a mechanical system on (S?)™ whose Lagrangian is expressed as (@)
where M;; = 0 for i # j, i.e. the dynamics are coupled only though the potential energy. The

2\ 1/2
) Gi, (3.53)

(3.54)

explicit discrete-time equations of motion are given by

h? oU, h? U,
Qi1 = (hwik = oar,; Bk 6q> X Gi, + (1 - thik = ong, e X g

it i
B U h o OUkn
Fo2My i 0qi,  2Mj; Bra 09y,

:Wi

forie{l,...,n}
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3.3 Examples of Mechanical Systems on a Lie Group

In we have developed discrete-time Lagrangian mechanics on an abstract Lie group.
Since the configuration manifold of dynamics of rigid bodies is a Lie group, the results provide a
unified framework that can be applied to various rigid body dynamics.

In this section, we apply the general theory developed in[Section 3.1|to the following rigid body
dynamics discussed in For each example, a discrete Lagrangian is chosen, and Euler-

Lagrange equations and Legendre transformations are obtained, followed by numerical results.

Section Mechanical System G
3.3.1 Planar pendulum SO(2)
3.3.2 3D pendulum SO(3)
3.3.3] 3D pendulum with an internal degree of freedom SO(3) xR
3.3.4 3D pendulum on a cart SO(3) x R?
3.3.5 Single rigid body SE(3)
3.3.6 Full body problem (SE(3))™
3.3.7 Two rigid bodies connected by a ball joint SO(3) x SO(3) x R?

3.3.1 Planar Pendulum

Consider the planar pendulum model presented in[Section 2.3.1

Configuration Manifold. The configuration manifold is SO(2), and the group action for SO(2) is

matrix multiplication. Thus, the discrete update map (3.T1)) can be written as
Rp41 = RiFy,

for Fj, € SO(2). The adjoint operator Adp, for R € SO(2) is the identity on s0(2).

Discrete Lagrangian. ~Recalling (2.41), the Lagrangian of the planar pendulum is given by
. 1 o
L(R,Q) = {mitr [QTQ} + mgel Rp. (3.55)

From the attitude kinematics equation (2.43), the angular velocity is approximated by

1
ERg(Rk—i-l - Ry) =

1

O ~
k h

(F, —I).
According to the trapezoidal rule, the discrete Lagrangian is chosen as

1 h h
Lq(Ry, Fy) = Emlztr[(Fk — Ioyo)T(F)y — Ioxo)] + 5mgze§’RkeQ + §mgze§Rkae2

1 h h
= ﬁmﬂtr[(lgxg — Fp)] + §mgze§”Rke2 + 5mgzeQTRkaeQ.
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Discrete Euler-Lagrange Equations. The variation of the discrete Lagrangian is given by

OL(Ry, Fy,) = —%mﬂtr[éFk] + gmglengﬁkeg + gmglengﬁkaeg + gmgleQTRkéerg
= —%letr [Fu(FLoE,)] + gmglengf/keg + gmglengFk(F,? ik F)es
+ gmglengFk(FgéFk)eg,
Since FAFT = fj for any F € SO(2) and /) € s0(2), F{ §F}, is skew-symmetric, we obtain

1 h
SL(Ry, Fy) = —EmZQtr[(Fk — ED)(FL6F,)] - §mgl62T(Rk + Rpy1)er - my

h
— —mglel Ry 11 - (FL6F)N

2
L 9 Ty _h Th T
= ﬁml (Fy, — Fy, ) — §mgl62 Ryt1e1, Fi 0F

h .
- <2mgl(ezTRk61 + egTRk+1€1)7 77k> )

Therefore, we obtain

i 1 h —
TeLFk . DFde(Rk,Fk) = %mZQ(Fk — Fg) — §mgleng+1el,

. h
TeLRk . DRde(Rk,Fk) = —§mgl(engel + eng+1€1).

Substituting these equations into (3.10), we obtain the discrete-time Euler-Lagrange equations
for the planar pendulum as

1 1
ﬁmlz(Fk —F - ﬁmF(Fk+1 — FL,) — hmgled Ry 1e1 = 0, (3.56)

Ryy1 = RiFy. 3.57)

Discrete Legendre Transformation. From (3.14) and (3.19)), the discrete Legendre transformations
are given by

. 1 h
Hk —le(Fk — Fg) + §mgleng€1,

" 2h
A 1 h —
Mg = ﬁmZZ(Fk — Fg) — §mgleng+1el,

where ITj, = mi?Q) € 50(2)* ~ R*. These yield the discrete-time Hamilton’s equations as

1 . h —
ﬁmZQ(Fk —Fhy =11, - §mgle,§Rkel, (3.58)
Ryy1 = Ry F, (3.59)
. . h Th o h Th .
gy =10 — §mgl62 Rpei — 51719[62 Ryi1e. (3.60)
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Figure 3.2: Numerical simulation for a planar pendulum: computed total energy (LGVI: red, solid, RK4(5): blue, dotted)

For a given (R, I1;), we solve (3.58) to obtain F},. Using this, (R4 1, ;1) is obtained by (3.59)
and (3.60). This yields a discrete-time flow map (R, II;) — (Rpy1,1l541). If we parameterize

Ry, using 6y, (3.58) and (3.59) are equivalent to
. h h%g

Op1 = O) +sin~' <ml2Hk — %eQTRm) . (3.61)
Numerical Results. We compare the computational properties of the discrete-time equations of
motion given by (3.58)—(3.60) with a 4(5)-th order variable step size Runge-Kutta method. We
choose m = 1lkg, [ = 9.81m. The initial conditions are 6y = 7/2rad, 2 = 0, and the total
energy is £ = O Nm. The simulation time is 1000 sec, and the step-size h = 0.03 of the discrete-
time equations of motion is chosen such that the CPU times are identical. shows the
computed total energy for both methods. The variational integrator preserves the total energy well.
There is no drift in the computed total energy, and the mean variation is 1.0835 x 1072 Nm. There

is a notable dissipation of the computed total energy for the Runge-Kutta method. Note that the

computed total energy would further decrease as the simulation time increases.

3.3.2 3D Pendulum
Consider the 3D pendulum model presented in

Configuration manifold. The configuration manifold for the 3D pendulum is the special orthogo-
nal group, SO(3). A rotation matrix R € SO(3) is a linear transformation from a representation of
a vector in the body fixed frame into a representation of the vector in the inertial frame.

We define Fj, € SO(3) as Fj, = R%Rkﬂ. Thus, we have the discrete-time attitude kinematics

equation as
Ryy1 = Ry Fy. (3.62)

The rotation matrix Fj, represents the relative attitude update between two integration steps, and by
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requiring that Fj, lies on SO(3) we guarantee that the discrete flow Ry, for k € {0,..., N} evolves
on SO(3) automatically.

The adjoint operator is as follows.
Adpi = FAFT = Fy,  Adbi = FTHF = FTy (3.63)

for F' € SO(3), 7 € s0(3).

Discrete Lagrangian. Recall that the Lagrangian L : SO(3) x s0(3) — R of the attitude dynamics
of the 3D pendulum is given by

L(R, Q) = %tr [QJdQT} — U(R) (3.64)

for an attitude dependent gravitational potential U : SO(3) — R.
Using the kinematics equations li 1| Q) can be approximated as

~ . 1 1
Qp = RIRy, ~ ER%(R;CH = Ry) = +(F = I). (3.65)
From the trapezoidal rule, we choose the following form of the discrete Lagrangian L; : SO(3) x

SO(3) — R.

h 1 h 1
Ld(Rk, Fk) = §L(Rk, E(Fk — I)) + iL(Rk+17 E<Fk — I))
1 h h
= ﬁtr[(Fk — I)Jd(Fk — I)T] — iU(Rk) — §U(Rk+1)
1 h h
= ﬁtr[FdeFkT — FyJg — JaF + Jg] — SURE) = U (Bp).

Since tr [FdeFkT] = tr[JdFkTFk] = tr[.Jy], and tr[JdF,;f] = tr[F}J4], the discrete Lagrangian can

be written as

1 h h
Ld(Rk, Fk) = Etr[(l — Fk)Jd] — §U(Rk) — EU(Rka). (3.66)

Discrete-time Euler-Lagrange Equations. We first find expressions for the derivatives of the dis-
crete Lagrangian. Let T : SO(3) — R be the first term of the discrete Lagrangian

1
Ty(Fy) = Etr[([ — Fy)Jq) .
The derivative of T (F}) with respect to Fy, is given by

1 1
DFde(Fk) -O0F), = —Etr[5Fde] -0F), = _Etr[FkFgéFde}

1
= _Etr[(FgéFk)(JdFk)] ; (3.67)
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where we use the property of the trace tr[AB| = tr[BA] for any A, B € R™*"™. The following

identity is satisfied for any z € R?, B € R3*3, since tr[2B] = —tr[BT&] = —u[2B7]:
1
uliB] = Juli(B - BN =—-(B-B", ). (3.68)

Since FI' 0 F), is skew symmetric, (3.67) can be written as

1

7 (JaFy — ElJa, FLOE) . (3.69)

1
Dp, Tua(F) - 6Fy = —5 w0y Ja] =
As in (2.60), the derivative of the potential is given by
. 1 [~
Dp, U(Ry) - 0Ry = — <Mk, R{&Rk> =S [MkRzaRk} : (3.70)

. . - T
where M}, is determined by M}, = g—%”zR{ — ng—%z . Therefore, we have

1 ~ 1 N
DRkU(Rka) -ORy, = itr|:Mk+1FERZ:5Rka:| = §tr|:(R£5Rk)(FkMk+1FE)}

— <F,TM?+1, R{(st> . (3.71)
Similarly, we also have
Dy U(RyFy) - 6F, = — <Mk+1, Fr 5Fk> . (3.72)

From (3.69), (3.70), (3.71), and (3.72)), the derivatives of the discrete Lagrangian are given by

h
Dy, La(Ry, Fy) - 6F% = D Ta(Fy) - 0F% — ;DU (RkF) - 0Fy
1 h -
= <h(<]dFk - FEJd) + §Mk+1, Fg&Fk> ,
h h
Dr,La(By, Fi) - 0B = =5 D U(Ry) - Ry — 5 DR, U(ByFy) - 0By
h / ~ —
=5 <Mk + FyMps1, R{&Rk> :

Therefore, we obtain

* 1 h -
TeLr, - Dp La(Ry, Fr) = +(JaFl - EFJy) + > Mict1, (3.73)
. . 1 h  —
Adpr TeLpe D La(Rist, Fipt) = 3 (Fipada = JaFib) + 5 Fir1 My2, (3.74)
* h - —
TeLry - Drgyy La(Birr, i) = 5 (Mir + Fior1 Miy2). (3.75)

Substituting these into (3.10) and (3.11), the discrete-time Euler-Lagrange equations for the 3D
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pendulum are given by

1 .
& (Fi1Ja = JaFLy — JaFy, + FLJg) = hMjq, (3.76)

Ryy1 = Ry I, 3.77)

where My = mgp. % R{eg. For given (Ry, Ri4+1) and Fj, = RkaH, we solve the implicit
equation (3.76) to find Fj;. Then, Ry o is obtained from (3.77)). This yields a discrete-time flow
map (Rk, Ri11) — (Rk+1, Ria2), and this procedure is repeated.

Discrete Legendre Transformation. From (3.14)), (3.15), the discrete Legendre transformation is
given by

i = =T¢lr, - Dy La(Re, Fi) + Adpr - Telp, - Dp, La(Ry, F)
1 h -
= 3 (FiJa = JaFy) — 5 M (3.78)
11 = Tilg, - Dg, La(Ry, Fr)

1 h -
= E(JdFk —FlJy) + 5 M1, (3.79)
Combining these, we have

o 1 h -~

M1 = EF,? (FJg — JuFD)F, + 5M,m,
~ ~ h ~ h ~
Hk+1 - FngFk + §Mk + §Mk+1.

Using the fact that FZTIF = FTTI for any IT € R? and F' € SO(3), we obtain equivalent equations

in a vector form. In summary, the discrete-time Hamilton’s equations are given by

h
h(I1, + §Mk)A = FyJg — JaF}L, (3.80)
Ri1 = Ry Fy, (3.81)

h h
1 = FLI, + §F,;-FMk + 5Mkﬂ. (3.82)

For given ( Ry, IIx), we solve the implicit equation to find F}. Then, Ry is obtained from
(3-81), and IIj; is obtained from (3.82). This yields a discrete map (Ry, ;) — (Rit1, gs1),
and this procedure is repeated.

The discrete-time equations given by and are implicit equations: we need to solve
an implicit equation at each time step in order to find the relative update represented by the rota-
tion matrix F, € SO(3). A computational approach for these implicit equations is presented in
Section 3.3.8]

Remark 3.3 In this section, we have developed discrete-time Euler-Lagrange equations and discrete-

time Hamilton’s equations for the 3D pendulum by substituting the discrete Lagrangian given by
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into the discrete-time Euler-Lagrange equations on a general Lie group (3.10). Alternatively,
the discrete Euler-Lagrange equations for the 3D pendulum can be derived by following the pro-
cedure presented in The corresponding discrete Hamilton’s principle on SO(3) has
been studied in |[Lee et al.| (2005b)).

Symmetry. Recall that the symmetry action of the 3D pendulum @ : S! x SO(3) — SO(3) is given
by

®(0, R) = expsos)(0é3)R, (3.83)

which represents the rotation of the 3D pendulum about the gravity direction es.
We first find expressions for the infinitesimal generators. We identify h = so(2) with R. From
(2.20), for ¢ € R, the infinitesimal generator (s (3) : SO(3) — SO(3) x s0(3) is given by

d d R
(so@)(R) = ¢r o de‘eoq)expso(Q) «(R) =¢r 0 del_, expso(3)(€Cé3) R
=¢ro (R, (&3R) = (R, (RTe3). (3.84)

From the definition (3.27), the infinitesimal generator (so(3)xs0(3) : SO(3) x SO(3) — TSO(3) x
TSO(3) is given by

Cso3)xs03) (Rk, Fr) = (TeLRk ~Cso(3)(Br), Telr, - (Adprisos)(Re) + Cso<3)(Rka))>
= (RkR{eg, Fu(RE, je5 — FF Rfeg)A) . (3.85)

Now we show that the discrete Lagrangian is infinitesimally invariant under the symmetry ac-
tion. From (3.22]), (3.23)), the discrete Lagrangian one-forms on SO(3) x SO(3) are given by

O} (Ry, Fy) - (3Ry, 6Fy) = <T:ka ‘Dp, La,. FLSF + Adgr R£53k>
= <}1L(JdFk — FLJy) + ngH, FLSF, + F,?R{éRka> ,
O, Rk, Fy) - (0R, 0F) = — <T:|—Rk 'DryLa, — Adpr - (Telr, - DR La,), R£5Rk>
= <]11(Fde — JgFT) - ng RgéRk> :
Since Ly, = @Jer — @Zd, we obtain
La(Ry, Fi) - Cso3)xso@3) = (07, = O7,) - (s0(3)x50(3)

1 h - —— 1 o~ =
— <h(JdFk —FlJy) + §Mk+1, gR{He3> — <h(Fde — JuEL) — 5M,g, CR;-563> .
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— —

Since My = mgp. X Rgeg, we have <Mk, R£63> =0, <J\ka+1, R£+1€3> = 0. Thus, we obtain

1 —

1 —
La(Ry, Fi) - Cs0(3)x50(3) = <h(JdFk: - Kl Ja), CR£+163> - <h(Fde — JaFD), CRf€3>

1 — 1 —
- <h(JdFk — FLJy), cR{+1eg> — <hF,$(Fde — JoFD)Fy, gF,{R{eng>

1 1 —
= <h<JdFk — L), CRf+1€3> - <h(JdFk — L), C(FkRk)T€3> =0.

Therefore, the discrete Lagrangian is infinitesimally invariant under the symmetry action.
We now find an expression for the discrete momentum map. According to (3.28]), the momentum
map J{d : SO(3) x SO(3) — R* is given by

Ji,(Re, Fi) - ¢ = O, - Coxc (R, Fi)
1 h - —
= <h(JdFk —FlJg) + §Mk+17 CRf+1€3>

= <ﬁk+1, CR£+163> = (el Ryp1jr1, (3.86)

where we use the discrete Legendre transformation (3.79). Thus, de (R, Fr) = el Rp 11Tk 11,
which represents the angular momentum of the 3D pendulum about the gravity direction. This is

preserved by the discrete-time flow according to the discrete Noether’s theorem.

Remark 3.4 The preservation of the angular momentum about the gravity direction can be directly
shown from (3.82). Multiplying the left and right sides of (3.82) by el Ry 1, we obtain

ed Rpy1llpy1 = eX Ry  FETL, + gengHFkT My + gengHMkH
= el Ry FIT, + gengMk + gengﬂMM.
Since engMk =0, eng+1Mk+1 = 0, this reduces to
e3 Ry1ljs1 = ef RpFy TN,

which shows conservation of the momentum map by the discrete-time flow. This is a more concise
proof. The preceding development shows a formal application of the abstract discrete Noether’s

theorem to the 3D pendulum model.

Numerical Results. We compute the flow of discrete-time Hamilton’s equations. The physical

constants for the 3D pendulum are chosen as

m=1kg, pe=1[0,0,03]m, J = diag[0.13,0.28,0.17]kgm?.
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Figure 3.3: Numerical simulation for a 3D pendulum

Initial conditions are chosen as
Ry =1, Qo = [4.14,4.14,4.14] rad/s.

The simulation time and step size are ¢y = 100 seconds, h = 0.01 seconds.

shows responses of angular velocity of the pendulum, computed total energy, orthog-
onality error, and the deviation of the angular momentum along the gravity direction. As shown by
the computed total energy of the Lie group variational integrator oscillates near the
initial value, but there is no increasing or decreasing drift for long time periods. The orthogonality
error of rotation matrices and the error in conservation of the angular momentum about the gravity

direction remain at machine precision level.
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3.3.3 3D Pendulum with an Internal Degree of Freedom

Consider the 3D pendulum with an internal degree of freedom presented in [Section 2.3.3

Configuration Manifold. The configuration manifold is SO(3) x R. The group action defines the

discrete-time update map as

(Ri41, Thy1) = (Rp, zx) (Fl, Azy,)
— (RpFy, o, + Azy) (3.87)

for (Fy, Azy) € SO(3) x R. The Ad operator also has the product structure.

Ad(F,A:E) (ﬁaxl) = (FﬁFT7$/) = (Fna l‘/), Ad)(kF,Az) (ﬁ)xl) = (FTﬁFa xl) = (FT%CUI)-
Discrete Lagrangian. Recalling (2.75)), the Lagrangian is given by

1 1 - R
L(R,z,Q,%) = §QTJQ + §mx(3:2 — oI p, 4 27 QT Q)

1
+ mgengc + nge3TRpx — §/€$2.

The discrete Lagrangian is chosen as

My

1
Lq(Rp, xg, Fip, Axy,) = Etf[(f — Fy)Ja] + 5T,

m
Aw% - T}Ttr[szPfk (Fk - I)Q]

m h h
- ftr[QmAxkpfk (Fp—1)] + §mgegTRkpc + megeiaTRk:ka
h h h
+ §mg€§Rka:pc + megengkaxk+1 - Z’{xz - Zﬁ(wk’ + A$k)2'
(3.88)

We find expressions for the derivatives of the discrete Lagrangian. The derivative of the discrete

Lagrangian with respect to F}, is given by
Dp, Lg, - 6F, = —%tr[éFde] — %u [par Pt (FiSFy + S FpFy, — 26 Fy)]
— %tr[@elekpgkéFk] + gmgengcSkac + gmxge;gTRk&kaka
= _%tr[éFkAk] + gmgesTRk5kac + gmxgengékazk+1a

where A;, € R3*3 is defined as

m
A = Jg+ {(kapngk + kaxk,ogk — prkpfk) + meelekpgk.
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This can be written as
Dp, Ly, - 0F;, = —%tr[(FkT §Fp)ApFy] + gmge?)TRkH(FkT §F))pe
+ gmmgengH(FkT(st)pka. (3.89)
Since Fl;f 0 F}, is skew symmetric, using , the first term of can be written as
—%tr[(FgéFk)Aka] = % (AyFy, — FFAL FLOE,) .
Since &y = —jx for any z, y € R3, the last two terms of can be written as
gmgengH(FE §Fy)pe + gmxgengH(F,? §F%)Payy
= —gmgegTRkHﬁc(Fkast)v — gmxgeng+lﬁxk+1(FgéFk)v

h . .
=3 (mgp.Rl €3 +mugpay  Ripre3, (FL6FE)Y). (3.90)

Therefore, we obtain

\ 1 ho h "
Telr D La, = 5 (AFy = FAD) + (ngpcR%fﬂeg + 2mxgp$k+1R£+1eg> . GBI

The Ad* operation gives

1
Adpr - (Tilp, - DrLa,) = 7 (FeAx — ALF])

h ) h ) "
+ (2mngpch+163 + mengpzkHRfHE:a) . (3.92)

The derivative of the discrete Lagrangian with respect to Ry, is given by
Dg, Ly, - Ry = gmgechstpc + gmxgegT(SRkpzk + gmgegT5Rkapc + gmxge?,TéRkapmkH
= Dol Bu(RESRpe + wmagel Bi(BY 3Ry )pa,
+ gmgeng(R;‘ffSRk)Fkﬂc + gmxgeg,TRk(R%Rk)kaxm-

By following the same procedure used to derive (3.90), we obtain

. hoo hoo h A h A
TiLg, -Dg, La, = §mgpcR;‘fez + §ngpsz£€3 + §mngpcR;‘f+1€3 + §ngkamkR;‘f+163-
(3.93)

The derivative of the discrete Lagrangian with respect to Az, is given by

My My h h
DagyLa, = ——Axy, — —tr[Qelpfk (Fy — I)] + fmxge?)TRk_HQel — —RKTk41- (3.94)
h h 2 2

77



The Ad* operation is the identity on R. Since dp,, = Qeidxy, the derivative of the discrete

Lagrangian with respect to xy, is given by

My
Dy, L, = =5, tr[(Qeapg, + pael QT)(F — 1) + 280 (i, — 1))

h h
+ §mxgengQ61 + §m$geng+1Qel — §/€$k - §mﬁk+1. (3.95)

Discrete-time Euler-Lagrange Equations. We substitute (3.91)-(3.93) to (3.10) for g = (R, xx)
and fr = (Fj, Azy) to obtain the discrete-time Euler-Lagrange equations

1
E(Ak—le—l — B Al — FRAg + AR

(3.96)
+ hmgpeR} e3 + hmygps, Ries = 0,

m

A = J;+ Tx(pxkpngk + kaxkpgk — prkpgk) + meelA:rkpfk, 3.97)

m m m
_Tx<xk+1 —2xptwp_q) — Txtr [Qelpfk_l(Fk,l — I)] + Txtr[Qelpgk(Fk — I)]

m

- T;”[(Qewz + pret Q1) (Fy — 1)* 4 2(zpq1 — ) (Fr — 1)] (3.98)

+ hmxgengQel — hkx = 0.

Discrete-time Legendre Transformation. The discrete Legendre transformation yields the follow-

ing discrete-time Hamilton’s equations.

poy, = %(FkAk ~ AL F)Y gmgﬁchﬁ? - gmxgﬁkafe& (3.99)
Dy, = %Amk — %tr[@elpfk(Fk — I)]

+ %U[(Qelpfk + prel Q1) (Fy — I)* + 20z, (Fy, — I)] — gmxgengQm + gffﬂﬁk,

(3.100)

A = Ja+ S5 (pa b Fi+ Fupay 0, = 20, 0%,) + maQer Awyol, (3.101)

Py = %(Aka — FFAR)Y + gmgﬁCRfﬂeg + gngﬁkaRfﬂeg, (3.102)

Py = %Amk — %tr[@elpfk(Fk — I)] + gmxgegTRkHQel — gﬁxk+1. (3.103)

For given (Ry, x, Q, @), we find (po,, pz,) by (2.79). We use a fixed point iteration to deter-
mine Fy. For an initial guess of Fy, the corresponding Azy, is determined from @), and Ay
is determined from (3.I0I). Then, we can find F}, by solving (3.99). This is repeated until F},
converges. (Ry1,Zk+1) are obtained from , and (pq,_ s Pxy,,) are obtained from (3.102),
(3.103). The velocities (41, &%+1) can be determined by (2.79). This yields a discrete-time flow

map (R, vx, Qp, ) — (Ret1, Thg1, Qet1, Thg1)-
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Figure 3.4: Numerical simulation for a 3D pendulum with an internal degree of freedom

Numerical Results. We compute the flow of discrete-time Hamilton’s equations. The physical

constants for the 3D pendulum with an internal degree of freedom are chosen as

m=1kg, m,=0.1kg, p.=10,0,1]m, d=0.15m, ~=1.1N/m,

1.00 0.00 0.00
J = diag[1.03,1.06,0.05] kgm?, Q= {0.00 0.25 0.96
0.00 0.96 —0.25

Initial conditions are chosen as

290 =0.10m, 2o =0.00m/s,
Ro = exp(%ég), Qo = [0.1,0.2,1.0] rad/s.

shows responses of the angular velocity of the pendulum, the position of the particle
with respect to the 3D pendulum, and the velocity of the particle. The computed orthogonality error

of the rotation matrix is also shown.

3.3.4 3D Pendulum on a Cart

Consider the 3D pendulum whose pivot is attached to a cart moving on a horizontal plane, presented

in[Section 2.3.41

Configuration Manifold. The configuration manifold is SO(3) x R2. The group action defines the
discrete-time update map (3.11) as

(Rit1, Tt 1, Y1) = (Ri, T, Yr) (Fiey Ay, Ayg,)
= (RpF, o + Az, yi + Ayg),

for (F, Azy, Ayi) € SO(3) x R2. The adjoint operator also has a product structure as follows
Ad(F,Aa:,Ay) (777 Jfl, y/) = (FﬁFTa CL’,, yl)7 Ad?F,Ax,Ay) (ﬁa xlv y/) = (FTﬁF7 .’L'/, yl)
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Discrete Lagrangian. Recalling (2.84), the Lagrangian is given by
1 1 . .
L(R,, i) = 5 (M + m)(i? + %) + 5QTJQ + mael Rp, + myel Rp, + mgel Rp..

The discrete Lagrangian is chosen as

1 1
La(Rg, T, Y, Frey Axg, Ayx) = ﬁ(M +m)((Azp)* + (Aye)®) + Etr[([ — F.)J4]
m T m T h T h T
+ ﬁAxkel Ri(Fx, — Ipe + EAykez Fi(Rr — Ipe + 5 mges Ripe + 5 mges Ry Fype.

(3.104)

We find the expressions for the derivatives of the discrete Lagrangian. We have
m
h

1 T m m
= = w[FFy 0FJa) + & m

h
+ §mge§Rk+1FkT SFpe. (3.105)

1 m h
DFdek cO0F, = —Etr[éFde] + Amke{Rkékac + EAykeng(Skac + §mge§Rk5kac

Axke{Rk_HF,?cSkac + Aykeng_,_lF,?&kac

Since F; l;f 0 F}, is skew-symmetric, and using (3.68)), the first term of (3.105) can be written as

1 1 1
—r [Fu(FL0F,)Jq) = —Etr[(F,CT OFk)JaFy] = 3 (JaFk — FlJa, SR .

We use the identity: for any z,y, z € R3,
y'3z = —tr [szic] = <sz — 2y’ ic> . (3.106)

Using (3.106), the second term of (3.1035) can be written as
m

m
N Amke?RkHFdekac = —Auxy <R£+1elch — pcelTRk+1, F,CT(SFk> .

h

We apply the same identity to the remaining terms of (3.105) to obtain

N 1 m
TeLFk . DFdek = E(JdFk — ngd) + ﬁASCk(Rz_HelpZ — Pce{Rk—&-l)
m h
+ ﬁAyk(Rfﬂezpf — pees Riy1) + §mg(Rf+1€3PZ — peci Rit1)-
(3.107)
Similarly, we obtain
. m
Telr, - Dy La, = 5-Aap(Rieip; (Fy — 1) = (Fi = Dpeer Ry)
m
+ 5 Auk(Rieape (Fy = 1) = (Fi = DpeeaRy)
h h
+ §mg(R£egch — pe€i Ry) + §mg(R563ngg — Fypeed Ry).  (3.108)

80



We have Ad;k,l (TiLp, - Dp, Lg,) = Fr(TiLE, - Dp, Ldk)Fg . The derivatives of the discrete
Lagrangian with respect to Axy, Ay, are given by

1 m

Dogy Loy, = 7 (M +m)Azy + el (Rin = Ri)pe, (3.109)
1 m o

Day, Lay, = E(M +m)Ayy + e (Ri+1 — Ri)pe- (3.110)

Discrete-time Euler-Lagrange Equations. Substituting (3.107)-(3.110)) into (3.10), we obtain the
discrete Euler-Lagrange equations for the 3D pendulum on a cart.

%(M +m)(Tk+1 — 22k + Tp—1) + %6{(Rk+1 — 2Ry, + Ri—1)pe = 0, (3.111)
%wummwﬂ—@meg+%£mﬂram+3mmkza (3.112)

%ah—hﬁldﬂkruﬁvm:—%@Hram+mﬂxﬁa£—%£m)
— Pyt — 2k + ye1)(RE el — peel Ry,) + hing(RE esp? — peck Ry,).

h
(3.113)

Using the property m = yz’ — zy”, the third equation can be written as
1
#ﬂh—hﬁ—h&4+ﬁ;mv

m

n (yk+1 — 2y + yk—l)ﬁCR£€2 + hmgﬁcRgea-

(3.114)

m N
= _ﬁ(xk—f—l — 23 + 1) peRi €1 —

Discrete-time Legendre Transformation. The discrete Legendre transformation yields the follow-

ing discrete-time Hamilton’s equations.

1 m

Day, = E(M +m)(Tpg1 — k) + ﬁel(Rk—l—l — Ry)pe, (3.115)
1 m

Dy, = E(M +m)(Yk+1 — yx) + ﬁ62<Rk+1 — Ryi)pe, (3.116)

R 1
Do, = E(Fde — JuFD)

m . m . h . A
+ {hmﬂ —an)peRier+ 5 Wk — yk)peRyes - ngpcR}fes} , B.117)
Ryy1 = Ry [y, (3.118)
Pxy1 = Pxy» (3.119)
DPyy1 = Pyg> (3.120)
. 1
Py = E(']dFk - FkTJd)
m m h A
+ {h(xk—H - xk)ﬁcR£+1el + ﬁ(yk—&-l - yk)pAcRgJ,_leZ + 2mgﬁcR£+1€3} .

(3.121)
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For given (Ry, xk, Yk, Q, Tk, Ui ), We find (pq, , Day s Dy, ) BY (2.90). We use a fixed point itera-
tion to determine Rj;. For an initial guess of Ry, 1, the corresponding x4 1, yr+1 are obtained

from (3.1T5), (3.116). Then, we can find Fj, by solving (3.117). The new value for Ry is
given by (3.118). This is repeated until Ry, converges. Then, xy1,yr+1 are obtained from

, , and (pq,. ,» Py, s Py,.,) are obtained by , , and (3.121). The

velocities (2x41, Tk+1, Uk+1) can be obtained from (2.90). This yields a discrete-time flow map

(Ris iy Ui, ey Tho, Uk) — (Rt 1> Tht 1 Ykt 15 Q15 Tt 15 Ukt 1)-

Numerical Results. We compare the computational properties of the discrete-time equations of
motion given by (3.115)-(3.121)) with a 4(5)-th variables step size Runge-Kutta method. The physi-

cal constants for the 3D pendulum on a cart are chosen as

1.09 —0.06 —0.25
M=m=1kg, p.=][0.25,0251]m, J=[-005 110 —0.25| kgm>.
—0.25 —0.25 0.1

Initial conditions are chosen such that the mass center of the system is located at the origin, and the

total linear momentum is zero.

xg=—0.125m, #p=0.525m/s, yo=0.5m, ¢go=—0.0125m/s,

1 0 0
Ro=10 0 —1|, 90=1[0.1,0.2,5.0]rad/s.
0
shows the computed total energy for 50 seconds. The Lie group variational inte-

grator preserves the total energy well. But there is a notable dissipation of the computed total energy
using the Runge-Kutta method. Similar characteristics are observed for the orthogonality error of
the rotation matrices in|Figure 3.5(b)

It can be shown that the horizontal component of the total linear momentum is conserved. As
a result, the mass center moves along the vertical e3 axis, and the horizontal location of the mass
center of the system is fixed. [Figure 3.5(c){3.3(d)| show the trajectory of the cart on the horizontal
plane, and [Figure 3.5(e)3.5(g)| show the initial configuration and the configuration at ¢ = 700 sec.
It is interesting to observe that the computed mass center of the Runge-Kutta method drifts in the

horizontal plane, as it does not preserve the total linear momentum properly.
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Figure 3.5: Numerical simulation for a 3D pendulum on a cart (LGVI: red, solid, RK4(5): blue, dotted)
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3.3.5 Single Rigid Body

Consider a rigid body acting under a potential that is dependent of the attitude and the position of

the body, presented in

Configuration Manifold. Let g, = (Ry,xr), fx = (Fg,Yx) € SE(3) for Ry, F, € SO(3),

71, Y € R3. The group action of SE(3) is matrix multiplication in homogeneous coordinates.

The discrete-time kinematics equation (3.11]) can be written as

Fy Y
0 1

RiFy xp+ RpY:
0 1

Ry xp
0 1

Rpi1 wpa
0 1

The adjoint operator for SE(3) can be written in a matrix form as

RT —RT;
0 RT

R 0
IR R

*

Ad(R,:p) = ’ (R,z)

Discrete Lagrangian. The discrete Lagrangian is chosen as

Lalgis fi) = T() — SU () ~ SU(gkfe)

where the discrete kinetic energy term is defined as

T(fx) = %«fk —e fr—e) = %Yk Yy + %tf[(fsxs — Fy,)Jal .

Thus, d7( fx) is given by

m 1
(5T(fk) = ﬁYk <0Y + Etr[—éFde]

1
= %Yk -0Yy + Etr[—FkT(gFJdFk] .

Since F,;[ 0 Fy, is skew-symmetric, this can be rewritten as
1
ST (fi) = %F,;f Yie- B 6Yi = ot [FL6F (JaFy — F{ Ju)]

:

Using (2.96) and (2.62), the derivatives of the potential term can be written as

F(JaFy — FLJg) 2ETY,
0 0

FIsE, FLsy,
0 0

9

> |

=Dy, (U(gk) + U(grfr)) - 69k — Dy, U(grfr) - 0 fx

~ aU ~ BU
_ | My —RiGE Myt —Ri 5050
0 0 0 0

&4

. (Adf];H]k + fk_l(ka)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)



From (3.125)) and (3.126), T;Ly, - Dy, La(gk, fx) is given by

i (JaFe = FlJa) R ELYy
0 0

k+1 81’k+1

T*L; - Dy Lalgr, fr) =
eLre - Dy Lalgr, fr) 0 0

h hpT OUg
§Mp 4R ]

(3.127)

Using (3.123), Ad’};l(Tz Ly, - Dy, La(gk, fr)) is computed in R® as

Ad} o (TeLy, - Dy La(gr, fr))

Fy FFY| |5 (JaFk — FJg)

B h T OU,
_ b A M1 5 — Reige
o m L gm0 0
1- _7.pT by —hRT Uk
= (Frdg — JaF}) A 2Mirt =2 Reidn | (3.128)
my, Je 0

An expression for T}L,, - Dg, Lq(gk, fx) is obtained from (3.126).

b h pT OU b hpT Ui
hyn, —RRTUk BNy —LR
Telg, - Dy, La(gr, fr) = [20'“ 2 (;“89% +Adj [2 0’““ 2 ’“Bl ‘%”vﬂ]. (3.129)

Discrete-time Euler-Lagrange Equations. ~ Substituting (3.127), (3.128)), and (3.129) into (3.10),

JgFy_ 1 — FL |\ Jq— (FpJy — JFL) + h2M;, = 0, (3.130)
m m oUy,
ﬁF,ﬂT_lyk_l — Yk~ Rga—xk = 0. (3.131)

Since the left-trivialization is used, these equations are expressed in the body fixed frame. From
(3.122), Y, = R} (241 — x1). Substituting this into the above equation, we obtain

m

h2

m

oU,
h2 RE (21 —x) — RES 2 =

EL R (o — m1) — .

0.

Multiplying this by Ry, and rearranging, we obtain

oUy,

- 132
Oy (3.132)

m
ﬁ(xlwrl — 22 + Tp—1) =

Therefore, the discrete-time Euler-Lagrange equations are given by (3.130) and (3.132).

Discrete Legendre Transformation. Let (I, I'y) € se(3)* be the angular momentum and the
linear momentum of the rigid body, represented with respect to the body fixed frame. From (3.14)
and (3.13)), the discrete Legendre transformations are given by
F(Fida— JaFL) = 8My Ve + 4RI G-

0 0

)

I, Tyl
0o 0|
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F(JaFy — FLJg) 2ETY,
0 0

k+1 8Ik+1
0 0

M1 Traa _
0 0

ha) hpT OUgy1
[2Mk+1 —5R =

It is desirable to express the discrete-time equations for the location and the linear momentum of
the rigid body with respect to the reference frame. Let y € R?* be the linear momentum represented

with respect to the reference frame, i.e. ¥ = RI'. The discrete-time Hamilton’s equations can be

written as
. h? .
hIL; + o My = JaFy — ELJg, (3.133)
h h

M1 = FIT, + §F,$Mk + §Mk+1, (3.134)

h h? oU;,
= —p— ——2 3.135
Tpy1 = T + et v Dy, ( )

_ hOUy  hoUg
20x, 2 0wpy1

Vh+1 = Vk (3.136)
Numerical Results. We simulate the dynamics of a dumbbell body acting under a gravitational
potential from a fixed spherical body. We assume that the mass of the dumbbell is negligible com-
pared to the mass of the spherical body, and the origin of the reference frame is located at the mass
center of the spherical body. The gravitational potential results in a nontrivial coupling between the
attitude dynamics and the orbital dynamics. This model is referred to as a restricted full two body
problem.

The dumbbell model consists of two equal rigid spheres and a rigid massless connecting rod.
This dumbbell rigid body model results in a simple closed form for the mutual gravitational potential

given by

2
GMm
U(Rw)===7—> llz+ Rpyl,

q=1

where G is the universal gravitational constant, and M is the mass of the spherical body. The
constant m is the mass of the spherical body, and p, € R? is a vector from the origin of the body-
fixed frame to the gth sphere of the dumbbell in the body-fixed frame.

We compare computational properties of the Lie group variational integrator with Runge-Kutta
methods applied to three types of attitude representations, namely, rotation matrices, quaternions,
and Euler-angles. The attitude kinematics equation is expressed in terms of quaternions and Euler-
angles, and the Runge-Kutta method is applied.

Figure 3.6/ shows numerical simulation results for a near-circular orbit, where the trajectory of
the dumbbell, the angular velocity response, the computed total energy, and the orthogonality error
are presented. The Lie group variational integrator preserves the total energy and the Lie group
structure of SO(3). The mean total energy deviation is 2.5983 x 10~%, and the mean orthogonality
error is 1.8553 x 10~ '3, But, there is a notable dissipation of the computed total energy and the

orthogonality error for the Runge-Kutta method.
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Figure 3.6: Numerical simulation for a single rigid body (Lie group variational integrator:LGVI, Runge-Kutta with
rotation matrices:RK.RotMat, Runge-Kutta with Euler-angles:RK. EulAng, Runge-Kutta with quaternions:RK.qua
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It is interesting to see that the Runge-Kutta method using quaternions, which is generally as-

sumed to have better computational properties than the kinematics equation with rotation matrices,

has a larger total energy error and a larger orthogonality error. Since the unit length of the quater-

nion vector is not preserved in the numerical computations, the orthogonality errors arise when

converted to a rotation matrix. This suggests that, even with conventional (non-geometric) inte-

grators, the rotation matrix has better computational properties than quaternions for the rigid body

dynamics.
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3.3.6 Full Body Problem

Consider the full body problem presented in

Discrete-time Euler-Lagrange Equations. The configuration manifold of the full n body problem
is (SE(3))™. Since the dynamics of the full body system are only coupled through the mutual
potential, the development for a single rigid body, presented in [Section 3.3.5] is readily extended to

the full n body problem to obtain the discrete-time Euler-Lagrange equations.

Jo, By, — FY_ Ja, — (FyJu, — Ja, FL) + h*M;, = 0, (3.137)
™m; oUy,
h—;(xikﬂ — 2%, +xiy_,) = e (3.138)
ik
where the subscript ¢ refers to the i-th rigid body for ¢ € {1,...,n}. Similarly, discrete-time

Hamilton’s equations given by (3.133)-(3.136) can be easily extended to the full n-body problem.

Discrete-time Reduced Euler-Lagrange Equations. When the mutual potential depends only on
the relative positions and the relative attitudes of rigid bodies, the Lagrangian is invariant under the
action of SE(3), and the configuration manifold can be reduced to a quotient space (SE(3))" 1.

Discrete-time reduced Euler-Lagrange equations for the full two body problem have been de-
veloped in |Lee et al| (2007bjc). The procedure to derive discrete-time reduced Euler-Lagrange
equations is the same as the procedure presented in The expressions for the variations
should be carefully developed for the reduced variables. Here, we present the resulting discrete-time
reduced Euler-Lagrange equations for the full two body problem. The detailed development can be
found in Lee et al. (2007c)).

The discrete-time reduced Euler-Lagrange equations for the full two body problem are given by

h? oU,
T
Fo, X —2X, +F5, X, | = —EaX’;, (3.139)
FyJam, — Jarg Fryy = oy (Fodar, — Jar FyL) Fa — h* Mg, (3.140)
ou -
Py day — Jan Foy = Fy, (FoJay, — Ja, Fo,) Fo, +h° X, % ax T R M1, (3.141)
k+1
R,,, =F) FR, (3.142)
Ry, = Ry, Iy, (3.143)
The discrete Legendre transformation yields the discrete-time Hamilton’s equations.
r, h? U,
_ T
X = Fy, <Xk+hm’“—2maX’;>, (3.144)
h oU, h oU,
r :F2T<F - = k)- L (3.145)
s AP 20X, 20X,
T h h
ch+1 = sz I, — §Mk B §Mk+1’ (3.146)
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h ou h h oUu h

oX, 2 0X,,, 2 v
R, =F) FR,, (3.148)
h A\
h (Hk - 2Mk> = F,Jar, — Jar F, (3.149)
h oU  h A
h <H2k + EX’“ X e + 2Mk> = Iy, Jg, — Jd2F27;7 (3.150)
k

where the reduced variables for the linear momentum and the angular momentum are given by
I'= mV, II = JRQ = leﬁl, and HQ = JQQQ.

Numerical Results. We simulate the dynamics of two simple dumbbell bodies acting under their
mutual gravity. Each dumbbell model consists of two equal rigid spheres and a rigid massless
connecting rod. This dumbbell rigid body model results in a simple closed form for the mutual

gravitational potential given by

2

UX R =- )

p,g=1

Gmima /4
| X + p2, + Rpy, ||’

where G is the universal gravitational constant, m; € R is the total mass of the ith dumbbell, and
Pi, € R3 is a vector from the origin of the body-fixed frame to the pth sphere of the ith dumbbell in
the ith body-fixed frame. The vectors p;; = [I;/2,0,0]%, p;, = —pi,, where [; is the length between
the two spheres.

The mass and length of the second dumbbell are twice that of the first dumbbell. The other
simulation parameters are chosen such that the total linear momentum in the inertial frame is zero
and the relative motion between the two bodies are near-elliptic orbits. The trajectories of the two
dumbbell bodies are shown in

We compare the computational properties of the Lie group variational integrator (LGVI) with
other second order numerical integration methods: an explicit Runge-Kutta method (RK), a sym-
plectic Runge-Kutta method (SRK), and a Lie group method (LGM). One of the distinct features of
the LGVI is that it preserves both the symplectic property and the Lie group structure for the full
rigid body dynamics. A comparison can be made between the LGVI and other integration methods
that preserve either none or one of these properties: an integrator that does not preserve any of these
properties (RK), a symplectic integrator that does not preserve the Lie group structure (SRK), and a
Lie group integrator that does not preserve symplecticity (LGM). These methods are implemented
by an explicit mid-point rule, an implicit mid-point rule, and the Crouch-Grossman method pre-
sented in Hairer et al.| (2000) for the continuous equations of motion (2.108)—(2.113)), respectively.
For the LG VI, the discrete-time equations of motion given by through are used. All
of these integrators are second order accurate. A comparison with a higher-order integrator can be
found in [Fahnestock et al.| (2006).

shows the computed total energy response over 30 seconds with an integration step
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size h = 0.002 sec. For the LGVI, the total energy is nearly constant, and it has no tendency to drift;
while the other integrators fail to preserve the total energy. This can be observed in
where the mean total energy deviations are shown for varying integration step sizes. It is seen that
the total energy errors of the SRK method is close to the RK method, but the total energy error
of the LGVI is smaller by several orders. shows the mean orthogonality errors. The
LGVI and the LGM conserve the orthogonal structure at an error level of 10~'°, while the RK and
the SRK are much less accurate.

These computational comparisons suggest that for numerical integration of Hamiltonian sys-
tems evolving on a Lie group, such as full body problems, it is critical to preserve both the symplec-
tic property and the Lie group structure. For the RK and the SRK, the orthogonality error in the ro-
tation matrix corrupts the attitude of the rigid bodies. The accumulation of this attitude degradation
results in significant errors in the computation of the gravitational forces and moments dependent
upon the position and the attitude, which affect the accuracy of the entire numerical simulation. The
LGM conserves the orthogonal structure of rotation matrices numerically, but it does not respect
the characteristics of the Hamiltonian dynamics properly as a non-symplectic integrator; this causes
a drift of the computed total energy. The LGVI is a geometrically exact integration method in the
sense that it preserves all of the geometric features of the full rigid body dynamics concurrently.
This verifies the superiority of the LGVI in terms of computational accuracy. The performance
advantages of the LGVI becomes even more dramatic as the simulation time is increased.

Computational efficiency is compared in where CPU times of all methods are
shown for varying step sizes. The SRK has the largest CPU time requiring solution of an implicit
equation in 36 variables at each integration step. The RK and the LGM require similar CPU times
since both are explicit. It is interesting to see that the implicit LGVI actually requires less CPU time
than the explicit methods RK and LGM. This follows from the fact that the second order explicit
methods RK and LGM require two evaluations of (2.108)—(2.1T3), including the expensive force
and moment computations at each step. The LGVI requires only one evaluation at each step in ad-
dition to the solution the implicit equation. The computational approach described in
is efficient for solving the implicit equation (3.149) and hence it takes less time than the evalua-
tion of (2.108)—(2.113). The difference is further increased as the rigid body model becomes more
complicated since it involves a larger computation burden in computing the gravitational forces and
moments. Based on these properties, we claim that the LGVI is almost explicit. This comparison
demonstrates the higher computational efficiency of the LGVI.

In summary, comparing both [Figure 3.7(c) and [3.7(¢), we see that the LGVI requires 16 times
less CPU time than the LGM, 35 times less CPU time than the RK, and 98 times less CPU time than

the SRK for similar total energy error in this computational example for the full body problem.
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Figure 3.7: Numerical simulation for a full two body problem (Explicit Runge-Kutta:RK, symplectic Runge-Kutta:SRK,
Lie group method:LGM, and Lie group variational integrator:LGVI )
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3.3.7 Two Rigid Bodies Connected by a Ball Joint

Consider the two rigid bodies connected by a ball joint presented in [Section 2.3.7

Configuration Manifold. The configuration manifold is SO(3) x SO(3) x R3. The discrete update
map (3.11) can be written as

(R, Roy s 2pp1) = (Ruy,, Ray, xp) (P, oy, Axy)
= (Ry F1,, Roy Fo, , xp, + Axy)

for (F1,, Fy, , Axy) € SO(3) x SO(3) x R3. The adjoint operator also has product structure.
Ad(p, ) (1, T2, &) = (FY Y FaioFy ), Ad{p g, (01,72, 2') = (F{ ip Py, Fy g Fa, ).
Discrete Lagrangian. Recall that, from (2.114)), the Lagrangian is given by
: 1 .1 1
L(Ry, Ry, , M, 2, 8) = §(m1 +mo)d - &+ S N1+ S0 - Ty
+x- (mllehdl + ngQQng) — U(Rl, Rs, ZL')

for a configuration dependent potential U : SO(3) x SO(3) x R3 — R.
For g, = (Ri1,, Ra,,, zx) and f, = (F1,, Fy, , Axy), the discrete Lagrangian is chosen as

m1+m 1 1
La(gx, fr) = #Aﬂik CAxp + 5 u{(sxs — Fu)da ] + 5 ul(axs = £2,) o]
1 1
+ Etr[mlle (Flk — ngg)dlAl'g] + Etr[mQRQk (ng — ngg)dzAl’g]
— hU(gk)-

We find the expressions for the derivatives of the discrete Lagrangian. Using the identity given in

(3.68), we obtain

(5(t1'[([3><3 - FZk)sz]) = tr[_éFidei] = tr[_Fij;;éFik JdiFik] = <F17;;5Flk7 JdiFik - FiTJ > .

k7

Similarly, we have

+ ACE%?TL%R% (Fz - I)di.

From these, we have

x 1 1
TELF% 'DFidek = E(Jdl — mzdzAngzk)sz — E

Ad, 1(TiLr, -Dp, La,) = F (Tily, - Dr, La,)FL

) Uk
'k
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* m; m; N
Tilgr, -Dg, La, = TR;v’;A:ckd;v”(Fg; -1 =5 (B, — Id; Az} R;, — hM;,,
1 m m
D$k+1Ldk = E(ml + mg)AIk + TlleAwkdl + TQRQkAwkdg,
1 m m oU
Doy Lay, = =5 (m1 +mz)Azy, — Tlle(Flk —I)dy — 7232k(F2k —I)dy — hi@x:'

Discrete Euler-Lagrange Equations. Substituting these into (3.10), we obtain the discrete Euler-

Lagrange equations for the two rigid bodies connected by a ball joint as

T T T AT - 97
Aik+1Fik+l B Fik+1Aik+1 + AlkFlk - szAzk = hB;, +h"M;,, (3.151)
Aip = Jiy — miR] (wpq1 — m)d] (3.152)

A my m;
By = - (Fiy = Ddi(wp1 — z) R, — 733; (Tps1 — zp)d] (FL = 1), (3.153)
Ri,,, = Ri, Fi, (3.154)

1 m
1 ma) (s = 2+ ax) + 5 (R, (Fiyy = 21) + Ra)ds
AU 1 (3.155)

8l‘k+1

m2
h

+ (R2k+1 (F2k+1 - 21) + RQk)dQ =—h

for i € {1,2}. These equation can be solved by a fixed point iteration for x; 5. For given
(Ry,,, Roy, F1,, Fy,, o), T4 1), We guess w12, Then, Fj, , can be obtained by solving (3.151),
and R;, , is obtained by (3.154). The new value of x442 is given by (3.155). This procedure is

repeated until xx o converges.

Discrete Legendre Transformation. Using the discrete Legendre transformation, the discrete equa-

tions of motion in Hamiltonian form are given by

~ 1 m; ~
bi, = E(Fikjdi — Ja, FEEY + —2(RT (w1 — wp)dl — di(wpsr — 1) Ri,) + h My, (3.156)

1 Uk h ik
Pinss = Fit (pi, — Bi, — hMy), (3.157)
A~ m; my;
By, = == (Fiy = Ddi(zpe1 — k) Ry, — TRZ; (wpt1 — z)d] (FiE = 1), (3.158)
1 m m oU,
p3, = E(ml + m2)(l’;€+1 - :L'k) + #le(Flk — I)dl + TQR% (ng — I)dg — haix:,
(3.159)
oU},
D31 = D3y, — haTck’ (3.160)
R, ., = R F;, (3.161)

for i € {1,2}. For given (R, Ra, ,zk, 1, 2,, Tx), we find (p1,, p2,,p3,) using (2.119). We
solve y iteratively: we guess w41, and solve (3.157) to obtain Fy, . Then, the new value

of 441 is obtained by (3.159). This procedure is repeated until 1 converges. Then, p;,
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and p3, ., are obtained by (3.157) and (3.160), respectively, and Ry, , Rg, , are obtained by
(3.161). Using (2.119), we find (21, ,,%Q92,,,,Tx+1). Thus, this yields a discrete-time flow map
(Ra,, Roy s ok, 1,5 Qo5 k) — (Rugyys Royyys Ty, Q1,05 Q2,415 Zry1), and this process is re-

peated.

Numerical Results. We assume there is no potential field, U = 0. We choose two elliptic cylinder

rigid bodies with different shapes. The properties of the rigid bodies are given by

my = 2km, Ji = diag[0.1000, 1.1558, 1.2358]kgm?, d; = [—0.75,0,0]m, (3.162)
my = lkm, Jo = diag[0.0325,0.2200, 0.2325]kgm?, dp = [0.45, 0, 0]m. (3.163)

The initial conditions are chosen such that the total linear momentum is zero.

Rlo = I, Qlo = [0,0.5,0]rad/s, R20 = I, QQO = [1,0,0}1"&(1/8,
xo = [0.35,0,0lm, 4o =[0,0,—0.25]m/s.

Figure 3.8| shows the computed total energy, total linear momentum, and total angular mo-
mentum for the Lie group variational integrator and a 4(5)-th order variable step size Runge-Kutta
method. Since there is no potential, the total linear/anguar momentum should be preserved. The
Lie group variational integrators preserve the conserved quantities numerically, but there is notable

dissipation for the Runge-Kutta method.
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(a) Two rigid bodies connected by a ball joint

(c) Computed total linear momentum
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(d) Computed total angular momentum

Figure 3.8: Numerical simulation for two rigid bodies connect by a ball joint (LGVI: red, solid, RK4(5): blue, dotted)
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3.3.8 Computational Approach

Most of the discrete-time Euler-Lagrange equations presented in this section include implicit equa-
tions. In particular, we need to find the relative update of the group elements represented by the
group action of fi € G at each discrete time step. Since the implicit equations are solved repeatedly
at each time step, it is important to develop a fast computational algorithm for overall computational
efficiency of the presented discrete Euler-Lagrange equations.

The essential idea is expressing the group element f; € G in terms of a Lie algebra element
using the exponential map. The exponential map is a local diffeomorphism from the Lie algebra
g near zero to the Lie group G near the identity element. Since f; represents the relative update
between two adjacent integration steps, it is close to the identity. Therefore, the implicit equations
can be expressed at the Lie algebra level.

This is desirable since the Lie algebra is a linear vector space. The implicit equation is solved
numerically in the linear space, and the corresponding group element is obtained by the exponential
map. Since the solution of the implicit equation is close to zero in the Lie algebra, the implicit
equation is easily solved as the step size is decreased.

In this section, we present a computational approach to solve the implicit equation on SO(3)
appearing in the discrete-time Euler-Lagrange equations for the 3D pendulum. This is the simplest,
but nontrivial, form of the implicit equation. The computational approach for other mechanical
systems can be obtained by extending the approach.

The discrete-time Euler-Lagrange equations and the discrete-time Hamilton equations
have the following form of the implicit equation; for given a € R? and J; € R3*3, we need
to find ' € SO(3) satisfying

a=FJ;— JFT. (3.164)

We rewrite this equation on R? ~ s0(3) using the exponential map and the Cayley transformation,

to which a Newton iteration method is applied.

Exponential map

The exponential map on SO(3) has a closed form expression, referred to as Rodrigues’ formula (see
Marsden and Ratiul{1999):

sin £l ; . 1= cos I/
AT

for f € R3. This physically represents the rotation about the axis f with the rotation angle || f||.

Substituting (3.165) into (3.164) and using the properties de + de = j} fj}” — j}”f =

f x Jf, we obtain

F=expf=I33+ 12 (3.165)

sin £l = 1— cos||f]| ——
2Ny —_ Jf.
e T

d:
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Thus, is converted into an equivalent vector equation in R? as

sin [1£] 1 cos | f]|
J
TR

where A : R3 — R3. We use the Newton method to solve this nonlinear vector equation 0 = A(f).

0=—a+

FxJf = A(f). (3.166)

We use the following iteration formula iteration
FOrY = fO = VA(FO) T AFD), (3.167)

where the Jacobian VA(f) in (3.167) can be expressed as

o SIS =sinlfl o sinlf
VAU) TR T
sin | £ L1l  2(1 — cos L £1) c o l—coslfl [ -
+ o) it Ay A
Tk It + = =TT+ 1)

We iterate until || f+1) — f(@)|| < ¢ for a given tolerance €, and we find the rotation matrix F' using
Rodrigues’ formula (3.165)). The initial guess can be selected as the solution of the linearized vector
equation , which gives f(©) = J~1q, or the solution at the previous time step can be used as
the initial guess for the current step.

The implicit equation expressed in R? using the exponential map is well defined, since
the rotation matrix F' represents the relative attitude update near the identity matrix. This computa-
tional approach technically avoids the nonlinear constraints associated with the rotation matrix F;
the equivalent vector equation is iterated in R3.

However, the complicated expression for the Jacobian written in terms of trigonometric func-
tions may not be desirable for overall computational efficiency. Thus, we present another compu-
tational approach using the Cayley transformation. This approach reduces the computational load
using a numerically-efficient local diffeomorphism; the essential idea of solving an equivalent vec-

tor equation in R? is the same as before.

Cayley transformation

The Cayley transformation is a local diffeomorphism between SO(3) and R? given by

F= CaY<fC) = ([+fc>(l_ fc)il = (I_ fc)il(I"i_fc)

_ b g ; T
= 1+fépfc((l fe f) I +2fc +2fcfe) (3.168)

for f. € R3. This represents a rotation of a rigid body along the direction f./ || f.|| with rotation
9. It can be shown that exp f = Cay(tan A ). Thus,

2 2 [l
the Cayley transformation can be considered to be a modification of the exponential map, where

angle 6 determined by || f.|| = tan

the rotation angle is encoded in a different way. But, the Cayley transformation has the numerical

advantage that it does not require evaluation of computationally-expensive sin and cos terms.
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Using the Cayley transformation, we transform the implicit equation into an equivalent
vector equation. Since the two matrices (I + f.) and (I — f.)~! commute, we can write the Cayley

transformation in the following form for convenience.

I+
F = Cay(f.) = =
‘ I— fc
Substituting this into (3.164)), we obtain
I+ f. I-f.
a= +f:CJd—Jd Jic.
I— fc I+ fc

Multiplying this by I — fc on the left side, by I + fc on the right side, we have
(I = fo)aI + fo) = (I + fo) Ja(T + fe) = (I = fe) Ja(I — fo),
i+ ax fo feafe= fedat Jafe+ fela+ Jafe.
Using the following identities
fexa=fia—afe, Tfe=Jafe+feda, feafe=—(a"f)fe
we obtain
(a+ax fo+ fola” f))" = 2T f..
Therefore, is converted into an equivalent vector equation in R? as
0=a+ax fotfola’ fo) =2/ fe = Ac(fo). (3.169)

where A, : R? — R3. We use a Newton iteration to solve this nonlinear vector equation 0 = A.(f).

We use the following iteration

D = 119 = VAL A(FD), (3.170)
where the Jacobian VA, (f.) is given by

VAf.) = a+ (al f)I + foa® —2J. (3.171)

We iterate until H fOEHD @) H < € for a given tolerance €, and we find the rotation matrix using
the Cayley transformation (3.168)). The initial guess can be selected as the solution of the linearized
vector equation of , which gives fc( = (2J — @) 'a, or the solution from the previous time
step can be used as the initial guess for the current step.
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3.3.9 Summary of Computational Properties

We have derived discrete-time Euler-Lagrange equations for several rigid body systems evolving on
a Lie group, and computational results are presented. Here, we summarize the computational prop-
erties of the Lie group variational integrator compared to other numerical integrators for dynamics

of rigid bodies.

Computational Accuracy. The Lie group variational integrators preserve the geometric properties
of mechanical systems on a Lie group. In particular, the computed total energy, momentum map,
and deviation from the Lie group configuration manifold are presented. As shown at
[3.3(b), 3.5(a), 3.6(c), 3.7(b)l and [3.8(b), the computed total energy of the Lie group variational

integrator oscillates near the initial value, but there is no increasing or decreasing drift for long time

periods. This is due to the fact that the numerical solutions of symplectic numerical integrators
are the exact solution of a perturbed Hamiltonian (see Hairer|[{1994). The perturbed value of the
Hamiltonian is preserved in the discrete-time flow. This is in contrast to other numerical integrators
evaluated in this dissertation, such as the explicit Runge-Kutta method, the symplectic Runge-Kutta
method, and (non-symplectic) Lie group methods, where the computed total energy increases (or
decreases) linearly with the simulation time.

The Lie group variational integrators preserves the momentum map exactly as discussed in
This can be observed in [Figure 3.3(d)| [3.8(c)| and [3.8(d), where the value of the
momentum map is preserved up to machine precision. From the numerical simulation of the 3D
pendulum on a cart in the mass center of the system is fixed in space, since the Lie
group variational integrator conserves the zero value of the total linear momentum. But the location
of the mass center for the explicit Runge-Kutta method drifts, as shown at since it

does not accurately preserve the total linear momentum. Comparing the terminal configurations of

both methods in [Figure 3.5(f)| and [Figure 3.5(g)l we see that the computational results obtained by

the explicit Runge-Kutta method are not reliable.

The structure of the Lie group configuration manifold is well preserved in the Lie group varia-

tional integrator. As shown in [Figure 3.4(c)| [3.5(b)| [3.6(d)| and [3.7(d)} the deviation of the discrete-

time flow from the Lie group, measured by the orthogonality error HI —~RT'R

, remains at machine

precision. But interestingly, the orthogonality error increases linearly with respect to the simulation
time, and accordingly, the mean orthogonality error increases as the time step decreases for a fixed
simulation time. This is due to the accumulation of roundoff errors. For example, since the rota-
tion matrix in SO(3) is updated by the group action of SO(3), which is matrix multiplication, the
k-th rotation matrix is obtained by k£ matrix multiplications, i.e. Ry = RoFp - - - Fi—1. The round-
off error at each matrix multiplication accumulates, and therefore the orthogonality error increases
linearly. The roundoff errors are unavoidable in any numerical computation with a finite digit rep-
resentation, and they are usually indiscernible. Here we can actually observe the accumulation of
roundoff errors, since there is no source for the orthogonality error except the roundoff errors in the

numerical computations. The magnitude of the orthogonality error is acceptable for any practical
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purpose. In summary, the Lie group variational integrators preserve the Lie group structure up to
roundoff errors. The explicit Runge-Kutta method and the symplectic Runge-Kutta method do not
preserve the structure of the Lie group. As shown at [Figure 3.5(b) and [3.7(d)| the orthogonality
error for these methods are about 10'° times larger than the Lie group variational integrators, and

consequently, the attitude of the rigid body is not computed accurately.
In summary, the Lie group variational integrators are geometrically accurate numerical integra-
tors in the sense that they preserve all of the geometric properties of the dynamics of rigid bodies,

such as symplecticity, momentum map, total energy, and Lie group structure.

Computational Efficiency. In|Section 3.3.8] computational approaches to solve the implicit equa-
tions in the Lie group variational integrator are developed. The essential idea is to write the implicit
equations in terms of a Lie algebra element using the exponential map, and numerically solve the
transformed implicit equation in a vector space. The corresponding computational requirements
are much smaller than for the fully-implicit symplectic Runge-Kutta method. In we
have shown that if the discrete Lagrangian is carefully chosen to minimize the number of function
evaluations at each step, then the computational requirements of the Lie group variational integrator
are comparable to the explicit integrators for the same step size. Therefore, we claim the Lie group
variational integrator is almost explicit.

For the same level of total energy error, the Lie group variational integrators are faster than the
explicit Runge-Kutta method, the symplectic Runge-Kutta method, and the Lie group method by
several times. This computational advantage is due to the fact that latter integrators do not preserve
all, or one, of the symplecticity and the Lie group structure of the rigid body dynamics.

The RATTLE algorithm is a symplectic numerical integrator for a constrained Hamiltonian
system (see [Leimkuhler and Reich|2004). By considering the orthogonal structure of the rotation
matrix as a nonlinear constraint, one can construct a symplectic numerical integrator that preserves
orthogonality using the RATTLE algorithm. A numerical comparison for the 3D pendulum model
shows that the Lie group variational integrator is faster than the RATTLE algorithm by 17-60%.
This illustrates that it is more efficient to expressing the relative update of group elements in terms
of the Lie algebra elements as proposed in this dissertation, than considering the group structure as
a nonlinear constraint that should be satisfied at each integration step.

In summary, the Lie group variational integrators have similar computational requirements com-
pared to other explicit numerical integrators for the same step size, and they are substantially more

efficient than other numerical integrator for the same level of numerical accuracy.

100



3.4 Examples of Mechanical Systems on Two-Spheres

Several mechanical systems evolving on a product of two-spheres have been introduced in
tion 2.4} and the corresponding expressions for inertia matrix, potential, and equations of motion
were presented. For the mechanical systems whose Lagrangian is expressed as (2.26)), the expres-
sions for the inertia and the potential determine the corresponding discrete-time Euler-Lagrange
equations according (3.40), (3.52), (3.53), and (3.54). Therefore, the discrete-time Euler-Lagrange
equations for the mechanical systems presented in have already been obtained. In this
section, computational results for the discrete-time Euler-Lagrange equations on two-spheres are

presented.
Section Mechanical System

3.4.1 Double Spherical Pendulum
3.4.2 n-body Problem on a Sphere
3.4.3 Interconnection of Spherical Pendula
3.4.4 Pure Bending of Elastic Rod
3.4.5 Spatial Array of Magnetic Dipoles
3.4.6 Molecular Dynamics on a Sphere

3.4.1 Double Spherical Pendulum

Consider the double spherical pendulum presented in Recall that the inertia matrix is
given by My, = (m1 + mg)l%, Mio = mslyly, and Moy = mQZ%, and the gravitational potential is

written as U (q1, g2) = —(m1 +ma2)glies - g1 — maglaes - go. Substituting these into (3.49)—(3.52),
the discrete-time equations of motion for the double spherical pendulum are given by

(m1 +ma)liqu, % Fi,q1, + q1, x malila(Fs, — I)go,
K2 (3.172)

- 41, X (m1 + M2)9l1€3,

= (m1 + mg)l%hwlk —q1, X m2l1l2(QQk X hwgk) + 5

mal3qe, X Fauqu, + gz, X malila(Fy, — Dy,
2 (3.173)
= mzl%h(ugk —q2, X mglllg(qlk, X hwlk) + ?qlk X magloes,

Qi = Froq1,, @200 = F2,92,, (3.174)

(m1 + ma)l3x3 —m211l2(§1k+162k+1] [w1k+1]

f 2
—malilaGo, G,y mal513x3 W2y

. N (3.175)
_ [hqml x malila2(q2, ., — q2;,) + 51,4, X (M1 +m2)glies

Fq2,00 X malila(quy,, — q1,) + %QQk+1 X maglaes

We compare the computational properties of the discrete-time equations of motion with a 4(5)-
th order variable step size Runge-Kutta method for (2.124)—(2.123). We choose m; = my = 1 kg,
li = la = 9.81m. The initial conditions are q;, = [0.8660, 0, 0.5], g2, = [0, 0, 1], w1, =
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Figure 3.9: Numerical simulation for a double spherical pendulum (RK45: blue, dotted, VI: red, solid)

[—0.4330, 0, 0.75], wa, = [0, 1, 0] rad/sec. The simulation time is 100 sec, and the step size of the
discrete-time equations of motion is A = 0.01. shows the computed total energy and the
configuration manifold errors. The variational integrator preserves the total energy and the structure
of (S?)™ well for this chaotic motion of the double spherical pendulum. The mean total energy
variation is 2.1641 x 10~° Nm, and the mean unit length error is 8.8893 x 1015, There is a notable
increase of the computed total energy for the Runge-Kutta method, where the mean variation of
the total energy is 7.8586 x 10~ Nm. The mean deviations of the angular momentum about the
gravity direction are 1.0217 x 10719 kgm? /s for the variational integrator, and 8.0497 x 10~ for
the Runge-Kutta method, respectively. The Runge-Kutta method also fails to preserve the structure
of (S2)™. The mean unit length error is 6.2742 x 1075,

3.4.2 n-body Problem on a Sphere

Consider the n-body problem on a sphere presented in It deals with the motion of n
mass particles constrained to lie on a two-sphere, acting under a mutual potential. Recall that the
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Figure 3.10: Numerical simulation for a 3-body problem on sphere (RK2: blue, square, VI: red, circle)

inertia matrix is given byM;; = m; when i = j, and M;; = 0 otherwise, and the gravitational
potential is given by U(q1,...,qn) = —3 > \/%. Substituting these into (3.53)—(3.54),
¥

the discrete-time equations of motion are given by
o\ 1/2
) gi,, (3.176)

h? ouU, h? oU,
Qi1 = (hwik — o5 i X k) X iy, + <1 - thik — 5 Qi X Wk

h oU,, h OUk 11
o h U,  h 3.177
Wiky1 = Wik 2m; Tix X g,  2my Tirs1 > 8Qik+1’ ( )
where
oU,, . i djy,
04, j=1 (1 — (g, ‘ij)2)3/2
i

A two-body problem on the two-sphere under this gravitational potential is studied in [Hairer
et al.[(2003) by explicitly using unit length constraints. Here we study a three-body problem, n = 3.
Since there are no coupling terms in the kinetic energy, we use the explicit form of the variational
integrator. We compare the computational properties of the discrete-time equations of motion with
a 2-nd order fixed step size Runge-Kutta method for . We choose m1 = mo = m3 = 1,
and v = 1. The initial conditions are q1, = [0, —1, 0], ¢2, = [0, O, 1], g3, = [-1, 0, 0], w1, =
[0,0, —1.1], wp, = [1, 0, 0], and w3, = [0, 1, 0]. The simulation time is 10 sec.
shows the computed total energy and the unit length errors for various step sizes. The total energy
variations and the unit length errors for the variational integrator are smaller than those of the Runge-
Kutta method for the same step size by several orders of magnitude. For the variational integrator,
the total energy error is reduced by almost 100 times from 1.1717 x 10~* to 1.1986 x 10~ when
the step size is reduced by 10 times from 1073 to 10~%, which verifies the second order accuracy

numerically.
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Figure 3.11: Numerical simulation for an interconnection of 4 spherical pendula (RK2: blue, dotted, RK2 with
projection: black, dashed, VI: red, solid)

3.4.3 Interconnection of Spherical Pendula

Consider the interconnection of spherical pendula presented in Recall that the inertia

matrix is given by M;; = mil? when i = 7, and M;; = 0 otherwise, and the potential is given by

2
U(qi,- - an Znglz% €3+ Z ( —H?"z‘j\l) -

z ] €~
Substituting these into (3.53)—(3.54), the discrete-time equations of motion are given by

o\ 1/2
) q’ika

(3.178)

1 1
rij + 5kt — 5l

h? Uy h2 Uy
Qip 1 = (hwik - Qmilzqi’“ X 3q- > X Qi + (1 — thik — Zmilz Qi) X aq-

ik ik

h (9Uk h 8Uk+l

k 2mll12 h 8qik szlg Zk+1 Oqlkﬂ

Wiy = Wi (3.179)

We compare the computational properties of the discrete-time equations of motion with a 2-
nd order fixed step size explicit Runge-Kutta method for (2.126)—(2.127), and the same Runge-
Kutta method with reprojection; at each time step, the vectors ¢;, are projected onto S? by using
normalization.

We choose four interconnected pendula, n = 4, and we assume each pendulum has the same
mass and length; m; = 0.1kg, I; = 0.1m. A set = is defined such that (i,7) € Z if the i-th
pendulum and the j-th pendulum are connected. We choose = = {(1,2),(2,3),(3,4),(4,1)}, and

the corresponding spring constants and the relative vector between pivots are given by x12 = 10,

k12 = 20, k12 = 30, k12 = 40N/m, 119 = —r34 = e, and r93 = —r4; = —l;eo. The initial
conditions are chosen as q1, = g2, = q4, = €3, q3, = [0.4698,0.1710, 0.8660], wy, = [—10,4, 0],
and wo, = w3, = wy, = Orad/sec

shows the computed total energy and the unit length errors. The variational inte-

grator preserves the total energy and the structure of (S?)™ well. The mean total energy variation

is 3.6171 x 1075 Nm, and the mean unit length error is 4.2712 x 107!, For both Runge-Kutta
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Figure 3.12: Numerical simulation for an elastic rod (RK45: blue, dotted, VI: red, solid)

methods, there is a notable increase of the computed total energy. It is interesting to see that the re-
projection approach increases the total energy error, even though it preserves the structure of (S%)"
accurately. This shows that a standard reprojection method can significantly corrupt numerical tra-

jectories (see [Hairer et al.[2000; Lewis and Nigam|2003)).

3.4.4 Pure Bending of Elastic Rod

Consider the pure bending motion of a slender elastic rod presented in Recall that the

moment of inertia matrix is given by

1 n
p=i+1

1 n
Mij =5 p;lzmpzjzi + miljl;

for 1 < i < j < n, and the potential is given by

n i—1

1 ET
U(q17"'7Qn)—; —m;g ;(Jﬂj—l—zliqz‘ '63+@(1—qi—1'qi)

Substituting these into (3.49)—(3.52)), we obtain the discrete-time equations of motion.

We compare the computational properties of the discrete-time equations of motion with a 4(5)-
th order variable step size Runge-Kutta method. We choose 10 rod elements, n = 10, and the
total mass and the total length are m = 55g, [ = 1.1, m. The spring constants are chosen as
ki = 1000 Nm. Initially, the rod is aligned horizontally; g;, = e; for all ¢ € 1,...n. The initial
angular velocity for each rod element is zero except ws, = [0,0,10]rad/sec. This represents
the dynamics of the rod after an initial impact. The simulation time is 3 sec, and the step size is
h = 0.0001.

shows the computed total energy and the unit length errors. The variational in-

tegrator preserves the total energy and the structure of (52)”. The mean total energy variation is
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1.4310 x 10~% Nm, and the mean unit length error is 2.9747 x 10~!4. There is a notable dissipation
of the computed total energy for the Runge-Kutta method, where the mean variation of the total
energy is 3.5244 x 104 Nm. The Runge-Kutta method also fail to preserve the structure of (52)".
The mean unit length error is 1.8725 x 1075,

3.4.5 Spatial Array of Magnetic Dipoles

Consider the spatial array of magnetic dipoles presented in [Section 2.4.50 Recall that the inertia
matrix is given by M;; = l—gmzlz2 when 7 = j, and M;; = 0 otherwise. The magnetic potential is

given by
U( ) lfj ] [( R P >]
qu---aq = — _— qq —7(]7« qrr ,
VT2 el [P T g
J#i

Substituting these into (3.53)—(3.54), we obtain the discrete-time Euler-Lagrange equations as

1/2
6h> au, 6h? oU; ||*
Qipir = (hwz‘k - W%k X 8qk) X giy + <1 - thik - quk X Wk iy, (3.180)
1l 1k 1Y 1k
(3.181)

6h  OUx _ Gh « ka1
Wi = w;, — ——=0; Yk
ot bk mil? @i 9qi,, ’mz'liz Tirs 8Qik+1 ’

where

Oy _ N~ _Hvivy [._ 3 A,A.Hﬂ
9, ~ 2 el [P |9 T 1))
J#i
We compare the computational properties of the discrete-time equations of motion with a 4(5)-th
order variable step size Runge-Kutta method for (2.136)—(2.137). We choose 16 magnetic dipoles,
n = 16, and we assume each magnetic dipole has the same mass, length, and magnitude of magnetic
moment; m; = 0.05kg, [; = 0.02m, v; = 0.1 A - m?. The magnetic dipoles are located at vertices
of a 4 x 4 square grid in which the edge of a unit square has the length of 1.2/;. The initial
conditions are chosen as ¢;, = [1,0,0], w;, = [0,0,0] for all « € {1,...,16} except qi5, =
[0.3536,0.3536, —0.8660] and w1y, = [0, 0.5, 0] rad/sec.
shows the computed total energy and the unit length errors. The variational inte-
grator preserves the total energy and the structure of (S?)" well. The mean total energy variation
is 8.5403 x 10~'° Nm, and the mean unit length error is 1.6140 x 10!, There is a notable dissi-
pation of the computed total energy for the Runge-Kutta method, where the mean variation of the
total energy is 2.9989 x 10~" Nm. The Runge-Kutta method also fail to preserve the structure of
(S?)™. The mean unit length error is 1.7594 x 1074,
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Figure 3.13: Numerical simulation for an array of magnetic dipoles (RK45: blue, dotted, VI: red, solid)

3.4.6 Molecular Dynamics on a Sphere

Consider the molecular dynamics model on S? presented in [Section 2.4.6| Recall that the inertia
matrix is M;; = m; when ¢ = j, and M;; = 0 otherwise. The Lennard-Jones potential is given by

U(qlwqu):;zn:% (J>12_ (0'>6 |

5 llai — gl llai — gl
ji

Substituting these into (3.53)—(3.54), we obtain the discrete-time Euler-Lagrange equations as

) ) o\ 1/2
h h % 8Uk % 4 1 h h % 6Uk
. = ( hw, — . . —Mhw: — ) .
Q’Lk+1 1k 2mzl12 Q’Lk 8qzk Q’Lk 1k 2m1ll2 sz 8q2k Q’Lk 9
(3.182)
h OU,, h OUg+1
W =W, — —— i, X — — —— X (3.183)
k1 23 Qmil? 23 3%@ 277%‘11-2 Tk+1 8Qik+1
where
Uy _ Z": i =4 122 60°
94i) = lai—gll g —gl”  lla—gll”
J#i

We choose 642 molecules, n = 642, and we assume each molecule has the same mass, m; = 1.
Initially, molecules are uniformly distributed on a sphere. The strength of the potential is chosen
as € = (.01, and the constant ¢ is chosen such that the inter-molecular force between neighbor-
ing molecules is close to zero. The initial velocities are modeled as two vortices separated by
30 degrees. The simulation time is 5, and the step size is h = 0.005.

Trajectories of molecules and the computed total energy are shown in The mean
deviation of the total energy is 1.8893 x 1073, and the mean unit length error is 5.2623 x 1071, In
molecular dynamics simulations, macroscopic quantities such as temperature and pressure are more
useful than trajectories of individual molecules. shows the change of kinetic energy
distributions over time, which measures the temperature (see Allen and Tildesley|[1987); the sphere
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Figure 3.15: Numerical simulation for molecular dynamics on a sphere: kinetic energy distributions over time

is discretized by an icosahedron with 5120 triangular faces, and the color of a face is determined by
the average kinetic energy for molecules that lie within the face and within its neighboring faces.
The local kinetic energy is represented by color shading of blue, green, yellow, and red colors in

ascending order.

3.4.7 Computational Approach

For the discrete equations of motion, we need to solve (3.40) and (3.49) to obtain Fj, € SO(3).
Here we present a computational approach. The implicit equations given by (3.40) and (3.49) have

the following structure.

n
M;iq; x Fiq; + q; ¥ ZMij(Fj — I3x3)q; = d; (3.184)
o

fori € {1,...,n}, where M;; € R, ¢; € S?, d; € R3 are known, and we need to find F; € SO(3).
We derive an equivalent equation in terms of local coordinates for F;. This is reasonable since F;
represents the relative update between two integration steps. But, the solution is not unique since if
F; € SO(3) satisfies , then Fjexp(fg;) € SO(3) also satisfies for any 6 € S'. To
avoid this ambiguity, we search a 2-dimensional subgroup of SO(3) in which the solution of

is unique.
Similar to the computational approach to solve the implicit equation of the Lie group variational
integrator on SO(3) presented in the essential idea is to express the rotation matrix
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F; in terms of f; € R? using the the Cayley transformation. Using the Cayley transformation,

F; € SO(3) can be expressed in terms of f; € R3 as

F; = (Isxz + fi)(Izxz — fi) ™!
1

= i S ST Lo
7m((1 fi- filIsxs +2fifi +2fi).

The operation F;g; can be considered as a rotation of the vector g; about the direction f; with rotation
angle 2tan~! || f;||. Since the rotation of the vector g; about the direction ¢; has no effect, we can

assume that f; is orthogonal to ¢;, i.e. f; - ¢; = 0. Under this assumption, Fjq; is given by

1 .
Fiqi = m((l — fi- fi)ai +2fiq:). (3.185)
Thus, we obtain
2 2
G X Fidi = 3 (fi X ¢) 1+fi‘fifl
2 T ~
(Fj — I3x3)qj = —m(%fj +4j) f5,

where we use the property, §; fi = ¢; X fi = — ﬁqZ Substituting these into (3.184), we obtain

r 2Mi1I3x3 _2Mui2Gi(Ge+a2f3) . 2Mindi(Gntanfl)] d
TH1fa 1+ fo 1+ T h 1
_ 2Mo1Ga(qi+q1 f7) 2M2213x3 . 2Mnga(dntanfl) f d
1+f1-f1 1+f2-f2 I+ fn fn 2 — 2 (3.186)
. . ’ *
_2Ma1dn(@tarfi)  2Mn2dn(deta2fs) 2Mnnl3x3 fa d,
L 1+/1-f1 1+f2:f2 1+ fn fn J

which is an equation equivalent to (3.184), written in terms of local coordinates for F; using the
Cayley transformation. Any standard numerical method to solve nonlinear equations can be applied
to find f;. Then, Fjg; is computed by using (3.185)). In particular, (3.186)) is written in a form for
which a fixed point iteration method can be readily applied (see Kelley|1995).

If there are no coupling terms in the kinetic energy, we can obtain an explicit solution of (3.184).
When M;; = 0 for i # j, (3.186) reduces to

2M;;
———fi = d.
L+ fi- fi
Using the identity, 1-2&2?129 g = sin 20 forany € R, it can be shown that the solution of this equation

is given by f; = tan (3 sin ™' (||d;|| /M) ﬁ. Substituting this into (3.185) and rearranging, we

2
9\ 1/2
> q;-

Using this expression, we can rewrite the discrete-time equations of motion given by (3.49)—(3.52)

obtain

d; d;
Figi=—xg¢+(1-
q Mi,Xqu( HM

109



in an explicit form as in Corollary

3.4.8 Summary of Computational Properties

We have derived discrete-time Euler-Lagrange equations for several dynamic systems evolving on
a product of two-spheres, and some computational results are presented. Here, we summarize the
computational properties of the Lie homogeneous variational integrator compared to other numeri-

cal integrators.

Computational Accuracy. Similar to the Lie group variational integrator, the distinct feature of

the Lie homogeneous variational integrators is that they preserve the symplecticity as well as the

structure of the two-spheres. As shown at[Figure 3.9(b), 3.11(b)| [3.12(b), 3.13(b), and [3.14(b)| the
computed total energy of the Lie homogeneous variational integrator oscillates around the initial

value, but there is no drift on long time scales. The computed total energy of the explicit Runge-
Kutta methods increases (or decreases) linearly with respect to the simulation time. As a result, the
total energy deviation for the Runge-Kutta method is larger than the Lie homogeneous variational
integrator by several times as seen in We find a similar property for the momentum
map at [Figure 3.9(c)| [Figure 3.9(d)| 3.T1(c)| B.-12(c)} and [3.13(c)| show that the unit length error of
the Lie homogeneous variational integrator is at the level of 10~'~107'?, but the unit length error

of the explicit Runge-Kutta method is almost 10" times larger.
In summary, the Lie homogeneous variational integrators are geometrically accurate in the sense
that they preserve all of the geometric properties of the dynamics, such as symplecticity, momentum

map, total energy, and the structure of the two-spheres.

Computational Efficiency. We have shown that if the inertia matrix for the kinetic energy is di-
agonal, the Lie homogeneous variational integrator becomes explicit. In this case, the variational
integrator given in Corollary is faster than the explicit Runge-Kutta method with the same sec-
ond order accuracy, as it requires one-time evaluation of the potential derivatives per time step.

The RATTLE algorithm is a symplectic numerical integrator for a constrained Hamiltonian sys-
tem (see|Leimkuhler and Reich|2004). By considering the unit norm structure of the two-sphere as a
nonlinear constraint, one can construct a symplectic numerical integrator evolving on two-spheres.
It turns out that the variational integrator given at Corollary [3.4] is equivalent to the RATTLE al-
gorithm if the computational implementational details are ignored. But, rather than imposing the
constraint on the unit length at each time step, we present a computational algorithm to update the
element of the two-sphere using the group action of SO(3).

The purpose of this section is to provide a systematic method to derive a geometric numerical
integrator evolving on a homogeneous space. The specific form of the discrete Lagrangian given
in (3.33) yields an equivalent expression to the RATTLE algorithm. But, it can be extended in
various ways, such as a configuration dependent inertia or an abstract homogeneous manifold, by

following the approach presented in this section. The presented computational approach is generally
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slower than the RATTLE algorithm, but it represents a specific numerical method that updates an
element of a homogeneous space using the corresponding Lie group action explicitly. In particular,
a subgroup that guarantees the transitivity property is found for overall efficiency.

In summary, the presented form of the Lie homogeneous variational integrator is more numeri-
cally efficient if the inertia matrix is diagonal. It may be slightly slower than the RATTLE algorithm
using the presented computational algorithm. But, the computational approach provides an explicit
method to generalize the current results to mechanical systems evolving on an abstract homoge-

neous manifold.

3.5 Conclusions

In this chapter, geometric numerical integrators, referred to as Lie group variational integrators,
are developed for dynamic systems with a Lie group configuration manifold. The presented method
represents the first time that the Lie group approach is explicitly adopted in the context of variational
integrators for an arbitrary Lie group. They provide a systematic way to develop a class of geometric
numerical integrators that preserve the geometric properties of the dynamics as well as the Lie group
structure.

Numerical simulations in [Section 3.3| show that it is critical to preserve both the symplectic
property of dynamics and the structure of the Lie group. The Lie group variational integrators have
substantial computational advantages compared to other geometric integrators that preserve either
none or one of these properties. They are more efficient than considering the Lie group structure as
a nonlinear algebraic constraint to be satisfied at each time step.

Compared with other geometric integrators for a rigid body, as in the work of [Hulbert| (1992);
Krysl (2005); |[Lewis and Simo, (1994)); Simo and Wong| (1991), the Lie group variational integra-
tor provides a systematic method to obtain a class of numerical integrators that preserve all of the
geometric features, rather than developing a specific numerical integrator that preserves only a few
geometric characteristics. Compared with discrete-time mechanics on a Lie group developed by
Bobenko and Suris| (1999); Marsden et al.|(1999); Moser and Veselov|(1991), the Lie group varia-
tional integrator can be applied to a wide class of rigid body dynamics acting under a potential field
as shown in

These results are extended to mechanical systems on a product of two-spheres, to obtain Lie
homogeneous variational integrators in[Section 3.2] They preserve the geometric feature of dynam-
ics as well as the structure of the two-spheres. Other geometric numerical integrators on S? are
developed for a kinematics equations, and they do not necessarily preserve the symplectic property
or momentum map (see |Lewis and Nigam|2003}; [Lewis and Olver|2001; Munthe-Kaas and Zanna
1997). The development in also provides an overall framework to construct variational

integrators for dynamic systems on an abstract homogeneous manifold.
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CHAPTER 4

GEOMETRIC OPTIMAL CONTROL OF RIGID BODIES ON A
LIE GROUP

In this chapter, we formulate optimal control problems for mechanical systems that evolve on a
Lie group, and we derive necessary conditions for optimality. These results are illustrated by several
rigid body systems introduced in the previous chapters. This chapter is focused on developing
an intrinsic form of optimality conditions in continuous-time. Computational approaches to find

optimal control inputs are discussed in the next chapter.

4.1 Geometric optimal control on a Lie group 4.2 Examples of optimal control of rigid bodies

Forced Euler-Lagrange equations [42.7) Spacecraft on a circular orbit
2.2| Free rigid bo
| 4.2 2F igid body

Optimal control problem formulation

l

Necessary conditions for optimality Rigid body under potential field

3D Pendulum with symmetry

This chapter is organized as follows. In [Section 4.1} we develop geometric optimal control
theory for dynamics on an arbitrary Lie group; the Euler-Lagrange equations derived in
are extended to include the effect of external control inputs, a general form of an optimal control
problem is formulated, and necessary conditions for optimality are developed. In[Section 4.2] these

results are applied to several optimal control problems for rigid body dynamics.

4.1 Geometric Optimal Control on a Lie Group

Optimal control problems deal with finding trajectories, such that a certain optimality condition is
satisfied under prescribed constraints (see, for example, Bryson and Ho|1975; Kirk(1970; |Sussmann
and Willems|[1997)). For example, a minimum time optimal control problem is studied for a space-
craft to change its attitude in a desired way while minimizing the maneuver time, and subject to
bounded control moments.

Geometric optimal control on a Lie group has been studied by |Baillieul| (1978); Bloch and

112



Crouch| (1996); [Brockett| (1972)); Jurdjevic| (1998alb, |1997) (see also references therein). But, these
approaches are based on kinematics equations on a Lie group, and assume that group elements are
directly controlled by control input elements in the Lie algebra. For example, an optimal attitude
control problem of a rigid body is considered inJurdjevic| (1997) by viewing the angular velocity to
be a control input.

This chapter deals with optimal control problems of dynamic systems with a Lie group config-
uration manifold. More precisely, it may be considered as an optimal control problem on a tangent
bundle of a Lie group G, identified with G x g by left trivialization. For example, in[Section 4.2.2]
we consider an optimal attitude control problem of a rigid body controlled by an external moment.

Another distinct feature of the presented geometric optimal control theory is that it is a coordinate-
free approach. Most of the prior work related to optimal control problems of a rigid body is based
on local coordinates of SO(3), such as Euler angles, or on quaternions (see, for example, Bilimoria
and Wie|[1993; Byers and Vadalil[1993}; Scrivener and Thompson|[1994; |Seywald and Kumar(|1993).
Here, we develop an intrinsic form of optimal control problems and necessary conditions. Optimal-
ity conditions and the resulting optimal control input are independent of the choice of representation
for the rigid body configuration. They are globally represented by group elements without any sin-
gularity and ambiguity, and the optimality conditions are more compact than expressions written in
terms of local parameterizations.

In summary, we develop a geometric optimal control theory to treat optimal control problems
for dynamic systems on a Lie group, expressed in a coordinate-free form. The geometric optimal
control approach is based on the Lagrangian mechanics on a Lie group presented in
necessary conditions for optimality are derived using variational arguments. Here, we first extend
the Euler-Lagrange equations to include the effect of control inputs, and we formulate optimal

control problems for controlled Euler-Lagrange systems on a Lie group.

4.1.1 Forced Euler-Lagrange Equations on a Lie Group

Consider a mechanical system evolving on a Lie group G. As discussed in [Chapter 2| we assume
that a Lagrangian of the system is expressed as L(g, ) : G x g — R by left-trivialization, £ = g~ 1¢.
Suppose that there exists a generalized force u(t) : [to,ty] — g* acting on the system. Forced

Euler-Lagrange equations are obtained according to the Lagrange-d’ Alembert principle:

ty ty
) L(g,¢) dt+/ u(t) -ndt =0 “4.1)

to to

for any 7 = g~ '6g € g vanishing at the endpoints. This is equivalent to Hamilton’s principle with
the additional forcing term. From (2.8)), this can be written as

t d
/t f (Tily - DyL(g,€) +adg - DeL(g,€), n) — <dthL(g,£), 77> + (u, m) dt =0,

which yields the forced Euler-Lagrange equations on G.

113



Proposition 4.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent
bundle TG with G X g by left-trivialization. Suppose that the Lagrangian is defined as L(g,§) :
G x g — R, and there exists a generalized force u : [to,tf] — g* acting on the system. The

corresponding forced Euler-Lagrange equations are given by

d
- DeL(g,€) —adg - Del(g, §) — Telg - DyL(g,€) = u, 4.2)

dt
9= 9§ (4.3)

Special Form of Forced Euler-Lagrange Equations. ~Proposition[.1|gives the forced Euler-Lagrange
equations for mechanical systems evolving on a Lie group G for a general form of the Lagrangian.
While it is possible to formulate an optimal control problem and derive necessary optimality condi-
tions for these systems, we consider mechanical systems with a structured form of the Lagrangian.
This allows us to obtain a more compact form of necessary conditions in|Section 4.1.3

Let J : g — g* be the inertia operator, which is linear, positive definite, and symmetric. More

explicitly, it satisfies

(J(6), & >0, (4.4)
J(c1&1 + c262) = c1d (&) + 23 (&2), 4.5)
(J(&1), &2) = (I(&2), &1), (4.6)

forany c1,co € R, § #0,81,62 € 9.
We assume that the Lagrangian is the difference between a kinetic energy, expressed in term of

the inertia operator, and a configuration dependent potential U : G — R, given by

1
L(g,€) = 5 (), & ~ Ulg). @7
We apply Proposition . 1]to this Lagrangian. The derivatives of the Lagrangian are given by
1 1
DeL(g,€) - 3 = 5 (3(6), )+ 5 (J(E), 56) = (I(©), 66).

T:Lg ) DgL(%g) = _T:Lg ) DgU(g) = M(g),

where the force due to the potential is denoted by M : G — g*. Then, the forced Euler-Lagrange

equations reduce to the following.

Corollary 4.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent
bundle TG with G x g by left-trivialization. Suppose that the Lagrangian is given by ({.7) for a
positive definite, symmetric, and linear inertia operator J : ¢ — g* and the configuration dependent

potential U : G — R. There exists a force u : [to,tf] — g* acting on the system. Then, the
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corresponding forced Euler-Lagrange equations are given by

d

S3(©) — adg - 3(6) ~ M(g) = u @8

g = g¢, 4.9)
where the force due to the potential M : G — g* is given by M (g) = —T:L, - DoU(g).

4.1.2 Optimal Control Problem Formulation

We consider an optimal control problem for forced Euler-Lagrange systems described by Corollary
The optimal control problem is to find the control input that minimizes the following cost

functional:

7= slg).€t),u(t)) at,

to

where ¢ : G x g x g* — R is given. Several types of boundary conditions can be considered:
free terminal time, fixed terminal time, free terminal conditions, fixed terminal conditions, and
terminal states lying on a given surface. Additionally, equality constraints or inequality constraints
may be imposed on the trajectory of the mechanical system and the control input. For simplicity,
here we consider optimal control problems with a free terminal time and fixed terminal conditions.
The optimal control problem with a fixed final time and fixed terminal conditions is considered as a
special case. The subsequent development can be easily extended to other optimal control problems.

The optimal control problem is summarized as follows.

For giVCl’l tO’ g(tO)’ g(tO)u gfa ff

Ly
min {J _ ¢<g<t>,5<t>,u<t>>dt},

u(t),ty to
such that g(ty) = g7, £(ty) = ¢,
subject to the Euler-Lagrange equations (4.8)), (4.9).

4.1.3 Necessary Conditions for Optimality

We derive necessary conditions for optimality using the calculus of variations: the Euler-Lagrange
equations are constrained by using Lagrange multipliers, and the variation of the corresponding
augmented cost functional is set to zero. The resulting necessary conditions are expressed as a two
point boundary value problem.

More explicitly, define the augmented cost functional:

ty d
Jo= [ 6g:&u)+ <dtJ (€) — adgJ (&) = M(9) — u, A1> +(N g g —€) dt, (4.10)

to

where \! € g, A2 € g* are Lagrange multipliers. The variation of the augmented cost functional
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is composed of two terms: the term due to the the terminal time variation and the term due to the

variation of trajectories for a fixed terminal time:
_ 57l 2
0TJa =0T, +0J,.

The variation of the augmented cost functional due to the terminal time change is given by

d . 1.
074 = [ofa. 6 + (IO ~ IO~ Mlg) —u X )+ (%, 79O |ty

t=ty

4.11)
The variation of the augmented cost functional, for a fixed terminal time, is given by
ty
5\7a2 = Dg¢(97§7u) : 59 + DE¢(97£7 u) : 55 + Du(z)(gaé.v u) ~oudt
to
ty d 1
+/ <6 (dtJ(f)) —adsJ(§) — adgJ(68) — TyM(g) - 69 — du, A >
to

+ (N, 5+ aden — 6€) dt. (4.12)

We apply several properties and identities on the variations and the ad operator. Since the vari-
ation and the derivative commute, we obtain ¢ (%J &) = %J(éf ) (See Appendix for de-
tails). Therefore, using the symmetry of the inertial operator, we obtain (J (4£J()), A\!) =
(J (86), ALY =(J(AY), o€ ). From the definition of the ad* operator and the skew-symmetry of the
ad operator, (ad;J(€), A1) = (J(€), adseA!) = — (J(€), adyid8) = — (adyu (), 0¢). Us-
ing the symmetry of the inertia operator, <ad§ (88), AY) = (3(6¢), adeAt) = (J(adeAt), 66).
Define M (g, \!) : G x g — g* such that

(TgM(g) - 69, A') = (TgM(g) - (Telg-n), A') = (M(g, A1), n). 4.13)

Note that this map is linear with respect to A!. Using these properties and the definition of the map
M(g, A1), (4.12) can be written as

5% = /ttf <J()\1),5é> + (A2 ) dt

ty
+/ (6u, Dy — A') + (Tilg - Dy — M(g, A') + adi A%, )

to

+ (D¢ + adi J(€) — J(adeAt) — A2, 6€) dt.
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Using integration by parts for the first two terms, we obtain

072 = [(J(\1),86) + (A2, n)]

t:tf
ty .
+ / (6u, Dyp — AV) + <—)\2 +TiLy - Dgo — M(g, A') + adfr?, n>
to
+ (~I(\) + Deo + ad}u I(€) — Iade!) — X2, 6¢) d, 4.14)

where we use the fact that the initial conditions are fixed, i.e. 0§ (to) = n(to) = 0. Since the desired

terminal conditions are given, 6t and £(tf), n(ty) are related as

g(ty)dty +g(ty)n(ty) =0, (4.15)

{(tf)étf+5§(tf) =0. (4.16)

Substituting these into the first two terms of (4.14), we obtain

0T2 = — [{(J(AY, ) + (N2, g7 ¢ St
(0006)+0.070] | _ o
t
+/f (6u, Dyp — A') + <—A2+T;LQ.DQ¢—M(9,A1) + ad{A?, n>
to
+ (~I(\) + Deo + ad}u I(€) — Iadeh!) — 22, o) d, 4.17)

Therefore, the variation of the augmented cost functional is given by the sum of (4.I1)) and

as follows.

0Ja = 69, & u) — (ad;I(€) + M(g) +u, Ay = (32, )] | oty

t=ty

tr .
+ / (0u, Dy — A') + <—)\2 + Tily - Dggp — M(g, A') + adiN?, n>
to

+ {(=3(\) + Deg + ad}u J(6) — I(adeM!) — X2, 6¢ ) dt. 4.18)

This is zero for any variation about the optimal trajectory. Thus, we obtain necessary conditions for

optimality as follows.

Proposition 4.2 Consider a forced Euler-Lagrange system evolving on a Lie group, whose La-
grangian is given by ({.7). Necessary conditions for the optimal control problem presented in

Section 4.1.2|are as follows.

e Optimality condition

D.¢(g,&u) — A =0, (4.19)
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e Multiplier equations

JOAY) —ad5 J(€) + I (adeA!) + A% — Deg(g, €, u) = 0, (4.20)
A2 —adfA? — TiLy - Dyg(g, & u) + M(g,\') =0, (4.21)

where M : G x g — g* is given by {.13).

e Boundary conditions

[p(g,& u) — (adfI(€) + M(g) +u, A') — (X2, €)] =0, (4.22)
t=ty

gtp) =g/, €ty =¢. (4.23)

Remark 4.1 These necessary conditions are expressed in a coordinate-free form. Therefore, the
optimality conditions and the resulting optimal control are independent of the choice of any coordi-
nates. They are globally represented by group elements without any singularity and ambiguity, and
the optimality conditions are more compact than expressions written in terms of local parameteri-

zations.

Remark 4.2 The necessary conditions have the form of a two point boundary value problem: find
the control input u, state (g, £), multipliers (A', \?), and terminal time ¢ s that satisfy the optimality

condition (4.19), the Euler-Lagrange equations (#.2), (.3), the multiplier equations (#.20), (4.21),
and the given boundary conditions. A computational approach to solve this two point boundary

value problem is discussed in

Remark 4.3 The presented necessary conditions are for optimal control problems with fixed termi-
nal conditions and a free terminal time. They can be extended to other optimal control problems. For
example, if the terminal time is fixed, then the necessary conditions for the corresponding optimal
control problem are the same as presented in Proposition 4.2 without (4.22)). If there is a constraint
on the control input, for example, the control input lies in a given submanifold &/ C g*, then only
the optimality condition given by is changed to

ty
/ (5, Dud(g, €,u) — ALY dt > 0 424)
to

for all admissible variations of the control input du and for all ¢ € [to,t¢].
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4.2 Examples of Optimal Control of Rigid Bodies

Based on the optimal control problem formulation and the necessary conditions developed in the
previous section, we study the following optimal control problems for rigid body dynamics on a Lie
group. We formulate the specific optimal control problems and we develop necessary conditions

for optimality. Computational approaches for solving the corresponding two point boundary value

problems are discussed in[Section 5.

Section Optimal Control Problem G
4.2.1 Fuel optimal attitude control of a spacecraft on a circular orbit  SO(3)
4.2.2 Time optimal attitude control of a free rigid body SO(3)
4.2.3|  Fuel optimal attitude control of a 3D pendulum with symmetry SO(3)
4.2.4 Fuel optimal control of a rigid body SE(3)

The fuel optimal attitude control of a spacecraft in and the fuel optimal control
of a rigid body in are direct applications of Proposition on the Lie groups SO(3)
and SE(3), respectively. In the time optimal attitude control problem presented in
we consider a bounded control input, where the optimality condition is as discussed in Remark [4.3]
In we consider an optimal control problem for an underactuated control input that

guarantees satisfaction of a symmetry property.

4.2.1 Fuel Optimal Attitude Control of a Spacecraft on a Circular Orbit

Consider the attitude dynamics of a rigid spacecraft on a circular orbit about a massive central body,
including gravity gradient effects (see [Hughes||[1986; Wie|[1998)). The configuration manifold is
SO(3). We study a minimum fuel optimal control problem that rotates the spacecraft to a desired
terminal attitude and angular velocity during a fixed maneuver time.

In this section, forced Euler-Lagrange equations are derived according to Corollary {.1] and a
mathematical formulation of the optimal control problem is presented. Necessary conditions for
optimality are developed from Proposition {.2]

Es

b3
Inertial frame
€3

LVLH frame

Figure 4.1: Spacecraft on a circular orbit
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Forced Euler-Lagrange Equations

We assume that the rigid spacecraft is on a circular orbit with a constant orbital angular velocity
wo € R. We three frames; a reference frame, a body fixed frame, and a local vertical and local
horizontal (LVLH) frame. The first axis of the LVLH frame is tangential to the orbit, and the second
axis is perpendicular to the orbital plane. The spacecraft model with the LVLH frame is shown in
Figure 4.1

Since the orbital angular velocity is fixed, the linear transformation from the LVLH frame to
the reference frame is given by exp(wptéz). Let R € SO(3) be the linear transformation from the
reference frame to the body fixed frame. Therefore, the attitude of the spacecraft with respect to the

LVLH frame is given by exp(—wotés)R. The gravitational potential can be written as

GM 1
U(R) = — P 5wg(tr[J] — 3¢l exp(—wotéa) RIRT exp(wotés)es), (4.25)

where constants G and M are the gravitational constant and the mass of the central body, respec-
tively, and the orbital radius is given by ro = (GM/w3)/3 (see Wie||1998). The second term
describes the gravity gradient potential that arises from the gravity variation over the spacecraft.

Let 2 € R? be the angular velocity of the spacecraft with respect to the reference frame, repre-
sented in the body fixed frame. The Lagrangian of the spacecraft on a circular orbit can be written
as (4.7), with the inertia operator J : s0(3) — s0(3)* given by

<J(Ql)>QQ> = <J/\Q1,Q2> = (J)T Qs (4.26)

for Qq, Qs € R3.

Now we find the expression for the generalized force u € so(3)*. We assume that an external
control moment 7 € R3 is applied to the rigid body. This represents the control moment expressed
in the body fixed frame. Let p € IR be the vector from the mass center to a mass element of the rigid
body. Then, the virtual displacement of the element due to the variation of R is given by d Rp = Rijp
in the reference frame. Thus, the virtual displacement of the mass element is represented by 7)p in
the body fixed frame. Let dF'(p) be the force acting on the mass element expressed in the body
fixed frame. Note that [, dF(p) = 0 as the inter-particle forces cancel out, and [; p x dF(p) =T
as the external moment 7 is applied to the rigid body. Then, the virtual work done by the control

moment on the rigid body is given by

/ (dF(p). iip) = / n-(px dF(p) =7
B B

Therefore, the generalized force acting on the rigid body is equal to the external control moment
applied to the rigid body, i.e. u = 7 € s0(3)* ~ (R3)*. From now on, we denote the external
moment by u for simplicity.

Recall that the ad operator on SO(3) is given by adgp/Q = Q' x Q adf,Q = —Q' x Q for
0, € s0(3) ~ R3. According to Corollary the forced Euler-Lagrange equations for the
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attitude dynamics of the spacecraft on a circular orbit are given by

JO+Qx JQU=M +u, (4.27)
R=RQ, (4.28)
M = 3w} (RT exp(—wotés)es) x (JRY exp(—wotés)es). (4.29)

Optimal Control Problem

The objective of the optimal control problem is to rotate the spacecraft from the initial attitude and
angular velocity (R(to), Q(to)) to the desired terminal attitude and angular velocity (R, Q) for a

fixed terminal time ¢y, while minimizing the control effort.
For given: to, (R(t0), (o)), ¢, (RT, )

ty 1
min{j:/ uTudt},
U to 2

such that R(ty) = R/, Qty) = Q/,
subject to (4.27), #.28)), (4.29).

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in with
¢(R,Q,u) = FuTu. Therefore,

Dro =0, Dqo¢p=0, Dy¢=u. (4.30)

We find the expression for M(R, A!) : SO(3) x 50(3) — s0(3)*. The derivative of the gravitational

moment is given by

T4M(R) - Ry = —3wi (JRT exp(wotés)es)” (—ART exp(wotés)es)
R exp(wotea)e)" (JAR" exp(wotéz)es)
JR" exp(wotéz)es)" (RT exp(wotés)es) 1
RT exp(wotés)es) J (RT exp(wotéa)es)” n.

(
— 3wi(
= -84
+ 3wi(

According to (4.13)), the expression for M(R, \!) is obtained as follows.

M(R,\') = 302 [ — (JRT exp(wotés)es)” (RT exp(wotés)es)”
T

+ (R exp(wotéz)es) J (RT exp(wotés)es)| AL (4.31)

Substituting (@.26), (#.30), and (@.31) into @.19)-(@.23)), we obtain the following necessary

conditions for optimality according to Proposition 4.2}

121



e Optimality condition

w= A (4.32)

e Multiplier equations
JMN+ N X JQ+J(QxA) + A2 =0, (4.33)
A2+ Qx A2+ M(R, A\ =0. (4.34)

e Boundary conditions
R(ty) =R, Q(ty) =, (4.35)

where the expression for M (R, \!) is given by (4.31).

This is an intrinsic form of necessary conditions for an optimal attitude control problem on
SO(3). Using the fact that s0(3) is isomorphic to R?, the multiplier equations are expressed as
compact vector equations on RS in , . If the spacecraft is inertially symmetric, i.e.
J = I3y3, the multiplier equation reduces to A+ A2 = 0. These are much more compact than
necessary conditions expressed in terms of Euler angles or quaternions, and there is no singularity
in representing the attitude of the spacecraft. Therefore, these can be used to study large angle

spacecraft rotational maneuvers. A computational approach to solve these necessary conditions to
obtain optimal attitude maneuvers of spacecraft is presented in

4.2.2 Time Optimal Attitude Control of a Free Rigid Body

We study a time optimal control problem for the attitude dynamics of a free rigid body, that is a
rigid body acted on by a control moment but no other external moment. This rigid body model
corresponds to the spacecraft on a circular orbit presented in the previous section, where the gravity
variation over the spacecraft body is ignored. Time optimal attitude maneuvers have been exten-
sively studied in the literature (see, for example, a survey paper by Scrivener and Thompson|[1994,
and references therein). For example, the time optimal control of spacecraft has received consistent
interest as rapid attitude maneuvers are critical to various space missions such as military surveil-
lance and satellite communications.

The time optimal maneuver for a single degree of freedom rigid body model, where the attitude
maneuver is constrained to an eigen-axis rotation, is derived in |Etter (1989). Later, it is shown that
the eigen-axis rotation is not generally time optimal by [Bilimoria and Wie| (1993); Seywald and
Kumar (1993). The attitude dynamics are often simplified in optimality analyses, e.g., by assuming
an inertially symmetric rigid body model (see Bilimoria and Wie||1993; [Modgalya and Bhat|2006;
Seywald and Kumar|1993)), linearization of the dynamics (see[Byers and Vadali|[1993) and constant
magnitude angular velocity (see Modgalya and Bhat|2006). Here, we present necessary conditions

for the time optimal attitude control problem on SO(3), without any simplifying assumptions on the
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rigid body (see|Lee et al.[2008a).

In this section, forced Euler-Lagrange equations are derived according to Corollary 4.1] and a
mathematical formulation of the optimal control problem is presented. Necessary conditions for
optimality are developed from Proposition[d.2} as discussed in Remark [4.3] the optimality condition

includes the effect of bounded control inputs.

Forced Euler-Lagrange Equations

Define two frame; a reference frame and a body fixed frame. Let R € SO(3) be the linear transfor-
mation from the body fixed frame to the reference frame, and (2 € R3 be the angular velocity of the
rigid body represented in the body fixed frame.

In this optimal control problem, we assume that there is no configuration dependent potential,
i.e. U(R) = 0. According to Corollary the forced Euler-Lagrange equations for the attitude
dynamics of the free rigid body are given by

JO+Q x JQ =u, (4.36)
R = RX. (4.37)

Optimal Control Problem

We assume that the magnitude of the control moment is uniformly bounded by a constant z € R,
ie. |lu(t)l], < wforanyt € [to,ts]. The objective of the time optimal attitude control problem
is to transfer the rigid body with a given initial attitude and angular velocity (R(to),2(t9)) to the
desired terminal condition (R/, /), with the constrained control moment in a minimal maneuver

time ¢ ¢.
For given: to, (R(to), Q(to)), (R, Q) u
ty
min{j:/ 1dt},
u,ty to
such that R(t7) = RY, Q(t;) = Q7
subject to |ju(t)|| < @ Vt € [to,ts] and (4.36), (4.37).

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in [Section 4.1.2| with
¢(R,Q,u) = 1. Therefore, the derivatives of ¢ are zero. As discussed in Remark the opti-

mality condition is given by

ty
/ (6u, =A") dt > 0

to
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for Al € s0(3) ~ R? and all admissible variation du. For the given constraint, the optimal control

input is

)\1

U=U——.
AL

According to Proposition the necessary conditions for optimality are given by

e Optimality condition

)\1
U =T (4.38)
[[AM]

e Multiplier equations
TN AL JQ4+ J(Q x A + A2 =0, (4.39)
M 4+QxA?=0. (4.40)

e Boundary conditions
1A (= x JQ+u) — A Q] =0, 4.41)

t:tf

R(ty) =R, Q(ty) =9 (4.42)

In , the optimal control input is not well-defined if A! is equal to zero for a finite period of
time. This is referred to as a singular arc (see |Bell and Jacobson|[1975)). By following the approach
presented in [Lee et al.|(2008al), it can be shown that there is no singular arc in this optimal control
problem. Suppose that there is a singular arc, i.e. \! = AL = 0 for a finite time period. Then,
A2 = 0 from tb and A% = 0 from . Due to the linear structure of the multiplier equations,
it follows that \' = A\? = 0 for ¢ € [to,t]. Then, it is clear that the boundary condition
cannot be satisfied. Therefore, there is no singular arc along the optimal solution.

Here we do not impose any simplifying assumptions on the rigid body, such as appear in the
current literature (see, for example, Bilimoria and Wie|1993; | Byers and Vadali|1993;|Modgalya and
Bhat|2006; Seywald and Kumar|[1993). But the presented necessary conditions are compact, and
they have no singularity. A computational approach to solve these necessary conditions to obtain

time optimal attitude maneuvers is presented in [Section 5.2.3

4.2.3 Fuel Optimal Attitude Control of a 3D Pendulum with Symmetry

Consider the 3D pendulum model presented in[Section 2.3.2] The 3D pendulum is a rigid body sup-
ported by a frictionless pivot point acting under uniform gravitational potential. We have shown that
the 3D pendulum has a symmetry represented by a group action of SO(2) ~ S', and consequently,
the angular momentum about the gravity direction is conserved, and the configuration manifold
SO(3) can be reduced to a quotient space SO(3)/S! ~ S2.
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We study an optimal attitude control of the 3D pendulum (see Lee et al.[2007f). The external
control moment does not have any component about the gravity direction, and therefore, the angular
momentum is conserved along the controlled dynamics of the 3D pendulum. Such control inputs are
physically realized by actuation mechanisms, such as point mass actuators, that change the center
of mass of the 3D pendulum.

In particular, we consider the case where the angular momentum about the gravity direction
is zero, and we choose the desired maneuver as a rest-to-rest rotation about the gravity direction.
This is interesting since the under-actuated control moment cannot generate any direct effect on the
rotation about the gravity direction. The desired maneuver depends on the geometric phase effect
discussed in Appendix

In this section, forced Euler-Lagrange equations are derived according to Corollary {.1] and a
mathematical formulation of the optimal control problem is presented. Necessary conditions for
optimality are developed. Since the control input has a special structure, the necessary conditions
presented in Proposition 4.2|are appropriately modified.

Forced Euler-Lagrange Equations

We assume that the external control moment is expressed in the body fixed frame as
u= R'e3 x u,

for a control parameter u,;, € R3. Since the vector R e3 represents the gravity direction in the body

fixed frame, the external control moment has no component along the gravity direction. Therefore,

the angular momentum about the gravity direction is preserved in the controlled dynamics.
According to Corollary the forced Euler-Lagrange equations are given by

JQU+Q x JQ =mgp. x RYes + R ez x uy, (4.43)
R = RQ. (4.44)
Optimal Control Problem

The objective of the optimal control problem is to rotate the 3D pendulum from the initial attitude
R(tp) = I to the terminal attitude R(t;) = exp(#é3) for a fixed terminal time ¢ and a rotation
angle # € S', while minimizing the control effort. The initial angular velocity and the terminal

angular velocity are set to zero.

For given: to, (R(to) = I,Q(to) = 0),t5,6

ty
min{j:/ ugupdt},
u to

such that R(t¢) = exp(fés), Q(ty) = 0,
subject to (4.43), (@.44).
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Necessary Conditions for Optimality

This optimal control problem is not a special case of the general optimal control problem presented
in[Section 4.1.2] where the external control inputs are dependent on time. Here, the generalized force
depends on the rotation matrix as well as the control parameter u,. Therefore, the variations of the
generalized force include the effect of the variation of the rotation matrix. But, necessary condition
for optimality can be developed by following an approach that is similar to the one discussed in
Section 4.1.3]

Define the augmented cost functional:

ty .
T = / %ugup + <jtJ(Q) +Qx JQ— M(R) — RTe3 x uy, /\1> + <)\2, (RTR)Y — Q> dt,
to

(4.45)

where the gravitational moment of the 3D pendulum is given by M (R) = mgp. x R e3. This is

equal to lb except that two terms ¢ and u in lb are replaced by %ugup and RTe3 x Uy in
(#@.43). Therefore, from (4.14)), we obtain the variation of the augmented cost functional as follows.

ty .
57, = / (Bup, ) + (=32 = M(R,N) = 9 x X2, )
to
+ <—JA1 AL X JQ = J(Q x A = A2 5§> — (6(RTes x up), A') dt. (4.46)
We find the expression for M (R, A!). From (4.13), we obtain
(~mgpeiFTes, Ny = (mgpelTen, A ) = (mgRTegpoAl,n) = (M(R,AY), m). (447)
Thus, M : SO(3) x s50(3) — s0(3)* is given by M(R,\!) = mg]%/T\eg,ﬁcAl. Similarly, the last
term of (4.46)) is given by
<5(RT63 X Up), )\1> = <—(77RT63) x u, + Rl ez x Suy, )\1>
= <—ﬁp@,n + RTeq x dup, )\1>

- <—R/T\eg,apA1, n> + (Sup, A x Res). (4.48)

Substituting (#.47) and (4.48)) into (#.46)), we obtain necessary conditions for optimality as fol-

lows.

e Optimality condition

u, = —RTez x \!. (4.49)
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e Multiplier equations

JMN+ N X JQ+J(QxA) + A2 =0, (4.50)
324 Q x A2+ mgRTesp Al — RTeziph! = 0, 451)

e Boundary conditions
R(t;) = exp(é3), Qts) =0. (4.52)

It is interesting to observe that the quantity e3TR)\2 is preserved along the optimal solution since

d . ) . .
%e@w = el RON? + el RA\? = eI RON? — eI R(QN?) = 0.

Together with the conservation of the angular momentum about the gravity direction, this yields
numerical ill-conditioning in the optimal control problem. A simple computational approach to

overcome this difficulty is presented in Lee et al.| (2007f), and it is discussed in [Section 5.2.3]

4.2.4 Fuel Optimal Control of a Rigid Body

Consider a general maneuver of a rigid body, acting under a potential that is dependent on the
attitude and the position of the body, presented in We consider an optimal control
problem to transfer the rigid body to a desired position and attitude using minimal effort during
a fixed maneuver time. In many optimal control problems, the optimal attitude control problem
and the optimal position control problem are independent and can be solved separately. Here, we
explicitly consider coupling effects of the rotational and the translational dynamics of the rigid body.

In this section, forced Euler-Lagrange equations are derived according to Corollary and a
mathematical formulation of the optimal control problem is presented. Necessary conditions for

optimality are developed from Proposition

Forced Euler-Lagrange Equations

The configuration manifold of the general motion of a rigid body in R? is the special Euclidean
group SE(3). The configuration of the rigid body is represented by ¢ = (R,z) € SE(3) for a
rotation matrix R € SO(3) representing the attitude and a vector z representing the location of the
mass center in a reference frame. The Lagrangian is given by (2.95) for a configuration dependent
potential U (R, x) : SE(3) — R. Recall that the inertia operator J : se(3) — se(3)* and the ad
operator on SE(3) are given by

IO mV T+ QT mV
@)= mo — |7 7(: d Wg , (4.53)
Q 0 . -0 -V
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We assume that the external control input is given by u = (u/, u™) € se(3)*, where the control
force u/ € (R3)* and the control moment u™ € (R3)*, are expressed in the body fixed frame.

According to Corollary {.1] the forced Euler-Lagrange equations are given by

JU+Qx JQ =M+, (4.55)
nW+mQxV:4f%%wT (4.56)
R = RQ, (4.57)

i = RV. (4.58)

The force due to the potential, in the body fixed frame, is —R”

is determined by M = g—%TR — RTg—% as shown in (2.101).

%—g, and the moment due to potential

Optimal Control Problem

The objective of the optimal control problem is to transfer the rigid body with a given initial condi-
tion (R(to), z(to), Qto), V(to)) to a desired terminal condition (R/, =/, Qf V) at a fixed terminal

time ¢z, while using minimal control effort.

For giVeﬂi to, (R(tO)v I‘(to), Q(tO)a V(tO))v tfa (Rf7 xfa Qfa Vf)
t
mm{jfz/f;@%WKw>ﬁ},
w t

0

such that R(ty) = Rf, x(ty) = a/ Qty) = o7, V(ty) = v/,
subject to (#353)—@.359),

where W : se(3)* — se(3) is a weighting function given by W (u) = (W™u™ W/u/l) for sym-

metric positive definite matrices W/, W™ € R3*3,

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in [Section 4.1.2| with

#(g,&,u) = (u, Wu). Since the terminal time is fixed, the boundary condition is omitted.
Let A\l = (AL, AL) € se(3) and A2 = (A%, A2) € se(3)* be Lagrange multipliers with AL, AL €

(R3)* and /\%{, A2 € R3. According to , the optimality conditions are easily obtained. The

multiplier equations can be obtained by directly substituting the expressions for the inertia operator

(4.53)) and ad, ad* operators (4.54) on SE(3) into the multiplier equations given by (4.20) and (4.21)).
The expression for M(R, z, Ak, AL) : SE(3) x se(3) — se(3)* is determined by (4.13) as follows.

ouT 20U\ LoU . L
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In summary, the necessary conditions for optimality are given by
e Optimality condition

u™ = (W™ TINL, WS = (WAL (4.60)

e Multiplier equations

JAL AL AL g0 J 0 Q of [\ 22
Bl L . Rl "Bl =0, (4.61)
mAL 0 —Ag| |mV 0 mlzxs| [V Q| [AL A2
A2 -0 V| [\ L
g - R + M(R,z, 5, A1) =0, 4.62

where the expression for M(R, z, \l;, AL) : SE(3) x 5e(3) — se(3)* is determined by (4.59).
e Boundary conditions

R(ty) = R, a(ty) =2, Q(tp) = QF, Vi(ty) = V7. (4.63)

These necessary conditions can be used to study optimal rigid body maneuvers with explicit
consideration for the coupling effects of rotational dynamics and translational dynamics. A compu-

tational approach to solve these necessary conditions for optimal transfer maneuvers of spacecraft

is presented in[Section 5.2.4

4.3 Conclusions

In we have formulated an optimal control problem for dynamic systems that evolve
on a Lie group, and we have derived necessary conditions for optimality by the calculus of varia-
tions. These results are illustrated by optimal control problems for several rigid body systems in

The intrinsic form of necessary conditions for optimality developed in this chapter can be ap-
plied to a wide class of optimal control problems on a Lie group. In particular, this chapter dealt
with optimal control problems for dynamic systems with a Lie group configuration manifold. This
is distinguished from the existing optimal control theories developed for kinematics equations on a
Lie group.

As shown in this approach provides a coordinate-free form of necessary conditions.
Therefore, the optimality condition and the resulting optimal control input are independent of the
choice of representations for rigid body configurations. They are globally represented by group
elements without any singularity and ambiguity, and the optimality conditions are more compact
than expressions written in terms of local parameterizations. These results can be applied to optimal

control problems for complex multibody systems.
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CHAPTER 5

COMPUTATIONAL GEOMETRIC OPTIMAL CONTROL OF
RIGID BODIES ON A LIE GROUP

In the previous chapter, we developed necessary conditions for optimality for an optimal control
problem for mechanical systems evolving on a Lie group. While the presented necessary conditions
are expressed in a global and relatively compact form that is suitable for analytical study, the pro-
cedure to find optimal control inputs generally relies on numerical computations. This chapter dis-
cusses computational geometric approaches for finding the optimal control input numerically while
preserving geometric properties of the dynamics. These approaches are based on the formulation of

computational geometric mechanics discussed in [Chapter 3

Computational geometric optimal control

on a Lie group [5.2| Examples of optimal control of rigid bodies

[5.I.1]Lie group variational integrator [5.2.1] Spacecraft on a circular orbit
with force
| [5.2.2]Free rigid body
Discrete-time optimal control [5.2.3]3D pendulum with symmetry

problem formulation

I
[ |

[5.2.4Rigid body under potential field

513 [5.2.3] Spacecraft formation reconfiguration
Discrete-time necessary .13
conditions for optimality | | Direct optimal control 3D pendulum on a cart

E.14 approach o )
Computational approach [5.2.7] Two connected rigid bodies

This chapter is organized as follows. In we develop computational geometric op-
timal control theory for dynamics on an arbitrary Lie group; the Lie group variational integrator
derived in are extended to include effect of external control inputs, and a general form

of a discrete-time optimal control problem is formulated. Two optimal control approaches are pre-

sented; in [Section 5.1.3| and [Section 5.1.4] discrete-time necessary conditions for optimality and a

computational approach to solve the corresponding two point boundary value problem are devel-
oped, and in a direct optimal control approach based on a parameter optimization

technique is presented. These approaches are applied to several optimal control problems for rigid

body dynamics in
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5.1 Computational Geometric Optimal Control on a Lie Group

Computational geometric optimal control is concerned with developing numerical methods for op-
timal control problems, that conserve geometric properties of the dynamics and of the optimality
conditions. The essential idea is the same as that of computational geometric mechanics presented
in computational methods are developed according to a discrete-time analogue of the un-
derlying fundamental principles. We developed computational geometric mechanics by discretizing
Hamilton’s principle, and the resulting Lie group variational integrators have desirable geometric
properties. In computational geometric optimal control, we discretize an optimal control problem
at the problem formulation stage using a structure-preserving geometric integrator, and we develop
discrete-time optimality conditions using the calculus of variations. This is in contrast to the usual
optimal control approaches, where discretization appears at the last stage when solving the neces-
sary conditions numerically.

Computational geometric optimal control has substantial computational advantages. As dis-
cussed in discrete-time equations derived from computational geometric mechanics are
more faithful to the continuous equations of motion, and consequently a more accurate solution
to the optimal control problem is obtained. Although external control inputs often break the La-
grangian and Hamiltonian system structure, the computational superiority of numerical solutions
obtained from discrete-time geometric mechanics still holds for controlled systems. It has been
shown that they compute the energy dissipation rate of controlled systems more accurately (see
Marsden and West|2001). For example, this feature is extremely important in computing accurate
optimal trajectories for long time maneuvers using low energy control inputs.

Computational geometric optimal control not only provides an accurate optimal control input,
but it also enables us to find it efficiently. The optimal solutions are usually sensitive to small varia-
tions in the multipliers. This causes difficulties, such as numerical ill-conditioning, when solving the
necessary conditions for optimality in the form of a two point boundary value problem. Computed
sensitivity derivatives are not influenced by the numerical dissipation introduced by conventional
numerical integration schemes. Therefore, they are numerically more robust, and necessary condi-
tions can be solved in a computationally efficient way.

In summary, computational geometric optimal control is a discrete-time analogue of geometric
optimal control discussed in[Chapter 4] It deals with optimal control problems for dynamic systems
on a Lie group, expressed in a coordinate-free form. The computational geometric optimal control
approach develops efficient numerical algorithms for optimal control problems, that preserve the
geometrical features. This approach is based on computation geometric mechanics presented in
Here, we first extend Lie group variational integrators to include the effect of control in-
puts, and we formulate discrete-time optimal control problems. Discrete-time necessary conditions
for optimality are developed according to a discrete analogue of the calculus of variations, and a

direct optimal control approach is discussed.
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5.1.1 Lie Group Variational Integrator with Generalized Forces

Consider a mechanical system evolving on a Lie group G. Suppose that there exists a generalized
force u(t) : [to,tf] — g* acting on the system. The discrete generalized forces u:{k, ug € g*are

chosen such that they approximate the virtual work in the Lagrange-d’ Alembert principle given by

®@.T):

tet1 3 N
/ u(t)-ndt%udk-nk+udk Mot

tg

The discrete Lagrange-d’ Alembert principle states that

N—-1 N-1
8> Lalge: fr) + Y g, - mk +uf -me1 =0, (5.1)
k=0 k=0

As the discrete Hamilton’s principle given by approximates Hamilton’s principle given by
(2.2), this discrete Lagrange-d’ Alembert principle approximates the Lagrange-d’ Alembert principle
given by (@.I)). This is equivalent to discrete Hamilton’s principle with the additional forcing term
included. From (3.9), and using the fact that g = 1 = 0, this can be written as

N-1
Z <T:Lgk "Dy, La,, — Ad}kfl (TeLg, - DypLa,) + Tekp - Dy Lay o, 77k>
k=1
N-1
+ <u7 +ut > =0
ds, dp_qy2 k) =Y
k=1

which yields the forced discrete Euler-Lagrange equations on G.

Proposition 5.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-
matics equation is given by (3.11)), where the group element gy.1 is updated by the right group
action of f, € G on gi. Suppose that the discrete Lagrangian is defined as Lq(gy, fr) : GxG — R,
and there exist discrete generalized forces u,_, u; € g*. The corresponding forced discrete-time

Euler-Lagrange equations are given by

Telsy Do Lalgh-1, fomr) = Adpr - (Tl gy - Dy La(gw fi)

+TiLg, - Dy Lalgr, fr) +ug, +ug,_ =0,

(5.2)

k+1 = Gk fr- (5.3)

Using the discrete Legendre transformation, we obtain the equivalent discrete-time Hamilton’s
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equations are follows.

He = Adjck—l ) (T:Lfk ’ kaLdk) - T:Lgk Dy, La,, — u;,y G4
Gk+1 = Gk Srs (5.5)
pp1 = Adj, - (e + Tilg, - Dy La, +ug ) +uyg . (5.6)

Special Form of Discrete-time Forced Euler-Lagrange Equations. Proposition[5.1] provides forced
discrete-time Euler-Lagrange equations for mechanical systems evolving on a Lie group G with
the general form of the discrete Lagrangian. While it is possible to formulate an optimal control
problem and derive necessary optimality conditions for these systems, we consider mechanical sys-
tems with a discrete Lagrangian as in This allow us to illustrate the essential idea of
the computational geometric optimal control approach more explicitly, and discrete-time necessary

conditions for optimality in have a more compact form.
We assume that the discrete Lagrangian has the following form.

La(gx, fx) = Ta(fr) — (1 — c)hU(gx) — chU (g fx), (5.7)

for a discrete kinetic energy 7,; : G — R and a configuration dependent potential U : G — R. The
constant ¢ € [0, 1] is a free parameter. If it is chosen as ¢ = % the discrete Lagrangian represents
the trapezoidal rule for the Lagrangian given by (4.7), and it has second-order accuracy. The control
inputs are parameterized by their values at each discrete time step, and the discrete generalized

forces are chosen as
Ug, = (1 — ¢)hug, ugk = chuj41. (5.8)

From Proposition the corresponding forced discrete Euler-Lagrange equations are given as
follows.

Corollary 5.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kinemat-
ics equation is defined in (3.11)), where the group element gy, is updated by the right group action
of f € Gon gi. Suppose that the discrete Lagrangian is given by (5.7), and there exist discrete
generalized forces u,, ug € g* given by for a free parameter ¢ € [0,1]. The corresponding

forced discrete Euler-Lagrange equations are given by

TZLfkfl ’ ka—le(fk_l) - Ad;k—l : (T:Lfk ’ kaTd(fk)) + hM(gk) + huy, = 0, (5.9)

Gk+1 = Gk frs (5.10)

where M(gy) = —TiLy - DU(gi). Using the discrete Legendre transformation, we obtain the

equivalent discrete-time Hamilton’s equations as follows:
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M = Ad;k_1 : (T:LﬁC . DTd(fk)) — (1 - c)hM(gk) - (1 - c)huk, (5.11)
per1 = Adj, - (ug + (1= c)hM(gr) + (1 — e)huy) + chM (grt1) + chuga, (5.12)
k1 = Gifr- (5.13)

These equations are obtained by substituting (5.7) and (5.8) into (5.2). The detailed proof is
given in Appendix

5.1.2 Discrete-time Optimal Control Problem Formulation

We consider an optimal control problem for the mechanical system described by Corollary [5.1] The
optimal control problem is to find the control input sequence that minimizes a cost function given
by

N-1
Ja="Y_ dalgr, fi» ur),
k=0

where ¢4 : G x G x g* — R is given. Several types of optimal control problems can be considered.
For simplicity, we study an optimal control problem with a fixed terminal time and fixed terminal
conditions. The subsequent development can be easily extended to other types of optimal control
problems.

The discrete-time optimal control problem is summarized as follows:

For given t07 (907 Mﬂ)a (gf> )uf)7 N

N-1
min {jd = dalgr; fk,uk)} ;
k=0
such that g = g7, v = p?,
subject to the discrete Euler-Lagrange equations (5.11)), (5.12), (5.13).

5.1.3 Discrete-time Necessary Conditions for Optimality

We derive discrete-time necessary conditions for optimality. Instead of discretizing the continuous-
time necessary conditions derived in[Section 4.1.3] we derive optimality conditions using a discrete-
time version of the calculus of variations: discrete-time Hamilton’s equations are enforced by us-
ing Lagrange multipliers, and the variation of the corresponding augmented cost function is set to
zero. The resulting necessary conditions are expressed as a two point boundary value problem in a

discrete-time setting.
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More explicitly, we define the augmented cost functional as,

N-1
Tow = Y Salges feswe) + (= Adj-s - Ty i) + (1= OhM (g) + (1 = )b, A})
k=0
+ (prg1 — A} - (e + (1 — )hM (gi) + (1 — ¢)huy) — chM (grs1) — chugy, )\,1€>
+ (A7, log(g; "gri1) — log fi) , (5.14)

where A, A} € g, A € g* are sequences of Lagrange multipliers, and T/(fy) € g* is defined as
Ti(fx) = TiLy, - DTy(fy) for fi, € G. The logarithm for fk,gk_lng € G is well-defined since
they are close to the identity element if we choose the time step size A to be sufficiently small.

The variation of the augmented cost functional yields discrete-time necessary conditions for
optimality. By the Lagrange multiplier theorem, p, gx and fi are considered as independent vari-
ables. The infinitesimal variation of gy, is defined as dgi, = g7y for n € g in (3.5). Similarly, the
infinitesimal variation of f} is defined as

0fk = frXk (5.15)

for xx € g.
We find expressions for the variation of each term of (5.14). The variation of the first term of

(5.14) is given by

6J,, = Dy, da(gk, fio uk) - 09k + D s, ba( gk, frs k) - 6 fie + Dy da(grs fior wie) - Suk
= (TiLy, - Dy, ba,» mk) + (Tolys, - Dy by, xk) + (Our, Dy, dalgr, fi,ur)) . (5.16)

The variation of the second term of (5.14)) is given by

602, = (O = Adys - TR T(fe) - 0fe + Adj s (ady, Th(f1)), ML)
+ (1= 0)hT g M(gx) - 6gi + (1 — c)hduy, AY),

where we use the formula for the derivative of the Ad* operator given by (A.53). In (4.13)), we have
defined M(g,A\!) : G x g — g* such that

<T9M(g) - 09, )‘1> = <T9M(g) ) (Tel—g : 77)7 )‘1> = <M(ga)‘1)7 77> (5.17)

for any n, A\! € g. Similarly, we define 7 (f, A\!) : G x g — g* such that

(TyTy(f) - 0f, A% = (TpTy(f) - (Telyx), A%) = (T (£, X%, x) (5.18)

for any x, A’ € g. Thus, the second term of §.7 ", is given by

(Adsy - TRTH(f) - i M) = (TaTalfe) - fes AdyiAD) = (T(fis AdAD), ) -
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Using the property of the Ad* operator, the third term of 677, is given by
<Ad3;k_1 (ad?, TH(fr)), A2> _ <Tc’l(fk) ady, (Ad, lAk)>

:<Té(fk) —adag 1/\0(Xk)> <_ad2df,;l*2(T‘§(f’“))’ Xk>,

Using these expressions, the variation of the second term of |l 5J3d is given by

52, = (S, M) +< T (fr, Ady 1)‘k) a‘d*Adflzl)\z(Tc/l(fk))v Xk>
+ (1 = )hM (g, AD)s iy + (1 — c)hduy, AL). (5.19)
The variation of the third term of (5.14) is given by
8T8 = (pnsr — Ad, - (Sp + (1 — )hT g, M(gr) - Sgr. + (1 — c)hdug), Ag)
+ (—Adj, (adia, (e + (1= ORM (gi) + (1 = c)huy)), ML)
+ (—=chTg,  M(grt1) - 6gks1 — chdupyr, ALy,

where we use the formula for the derivative of the Ad* operator given by (A.52)). Using the property
of the Ad* map, it can be shown that this is equal to
5‘70:3)‘1 = <5,U'k+1) Al£:> - <5:uk + (1 - C)h’(suk) Adfk)\]%;> - <(1 - C)hM(ng Adfk)\k; 77k>
+ (Adj, (adyy, g (i + (1= hM (gi) + (1= c)hur), i)
— (chM(grt1, Ae)s M1 ) — (chdupg1, ALY (5.20)

Instead of taking a variation of log in the fourth term of (5.14), we take a variation of fj, and
9 ' gk+1. Using (3.6), we obtain

&7;2 = <>\%, —Xk + Mk+1 — Ad 177k> = <>\ﬁ, —Xk + nk+1> — <Ad3}k,1)\%, 77k>- (5.21)

From (5.16), (5.19), (5.20), and (5.21)), the variation of the cost functional is given by

N

0Jay = Z (Sprs1s M) + (A — chM(grr1, AL, M) + (Surta, —chAL)
—0

—_

_I_

il Db, — T( AdgpaA) —adyy (T i)
k

+ <Adfk (adyq, a (s + (1= )hM(gp) + (1 = c)huy)) — A ch>

+ (O, Ap — Adp Ar)

+ <Te|‘gk ’ ng¢dk + (1 - C)hM(gkv )‘2) - (1 - C)hM(gkaAdfk)‘llc) - Ad;kfl)‘z’ 77k:>
_.I_

(Sug, Dyyda, + (1 — )hA) — (1 — c)hAdy \p) -
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Using the fact that the variations vanish at the end points, the summation can be reindexed as

follows:
N-1

0Jay =Y <T2Lfk Dy, ¢, — T(fk,Adfk—lAg) - adde_lAg(Té(fk))a Xk>
k=0 k
+ <Ad}k(ad2dfk)\i(ﬂk + (1 = c)hM(gr) + (1 — c)hug)) — A%u Xk>

+ (Ot Mooy + AL — Adg AL + (A1 — chM(gk, M—1), mk)
+ <T:Lgk . ng¢dk + (1 - C)hM(gka )‘2) - (1 - C)hM(gkvAdfk)\llf) - Ad;kfl)‘%a 77k>
_.|_

(Su, Dyyda, + (1 — )hA, — (1 — c)hAd g N, — chAj_q). (5.22)

This is equal to zero for all possible variations along the optimal solution. Thus, we obtain discrete-

time necessary conditions for optimality as follows.

Proposition 5.2 Consider a mechanical system evolving on a Lie group that is expressed by Corol-
lary 5.1\ for a free parameter ¢ € |0, 1]. Discrete-time necessary conditions for optimality for the
discrete-time optimal control problem presented in|Section 5.1.2|are as follows.

e Optimality condition
Dy, ¢a,, + (1 — c)hAL — (1 — ¢)hAdy N}, — chAj_; =0, (5.23)

e Multiplier equations

Tely Dyyda, — T(fu, A1 2}) — ad};df,lxg (Ta(fx))
k

(5.24)
+Ady, (adyg, a1 (e + (1 = )M (g) + (1 = c)hur)) — A =0,
Mo+ AL —Adp A\ =0, (5.25)
Neo1 = Adj AR+ TiLg - Dy, da, — chM (g, Ni—y)
K (5.26)

+ (1= ¢)hM(gi, AY) — (1 — )hM(gi, Adp ML) =0,

where T)(fi) = TiLy, - DTy(fx), and M, T : G x g — g* are given by and (5.18),
respectively.

e Boundary conditions

gv =g’ pv=ul. (5.27)

Remark 5.1 These necessary conditions are expressed in a coordinate-free form. Therefore, the

optimality condition and the resulting optimal control input are independent of the choice of repre-

sentations. They are globally represented by group elements without any singularity and ambiguity.
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Remark 5.2 The necessary conditions for optimality are represented by a discrete-time two point
boundary value problem. It is to find the control input sequence uy, state (g, ix ), and multipliers
A2 AL )\i) that satisfy the optimality condition (5.23), the equations of motion lb 1!
(5.13), and the multiplier equation (5.24), (5.25), (5.26)), under the given boundary conditions. A
computational approach to solve this discrete-time two point boundary value problem is discussed

in[Section 5.1.41

Remark 5.3 Here, the multiplier equations evolve on a 3n-dimensional linear space for a 2n- di-
mensional tangent bundle G X g. The n-dimensional redundancy is resolved as follows. The mul-
tiplier equation |i is linear with respect to the multiplier /\2. Thus, it is possible to express
the multiplier )\2 in terms of other variables at the same time step. The resulting expression can
be substituted into (5.25) and (5.26) so that the multiplier equations evolves on a 2n-dimensional
space. The detailed procedure is described in Alternatively, is not explicitly
constrained by using the Lagrange multiplier \?, and we find the expression for the constrained

variation of fj. This procedure is described in[Section 5.2.2

Remark 5.4 The presented necessary conditions are for the optimal control problem with fixed
terminal conditions and a fixed terminal time. But, they can be extended to other types of optimal
control problems. For example, in|Section 5.2.2} a time optimal control problem with a free terminal

time and a control input constraint is studied.

Remark 5.5 The free parameter ¢ € [0, 1] determines the accuracy of discrete-time equations of
motion and necessary conditions for optimality. They are second-order accurate if and only if ¢ = %
Otherwise, they are first-order accurate. But, the equations are simplified if the parameter is chosen
as either ¢ = 0 or ¢ = 1. In the optimal control problems presented in we consider two

cases when ¢ = % andc=1.

5.1.4 Computational Approach for Discrete-time Necessary Conditions

We discuss a computational approach to solve the presented discrete-time necessary conditions for
optimality. It is based on a neighboring extremal method (see Bryson and Ho|[1975). The essential
procedure is as follows. We first guess the unspecified initial multipliers. Then, the corresponding
nominal trajectory, satisfying all of the necessary conditions except the boundary conditions, is
determined by the multiplier equations and the equations of motion. The initial multipliers are
updated by successive linearization so as to satisfy the specified terminal boundary conditions in the
limit. This is also referred to as a shooting method. The main advantage of the neighboring extremal
method is that the number of iteration variables is small. In other approaches, the initial guess of the
control input history or multiplier trajectories are iterated, so the number of optimization parameters
is proportional to the number of discrete time steps.

One difficulty is that the extremal solutions are sensitive to small changes in the unspecified

initial multiplier values. The nonlinearities also make it hard to construct an accurate estimate of
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sensitivity, and may result in numerical ill-conditioning. Therefore, it is important to compute the
sensitivities accurately in order to apply the neighboring extremal method.

We compute the sensitivity of an optimal solution as follows. We first find an expression for
the multiplier )\2 by solving , and we substitute it into the multiplier equations , .
We also substitute the optimality condition (5.23) into the equations of motion and the multiplier
equations. For the given fixed initial conditions and a guess of the initial multipliers, we can obtain
the trajectories for (g, 1) and (A}, A?), and consequently the terminal condition (g, un ). Then,
we obtain a solution of the optimal control problem that satisfies all of the necessary conditions
except the terminal boundary condition.

The sensitivities of the specified terminal boundary conditions with respect to the unspecified
initial multipliers is obtained by a linear analysis. By following the variational analysis that we
used to derive the necessary conditions, we can develop linearized equations of the equations of
motion and of the optimality condition. The corresponding solution of the linearized equations can

be expressed as follows.

\I/H \1112
\1,21 \1122

(5.28)

(6A, 6A%)

(NN, 0pN)
(65, 6A3)

(10, 610) ]

where W¥ fori,j € {1, 2} represents a computable linear operator from g x g* to g x g*.
For the given two point boundary value problem, (19, dup) = (0,0) since the initial condition

is fixed. The terminal multipliers are free. Thus, we obtain
(N, Spn) = TGN, 6N3). (5.29)

The linear operator W'2 represents the sensitivity of the specified terminal boundary conditions
with respect to the unspecified initial multipliers. Using this sensitivity, a guess of the unspecified
initial multipliers is iterated to satisfy the specified terminal conditions in the limit. Any type of
Newton iteration can be applied. We use a line search with backtracking algorithm, referred to as

the Newton-Armijo iteration described in [Kelley| (1995).

5.1.5 Direct Optimal Control Approach

We have developed discrete-time necessary conditions for optimality, and a computational approach
to solve the necessary condition has been discussed. This method is referred to as an indirect optimal
control approach.

Alternatively, a numerical approach for a constrained parameter optimization, such as a sequen-
tial quadratic programming, can be directly applied to the optimal control problem without deriving
necessary conditions. The discrete-time equations of motion are considered as nonlinear equality
constraints, and the parameterized control inputs are optimized to minimize the cost functional.
This method is referred to as a direct optimal control approach.

Since the discrete-time Euler-Lagrange equations are faithful to the continuous equations of

motion, more accurate solutions to the optimal control problems are obtained. They are more ef-
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ficient, since optimal control inputs can be obtained by using larger time steps which requires less
computational effort. This approach is preferable if the necessary conditions for optimality become
too complicated. We apply a direct optimal control approach to a fuel optimal control of a 3D
pendulum on a cart in and to a fuel optimal control of two connected rigid bodies in
Section 5.2.7]
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5.2 Examples of Optimal Control of Rigid Bodies

We consider the following discrete-time optimal control problems for rigid body dynamics on a
Lie group. We mathematically formulate an optimal control problem and we derive discrete-time
necessary conditions for optimality. The direct optimal control approach is applied in[Section 5.2.7]

Section Optimal Control Problem G

5.2.1 Fuel optimal attitude control of a spacecraft on a circular orbit SO(3)
5.2.2 Time optimal attitude control of a free rigid body SO(3)
5.2.3 Fuel optimal attitude control of a 3D pendulum with symmetry SO(3)
5.2.4 Fuel optimal control of a rigid body SE(3)
5.2.5 Combinatorial optimal control of formation reconfiguration SE(3)"
5.2.6 Fuel optimal control of a 3D Pendulum on a cart SO(3) x R?
5.2.7|  Fuel optimal control of two rigid bodies connected by a ball joint SO(3) x SO(3)

The fuel optimal attitude control of a spacecraft in|Section 5.2.1} and the fuel optimal control of
arigid body in are direct applications of Proposition on SO(3) and SE(3), respec-
tively. Generalized optimal control problems are considered in for bounded control
inputs, and in[Section 5.2.3|for structured control inputs. The fuel optimal control problem of a rigid
body is extended to a combinatorial optimal control problem for formation reconfiguration in
A direct optimal control approach is applied to a 3D pendulum on a cart in[Section 5.2.6]
and two rigid bodies connected by a ball joint in These optimal control problems
have been studied in Lee et al.| (20052l 2006al 2007dlelfgl 2008a).

5.2.1 Fuel Optimal Attitude Control of a Spacecraft on a Circular Orbit

We study a fuel optimal control problem for the attitude dynamics of a spacecraft on a circular orbit,
presented in A rigid spacecraft lies on a circular orbit about a massive central body
with an orbital angular velocity wy. The configuration manifold is SO(3). The objective is to rotate
the spacecraft from a given initial condition to a desired terminal condition using minimal control
input during a fixed maneuver time.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary
5.1] and a mathematical formulation of the optimal control problem is presented. Discrete-time

necessary conditions for optimality are derived and computational results are presented.

Forced Hamilton’s Equations

The discrete Lagrangian of the spacecraft on a circular orbit is chosen as

1 h h
Ld(Rk, Fk) = Etr[(I — Fk)Jd] — §U(Rk) — §U(Rka). (5.30)

This corresponds to the discrete Lagrangian given by || with ¢ = % The expression for the

gravitational potential is given by (4.25). We assume the external control input 4 € s0(3)* is
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applied to the rigid body.
We derive forced discrete-time Hamilton’s equations. Recall that the Ad operator for SO(3) is

given as follows,

Adpiy = FRFT = Fy,  Adbi = FTHF = FTp, (5.31)

are
Ty(Fr) = Tilp, - DR Ty(Fy) = %(JdFk — FLy), (5.32)
A3 (TH(F)) = %(Fde — JaED). (5.33)

According to Corollary forced Hamilton’s equations are given by

. h. h 1
Uy + Sk + 5 My = E(Fde — J4Fl), (5.34)

T h_r h h
W1 = Fy Ty + 5 By (w4 M) + Sungn + 5 My, (5.35)
Ri11 = Ry F, (5.36)

where the expression for the gravitational moment Mj, is given by (4.29).
M = 3w (RT exp(wotés)es) x (JRT exp(wotés)es).

Optimal Control Problem

The objective of this optimal control problem is to transfer the spacecraft with a given initial attitude
and angular velocity (Rp, £9) to a desired terminal condition (R/, /) during a fixed maneuver time

N h while minimizing the control effort.

For given: (R, ), (Rf, Qf), N

Nflh
: _ T
s Lt
such that Ry = R/, Qn = Q/,

subject to (5.34), (5.35)), (5.36).

Discrete-time Necessary Conditions for Optimality

We derive discrete-time necessary conditions for optimality from Proposition [5.2] We first solve
1b to obtain an explicit expression for the multiplier \?, and we substitute it into the remaining

necessary conditions.
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Expression for \).  Using (5.18), we find the expression for 7 (F, \) : SO(3) x s0(3) — s0(3)*

as follows.

“ 1 . R o 1 . . Q
<TFkTC,l(Fk) -0 Fy, /\k> =5 <JdFka + L Jay M) = ﬂtf[(JdFka + W F T A
L o7ra T AN | —
=5t (MedaFy + Fy; JaAg)” Xe| = (T (Fry Ak)s Xk) -
Thus, we obtain
1 . .
T (Fpy M) = E(/\deFk + FFJae), (5.37)
which yields
1 “ N
T (Fy, Adpr A}) = E(F,Z N FyJaFy + FL I FEN ). (5.38)

We find expressions for the remaining terms in (5.24). Since the ad* operator for a matrix Lie group

is given by ad;a =nTa —an’ forn € g, a € g*, we obtain

!

" 1 o N
adiy o (Ti(Fv)) = +(FENF) " (JaFy — Bl Ja) — +(JaFy, — B Ja) (B AF)T
FT Ak h h

1 “ . 1 N “
= E(FkT M Jg+ JaALFy) — E(F,? N ELJgFy + FL I FIN ). (5.39)
Similarly,
AdFk(adAdFk)\}v Iy + §M/€ + §Uk))

T 31 TN (T h h. - h h. 31 o T\T
=F; | (FxA\FL) (Hk+§Mk+§uk)—(Hk+§Mk+§uk)(Fk)\ka ) F},

R N h ~ h . N h - h . -
= _/\i:Fl?(Hk + §Mk + §uk)Fk + F]Z(Hk + §Mk + §uk)Fk)\}€

T h h A1 "

= (Fk (Hk + §Mk + §uk)) A . (5.40)

Substituting these into (5.24), the multiplier equation for )\2 is given by

1 e . h h AR
_E(Fg)‘gjd + JgALFy) + ((FI;F(Hk + 5 M+ 2%))”%) - =0.

Since FTAY = FTAVET, and using (A.9). given by #A + AT# = ({t[A]I — A}z) for any
x € R3, A € R3%3, this is equivalent to

1 h h

E(tr[FkTJd] I—FLI)FEEN = (FF 1, + o My + §uk))/\)\,1€ -2 (5.41)

. . o . . 0
which yields an explicit expression for the A
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Necessary conditions. According to Proposition discrete-time necessary conditions for opti-
mality are given as follows.
e Optimality condition

h h

huy + gAg - §FkA,§ - §A}€_1 =0, (5.42)

e Multiplier equations
Ay = hEFy(te[EL Ty I — FL )™ {(FE(Hk + ng + guk))AA,i — Az} , (5.43)
M+ A — Fl =0, (5.44)
Ny~ BN+ M) — MR AL — MO FM) =0, (549

e Boundary conditions
Ry =R/, Qy=J0/. (5.46)

where the expression for M(Ry, A;) is given by (4.31).

M(R,\) = 3w? [ — (JRT exp(—wotéa)es)" (R exp(—wotéz)es)”

+ (BT exp(—wptés)es)” T oo sy a7
p(—wotéz)es)” J (R' exp(—wotéz)es)™| A.

Numerical Results

The mass property of the spacecraft is chosen as J = diag [1, 2.8, 2]. Two boundary conditions are
considered. Each maneuver is a large attitude change completed in a quarter of the orbit, £y = 7.
The step size is h = 0.001 and the number of integration steps is N = 1571. The terminal angular

momentum is chosen such that the terminal attitude is maintained after the maneuver.

(i) Rotation maneuver about the LVLH axis ey:

Ry=1, Qo= woRoTeg, RY = diag [1,-1,-1], 0 = wOR?\}T@.

(i) Rotation maneuver about the LVLH axes e; and es:
-1 0 O

Ry =diag[l,—1,—1], Qo =woRjea, R '=]0 0 1|,/ =wRy es.
0 -1 0

The discrete-time necessary conditions for optimality are solved using the shooting method
described in The optimized costs and the violation of the constraints are 23.35,
2.90 x 1071°, and 70.74, 7.31 x 10715, respectively for each case. Figures and show
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Figure 5.1: Optimal attitude control of a spacecraft: rotation about the LVLH tangential axis
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Figure 5.2: Optimal attitude control of a spacecraft: rotation about about the LVLH tangential and normal axes

the attitude maneuver of the spacecraft (clockwise direction), control inputs, and violation of the
terminal boundary condition as a function of the number of iterations.
As shown by [Figure 3.1(c)| and [5.2(c)| the computational geometric optimal control approach

exhibits excellent numerical convergence properties. The circles denote outer iterations to compute

the sensitivity derivatives in the Newton-Armijo iteration, and the inner iterations correspond to
backtracking to decrease the step length along the search direction. For all cases, the initial guesses
of the unspecified initial multiplier are arbitrarily chosen such that the initial control inputs are close
to zero throughout the maneuver time. The error in satisfaction of the terminal boundary conditions
converges to machine precision within 25 iterations. These convergence rates demonstrate that the
sensitivity derivatives are being computed accurately. This is because the proposed computational
algorithms are geometrically exact and numerically accurate. There is no numerical dissipation
caused by the algorithm, and therefore, we obtain more accurate sensitivities along the optimal

solution.
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5.2.2 Time Optimal Attitude Control of a Free Rigid Body

We study a time optimal control problem for the attitude dynamics of a free rigid body, presented
in The objective is to rotate a rigid body with a given initial condition to a desired
terminal condition during a minimal maneuver time using a bounded control input. The discrete-
time necessary conditions described in Proposition [5.2] cannot be directly applied to this optimal
control problem, since the maneuver time is not fixed, and control inputs are bounded.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary[5.1]
and a mathematical formulation of the optimal control problem is presented. Modified discrete-time
necessary conditions for optimality are developed by following a similar approach to that presented

in|Section 5.1.3| and a numerical example is shown.

Forced Hamilton’s Equations

The discrete Lagrangian of the attitude dynamics of a free rigid body is chosen as
1
Ld(Rk, Fk) = Etl'[([ - Fk)Jd] . (5.47)

The discrete generalized forces are u,; = 0, ujk = hug41. This simplifies the subsequent develop-
ment for discrete-time necessary conditions.
From Corollary [5.1] the forced discrete-time Hamilton’s equations for the attitude dynamics of

a free rigid body are given by

R 1
I, = E(F’“‘]‘i — JuFD), (5.48)
1 = FET + hugyq, (5.49)

Rii1 = RipFy. (5.50)

Optimal Control Problem

We assume that the magnitude of the control moment is bounded by a constant z € R, i.e. |Jugl, <
u for any k € {0, ..., N}. The objective of the time optimal attitude control problem is to transfer
the rigid body with a given initial attitude and angular velocity (Rg, {2) to a desired terminal con-
dition (R/, /) within a minimal maneuver time Nh, where the 2-norm of the control moment is

constrained by the given limit w.

For given: (R, o), (R, Q/), 4
N—-1
uﬁinzv {jd B kzo 1dt} ’
such that Ry = RS, Qn = O/,
subject to |lug|| < @ Yk € {0,..., N} and (5.48), (5.49)), (5.50).
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Discrete-time Necessary Conditions for Optimality

This optimal control problem is not a special case of Proposition since the terminal maneuver
time N is not fixed. But, the presented results can be easily extended to handle the time optimal
control problem.

We define the augmented cost functional

N-1
Jag = > 14 (—Tipy + FI T + by, M)
k=0
1
+ (O 5= B — (R Ru — B (550

for Lagrange multipliers A}, € s0(3), A2 € s0(3)*. Comparing this with , the discrete equation
is not explicitly constrained by using a multiplier. Here we develop an expression for the
constrained variation of Fj, as discussed in Remark [5.3] In addition, the matrix logarithms for Fy,
R{ Ry are replaced by (Fj, — F;')Y, and (R{ Ry41 — R} Ry,)". This is based on the fact that
if the step size is chosen sufficiently small so that the relative attitude rotation between integration
steps is less than 7 /2, then the rotation matrix F}, is equal to R%Rk_}rl if and only if their skew parts
are identical. This is a property of the matrix logarithm on SO(3), and it is easier to handle the skew
part of a rotation matrix than a matrix logarithm of it.

We find a constrained variation of F}, from : the variation of F}, is expressed as §F), =
Fi x5 for xi € R3, and yy, is written in terms of F}, and 611;. Taking a variation of , we obtain

hoTly, = Fixeda + JaxuFl = FixeFida + JaFy Foxw = ([Fda) T — Fida) Foxe)”
where we use the property of the hat map given by (A.9). Thus, x;, is given by
Xk = hEL (t[FypJy) I — FyJq) " 610, = Byoly, (5.52)

where B, = th(tr[Fde] I— Fde)fl.
Now we consider the terminal time variation. Since the terminal conditions are fixed, the varia-
tions of the terminal attitude and angular velocity are related to the variation of the maneuver time

as follows,

0N + (QN — QN_l)(SN =0, (5.53)
. 1
Ryin + SRy (Fy-1 = FY_1)6N =0, (5.54)
where the terminal angular velocity is approximated by Qn = Ry Ry ~ 5= (RY, + RY_,)(Rn —
Ry-1) = 55 (Fn-1 = Fx_y).

The next step is taking a variation of the augmented cost functional (5.51)), and substituting
the constrained variation (5.52)) and the variations of the terminal states (5.53)), (5.54). Then the
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variation of the augmented cost functional is given by

N—-1 N-—1
— 1
0Ta, = Z (héupi1, L) + Z <5Hk, M1 + (Fx — BEETTI)AL + §Bg(tr[Fk] I— Fk)A§>
k=0 k=1

+ Z< ([Fpoa] I — Fro1)A7 g — Fk(tr[Fk]I—Fk))\i; 77k>

{1+)\N 1 { —IIn_ 1—|—FN dInv— 1+hUN}+>\N 1° ((FN ) —(Fzg—l)Q)v}aN-

The multiplier equations are chosen such that the expressions in the pairing are equal to zero, and
the transversality condition is chosen such that the expression in the last braces is equal to zero.
Then, the variation of the cost functional reduces to

N-1

0Jag = Y _ (hbupsr, M)

k=0

The optimality condition is chosen such that 67,, > 0 for all admissible variations of the control
input.

In summary, discrete-time necessary conditions for optimality are given by

e Optimality condition

Ugtl = — (5.55)
e Multiplier equations
—— 1
Moy + (B — BEFTT) N + inT(tr[Fk} I —Fp )M\ =0, (5.56)
(tr[F—1] I — Fr_1)Ai | — Fr(tr[Fy] I — Fy) A2, (5.57)
By, = FL (t[FpJy) I — FiJg) L, (5.58)

e Boundary conditions

1+/\N 1 { IMy— 1+FN dIn— 1+huN}+)\N 1 4((FN ) _(Fzgfl)Z)V:O,

Ry =R/, Qy=907. (5.60)

Numerical Results

We choose an elliptic cylinder for a rigid body model with semi-major axis 0.8 m, semi-minor axis
0.2 m, height 0.6 m, and mass 1kg. The inertia matrix is J = diag[0.04, 0.19, 0.17] kgm?, and
the maximum control limit is chosen as w = 0.1 Nm. The desired attitude maneuver is a rest-
to-rest large angle rotation described by (Ro,€) = (I3x3,0), (R, Q) = (exp6,0), where

v = %[1, 1, 1] € R3, and § = 120°.
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(b) Angular velocity €2 (c) Control input »

Figure 5.3: Time optimal attitude control of a free rigid body

The discrete-time necessary conditions for optimality are solved using the shooting method de-
scribed in In the numerical computations, we fix the number of steps as N = 1000
in this particular numerical example, and we vary the step size h. In essence, we find the seven pa-
rameters, initial multipliers and the time step h, satisfying the seven-dimensional terminal boundary
conditions under the discrete-time equations of motion, the multiplier equation, and the optimality
condition. The optimal solutions are found in 94 on Intel Pentinum M 1.73 GHz processor; the
boundary condition errors are less than 1071°.

The optimized attitude maneuver, angular velocity, and control input histories are presented in
The optimized maneuver times are 3.39 sec, and the control input is saturated during

the entire maneuver time.
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5.2.3 Fuel Optimal Attitude Control of a 3D Pendulum with Symmetry

We study a fuel optimal attitude control of a 3D pendulum introduced in [Section 4.2.3| (see |Lee
et al.[20071f). The 3D pendulum is a rigid body supported by a frictionless pivot point acting under
the gravitational potential. We have shown that the 3D pendulum has a symmetry represented
by a group action of SO(2) ~ S!, and consequently, the angular momentum about the gravity
direction is conserved, and the configuration manifold SO(3) can be reduced to a quotient space
SO(3)/S! ~ S2.

The external control moment does not have any component about the gravity direction, and
therefore, the angular momentum about the gravity direction is conserved along the controlled dy-
namics of the 3D pendulum. Such control inputs are physically realized by actuation mechanisms,
such as point mass actuators, that change the center of mass of the 3D pendulum.

In this section, forced discrete-time Hamiltons equations are derived according to Corollary
and a mathematical formulation of the optimal control problem is presented. This optimal control
problem cannot be considered as a special case of Proposition [5.2] since the control input has a
special structure. Here, modified discrete-time necessary conditions for optimality are developed
by following the approach presented in The necessary conditions have numerical
ill-conditioning due to the conservation property. We also present a computational approach to
avoid this numerical ill-conditioning. The key idea is to decompose the sensitivity derivatives into
symmetric parts and asymmetric parts. The resulting numerical results are studied according to

geometric phase effects.

Forced Hamilton Equations

The discrete Lagrangian of the 3D pendulum is chosen as
1

The gravitational potential is U(R) = mgp.R” e3. As discussed in [Section 4.2.3| control moment
is expressed in the body fixed frame as

up = RYez X up,

for a control parameter u,, € R3. Since the vector R” e represents the gravity direction in the
body fixed frame, the external control moment has no component along the gravity direction. We
choose the discrete generalized forces as u,; =0, uz{k = hRY 1163 X Up -

From Corollary forced discrete-time Hamilton’s equations are given by

. 1
Iy = E(ijd — JaFD), (5.62)
1 = BTy + hMjq + hRE, jes X up, (5.63)
Ryy1 = Ry F, (5.64)
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where the moment due to the potential is given by M = mgp. x R es.

Optimal Control Problem

The objective of the optimal control problem is to rotate the 3D pendulum from an initial attitude
Ro = I to a desired terminal attitude R/ = exp(6é3) for a fixed terminal time N'h and a rotation
angle § € S!, while minimizing the control effort. The initial angular velocity and the terminal

angular velocity are zero.

For given: (Ryg = 1,Qy =0), N, 0
N—1
. h r
min  Jg = SUp, . U )
Upg 41 { d 0 2 Pht1 pk+1}
such that Ry = exp(fés), Qn =0,
subject to (5.62), (5.63), (5.64).

Discrete-time Necessary Conditions for Optimality

This optimal control problem cannot be considered as a special case of the Proposition [5.2] as the
generalized force is dependent on the rotation matrix ;. But, discrete-time necessary conditions
can be easily obtained by generalizing Proposition[5.2]to include the variation of the control moment
as shown in (4.48)).

Define the augmented cost functional:

N-1

h 1
Tay = §u§k+lupk+l + <Hk — E(Fk.]d — JuFD), A2>
k=0

+ (M1 — FI L — hMjeq — hRE qes X upy,,, Ap) + (Ai, log(RE Ryt1) — log F,)

This is equal to (5.14) when ¢ = 1, except that two terms ¢ and ug; in (5.14) are replaced by

h T T . . .
SUp, . Upy, and R e3 X up, . Therefore, we can obtain the variation of the augmented cost

functional from (5.22)) with ¢ = 1 as follows.

N-1

g = X (=T (Pl Ad g ) = ady g (TH0) + Ad o T = A )
k=0

(00, Aoy + AL = Adg ML) + (Xy = AM(Ri, My) = AdgrdE, )
+ (Sup,,,, hup,,, ) — (S(hRE qes X up,, ), M) - (5.65)
The last term of (5.65)) is given by

<5(hR£+le3 X upk+1)a )‘lle>
= <h(_>%kR£+1 - Fifﬁka)ea X Uppyqs )‘llc> + <h’Rg+1e3 X 5upk+1v )‘116>

—

== <hﬁpk+1Rge3Xk + haPkHFl;ngeSnk: >‘llc> + <hR£+1e35qu+1v )‘llc>
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= — (hRfesity, My xe) = (PREesFritp Ay 1) = (Stpy s WL, je3M ). (5.66)

From (4.47), the expression for the derivative of the gravity moment is given by M (R, \!) =
mgRTe3p.\'. Now, we find an expression for the first term of (5.65). From (5.38), 1' an

(5.40), we obtain

T (Fy, Adpr A}) = %(ng\ngJdFk + FL I E N F),
HEE N R aFe+ FL RN,
Adg (a1 TT) = (FITAL)

* 1 A "
adAdFkT,\g (Ty(Fy)) = E(FkTAng + M) —

Using these, the first term of (5.63) can be written as
(=T A — ady (T + Ady (a0~ A )
k

1 . . —
— <—h(FkT)\2Jd + JaNEy)Y + LT — A, Xk> ) (5.67)

Substituting (5.66), into (5.63), we obtain the variation of the augmented cost functional
as follows.

N—-1
1 ~ “ — —
60y = § : <—h(FkT Noda + JaAVFR)Y + FEILA, — A + hRE esiy,, AL, Xk>
k=0

+ <6Hkv )‘llcfl + /\2 - Fk/\llc> + <5upk+1’ hupk+1 + hRg+1€3/\lle>
+ (01— hmgREespdhy — Fidf + hBE esFiiip,, M i)

This is equal to zero for all admissible variations. Following the procedure used to obtain (5.41),
we can find an explicit expression for )\2.

In summary, discrete-time necessary conditions for optimality are as follows.

e Optimality condition

Uppy = —Ri163 X AL, (5.68)
e Multiplier equations
Ay = hEFy(te[FLTg) I — FE )™ {(F,;F I, + hRF ez, . )\, — Ai} : (5.69)
Mo+ A — Bl =0, (5.70)
Ni_1 — FiAf — hmgRT espey,_1 + hRY e3Fyiip, . A\ = 0, (5.71)
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e Boundary conditions
RN = exp(@ég), QN =0. (5.72)

Modified Computational Approach

We solve these discrete-time necessary conditions using the computational approach discussed in

Section 5.1.4, We first substitute the expression for A} into (5.69) and the optimality condition

(5.68)) into (5.70) and (5.71). Then, the multiplier equations are expressed in terms of multipliers
AL, A%, attitudes, and angular velocities Ry, €. According to (5.29), we obtain

N (5.73)
SN’ ‘

12 12
\Ill \112

12 12
\IIS \II4

nN
Ol N

where the linear operator W2 from s0(3) x s50(3)* to s0(3) x s0(3)* is represented by four sub-
matrices W}? € R3*3 fori € {1,2,3,4}. At each iteration, we require the inverse of the sensitivity
derivative represented by the matrix U'? to update the initial multipliers that satisfy the terminal
boundary condition.

By Noether’s theorem, the symmetry of the 3D pendulum yields a conserved quantity, which
causes a fundamental singularity in the sensitivity derivatives for the two-point boundary value
problem. The sensitivity matrix ¥'2 has a theoretical rank deficiency of one since the vertical com-
ponent of the inertial angular momentum is conserved regardless of the initial multiplier variation.
Therefore, is numerically ill-conditioned.

Here, we present a simple numerical scheme to avoid the numerical ill-conditioning caused by
the symmetry. The essential idea is to decompose the sensitivity derivative into a symmetric part
and an asymmetric part. Since the angular moment of the 3D pendulum is expressed in the reference

frame as 7, = RylIly, its infinitesimal variation is given by

ory = 0(RyIly) = SRNIIN + Ryo1lN
= _RNﬂNnN + ROl
= —RNTIN (U260 4+ WL2602) + Ry (W3260) + Wi26)2).

Now, the sensitivity derivative equation (5.73) can be rewritten in terms of the inertial angular

momentum variation as

UhY
0N

From the symmetry, the third component of the inertial angular momentum variation is zero; thus

e e
Ry (WY —TIN01%) Ry(U)2 —TIN0L2)

AL
o, (5.74)
SN

d(mn)3 = 0. That is, the sixth row of the above matrix is zero. (Numerical simulation in the later
section shows that the norm of the last row of the transformed sensitivity matrix is at the level of
10~15.) Now, we find an update of the initial multiplier based on the pseudo-inverse of the 5 x 6

matrix composed of the first five rows of the transformed sensitivity derivative in (5.74).
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(a) Body (A) (b) Body (B)

Figure 5.4: Two types of the 3D pendulum body for the optimal control problem with symmetry

This approach removes the singularity in the sensitivity derivatives completely, and the resulting
optimal control problem is no longer ill-conditioned. Numerical simulations show that the numeri-

cal optimization procedure fails without this modification.

Numerical Results

Numerical optimization results for the 3D pendulum are given. Two elliptical cylinders, shown in
Figure 5.4] are used as rigid pendulum models. Properties of the 3D pendulum models are chosen

as

Body (A): m =1, J = diag[0.13,0.28,0.17], p = 0.3e3.
Body (B): m = 1, J = diag[0.22,0.23,0.03], p = 0.4es.

Each maneuver involves a transfer from an initial hanging equilibrium to another hanging equi-
librium corresponding a rotation about the vertical axis. The rotation angle is chosen as 180°.
Thus, Ry = I, R’ = exp(nés) = diag[—1,—1,1]. Since the vertical component of the angular
momentum is exactly zero, the rotation is purely caused by the geometric phase effect given in
(A37). These problems are challenging in the sense that the desired maneuvers are rotations about
the gravity direction, but the control input cannot directly generate any moment about the gravity
direction.

The optimized cost functions and the violations of the terminal boundary conditions are 7.32,
4.80 x 10715, and 3.37, 3.06 x 10~'4, respectively. It takes 2.72 minutes and 5.05 minutes with an
Intel Pentium M 740 1.73GHz processor on MATLAB. Figures [5.5] and [5.6] show snapshots of the
attitude maneuvers, the direction of the gravity in the body fixed frame ¥ = R”e3 displayed on a
sphere, control input histories, and convergence rate.

The convergence rate figures show the violation of the terminal boundary conditions as it de-
pends on the number of iterations. Red circles denote outer iterations in the Newton-Armijo iteration
to compute the sensitivity derivatives. For all cases, the initial guesses of the unspecified initial mul-
tiplier are arbitrarily chosen. The error in satisfaction of the terminal boundary condition converges

quickly to machine precision after the 50th iteration. These convergence results are consistent with
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the quadratic convergence rates expected of Newton methods with accurately computed gradients. If
the sensitivity derivative is not decomposed as in (5.73)), then the condition number of the sensitivity

matrix is at the level of 10'%, and the numerical iterations fail to converge.

Geometric Phase of the 3D Pendulum. We interpret the optimization results using the geometric
phase formula given by (A.37).

217°|% = [ J] (T - JY
Ogeo(T) = /S 17 & 'tf][T])(Q )dA, (5.75)

where S is the region in S? that is enclosed by the curve Y(t) for ¢ € [to,ts]. For the given initial
conditions, the vertical component of the initial angular momentum is zero. Thus, the rotation about
the vertical axis is purely caused by the geometric phase. Since the geometric phase is determined
by a surface integral on S? whose boundary is the reduced trajectory Y, it is more efficient for
the reduced trajectory to enclose the area at which the absolute value of the integrand of is

maximized.

In [Figure 5.5(b)| and [Figure 5.6(b)| the infinitesimal geometric phase per unit area is shown

by color shading. The reduced trajectory, which represents the gravity direction in the body fixed
frame, is shown by a solid line. The north pole of the sphere corresponds to the hanging equilibrium
manifold, and the reduced trajectory starts and ends at the same north pole for the given boundary
conditions.

Comparing [Figure 5.5(b)| with [Figure 5.6(b)] it can be seen that Body (A) and Body (B) have
different geometric phase characteristics. This is caused by the fact that the geometric phase depends

on the moment of inertia of the body. For Body (A), the absolute value of the infinitesimal geometric
phase is maximized at a point on the equator, and for Body (B), it is maximized at the north pole.
We see that the optimized reduced trajectories try to enclose those points.

As a result, the optimized attitude maneuver of Body (A) is distinguished from that of Body
(B). The attitude maneuver of Body (A) is relatively more aggressive than that of Body (B) since
the reduced trajectory passes near the equator corresponding to a horizontal position. Body (B) does
not have to move far away from the hanging equilibrium since the infinitesimal geometric phase is

maximized at that point. The resulting attitude maneuver is relatively benign.
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(a) Attitude maneuver
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Figure 5.5: Optimal control of a 3D pendulum: body A, 180° rotation about the gravity direction
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Figure 5.6: Optimal control of a 3D pendulum: body B, 180° rotation about the gravity direction
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5.2.4 Fuel Optimal Control of a Rigid Body

We study a fuel optimal control problem of a rigid body acting under a potential field, introduced in
The objective is to change the position, the attitude, the linear velocity, and the angu-
lar velocity of a rigid body during a fixed maneuver time using a minimal control force and control
moment. Here, we explicitly consider the coupling effects of the rotational attitude maneuver and
the translational maneuver of a rigid body.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary
and a mathematical formulation of the optimal control problem is presented. Discrete-time
necessary conditions for optimality are derived from Proposition [5.2] and computational results are

presented.

Forced Hamilton’s Equations

Consider a rigid body that is acting under the configuration dependent potential U (R, x) : SE(3) —
R. The configuration manifold is SE(3). This rigid body model is presented in
and the corresponding Lie group variational integrator is developed in The discrete
Lagrangian is chosen as

1 1
L(gk, fk) = %mAngxk — EU‘[(I — Fk)Jd] + hU(Rka, TE + Al‘k)

This corresponds to the discrete Lagrangian given by (5.7) with ¢ = 1. We assume that external
control force uf: € (R?)* and external control moment u}" € s0(3)* are applied to the rigid body,
and they are expressed in the body fixed frame. The discrete generalized forces are given by Uy =
0, ug, = (huj,y, h“£+1)-

From Corollary the forced discrete-time Hamilton’s equations are given as follows.

M, = FpJg — JuFL, (5.76)

Ri1 = Ry Fy, (5.77)

T4l = T + %’Yk, (5.78)

Ye+1 = V& + hfep1 + hu£+1, (5.79)
Myy1 = FL T + hMjiq + hulyy, (5.80)

where f;, € R3 is the force due to the potential, and M;, € R? is the moment due to the potential.

They are determined by the following expressions

oU;
fi=-5 k- (5.81)
Tk
- ou T 70Uy,
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Optimal Control Problem

The objective is to transfer the rigid body from a given initial condition (R, x¢, 2o, Zo) to a desired

terminal condition (Rf caf of af ) during a fixed terminal time N h using minimal control effort.

For given: (R()v o, QO7 1.0)7 N, (Rf7 xf7 Qf? xf)
N-1

mgn {Jd = Z g (W (ug), Uk)} ;

k=0
suchthatRN:Rf, mN:a:f, QN:QJC’ i?Nijf,

subject to (5.76)—(5.82),
where W : se(3) — se(3)* is a weighting function given by W (u) = (W™u™ W/ul) for sym-
metric positive definite matrices W/, W™ € R3*3,
Discrete-time Necessary Conditions for Optimality

This optimal control problem is a special case of Proposition applied to the Lie group SE(3),
when the free parameter of the discrete Lagrangian is ¢ = 1 and the cost is ¢g = 2 (W (uy,), ug).
From (5.23))—(5.27), necessary conditions for optimality can be obtained as follows.

e Optimality condition

—141 —141
ups = (W™ Ny, ulyy = (WAL (5.83)
e Multiplier equations
Al All A12 A13 A14 T )\1
Ry _1 k k k k Ry,
1 21 422 423 424 1
2 33 434 2 | .
41 442 2
A2, A A2 0 0 A2,
where matrices A?g € R¥3 fori,j € {1,...,4} are given by
11 12 W 13 33
Ak = hM.Tk+17 Ak - EM‘TIHN Ak = hMRkHAk ’
— h2
At = Fl + hMp, A+ FITL A, AP = hFy, ., A2? = I35 + Rf“‘“’
AP = hFg,, AP, A = hFr, AP, AP =F,
_ h
AY = WL {u[Fda] Isxs — FiJa} ™', A* = Iy, A = g,

The matrices F, , Fr,, Ma,, Mp, € R3*3 are determined by the following equations.

Ofr = ka oz + ka Nk, (5.85)
OMy, = My, 0x, + Mg, i (5.86)
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Figure 5.7: Optimal orbit transfer of a dumbbell spacecraft (Orbital radius change)
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Figure 5.8: Optimal orbit transfer of a dumbbell spacecraft (Orbital inclination change)

e Boundary conditions
Ry=R zy=2a2f, Qy=0/, vy =V/. (5.87)

Numerical Results

We study optimal maneuvers of a dumbbell spacecraft model presented in[Section 3.3.6] The dumb-
bell spacecraft is composed of two spheres connected by a massless rod. We assume that it is acting
under a central gravity field, and the mass of the spacecraft is negligible compared to the mass of a
central body. The resulting model is referred to as a Restricted Full Two Body Problem (RF2BP).
Initially, the spacecraft is on a circular orbit. Two maneuvers are considered. The first maneuver
is to change the orbital radius to twice the initial orbital radius, and the second maneuver is to
increase the orbital inclination by 60 deg. The maneuver time is chosen to be a quarter of the orbital
period of the initial circular orbit. The boundary conditions are follows. Here the mass, length,
and time dimensions are normalized by the mass of the dumbbell, the radius of a reference circular

orbit, and its orbital period, respectively.
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(1) Orbital radius change

zo = [1,0,0], zf =10,2,0],
0 —1 0 0 0 -1
Ro=1|1 o o|, RF=|0 -1 o],
0 0 1 -1 0 0

o =[0,0.9835,0], 4/ =[-0.7041,0,0],
Qp = [0,0,0.9835], Qf =[-0.3521,0,0].

(ii) Orbital inclination change

z0 = [1,0,0], 2/ = [~0.3536,0.3536, 0.8660)],
0 -1 0 —0.7071  0.3535  0.6123
Ro=|1 0 0|, R/ =|-07071 —0.3535 —0.6123],
0 0 1 0  —0.8660 0.5

o = [0,0.9835,0], &' =[—0.6954, —0.6954, 0],
Qo = [0,0,0.9835), Qf =[0,0,0.9835].

For all cases, an initial guess of the unspecified initial multipliers is arbitrarily chosen. The
error in satisfaction of the terminal boundary condition converges quickly to machine precision
after the 25th iterations. These convergence results are consistent with the quadratic convergence
rates expected of Newton methods with accurately computed gradients. The optimal costs and the
violation of the terminal boundary conditions are 22.23, 1.85 x 10~ and 13.03, 9.32 x 10~1°
respectively. The optimal maneuver and control input histories are shown at[Figure 5.7|and

5.2.5 Combinatorial Optimal Control of Spacecraft Formation Reconfiguration

The objective of spacecraft formation control is to use multiple spacecraft for cooperative missions
such as long base-line interferometers. Formation reconfiguration can be classified into two types:
(i) each spacecraft is assigned a specified location in the desired reconfigured formation; (ii) a spec-
ified location in the desired formation can be occupied by any single spacecraft (see [Wang and
Hadaeghl[1999). In general, a formation is composed of identical spacecraft or groups of space-
craft of the same type, and the total fuel consumption depends on the permutational assignment of
positions in the formation configuration as well as the maneuver of each spacecraft.

In this section, we study an optimal spacecraft formation problem integrated with an inte-
ger/combinatorial optimization approach for the assignment. Usually in combinatorial optimization
problems for multiple agents, the dynamics of each agent is either ignored or simplified (see Savla
et al.|[2006). Here, we use the rigid body model shown in|Section 5.2.4] including both translational
dynamics and rotational attitude dynamics under a central gravitational potential. Thus, finding

optimal control inputs for spacecraft assigned to a fixed desired location is demanding even if the
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combinatorial assignment optimization problem is not considered. This combined problem is inter-
esting and challenging since it requires combining a combinatorial optimization approach and an

optimal control method for the non-trivial dynamics of multiple spacecraft evolving on SE(3).

Combinatorial Optimal Control Problem

We study an optimal formation control problem for n identical rigid bodies where the dynamics
of each body is described by (5.76)—(5.80). The objective is to find the optimal control forces
and moments such that the group moves from a given initial configuration ( 6,1:6, 6,%) for
i €{1,2,...,n} to a desired target ¥ during a given maneuver time Nh, where the superscript i
denotes the ¢-th rigid body.

More precisely, the desired target formation is defined as follows. We assume that the n desired
positions {xf’i(e)}?zl,

given as functions of parameters # € R!. The desired attitude, angular velocity, and linear velocity

at which all rigid bodies are located at the terminal maneuver time, are

at the terminal time, (RS, Q/, /), are assumed to be fixed and to be the same for all rigid bodies.
This type of formation appears in spacecraft interferometric imaging applications, where spacecraft
should be aligned in a single imagining plane while pointing at an object. In this case, the image
quality performance of the spacecraft is invariant under a rotation of the spacecraft formation about
the axis perpendicular to the imagining plane, passing through the object. The parameters 6 allow
us to account for this symmetry in combinatorial optimal formation control.

Since all rigid bodies are identical, there are n! possible combinatorial assignments for n rigid
bodies to these n desired locations. Let {a;;} be a n x n matrix composed of binary elements
{0, 1}, referred to as an assignment or a permutation matrix. Each element of the assignment matrix
a;; represent a possible assignment of the i-th rigid body to the j-th desired terminal position le.
If a;; = 1, the i-th rigid body is assigned to the j-th node, and if a;; = 0, the i-th rigid body is
not assigned to the j-th node. An assignment is valid when each rigid body is assigned to a single
node, to which other rigid bodies are not assigned. Therefore, an assignment matrix is valid if
Z?Zl aij = > i qa;; = 1foralli,j,ie. there is exactly a single 1 entry for every row and every
column of the matrix A.

For a given assignment A, let A; be the assignment for the i-th rigid body. In other words, the
(i, A;)-th element of the assignment matrix A is equal to 1. The i-th rigid body is assigned to the
A;-th desired location, 2:/7. Alternatively, an assignment can be expressed as a set of pairs (i, A;)
forl < <n.

The target is defined in terms of a parameter # and an assignment A as follows.

n

(0, 4) = {1 (0)}

1=

€ R,
1

Thus, for a given parameter § € R’ and a given assignment A, the terminal boundary conditions for

all rigid bodies are completely determined.
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The optimal control problem for a formation reconfiguration of n rigid bodies is formulated as

n

given: {(Ré,:cé, B,ii)}?:17 (Rf7 {SUfZ(G)} . 7Qf750f)a N,

| >

n N-1
min {j = Z (Uiil)Tquiil T Q(U?fl)TWm“kmfl} )
i=1
such that {<R§V7 .’E?V, 3\]71'72\7) - (RfaxﬁAi (9)7 Qfa‘rf)} 1 )
1=

n n
aij €{0,1}, > aij =Y ay=1 foranyl <i,j<n,

j=1 i=1

subject to (5.76)—(5.80).

Since we have neglected the interaction between rigid bodies, the dynamics of the rigid bodies
are only coupled through the terminal boundary conditions. If the parameter 6 and the assignment
A are prescribed, then the optimal control problems for n rigid bodies can be solved independently
using the computational approach presented in The formation cost is the sum of the
resulting costs for each rigid body. Therefore, the optimal formation control problem for multiple
rigid bodies consists in finding the optimal value of the parameter and the optimal assignment of
rigid bodies among the n! possible assignments. This is similar to the optimal formation reconfigu-
ration problem presented in|Junge et al.[|(2006) except that we include the combinatorial assignment

problem explicitly.

Hierarchical Optimization Approach

We solve this combinatorial optimal control problem using a hierarchical optimization approach.
We consider an optimal control problem for a fixed assignment, and we consider an assignment
optimization problem for a fixed target parameter. These two optimization problems define the

combinatorial optimal control problem.

Optimal Control of n Rigid Bodies. We first solve the optimal formation control problem assuming
that an assignment A is pre-determined and fixed. Since the parameter 6 completely defines the
terminal configuration for the fixed assignment A, it also determines the corresponding cost by
summing the cost of the optimal trajectories for each rigid body. Thus, the optimization problem
can be decomposed into an outer optimization problem to find the optimal value of # that minimizes
the total cost, and an inner optimization problem to find the optimal control inputs for the given

value of . This is a consequence of the fact that
migl J(u,0) = r%in {min {T(u,0)]0 = 0’}} . (5.88)
u, / u

The inner optimization problem is solved by using the computational approach described in
Section 5.2.4, The optimal value of 6 is found by using a parameter optimization method. From
the optimality condition given by (5.83)), the cost is dependent on the multipliers. Since the sen-
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sitivity of the multipliers with respect to the terminal boundary condition is available through the
computational approach of the optimal control problem given by (5.28), it is possible to obtain the
sensitivity of the cost with respect to the target parameter by applying the chain rule properly. Then,
a gradient-based parameter optimization technique can be applied. We apply the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method presented in Kelley| (1995).

Assignment Optimization. Now, we solve an assignment optimization problem assuming that the
target parameter 6 is fixed. For the given value of 6, the n desired points {:L‘f 7i}?:1, at which all
rigid bodies are located at the terminal time, are completely defined. Thus, there are n! possible
combinatorial assignments.

Let {cij } be a n x n matrix, referred to as a cost matrix. Each element ¢/ represents the optimal
cost of the i-th rigid body transferred to the j-th desired location. For an assignment {a;; }, the total

cost is given by J = >"'._. ¢ a;;. The optimal assignment problem is given by
1,j=1 J

n
min g ca;j,
aij &
t,j=1

subjectto 37 a;j = 1,371 a;; = 1, and a;; € {0, 1} forall i, j € {1,2,...,n}.

Since we assume that there is no interaction between rigid bodies, the cost matrix is indepen-
dent of the assignment. For the given value of the target parameter #, we must solve at most n?
optimal control problems to obtain the cost matrix. Once we have the complete cost matrix, the
optimal assignment can be obtained by comparing costs for all possible assignments or by using the
Hungarian method (see Murty||1985).

It is often expensive to obtain the cost matrix. Each element of the cost matrix is a solution of
an optimal control problem presented in For the formation optimization problem, we
need to find the cost matrix with varying values of the target parameter ¢. Thus, the objective of
this subsection is to find the optimal assignment without solving all n? optimal control problems.
We start with an initial single spacecraft optimal trajectory computation, and use its optimal cost
and sensitivities to populate the remaining entries of the cost matrix. We construct a combinatorial

assignment method using these approximations.

(1) Guess an initial assignment and solve the corresponding optimal control problems for this

assignment.
(i) Estimate the cost matrix using linear approximations.

(iii) Find a new assignment using the estimated cost matrix, and solve the corresponding optimal

control problems for this assignment.

(iv) Find the best assignment using all of the solutions of the optimal control problems obtained

so far.
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(v) Construct a second-order approximation based on the best assignment, and estimate the cost

matrix.

(vi) Repeat (iii)-(v) until the best assignment is repeated for a pre-determined multiple times in a

row at (v).

Combinatorial Optimal Control. We have presented two optimization approaches; finding the op-
timal value of the target parameter for a given assignment, and finding the optimal assignment for
a given value of the target parameter. We integrate both methods using a hierarchical optimization
approach.

The original optimization problem is stated as finding the optimal control inputs, target param-

eter, and assignment that minimizes the total cost:
min J (u, 0, A).
min J (1.6, 4)

Equivalently, this can be stated as finding the optimal assignment over the optimal control inputs
and the target parameter:

min {mien {T(u,6,A)|A = A’}} :

A’ u,

In the inner stage, we optimize the target parameter and the control inputs using a continuous opti-
mization approach, and in the outer stage, we find the optimal assignment using the combinatorial
optimization approach. The optimization process is terminated when the iterations yield a solution

that is optimal for both the inner and outer optimization stages.

Numerical Results

We study a maneuver involving 5 identical rigid spacecraft orbiting in a central gravity field. Each
spacecraft is modeled as a dumbbell, which consists of two equal spheres and a massless rod, as
presented in [Section 5.2.4

The spacecraft are initially aligned along a radial direction as shown in At the
terminal time, we require that the spacecraft are equally distributed on a target circle described by
the location of its center z, € R, the radius 7, € R, and the unit normal vector n, € S?. Let
6 € S! be the angle of the i-th spacecraft on the target circle as shown in We choose
the target parameter as the angle of the first rigid body. The target ¥ is given by

T(0', A) = {xo + 1o cos 01 + 1o 5in Hieg}?zl ,

where e; = m, ez = e] X N, are unit vectors in the target plane, and the angle 0" is chosen to
distribute the spacecraft uniformly on the circle, i.e. §° = 0! 4 27 /5(A; —14).
Since the target parameter f' determines the terminal position of the first spacecraft completely,

we require that the first spacecraft be assigned to the first desired location, i.e. A; = 1. There
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Figure 5.9: The initial formation and the desired terminal formation of spacecraft

remain 4! assignments for the other four spacecraft. Thus, the optimization parameters are the angle
of the first spacecraft on the target circle, the 4! assignments for the remaining spacecraft, and the
control inputs.

The iteration procedure for a particular numerical implementation of the optimization are shown

as follows with computation time on an Intel Pentium M 1.73GHz processor using MATLAB.
i) The initial guess of the assignment is given by A = {(1,1), (2,4), (3,2), (4,3), (5,5) }.

ii.a) For the given assignment, the optimal value of ! = 2.4520 is obtained in 48.32 minutes with
J = 8.6984.

ii.b) For the given value of #*, the optimal assignment of A = {(1,1),(2,5), (3,2), (4,3), (5,4)}
is obtained in 3.04 minutes with cost J = 8.6905.

ii.c) For the given 6! and the given assignment, we check 3771 = 2.42 x 1072, Repeat iteration.

iii.a) For the given assignment, the optimal value of #' = 2.5084 is obtained in 12.69 minutes with
J = 8.6898.

iii.b) For the given value of §', the same assignment of A = {(1,1),(2,5), (3,2), (4,3), (5,4)} is
obtained in 2.98 minutes with cost J = 8.6898.

iii.c) For the given ' and the corresponding optimal assignment, we check % =9.99 x 107°.

iv) The optimization is terminated in 67.03 minutes with 7 = 8.6898 for #' = 2.5084 and
A={(1,1),(2,5),(3,2),(4,3),(5,4)}.

The corresponding maneuvers for the spacecraft are shown in At each iteration, we use
the optimization data accumulated in the previous iterations in order to initialize the initial multiplier

values for the optimal control problems. This reduces the computation time as the iterations proceed.
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Figure 5.10: Optimal spacecraft formation reconfiguration maneuver
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Figure 5.11: Distribution of the total costs before and after optimization

In order to estimate the distribution of all possible solutions, we uniformly discretize the interval
[0, 27) using 100 points for the target parameters and we find the total costs of 4! assignments for
each value of the target parameter. The histogram for total costs of the corresponding 100 x 4! =
2400 solutions is shown in[Figure 5.11(a)|

Numerical simulations show that the optimized solution obtained depends more strongly on
the initial guess of the assignment than the initial guesses for the target parameter and the initial
multiplier values. We repeat the numerical optimization for all possible 4! initial guesses of the
assignments. shows the histogram of the optimized total costs for varying initial
assignment. Six initial assignments converge to the optimal solution with the minimal cost J =
8.6898 in the pre-computed 100 x 4! = 2400 solutions; this is assumed to be close to the global

optimal solution. Seven initial assignments converged to a local optimal solution with 7 = 8.6985.
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5.2.6 Fuel Optimal Control of a 3D Pendulum on a Cart

Consider a 3D pendulum whose pivot is fixed to a cart moving on a horizontal plane, introduced
in In this section, we study an optimal control problem of the 3D pendulum on a
cart model. We assume that an external control force is applied to the cart, and the 3D pendulum is
not actuated. Therefore, the 3D pendulum on a cart model is underactuated, and the motion of the
pendulum is achieved through the coupling between the cart dynamics and the pendulum dynam-
ics. We solve this optimal control problem using the direct optimal control approach discussed in
Section 5.1.5l

The 3D pendulum on a cart has symmetry represented by a rotation about the vertical axis, and
the total angular momentum about the vertical axis is preserved. In this optimal control problem,
the external control force acting on the cart breaks this symmetry, and the total angular momentum
is not conserved in the controlled dynamics. Therefore, this optimal control problem should be
distinguished from the optimal control of a 3D pendulum with symmetry, discussed in[Section 5.2.3]
and from the optimal control of connected rigid bodies, discussed in[Section 5.2.7, where the control
inputs respect the symmetry of free dynamics, and the momentum map is preserved in the controlled
dynamics.

We develop forced discrete-time Hamilton’s equations from the Lie group variational integra-
tor presented in and a mathematical formulation of the optimal control problem is

presented. Computational results obtained by the direct optimal control approach are shown.

Force Hamilton’s Equations

The discrete Lagrangian of the 3D pendulum on a cart is chosen as

1 1
Lq(Rp, ks, Y, Fio, Az, Ayy) = E(M +m)((Azg)* + (Aye)?) + Etr[(f — Fy)J4]
m T m T h T h T
+ o-Aager Bi(Fy — Dpe + - Ayrey Fe (R — I)pe + 5mges Rype + 5mges Ry Fipe.

We assume that an external control force u = (uz, uy) € R?* is applied to the cart along the hor-
izontal plane. The discrete generalized forces are chosen as u,; = (0, %uk) u;rk = (0, %'U/k+]_) €
50(3)* x R**, From Proposition the forced Hamilton’s equations for the 3D pendulum on a cart

are given as follows.

1 m h
Dy = ﬁ(M +m)(Tr41 — k) + ﬁel(RkH — Ry)pe + 5 U (5.89)
1 m h
Pyp = E(M +m)(Yr+1 — Yr) + ﬁ€2(Rk+1 — Ry)pe + 2 U (5.90)
~ 1
P, = E(ijd — JuFF)
m YT m YT h YT A
+ ﬁ(xk:—i-l — x)pe Ry e1 + ﬁ(yk—&—l — Yr)pe Ry €2 — SMmgpeRies (5.91)
Ry1 = Ry Iy, (5.92)
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h

Pzyqq = Pay, + §u$k+17 (5.93)
h

Pypsr = Py, T iuyk-g-l? (5.94)

. 1

POy = E(JdFk - FI;de)

m

h /\
(Yks1 — ) peRE 1e2 + ~mgpeRE ez p . (5.95)
h 2

m ~
+ {h(xkﬂ — x)peRi €1 +

Optimal Control Problem

The objective of the optimal control problem is to transfer the 3D pendulum on a cart from a given
initial condition (Ry, o, ¥o, Q0, <0, o) to a desired terminal condition (R/, zf,y7, Qf, &/, 47) dur-
ing a fixed maneuver time N h, while minimizing the control effort.

For given: (R07 0, Yo, QO; ‘i‘07 3}0)7 N7 (Rf’ $f7 yf7 Qf) $f7 yf)
Y h
: _ T
min {Jd = Z 5 Uk Wuk} ;
k=0
such that (RN7xN7yN79N7:tNayN) = (Rf7xfayf79faxf7yf)7
subject to (5.89)-(5.95),

where W € R?*? is a symmetric positive-definite matrix.

Numerical Results

Properties of the 3D pendulum and the cart are chosen as

1.09 —0.06 —0.25
M =m=1kg, p.=1[0.250251m, J=|-0.05 110 —0.25| kgm?.
-0.25 —0.25 0.15

The desired maneuver is a rest-to-rest rotation of the pendulum about the vertical axis, while the
cart returns to the initial location at the terminal time. The corresponding boundary conditions are

given by

Roy=1, Q=0, z0=y0=0, Zo=1y0=0,
R =exp(bes), Qf =0, 7=y =0, if =9/ =0,
where the rotation angle § € S! varies as 6 = 5 and 0 = 7. The maneuver time is ¢y = 2 seconds,
and the time step is h = 0.01. Since only the planar motion of the cart is actuated, the rotation of

the 3D pendulum is caused by the nonlinear coupling between the cart dynamics and the pendulum

dynamics.
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We apply the direct optimal control approach discussed in Each component of
the control inputs u = (ug, uy) is parameterized by 7 points, and the control inputs are obtained by

cubic spline interpolation. The resulting 14 control input parameters are optimized using a sequen-
tial quadratic programming method to satisfy the terminal boundary conditions while minimizing
the cost function.

The optimized maneuver, the angular velocity of the pendulum, the velocity of the cart, and
the trajectory of the cart in the horizontal plane, for # = 7, and § = m, are shown in
and respectively. Blue circles denote the optimized control input parameters. The
optimal cost and the violation of the terminal boundary conditions are 7; = 171.60, 7.65 x 1075,
and J; = 297.43, 1.83 x 1078, respectively for each case. The optimal motion of the cart on the
horizontal plane consists of loops, and the optimal optimal maneuver of the 3D pendulum consists
of large angle rotations.

This demonstrates the advantage of the computational geometric optimal control approach: it is
difficult to study this kind of aggressive maneuver of a multibody system using local coordinates,
due to the singularity and the complexity. The presented computational geometric optimal control
approach completely utilizes the nonlinear coupling between the cart and the pendulum dynamics

to obtain a nontrivial optimal maneuver of the 3D pendulum on a cart.
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Figure 5.12: Optimal control of a 3D pendulum on a cart (f = 7/2)
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Figure 5.14: Falling cat problem

5.2.7 Fuel Optimal Control of Two Rigid Bodies Connected by a Ball Joint with
Symmetry

Consider two rigid bodies connected by a ball joint, described in In this section,
we study an optimal control problem for the connected rigid body model. Similar to the optimal
control of the 3D pendulum with symmetry discussed in we construct a control input
that respects a symmetry of the system, and the optimal maneuver is indirectly achieved by geo-
metric phase effect. We solve this optimal control problem using a direct optimal control approach
discussed in

We develop forced discrete-time Hamilton’s equations from the Lie group variational integra-
tor presented in [Section 3.3.7] and a mathematical formulation of the optimal control problem is

presented. Computational results obtained by the direct optimal control approach are shown.

Forced Hamilton’s Equations

In the absence of the potential field, the connected rigid body model has two symmetries; a symme-
try of the translational action of R?, and a symmetry of the rotational action of SO(3). Due to these
symmetries, the corresponding momentum maps are preserved, and the configuration manifold can
be reduced to a quotient space.

In this optimal control problem, we reduce the configuration manifold to SO(3) x SO(3) using
the symmetry of the translational action of R3. The corresponding value of the total linear mo-
mentum is zero. The resulting connected rigid bodies with a fixed mass center represents a freely
rotating system of coupled rigid bodies; this is closely related to the falling cat problem (see Enos
1993). Interestingly, a cat, when dropped back-first from rest, is able to reorient itself and land on
its feet. A proper change of shape of the body yields a rotation of the cat according to the geometric

phase effect (see Montgomery|1991).
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Similar to the falling cat problem, we assume that an internal control moment is applied at the
joint, that controls the relative attitude between the two rigid bodies. Therefore, the control moment
changes the shape of the system. The total angular momentum is conserved for the controlled
dynamics as the control input is an internal moment of the connected rigid bodies.

The reduced discrete equations of motion on SO(3) x SO(3) can be derived by applying the
discrete Routh reduction procedure discussed in Alternatively, they can be directly
derived from (3.156)—(3.161) by using the fact that the total linear momentum, denoted by p3, ,
is conserved in the absence of a potential: we find an expression for (zx+1 — x)) from (3.159),
and substitute it into (3.156) and (3.138)). The resulting forced Hamilton’s equations are given as

follows.

A 1
=5 {F1,(Ja, — amydid]) — (Jg, — amydyd] ) FY, }

m m
- ﬁ#(RﬂR%FA@dr{ —didy Fy, RS R1,) + ﬁf(RﬂR%dﬂ{ —dydy B3, Ry,),

(5.96)
R 1
P2 =4 {Fo (Ja, — Bmadady) — (Ja, — Bmadad; ) Fy, }
mo ma
— aT(ngleFlkdldQT — dod{ FI R Ry,) + aT(RQTlekdldg — dyd{ R] Ry,),
(5.97)
R, = Ry Fy, (5.98)
Priyy = Fi, (1, = (B, = BE)Y) + hR{, ug1, (5.99)
P2 = Fa (D2, — (Ba, — B3,)") — hRj,_ w1, (5.100)
where a = -, § = 12— ¢ R, and the matrix B;, € R>*® fori € {1,2} is defined as
my
B;, = f(Flk —I)di{—aR:, (F1, —I)di — BRy, (F>, — I)dg}T R;, . (5.101)

Optimal Control Problem

The objective of the optimal control problem is to transfer the connected rigid bodies from a given
initial condition (Ry,, Ra,,21,,22,) to a desired terminal condition (Rf RS, Q{ , Qg ) during a

fixed maneuver time /N h, while minimizing the control effort.

For given: (Rlov R207 Qlov QQO)? N, (R{, Rg, Q{’ Qg)

N g

: _ T

mu}cn{jd— g 2ukWuk},
k=0

_(pf pf of of

such that (R, Ra,, Q1. Q2 ) = (Ry, Ry, Q1,9Q3),

subject to (5.96)—(5.101),
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where W € R3*3 is a symmetric positive-definite matrix. In particular, we choose attitude maneu-
vers that can be described by rest-to-rest rotations of the entire system while the relative attitude at

the terminal time is the same as that at the initial time.

Numerical Results

The properties of rigid bodies are chosen as

0.18 0.32 0.32
my = 15kg, J1= (032 1.88 —0.06|kg-m? d; =[-1.08,0.20,0.20]m,
0.32 —0.06 1.86

0.11 -0.18 —0.18
my = 1kg, Jo= |—0.18 0.89 —0.04| kg-m?, dy =10.9,0.2,0.2]m.
—0.18 —0.04 0.88

The desired maneuver is a rest-to-rest rotation about the x axis.

Rlo :Ia Qlo :Oa R20 :Ia QQO :Oa
Rl = exp(Ber), Qf =0, R} =exp(6é1), Qf =0,

where the rotation angle is denoted by 6. Two cases are considered, when 6 = 7, and 6 = 7. The
maneuver time is £y = 4 sec, and the step size is h = 0.01.

We apply the direct optimal control approach discussed in[Section 5.1.5] We parameterize each
component of the control input at 7 discrete points, and the control inputs are reconstructed by cubic
spline interpolation. The resulting 21 control input parameters are optimized using a sequential
quadratic programming method to satisfy the terminal boundary conditions while minimizing the
cost function. The terminal angular velocity constraint for the second body is not imposed since it is
satisfied automatically by the other three constraints due to the total angular momentum preservation
property. By formulating the optimization process this way, we eliminate a source of numerical ill-
conditioning. This is similar to the modified computational approach for the indirect optimal control
discussed in[Section 5.2.3|for the optimal control of the 3D pendulum with symmetry.

The optimized maneuver, the angular velocity, the control input trajectories, and the total angu-
lar momentum in the reference frame are shown in [Figure 5.13| and [Figure 5.16] The optimal cost
and the violation of the terminal boundary conditions are J; = 0.154, 1.19x 1078, and J; = 0.574,

2.48 x 1078, respectively for = 5»and § = m. Throughout this complicated maneuver, the total

angular momentum is zero, and the rotation about the e; axis is purely caused by the geometric
phase effect. This also demonstrates the advantages of the computational geometric optimal control
approach. The Lie group variational integrator computes the weak geometric phase effect accu-

rately, so that the iterations converge to a nontrivial optimal maneuver of the coupled rigid bodies.

175



Sanyaeee

(a) Optimal maneuver

% 1 2 3 4 B 1 2 3
1 ‘ ‘ ‘ 2 ‘ ‘ ‘

B 1 2 3 4 B 1 2 3
t t
(b) Angular velocity €2; (c) Angular velocity 2
x10™ ‘ ‘ ‘
0.5¢
0
-0.5¢
1 2 3
x10"
. 0.5¢
3 0
_0.5 L
1 2 3
x10™ ‘ ‘ ‘
0.5¢
0
-0.5¢
1 2 3
t
(d) Control input u (e) Total angular momentum

Figure 5.15: Optimal control of two connected rigid bodies (0 = 7/2)
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Figure 5.16: Optimal control of two connected rigid bodies (6 = )
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5.3 Conclusions

In this chapter, a computational geometric approach for an optimal control problem of rigid bodies
has been discussed. The essential idea is formulating a discrete-time optimal control problem using
a Lie group variational integrator, and applying standard optimal control approaches, such as an
indirect optimal control approach or a direct optimal control approach to the discrete-time equations
of motion. This method is in contrast to the usual optimal control approach, where the discretization
appears in the last stage to find the optimal control inputs numerically.

The computational geometric optimal control approach has substantial advantages in terms of
preserving the geometric properties of the optimality conditions. As discussed in a
discrete flow of a Lie group variational integrator has desirable geometric properties, and it is more
reliable over long time periods. The computational geometric optimal control approach inherits the
desirable properties of the Lie group variational integrator. In necessary conditions for optimality,
multiplier equations can be considered as a dual system of linearized equations of motion. Since the
linearized flow of a Lagrangian/Hamiltonian system is symplectic, the multiplier equations also have
geometric properties. The discrete-time necessary conditions, presented in preserve
the geometric properties of the optimality conditions, as they are derived from a symplectic discrete
flow.

The computational geometric optimal control approach allows us to find the optimal control
inputs efficiently. In indirect optimal control, the shooting method may be prone to numerical ill-
conditioning, since a small change in the initial multipliers can cause highly nonlinear behavior of
the terminal conditions. It is difficult to compute the Jacobian matrix for Newton iterations accu-
rately, and consequently, the numerical error may not converge to machine precision. However,

as shown in [Figure 5.1(c)| [5.2(c)| [5.5(e)} and [5.6(¢), the computational geometric optimal con-

trol approach exhibits excellent numerical convergence properties. This is because the proposed

computational algorithms are geometrically exact and numerically accurate. There is no numerical
dissipation caused by the numerical algorithm, and therefore, we obtain more accurate sensitivities
along the optimal solution.

Another advantage of computational geometric optimal control of rigid bodies is that the method
is directly developed on a Lie group. There is no ambiguity or singularity in representing the config-
uration of rigid bodies globally. For example, we can study large-angle optimal attitude maneuvers
as presented in[Section 5.2.1] [Section 5.2.6] and [Section 5.2.7] and we can consider nontrivial cou-

pling effects between the translational maneuver and the rotational maneuver of a rigid body, as

presented in [Section 5.2.4]
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

In this dissertation, computational geometric mechanics and optimal control have been developed
for dynamic systems evolving on a Lie group, with applications to rigid body dynamics. Theoreti-
cal results are presented both for continuous-time dynamic systems and for discrete-time dynamic

systems in parallel, and they are applied to several nontrivial rigid body dynamics.

Geometric Mechanics Computational Geometric Mechanics
for Rigid Bodies on a Lie Group for Rigid Bodies on a Lie Group
Generalized Euler-Poincaré equation on G Lie group variational integrator on G
Euler-Lagrange equations on (S%)™ Homogeneous variational integrator on (5%)"

Planar pendulum, 3D pendulum, 3D pendulum with an internal degree of freedom, 3D pendulum on a cart,
Single rigid body, Full body problem, Two rigid bodies connected by a ball joint
Double Spherical Pendulum, n-body problem on a sphere, Pure bending of elastic rod,
Spatial array of magnetic dipoles, Molecular dynamics on a sphere

Geometric Optimal Control Computational Geometric Optimal Control
for Rigid Bodies on a Lie Group for Rigid Bodies on a Lie Group

Discrete-time necessary conditions for optimality on G

Necessary conditions for optimality on G . .
Y P y Direct optimal control approach

Fuel optimal attitude control of a spacecraft, Time optimal attitude control of a free rigid body,
Fuel optimal attitude control of a 3D pendulum with symmetry, Fuel optimal control of a rigid body,
Combinatorial optimal control of spacecraft formation reconfiguration,

Fuel optimal control of a 3D pendulum on a cart,

Fuel optimal control of two rigid bodies connected by a ball joint

The continuous-time equations of motion for dynamic system on a Lie group are presented in
They can be considered as either a generalized form of Euler-Poincaré equations or a
left-trivialized form of Euler-Lagrange equations on a manifold. The tangent bundle of a Lie group
TG is identified with G x g by the left trivialization, and the equations of motion are expressed in
terms of Lie group elements and Lie algebra elements. Even if the Lagrangian is not left invariant,

this approach is still desirable: since a Lie algebra is a linear vector space at the fixed identity
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element, there is no need to deal with covariant derivatives or Christoffel symbols. The resulting
equations of motion for multiple rigid body systems are more compact and concise.

Geometric numerical integrators, referred to as Lie group variational integrators, are developed
for dynamic systems with a Lie group configuration manifold. The method presented in this disser-
tation represents the first time that the Lie group approach has been explicitly adopted in the context
of variational integrators for an arbitrary Lie group. They provide a systematic way to develop
a class of geometric numerical integrators that preserve the geometric properties of the dynamics
as well as the Lie group structure. Numerical simulations show that it is critical to preserve both
the symplectic property of the dynamics and the structure of the Lie group. The Lie group varia-
tional integrators have substantial computational advantages compared to other geometric integra-
tors that preserve either none or one of these properties. They are more efficient than considering
the Lie group structure as a nonlinear algebraic constraint to be satisfied at each time step. The
Lie group variational integrator is extended to mechanical systems evolving on a product of two-
spheres, which provides an overall framework to develop variational integrators on a homogeneous
manifold.

Geometric optimal control, as presented in this dissertation, is used to treat optimal control
problems for dynamic systems on a Lie group. This is distinguished from the existing optimal
control theories developed for kinematics equations on a Lie group. In|Chapter 4| an intrinsic form
of necessary conditions for optimality is developed. They are applied to a wide class of dynamic
systems on a Lie group, and they are more compact than optimality conditions expressed in terms
of local coordinates.

Computational geometric optimal control formulates a discrete-time optimal control problem
based on geometric numerical integrators. This is in contrast to other optimal control approaches
where a discretization appears at the terminal stage in solving optimality conditions numerically.
The computational geometric optimal control preserves the geometric structure of the optimal con-
trol problem as well as the geometric properties of the dynamics. It turns out that the approach also
allow us to find the optimal trajectory more efficiently since there is no numerical dissipation in the
discrete-time numerical flow. This is applied to several optimal control problems for rigid bodies.

In summary, this dissertation develops computational geometric mechanics and computational
geometric optimal control approaches for dynamic systems on a Lie group. The essential idea is to
derive a computational algorithm from a discrete analogue of the underlying fundamental principles
so that the physical properties are preserved naturally. They are applied to several nontrivial rigid

body dynamics.

6.2 Future Work

This dissertation has a broad scope; it combines system and control theory in engineering and dif-
ferential geometry in applied mathematics. The resulting computational geometric methods have

broad potential impact on numerous scientific and engineering problems varying from formation re-
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configuration in aerospace engineering to molecular dynamics simulations in chemistry. Therefore,

the results in this dissertation can be extended in various directions.

Generalized Lie Group Variational Integrator. The variational integrators have been extended in
various ways. For example, a variational integrator for a Lagrangian system with a degenerate La-
grangian has been developed by [Rowley and Marsden| (2002)) with application to point vortices, and
multisymplectic variational integrators have been developed for Hamiltonian continuum mechan-
ics (see/Marsden et al.[2001). Asynchronous variational integrators in the work by |Lew et al.| (2003)
consider variational integrators with varying step size. Generalized variational integrators are de-
veloped for nonsmooth systems by [Fetecau et al.| (2003)), and for nonholonomic systems by |Cortés
and Martinez| (2001]).

The presented Lie group variational integrators can be extended in similar ways to obtain gen-
eralized Lie group variational integrators for various types of mechanical systems. In particular,
it would be interesting to develop a multiple time-scale Lie group variational integrator for highly
oscillatory systems. This is motivated by scientific and engineering problems from molecular dy-

namics, astrophysics, structural dynamics, and nonlinear wave equations.

Discrete-time Geometric Control Systems on a Lie Group. Geometric mechanics provides funda-
mental insights into mechanical systems and yields new approaches in control system design. For
example, the method of controlled Lagrangian is a constructive technique for stabilizing mechanical
systems, where control inputs are obtained from a Lagrangian system with a modified Lagrangian.
This approach originated by |Bloch et al.|(1992) has been extended in various ways (see, for example,
Bloch et al.[|2000, 20015 Zenkov et al.[2000l 2002, and references therein).

In particular, a discrete-time theory of controlled Lagrangian systems was developed for vari-
ational integrators by Bloch et al.| (2005, 2006), and applied to the feedback stabilization of the
unstable inverted equilibrium of a planar pendulum on a cart. It would be natural to combine the
techniques of the controlled Lagrangian method and the Lie group variational integrators developed
in this dissertation to obtain a discrete-time geometric control approach for mechanical systems on

a Lie group.

Uncertainty Propagation and Estimation on a Lie Group. A mathematical model of a dynamic
system may not capture all of the dynamic characteristics of the system exactly. It always includes
approximations, simplifications, or system identification errors. Therefore, uncertainty propagation
and estimation provide important information for many scientific and engineering problems. How-
ever, it is challenging in the sense that uncertainty propagation for a general nonlinear system is
expressed as a partial differential equation. The standard linearization approach is only applicable
to a system with frequent measurements.

A deterministic attitude estimation scheme has been developed by |Lee et al.| (2006b, [2007h]);
Sanyal et al.| (2008) using the Lie group variational integrator; limitations of the linearization ap-

proach for uncertainty propagation of attitude dynamics have been presented in Lee et al.| (2007a).
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Recently, a global uncertainty propagation scheme for the attitude dynamics of a rigid body is devel-
oped by|Lee et al.|(2008b)). This approach is based on the symplectic property of the attitude dynam-
ics and noncommutative harmonic analysis on a Lie group: the symplectic property of Hamiltonian
systems imposes a fundamental limit on the uncertainty propagation (see Hsiao and Scheeres.|[2007;
Scheeres et al.|[2005)), which yields a particle based uncertainty propagation method. The propa-
gated probability density function is expressed in term of noncommutative harmonic analysis (see,
for example [Biedenharn and Louckl|[1981}; |Chirikjian and Kyatkin|2001}; Sugiural[1990).

Application to Large Scale Full n-body Problems. The full n body problem studies the motion
of n interacting bodies modeled as rigid bodies with arbitrary shapes. Since the motion of each
rigid body is described by its translation and rotation with respect to a given reference frame, the
configuration space for the full n body problem is SE(3)". This is particularly important for various
physical systems where the mutual interaction depends on the relative attitude as well as the relative
position. For example, the mutual gravitational forces and moments in binary asteroids vary with
the rotation of each body, and the electrostatic forces between charged molecules depend on their
electric pole directions.

The computational accuracy and efficiency of Lie group variational integrators has been illus-
trated by a full two body problem. Since the computational superiority of the Lie group variational
integrators increases as the complexity of the system or the simulation time increases, they can be
applied to challenging full n body problems such as simulations of the asteroid belt or molecular

dynamics, using powerful parallel computing resources.

Applications to Multibody Systems. Multibody systems appear in advanced mechanical systems in
the area of automobiles, aerospace, robotics, and power plants. For example, solar panel deployment
in satellites, bipedal robots, cooperative multiple vehicles, or flexible bodies are often analyzed as
multibody systems.

Lie group variational integrators can be applied to any multibody system whose configuration
manifold is expressed as a product of Lie groups, Euclidean spaces or two-spheres, thereby generat-
ing structure-preserving geometric numerical integrators for the multibody system. The continuous-
time counterpart of this development provides a remarkably compact form for global equations of
motion. These give both an efficient computational approach and a powerful analysis tool for multi-
body systems.

In particular, it would be be interesting to study optimal maneuvers of a large space tether,
which controls its orbit by changing its shape. This requires significantly less expensive propulsion
than spacecraft using rocket engines. The elastic rod model presented in [Section 3.4.4] and the
underactuated optimal control approach discussed in[Section 5.2.3and [Section 5.2.7| might serve as

a basis for this research.
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APPENDIX A

PROPERTIES AND PROOFS

A.1 Properties of the hat Map

The hat map * : R? — s0(3) is defined as

0 —I3 X9
T = I3 0 —X1 (A.l)
— X9 1 0

for x = [r1;22; 73] € R3. This identifies the Lie algebra so(3) with R? using the vector cross
product in R3.
Several properties of the hat map are summarized as follows.

TYy=x Xy=—yxXxr=—g, (A.2)

ils = (aT2)I — zat, (A.3)

iz = —(y x), (A4)

—%tr[ﬁcy] — 2Ty, (A.5)

T Xy =iy —9& =y —ay’, (A.6)

tr[#A] %tr [2(A—AT)], (A7)

Az =2 <;tr[A] I— A) + <;tr[A] I— A)T z, (A.8)
TA4+ ATE = ({t[A] I3x3 — A} 2)". (A.9)

for any =,y € R3, A € R3*3,
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A.2 Inertia Matrix of a Rigid Body

Consider a rigid body 3. We define a body fixed frame. Let p € R? be the vector from the origin of
the body fixed frame to a mass element of the rigid body.
The inertia matrix J € R3*3 of the rigid body is given by

y?+ 22 —ay —2T
J= / prpdm(p) = / —xy 2242 —yz | dm(p), (A.10)
—2x —yz T4y

where z,y,z € R are the coordinates of the vector p, i.e. p = [x;y; z]. We define a nonstandard

inertia matrix .J; € R3*3 as

22wy 2z

sz/BpPTdm(p)Z/B xy y* yz| dm(p). (A.11)

zr yz 22

From the coordinate expressions, it is clear that the standard inertia matrix J and the nonstandard
inertia matrix .J; represent the second order mass distributions of the rigid body. Using the property,

oL p = (pT p)Izx3 — pp”, it can be shown that

1
Jg = itr[J] Isys—J, J= tr[Jd] I3 — Jy. (A.12)
In we show that the rotational kinetic energy of the rigid body, when it rotates

about the origin with an angular velocity €2 € R3, can be written as
Lor L (& 76T
T= 0TI = Ju|0207]. (A.13)
Furthermore, the following equation is satisfied for any ) € R3.
T = OJy + JaQ. (A.14)

A proof for (A.14) is as follows. Let Q = [Q, Qo, Qs3] for any Q;, Q9,03 € R. By substitution
and rearrangement, it is straightforward to show that both the left hand side expression and the right
hand side expression of (A.14]) are equal to

(Jyy + ‘]ZZ)Ql - JaﬁyQQ - szQS
_nyQI + (Jzz + Jxx)QQ - JyzQ3 )
— S — JyzQQ + (sz + Jyy)Qg

where Jg, = |, sy dm(p) € R, and other terms are defined similarly.
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A.3 Lagrangian-Routh Reduction of the 3D Pendulum

The 3D pendulum is a rigid body supported by a frictionless pivot point acting under a gravitational
potential (see . The configuration manifold is SO(3). The Lagrangian of the 3D
pendulum has a symmetry: it is invariant under an action of H = SO(2) ~ S! given by ® :
St x SO(3) — SO(3)

®(0, R) = expsp3)(é3) R, (A.15)

which represents the rotation of the 3D pendulum about the gravity direction e3. As a result, the
configuration manifold can be reduced to the quotient space SO(3)/SO(2) ~ S2.

Here, we summarize the Lagrange-Routh reduction and reconstruction procedure to obtain the
reduced equations of motion of the 3D pendulum on S? (see Marsden et al.[2000). This reduc-
tion procedure is interesting and challenging, since the projection proj : SO(3) — S? given by
proj(R) = RTe3 = T together with the symmetry action has a nontrivial principal bundle struc-

ture. In other words, the angle of the rotation about the vertical axis is not a global cyclic variable.

A.3.1 Reduction

The procedure for Lagrange-Routh reduction is as follows. We find expressions for the mechanical
connection, from which a Routhian is defined. The Routhian satisfies the Lagrange-d’ Alembert

principle with a magnetic two-form, which yields the reduced Euler-Lagrange equations.
Routhian We identify the Lie algebra of S! with R. At , the momentum map of the 3D
pendulum Jy, : SO(3) x s0(3) — R* is given by

JL(R,Q) = el RIQ. (A.16)
The locked inertia tensor I(R) : R — R* is defined as

(I(R)o, ¢) = {os0@3) ¢s0(3)))

—

for g, ¢ € R. Substituting the expression for the infinitesimal generator (so(3) = ¢ RTes, 0s0(3) =
oRTes given by (3.84), we obtain

oCI(R) = oCel RIR e3.

Thus, the locked inertia tensor is given by I(R) = el RJR”e3. The mechanical connection A :
SO(3) x s0(3) — R is given by

T RIO

AR, Q) =T YR)JL(R,Q) = 2.
(R, <) (R)JL(R, Q) TRIRT e

(A.17)

Using the mechanical connection, we decompose the tangent space into a vertical space and a
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horizontal space as follows. For a given (R, ) € TSO(3), the horizontal part and the vertical part
are obtained by
A A TRIO —— T-JOQ
e; ATon

ver(R,Q) = (A(R, 2 R)= —2———RTe ,
(R.) = (AUR Dsorw () = 70 ey = 177

o . RTeseTRT \" YTs \"
h 0)=0- D=(0-=2"2"0) =(0- Q) .
Or(Ra ) Ver(Ra ) < e%"RJRTes ) ( T-JY )

Since Y = RTe3 = —QRTe5 = Y x , we obtain
TxT=(TrxQ)xT="'No-rfo)r=9-rr7q.

Using this expression, the horizontal part of €2 can be written in terms of Y as

JY - (T xT)

T T T=7Tx7T-bY

Qhor =T x YT —

for b = w For the given value of the momentum map v € R*, the Routhian of the 3D

pendulum is given by

2

Y 1 1 v
RV<T,T) = ighor . JQhor _mg’r p— Q’r —T
:%(TXT)'J(T><T)—%(szer)(T'JT)ergT-p, (A.18)

where v = .

Variation of the Routhian The Routhian satisfies the variational Lagrange-d’ Alembert principle.

The infinitesimal variation for Y € S2 is chosen as:

0T =7 xn, (A.19)
ST =T xn+7Tx1n. (A.20)
Here we assume that 77 - T = 0, since the component of 7 parallel to T has no effect on Y. These
expressions are essential for developing the reduced equations of motion.
Using (A.19), (A.20), and the properties Y - T = 0, T - 5 = 0, the variation of the Routhian is
given by
SR” =7-J(T x T —bY)
—n-T x [—T X J(T XYY+ (b2 4+ A2)JY = bJ(T x 1) +b(T x JY) + mgp| .
(A.21)
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Magnetic two-form From the given mechanical connection .4 and a value of the momentum map
v € R*, define a one-form A, on SO(3) x s0(3) by

el RIQ

A, (R) - (R, Q) = <u,A(R, Q)> e

The magnetic two-form (3, is the exterior derivative of A, which can be obtained by using the

identity
dA,(X,Y) = X[A,(Y)] - YA, (X)] - A (X, Y])

for X = Ri,Y = RE € TRSO(3), where X[A,(Y)] denotes the Lie derivative of A, (Y) along
X (see Marsden and Ratiul[1999)). The first term of the above equation is obtained as

X[AV(Y)] = AI/(Y)R:RGXI) €1
_ T por T T T Tp 7apT
— (egTRJRTeg)Q [63 RiJ&(e3 RIR" e3) + 2e5 RJE(e3 RINR 63)]
v

= (TRJRTes)? [—J& - (n x RTe3)(e3 RIR e3) +2(¢ - JRTe3)(JR ez - (n x R"e3))] .
3

—

Similarly, we find expressions for Y[A,(X)]. The Lie bracket is given by [X,Y] = Rn x &.

Therefore, we obtain

14
(e} RIRTe3)
—2(¢- JRTe3)(JR es - (n x RTes)) +2(n- JR e3)(JR e3 - (€ x RTe3))] .

dA,(X,Y) = — [J€-(nx RTe3) — Jn- (€ x RTe3) + (n x &) - JR 3]

v

(T RJRTe3)? [

Substituting Y = R e3 into this, the magnetic two form is given by

1%

ﬂy(T><777T><€)Z—W[Jﬁ-(nxT)—Jn-(ﬁxT)+(77><€)-JT]
— ar e F2E IO (3 00) 20 T (€ x 1)

Since (a-z)(b-y) — (a-y)(b-x) = (a x b) - (x x y) for any a, b, z,y € R3, the last two terms of
the above equation are reduced to
=2(&-JT)(IT - (n x 1)) +2(n - JT)(JT - (£ x 1))
— —2(¢-IT)(n- (T x JT)) +2(n - JT)(E - (T x JT))
=2(JT x (T xJY))-(nx¢&)
=2 {HJT||2 T (T JT)JT} (% €).
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Thus, we obtain

Bu(T xn, T x¢§)
v

=TTy (T-JTHT'(J&xn)—T-(Jnxf)—JT-(nxg)}+zunu2r.(nxg)].
Using the identity, Y - (J§ xn) + T - (§ x Jn) + JY - (§ xn) = tr[J] T - (£ x n), the magnetic

two form (3, is given by

—__ Y (. 2l .
B0 X0, T x €) =~y [ ~(T - TOul] + 2 Y| T, a2
Since T =T x Qand T - (wx ) =7 - (Y x w) =n- 7T, the interior product of the magnetic
two-form is given by

2
1:8,(67) = B, (T x QT x ) = A {trm ol } Y., (A.23)

T-JY

— v
where A = 5.

Lagrange-d’Alembert Principle The Routhian satisfies the Lagrange-d’ Alembert principle with

the magnetic term, given by
T _ T
5/ R”(Y,Y)dt = / ip 0, (07)dt. (A.24)
0 0

Substituting (A.2T)) and (A.23)) into (A.24), and integrating by parts, we obtain

—/OTn-[J(TxT—bY—bT)—i—TxX—i—cﬂ dt =0, (A.25)
where
X=-TxJTxT)+ B +I)JY = bJ(T x 1) +b(T x JY) + mgp, (A.26)
and c is given by (2.74):

_ Bkl
C_T{tr[J]_2T-JT .

Since (A.25) is satisfied for all n with T - n = 0, we obtain
JTxYT—=bT —bY) + T x X +cT = aT, (A.27)

for a constant @ € R. This is the reduced equation of motion. However, this equation has an
ambiguity since the value of the constant a is unknown; this equation is implicit for Y since the
term b is expressed in terms of Y. The next step is to determine expressions for a and b using the

definition of b and several vector identities.
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We first find an expression for the constant a in terms of T, T. Taking the dot product of dl
with T, we obtain

T-J(TxYT-bT —bY) =a. (A.28)

From the definition of b, we can show the following identity: T-.J(T x Y —bY) = 0. Differentiating
this with time, and substituting into li we find an expression for the constant @ in terms of T, T
as

a=-"-J(T xYT-0bY). (A.29)

Substituting (A.29) into (A.27), and taking the dot product of the result with T, we obtain an ex-
pression for b in terms of T, T as

b:T-J_l{TxX+cY+(T~J(Y><T—bT))T}. (A.30)

Substituting (A.30) into (A.27), and using the vector identity Y — (T-Y)Y = (T-T)Y —(YT-Y)Y =

—Y x (T x Y) forany Y € R3, we obtain the following form for the reduced equation of motion
TxT -7 T x [T><J—l{rxx+cT+(T-J(‘rxT-bT))TH — 0.
Now, we simplify this equation. The above expression is equivalent to the following equation
Tx [T xT =67 =7 x [ij—l{TxXJrcTJr(T-J(TxT-bT))T}H — 0. (A31)

Since Y - T = —||T||%, the first term is given by

Tx(TxT)=((T-DT—(r-1)r=7+]|7°T.

Using the property T x (T x (T xY)) = —(T-T)Y xY = —Y x Y for Y € R3, the third term
of (A.31) can be simplified.

Reduced Euler-Lagrange Equations  Substituting (A.26)) and rearranging, the reduced Euler-Lagrange
equations for the 3D pendulum on S? are given by

T=—|TIPT+7 x %, (A.32)

where $ = bT + J—1 [(J(‘r X L) = bJT) x (T x T) = bY) + A2JY x T — mgY x p— cT|,
which recovers (2.72)-2.74).
A.3.2 Reconstruction

For a given integral curve of the reduced equation Y (¢) : [0,7] — S2, the reconstruction is to find
the corresponding curve R(t) : [0,7] — SO(3) that is projected to the given curve and satisfies the

Euler-Lagrange equations.
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We first choose a curve R(t) € SO(3) that is projected into the reduced curve, i.e. proj(R(t)) =
Y(t). Then, the reconstructed curve can be written as R(t) = ®q(y) (R(t)) for some A(t) € S*. Con-
servation of the momentum map yields the following reconstruction equation for 6(¢) (see Marsden
et al.[|2000).

0(t)"L0(t) = I"Y(R(1))v — A(R(t)).

If we choose R(t) as the horizontal lift, the last term vanishes as the horizontal space is annihilated
by the mechanical connection. Since the symmetry group is abelian, the solution reduces to a

quadrature as

0(t) = 6(0) expsora) [ /0 t H_l(R(s))uds] |

In summary, the reconstruction procedure is as follows.

(i) Horizontally lift T'(¢) to obtain Ry, () by integrating the following equation with Ry, (0) =
R(0)

Rhor(t) - Rhor (t)Qhor (t)a (A33)
where

Qnor () = T(t) x T(t) — JY(E) - (Y(t) x T(t))

T(t). (A.34)

Y(t)- JY(t)
(i) Determine 04y (t) € S by the following equation
t v
Oayn(t) = ——————ds. A.35
(iii) Reconstruct the curve in SO(3) as
R(t) = O4qyn(t) - Ruor(t) = exp[fayn(t)és] Rnor(t). (A.36)

A.3.3 Geometric Phase

Suppose that the integral curve in S is a closed curve, i.e. T(0) = Y (7). Since Ry, (0) = R(0)
and Ry, (T') are in the same fiber, Ry, (7T') can be written as

Rhor(T) - ageo(T) : R(0)7
for Ogeo(T') € S'. From the reconstruction equation (A.36)), we obtain

R(T) = Oayn(T) - Ogeo(T) - R(0),
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where qyn(T) € S and Oge(T) € S! are referred to as the dynamic phase and the geometric
phase, respectively. If the value of the momentum map is zero, then the dynamic phase is also zero
from (A.35)), and the attitude is changed only by the geometric phase effect.

It can be shown that the geometric phase is the negative of the integral of the magnetic two-form

on the area enclosed by the integral curve Y(t)

_ 2O - 6l (60 IT(0)
) = | S

dA, (A.37)

where S is an area in S? with Y (¢) as a boundary.
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A.4 Commutativity of the Variation and the Time Derivative

Here, we show the commutativity of the variation operation and the time derivative for { = g~ 'g €
g, i.e, %(55 )=19 (%5 ). We give a proof for a matrix Lie group; an extension to general Lie groups
can be developed using the results presented in [Bloch et al.| (1996).

Recall that for a curve g in G, we define £ = g~ '¢g. The variation is chosen as g¢ = g exp en for
n € g so that the infinitesimal variation is given by dg = gn. Thus, n = g~ 'dg. We first find the
expression for §€ in (see Marsden and Ratiu||1999)

d B dge B L _ nge 3 d2ge
56 = — e\—1 — 16 1 1 — _ 1 A.38
&= » ((9) dt) (970997 )9+ 97— ~ nE+g o i (A.38)
But, %77 is given by
=4 (1% = (g9 Nog+g~" Lo _ —&n+ g_1d296 (A.39)
dt de ) | .—p dtde|._, dtde | _, ’

Since the partial derivatives commute for smooth maps, the difference is given by 6§ —n = En—né =
[€, ], which yields

6§ =n+ 1€, n). (A.40)
This gives (2.5).
Now we show that %(55 )=9 (%5 ). The time derivative of 0¢ is given by
d - .

Now, we find an expression for the variation of é.

d_ d d (. dg
T o {dt <(g T )}
d { ( _1dg° _1\ dg° -1 d296
= —( ) =) ) =+ (¢)
de |, dt dt dt?
d295 d2ge
15 1y —1: -1 —1: “1.7 —1¢ 1y —1. —1
= (g5 - 5 -
(970997 )99 -9~ I 9+99(97 0997 )9~ (97 997 )y »
d3ge
NS -1
— )
(9= 699" )i+g dedf?| _,
Since g~ 'dg = n and g~ '§ = &, this reduces to
d dQQe d2_g€ d3ge
(=€) =neE—gt — &gt —ng ti+g1 A42
(&) =ne€—g - €:0€+€77§ &9~ T §+9 s _ (A42)
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From 1| we have ¢! flifl; |._o = 71 + &n. Therefore, we obtain

. dSQe

d .
| =07 g0+ g€n) = (€ + i + En + En + &n).

dt

e=0
Since § = g€, we have g~ 1§ = ££€ + f . Substituting these into li we obtain

d . .
6(—-€) = n&& — (1 +En)E + &n& — &0+ &n) — (€€ + &) + (&0 + 11 + &&n + &n + &n)

dt
= i + (€n — né) + (&7 — né),

which is equal to (A.41). Therefore, %(55) =4 %f ).
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A.5 Proof of Corollary

Corollary[5.T|shows the forced discrete-time Euler-Lagrange equations and the discrete-time Hamil-
ton’s equations for a special form of the discrete Lagrangian and the generalized forces. Suppose
that the discrete Lagrangian and the generalized forces are given (5.7) and (5.8):

La(gk; fr) = Tu(fr) — (1 — c)hU(gx) — chU (gx fx),

- _ +
ug = (1—c)hug, uy = chugyi,

where the constant c is a free parameter lies in the interval [0, 1]. We develop the corresponding

discrete-time equations of motion from Proposition

Derivatives of the Discrete Lagrangian We first find expressions for the derivatives of the discrete

Lagrangian. The derivative of the discrete Lagrangian with respect to f is given by

Dy, Ly, - 0fr = Dys Ty, - 0 fx — chDU (gr fr) - Tf,Lg 6 f
= kaTdk . (TeLfk o Tkaf,zléfk) — ChDU(gkfk) . (Tfk Lgk o Tel—fk o Tkaflgl(ka)

= (TiLy, - Dy Ty, = chTilyg, - DU(gefi), Tyl 10 fk)-
Since the force due to the potential is defined as M (g) = —T}L, - DU(g), we obtain
TiLs, Dy Lg, =TiLy - Dy, Ty, + chM(gry1). (A.43)
From the definition of the Ad operator, for any « € g* and n € g, we have
<a, Adf_1n> = <a, Tylpro Tean> = <a, TRy oTeLf_117>
— (T:Rpo T5Ly 10, 1) = <T;LJH o T5_1Rya, n> - <Ad;,1a, 77>
Thus, Ad}_la =T} Lffl o T"}_lRf =TRso T}Lfﬂ. Using this, we obtain
Adjkal (Tely, Dy La,) = Ad}kfl (TeLy, - Dy Ta,)
— chTiRy, o T}, Lfk—l(T:Lgkfk -DU (gx.f))
= Ad;k_l (Tely, - Dy Ty,) — chTeRy, o T3, Ly, - DU (g fx))-
(A.44)

The derivative of the discrete Lagrangian with respect to g is given by

ngLdk . (5gk = —chDU(gk) . (5gk — (1 — C)hDU(gkfk) . TRfkdgk
= —chDU (gi) - (Telg, 0 Ty, Lg;uigk)

— (1 — C)hDU(gkfk) . (Tgkak [0) Tel—gk ©) TgkLgk_légk)
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— — (ehTiLy, - DU(gy) + (1 = )hTiLg, © Ty, Ry, - DU(gfi), Ty, L1801 )

9k
Thus, we obtain
T:Lnggdek =(1—-c¢)hM(gx) — chT:Lgk o T;k Ry, - DU (gx fx)- (A.45)

Forced Discrete-time Euler-Lagrange Equations — Substituting (A.43), (A-44)), and (A-43)) into (5.2)),

we obtain

T:Lfk—l Dy, Ta,_, + chM (gx) — Ad;};l ) (T:Lfk ) kaTdk)

+chTiRy, o T} Ly, - DUy + (1 — ¢)hM(gg) — chTily, o T, Ry - DUgy1 + huy = 0.
Since T*L, o T*Ry = T*Ry o T*L,, this reduces to
T:Lfkq'kaflekq - Ad;kfl : (TZLfk ’ kaTd(fk)) + hM(gk) + hug =0, (A.46)

which yields (5.9).

Forced Discrete-time Hamilton’s Equations The forced discrete Legendre transformation is given

by
Ui = —TZLgk Dy, Lg, + Ad;k,l . (TZLfk . kaLdk) — u;k
Substituting (A-44) and (A.45) into this, we obtain
o = Adps - (Tely, - Dy Ta) = (1= e)hM(gr) — (1 = c)hug,
which yields (5.TT)). From this, we obtain
T:Lfk . kaTdk = Adjck : (/Lk + (1 — c)hM(gk) + (1 — c)huk).
Therefore yi, 1 can be written as

HE+1 = Ad;}@—il : (T: Lfk+1 ) ka+1Tdk+1) - (1 - C)hM(gk—I—l) - (1 - C)huk-l—l'
We shift the time index of (A.46) by one step, and we substitute the above two equations to obtain
Adf, - (pe + (1 = )hM (gi) + (1 — c)hug) — pptr + chM (git1) + chugr =0, (A4T)

which is equivalent to (5.12).
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A.6 Derivatives of the Adjoint Operator

We derive expressions for the derivatives of the Ad operator. For g € G, the adjoint operator

Ad, : g — g is the tangential map of the inner automorphism
Adg§ =Ty aly - TeRg1 - € (A.48)

where £ € g. The derivative of Ad,& with respect to g at e in the direction 7 corresponds to the ad
operator ad,§ = [n, &] (see Marsden and Ratiu|1999).

d

de Adexp 6775 = [777 f] (A.49)

e=0

Proposition A.1 The derivatives of the Ad operator are given as follows.

d
& Adgexp enf = Adg [773 g] = [Adgnv Adgf], (ASO)
e=0
d
ge|  Adgexpen-1 &= [Adgrg, ), (A51)
€ e=0
d
Ze| Adgexpey @ = Adg(adig, ), (A.52)
e=0
d . o
de| _ AMepey-r @ = —Adg(adya). (A.53)

Proof. We find the expression for the derivative of Ad,& with respect to g at g in the direction 7).
Since Ad,s = Ad, o Ady for any g, f € G, we obtain

d

de

d
Adgexpen 5 = %

Adg o Adexp en 3
e=0 0

€=

Since Ady is a linear map, this is equal to

d

de

d
Adgexpen € = Adg o (d6

Adexpen §> = Adg[% 5]7

e=0 e=0

which shows the first equality of (A.50). The second equality follows from the general property
Adgy[n, €] = [Adgn, Ady€] (see Marsden and Ratiu|1999). Similarly, we have

d

de ezoAd(gexmn)‘1 £=

which is equal to (A.5T)).

a
de

Adexp(-en) © (Adg-1 §) = —[n, Ady-1¢],
=0

€=
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We find the expressions for the derivatives of the co-adjoint operator. For o € g*, we obtain

a
de

% d
OAdgeXPsn a, £> = <O" de OAdgeXpen§> = (o, [Adgn, Adgg])
= (0, adaa,y(Ady€)) = (adiy, 0, Adgt)
= (Adj(adiy,,0), €).

which yields (A.52). Similarly, we have
d . d
de _OAd(gexpen)—l a, §)=(q, de _OAd(gexpen)*lg = <a7 [Adg*1§7 77]>

= (o, —ady(Ady-18)) = <—ad,’;a, Ady-1§)
- <—Ad;_1(ad;;a), §>,

€=

which yields (A.53).
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