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ABSTRACT

COMPUTATIONAL GEOMETRIC MECHANICS AND CONTROL
OF RIGID BODIES

by

Taeyoung Lee

This dissertation studies the dynamics and optimal control of rigid bodies from two complemen-

tary perspectives, by providing theoretical analyses that respect the fundamental geometric charac-

teristics of rigid body dynamics and by developing computational algorithms that preserve those

geometric features. This dissertation is focused on developing analytical theory and computational

algorithms that are intrinsic and applicable to a wide class of multibody systems.

A geometric numerical integrator, referred to as a Lie group variational integrator, is devel-

oped for rigid body dynamics. Discrete-time Lagrangian and Hamiltonian mechanics and Lie group

methods are unified to obtain a systematic method for constructing numerical integrators that pre-

serve the geometric properties of the dynamics as well as the structure of a Lie group. It is shown

that Lie group variational integrators have substantial computational advantages over integrators

that preserve either one of none of these properties. This approach is also extended to mechanical

systems evolving on the product of two-spheres.

A computational geometric approach is developed for optimal control of rigid bodies on a Lie

group. An optimal control problem is discretized at the problem formulation stage by using a

Lie group variational integrator, and discrete-time necessary conditions for optimality are derived

using the calculus of variations. The discrete-time necessary conditions inherit the desirable com-

putational properties of the Lie group variational integrator, as they are derived from a symplectic

discrete flow. They do not exhibit the numerical dissipation introduced by conventional numerical

integration schemes, and consequently, we can efficiently obtain optimal controls that respect the

geometric features of the optimality conditions.

The approach that combines computational geometric mechanics and optimal control is illus-

trated by various examples of rigid body dynamics, which include a rigid body pendulum on a

cart, pure bending of an elastic rod, and two rigid bodies connected by a ball joint. Since all of

the analytical and computational results developed in this dissertation are coordinate-free, they are

independent of a specific choice of local coordinates, and they completely avoid any singularity,

ambiguity, and complexity associated with local coordinates. This provides insight into the global

dynamics of rigid bodies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Goal

This dissertation studies dynamics and optimal control problems for rigid bodies from two com-

plementary perspectives, by providing theoretical analyses that respect the fundamental geometric

characteristics of rigid body dynamics and by developing computational algorithms that preserve

those geometric characteristics.

In control systems engineering, the underlying geometric features of a dynamic system are often

not considered carefully. For example, many control systems are developed for the standard form

of ordinary differential equations, namely ẋ = f(x, u), where the state and the control input are

denoted by x and u, respectively (see, for example, Khalil 2002; Nijmeijer and van der Schaft 1990).

It is assumed that the state and the control input lie in Euclidean spaces, and the system equations

are defined in terms of smooth functions between Euclidean spaces. However, for many interesting

mechanical systems, the configuration space cannot be expressed globally as a Euclidean space. In

addition, general purpose numerical algorithms may not accurately respect fundamental geometric

properties (see Hairer et al. 2000; Leimkuhler and Reich 2004).

In this dissertation, dynamics and optimal control problems for rigid bodies are studied, in-

corporating careful consideration of their geometric features. We explicitly consider the following

research questions: what are the geometric properties of dynamics of rigid bodies, how should

the configuration of rigid bodies be described, how are the geometric properties utilized in control

system analysis and design, and how can the geometric characteristics be preserved in numerical

computations. The goal of this dissertation is to develop both analytical tools and computational

algorithms for rigid body dynamics and control that respect the fundamental geometric features.

1.1.1 Fundamental Geometric Properties of Rigid Body Dynamics

Lie Group Configuration Manifold. The configuration of a rigid body can be described by the

location of its mass center and the orientation of the rigid body in a three-dimensional space. The

location of the rigid body can be expressed in Euclidean space, but the attitude evolves in a nonlinear

space that has a certain geometry.

More precisely, the attitude of a rigid body is defined as the direction of a body-fixed frame

with respect to a reference frame, considered as a linear transformation on the vector space R3;

the attitude can be represented mathematically by a 3 × 3 orthonormal matrix. We require that its
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determinant is positive in order to preserve the ordering of the orthonormal axes according to the

right-hand rule. The set of 3 × 3 orthonormal matrices with positive determinant is a manifold as

it is locally diffeomorphic to a Euclidean space, and it also has a group structure with the group

action of matrix multiplication. A smooth manifold with a group structure is referred to as a Lie

group; the Lie group of 3 × 3 orthonormal matrices with positive determinant is referred to as the

special orthogonal group, SO(3) (see, for example, Murray et al. 1993; Varadarajan 1984). The

configuration manifold for the combined translational and rotational motion of a rigid body is the

special Euclidean group SE(3), which is a semidirect product SE(3) = SO(3) s©R3. A direct

product of the Lie groups SE(3), SO(3), and Rn can represent the configuration of multiple rigid

bodies, and it is also a Lie group since a product of Lie groups is also a Lie group. Therefore, the

configuration manifold of an interconnection of rigid bodies is also a Lie group.

Lagrangian/Hamiltonian System. Mechanics studies the dynamics of physical bodies acting un-

der forces and potential fields (see Arnold 1989; Goldstein et al. 2001; Meirovitch 2004). In La-

grangian mechanics, the trajectories are obtained by finding the paths that minimize the integral of a

Lagrangian over time, called the action integral. In classical problems, the Lagrangian is chosen as

the difference between kinetic energy and potential energy. The Legendre transformation provides

an alternative description, referred to as Hamiltonian mechanics.

Rigid body dynamics are characterized by Lagrangian/Hamiltonian dynamics. The dynamics of

a Lagrangian or Hamiltonian system has unique geometric properties; the Hamiltonian flow is sym-

plectic, the total energy is conserved in the absence of non-conservative forces, and the momentum

map associated with a symmetry of the system is preserved. By quotienting out the symmetry, a

reduced Lagrangian/Hamiltonian system can be developed (see Marsden 1992).

1.1.2 Computational Geometric Mechanics and Control

Geometric mechanics is a modern description of classical mechanics from the perspective of dif-

ferential geometry (see, for example, Abraham and Marsden 1978; Bloch 2003a; Bullo and Lewis

2005; Jurdjevic 1997; Marsden and Ratiu 1999). It explores the geometric structure of a Lagrangian

or Hamiltonian system through the concept of vector fields, symplectic geometry, and symmetry

techniques. Geometric mechanics provides fundamental insights into mechanics and yields use-

ful tools for dynamics and control theory. For example, geometric mechanics led to the energy-

momentum method in Simo et al. (1990), reduction/reconstruction in Marsden et al. (1990, 2000),

and the controlled Lagrangian method in Bloch et al. (2000, 2001).

The goal of computational geometric mechanics is to construct computational algorithms that

preserve the geometric properties (see Leok 2004). It applies the fundamental principles of geo-

metric mechanics to discrete-time mechanical system to construct geometric structure-preserving

numerical schemes. Since the computational algorithms are developed from discrete-time ana-

logues of physical principles, the geometric properties of the dynamics are preserved naturally.

This is in contrast with the perspective that considers a numerical method as an approximation to a

2



continuous-time equation.

In summary, this dissertation is focused on computational geometric mechanics and control of

rigid bodies. We develop computational methods for rigid bodies, that preserve the underlying

Lagrangian/Hamiltonian system structure of rigid body dynamics as well as the Lie group struc-

ture of the configurations. These methods are applied to numerical integration and optimal control

problems. Prior work related to computational geometric mechanics and control of rigid bodies is

summarized below, followed by an outline and the contributions of this dissertation.

1.2 Literature Review

1.2.1 Geometric Numerical Integration

Geometric numerical integration deals with numerical integration methods that preserve geometric

properties of the flow of a differential equation, such as invariants, symplecticity, and the configura-

tion manifold (see Hairer et al. 2000; Leimkuhler and Reich 2004; McLachlan and Quispel 2001).

Numerical methods that conserve energy and momentum for mechanical systems are referred

to as energy-momentum integrators (see LaBudde and Greenspan 1976; Simo et al. 1992). In these

methods, a free parameter is selected to maintain constant angular momentum; energy conservation

is typically enforced by a momentum-preserving projection onto the manifold of constant energy.

Numerical integration methods that preserve the symplecticity of a Hamiltonian system have

been studied in Lasagni (1988); Sanz-Serna (1992, 1988). Qualitative properties of symplectic in-

tegrators are given in Gonzalez and Simo (1996); Gonzalez et al. (1990), and long-time behavior of

symplectic methods is addressed in Benettin and Giorgilli (1994); Hairer (1994); Hairer and Lubich

(2000). Coefficients of certain Runge-Kutta methods can be chosen to satisfy a symplecticity crite-

rion and order conditions to obtain symplectic Runge-Kutta methods. However, it can be difficult

to construct such integrators, and it is not guaranteed that other invariants of the system, such as a

momentum map, are preserved.

Alternatively, variational integrators are constructed by discretizing Hamilton’s principle, rather

than discretizing the continuous Euler-Lagrange equations (see Marsden and West 2001). This

approach provides a systematic method to develop geometric numerical integrators for Lagrangian /

Hamiltonian systems. The resulting integrators have the desirable property that they are symplectic

and momentum preserving, and they exhibit good energy behavior for exponentially long times.

The idea of developing a discrete-time mechanical system that conserves the constants of motion

appears in the work by Greenspan (1981, 1972); LaBudde and Greenspan (1974), and a discrete-

time mechanical system has been developed according to Hamilton’s principle by Moser and Veselov

(1991); Veselov (1988). The variational view of discrete-time mechanics is further developed

by Kane et al. (1999, 2000); Wendlandt and Marsden (1997), and an intrinsic form of discrete-time

variational principles is established by Marsden and West (2001).

Geometric integrators that preserve the manifold or Lie group structure have been studied (see,
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for example, Budd and Iserles 1999; Hairer and Wanner 1996; Iserles et al. 2000). A natural ap-

proach to the numerical solution of differential equations on a manifold is by projection. In the work

by Dieci et al. (1994), a solution is updated by a one-step integration method and it is projected to

the manifold on which the system evolves at each time step. This projection may destroy desirable

long-time behavior of one-step methods, since the projection typically corrupts the numerical tra-

jectory. Numerical methods based on local coordinates of the manifold often result in unnecessary

singularities (see Potra and Rheinbold 1991). Differential algebraic approaches have been proposed

to solve nonlinear constrained equations at each time step in Hairer and Wanner (1996).

For differential equations that evolve on a Lie group, a group element can be updated by the

corresponding group action so that the group structure is preserved naturally. This is referred to as

a Lie group method (see Iserles et al. 2000). Among the Lie group methods, the Crouch-Grossman

method updates the group elements by multiple evaluations using the exponential map (see Crouch

and Grossman 1993), and the Munthe-Kaas method is based on a differential equation on the Lie

algebra and uses a single evaluation of the exponential map (see Munthe-Kaas 1995). A homoge-

neous manifold is a manifold on which a Lie group acts continuously in a transitive way. Lie group

methods are extended to homogeneous manifolds in Munthe-Kaas and Zanna (1997).

For mechanical systems evolving on a Lie group, a discrete-time Euler-Poincaré equation has

been introduced for a left-invariant Lagrangian by Marsden et al. (1999), with application to the free

attitude dynamics of a rigid body. A similar development is presented for the attitude dynamics of

an axially symmetric rigid body acting under a gravitational potential in Bobenko and Suris (1999).

The idea of using the Lie group structure and the exponential map to numerically compute rigid

body dynamics arises in Krysl (2005); Simo et al. (1992). Symplectic integrators with explicit

constraints on the Lie group structure are applied to rigid body dynamics in Leimkuhler and Reich

(2004).

1.2.2 Geometric Optimal Control

Optimal control problems deal with finding trajectories, such that a certain optimality condition is

satisfied under prescribed constraints (see, for example, Bryson and Ho 1975; Kirk 1970; Sussmann

and Willems 1997). This is typically based on Pontryagin’s minimum principle or the calculus of

variations. Geometric optimal control forms a theoretical foundation for extensions of the minimum

principle to optimal control problems defined on arbitrary differentiable manifolds (see Jurdjevic

1997).

A geometric, intrinsic formulation of the minimum principle is presented in a coordinate-free

fashion in Sussmann (1998a,b). A general formulation of optimal control theory for nonholonomic

systems on a Riemannian manifold is presented in Bloch and Crouch (1993, 1998, 1995). This ap-

proach is applied to both kinematic sub-Riemannian optimal control problems and optimal control

problems for mechanical systems by Bloch (2003a,b). A dynamic interpolation problem on a Rie-

mannian manifold is formulated as an optimal control problem in Hussein and Bloch (2004b), and

this approach is extended to an optimal control problem on a Riemannian manifold with a potential
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in Hussein and Bloch (2004a). An optimal control problem for nonholonomic and under-actuated

mechanical systems is considered in Hussein and Bloch (2006).

Controllability, observability and optimal control problems on a Lie group have been studied

by Brockett (1973, 1972). A simple closed-form analytic solution for an optimal control problem of

right-invariant systems evolving on a matrix Lie group is presented in Baillieul (1978). An optimal

control problem for a generalized rigid body on SO(n) is considered in Bloch and Crouch (1996). A

general theory of optimal control problems is developed in Jurdjevic (1998a,b, 1997) together with

reachability and controllability conditions; these approaches are based on kinematics equations, and

assume that group elements are directly controlled by elements in the Lie algebra. Optimal control

problems for the dynamics of a rigid body with application to dynamic coverage problem are studied

by Hussein (2005); Hussein and Bloch (2005a,b).

Computational geometric optimal control approaches apply optimal control theory to discrete-

time mechanical systems obtained using geometric numerical integrators. A discrete version of the

generalized rigid body equations and their formulation as an optimal control problem are presented

in Bloch et al. (1998, 2002). Discrete-time optimal control problems for the attitude dynamics of

a rigid body on SO(3) are considered in Bloch et al. (2007); Hussein et al. (2006) based on the

variational integrator. A direct optimal control approach is applied to discrete-time mechanical

systems in Junge et al. (2005), referred to as Discrete Mechanics and Optimal Control.

1.3 Outline of Dissertation

In this dissertation, geometric mechanics and optimal control for rigid bodies are studied, emphasiz-

ing computational geometric methods. The outline of the dissertation is summarized by Figure 1.1.

Results on geometric mechanics for rigid bodies on a Lie group are presented in Chapter 2, and

results on geometric optimal control problems are presented in Chapter 4. Chapter 3 and Chapter 5

present computational geometric algorithms for mechanics and optimal control problems; they can

be considered as discrete-time analogues of Chapter 2 and Chapter 4, respectively. In each chapter,

a general theory is developed first for dynamic systems on an arbitrary Lie group; this general theory

is illustrated by several rigid body systems. The content of each chapter is summarized as follows.

Geometric Mechanics of Rigid Bodies on a Lie Group. Euler-Lagrange equations for mechani-

cal systems evolving on an abstract Lie group are developed according to Hamilton’s principle.

The equivalent Hamilton’s equations are presented in Section 2.1. The essential idea is to express

variations of a curve on a Lie group in terms of Lie algebra elements using the exponential map.

Properties of the Euler-Lagrange equations are discussed, and they are applied to several rigid body

systems evolving on a Lie group in Section 2.3. These results are extended to mechanical systems

on a product of two-spheres in Section 2.2; corresponding examples are given in Section 2.4.

Computational Geometric Mechanics of Rigid Bodies on a Lie Group. This chapter is a discrete-

time version of Chapter 2. Discrete-time Euler-Lagrange equations and discrete-time Hamilton’s
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Chapter 1.
Introduction

Chapter 2.
Geometric Mechanics

for Rigid Bodies on a Lie Group

Chapter 4.
Geometric Optimal Control

of Rigid Bodies on a Lie Group

Chapter 3.
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for Rigid Bodies on a Lie Group

Chapter 5.
Computational Geometric Optimal Control

of Rigid Bodies on a Lie Group

Chapter 6.
Conclusions

continuous-time discrete-time

geometric
mechanics

optimal
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Figure 1.1: Outline of dissertation (solid/dotted: continuous/discrete-time, thin/thick: mechanics/control)

equations, referred to as Lie group variational integrators, are developed in Section 3.1 according to

a discrete-time analogue of Hamilton’s principle. They are applied to mechanical systems presented

in Section 2.3; computational results are summarized in Section 3.3. These results are extended to

mechanical systems on a product of two-spheres, to obtain Lie homogeneous variational integrators

in Section 3.2; computational results are given in Section 3.4.

Geometric Optimal Control for Rigid Bodies on a Lie Group. Based on geometric mechanics on

a Lie group developed in Chapter 2, geometric optimal control problems are considered. In Sec-

tion 4.1, Euler-Lagrange equations are extended to include the effect of control inputs and optimal

control problems are formulated. The corresponding necessary conditions for optimality are devel-

oped, and they are applied to several optimal control problems for rigid bodies in Section 4.2.

Computational Geometric Optimal Control for Rigid Bodies on a Lie Group. This chapter is a

discrete-time version of Chapter 4. In Section 5.1, discrete-time forced Euler-Lagrange equations

are developed, and a discrete-time optimal control problem is formulated. According to a discrete-

time analogue of the calculus of variations, discrete-time necessary conditions for optimality are

developed, and they are applied to several discrete-time optimal control problems for rigid bodies

in Section 5.2.
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1.4 Contributions

1.4.1 Summary of Contributions

Coordinate-free approach. One of the common features of the developments in this dissertation

is that the analytical theory and computational methods are developed in terms of a Lie group

representation of the configuration of a rigid body system. Therefore, all of the results presented

in this dissertation are coordinate-free. Representing geometric objects in terms of coordinates can

frequently lead to confusion and complexity, and the corresponding derivations rely on specific

choice of coordinates. This dissertation completely avoids local coordinates, thereby expressing the

results globally in a compact and elegant manner.

For example, consider the attitude dynamics of a single rigid body. The configuration manifold

is SO(3), but there are numerous attitude parameterizations available (see, for example, Shuster

1993; Stuelpnagel 1964). One of the most popular attitude parameterizations is Euler angles. In

addition to the associated singularities, the use of Euler angles can cause confusions since there

are 24 types of Euler angles. The use of Euler angles also leads to complicated trigonometric

expressions. Other minimal attitude representations have similar difficulties.

Non-minimal representations such as quaternions have no coordinate singularities, but they also

introduce certain complications. The group of unit quaternions SU(2) ' S3 double covers SO(3), so

there is an ambiguity in representing the attitude. While the ambiguity of quaternions is the choice

of the sign, there is no consistent way to choose the sign continuously, that is globally valid for

SO(3) (see Marsden and Ratiu 1999). More importantly, the Hamiltonian structure of the attitude

dynamics is complicated when it is expressed in terms of quaternions. For instance, it is difficult to

express the kinetic energy of a rigid body in terms of a quaternion and its time derivative. It is stated

by Leimkuhler and Reich (2004) that although symplectic integration methods based on quaternions

can be formulated, approaches based on the rotation matrix are more efficient and conceptually

easier to implement. For optimal rigid body control problems, the multiplier equations in necessary

conditions for optimality become more complicated if they are written in terms of quaternions (see,

for example, Modgalya and Bhat 2006). Therefore, quaternions result in inherent complications

when applied to dynamics and control problems for rigid bodies. In many engineering applications,

quaternions appear to be simple since they are incorrectly considered to evolve on a flat space,

namely R4, with little attention paid to the unit-length constraint.

In this dissertation, the attitude of a rigid body is represented by a rotation matrix. Geometric

numerical integration algorithms and optimal control approaches are directly developed on SO(3).

The rotation matrix is often avoided, since it is thought that representing a 3-dimensional attitude

using 9 real elements with 6 constraints is inefficient. This redundancy is eliminated by using the

exponential map that allows analysis to be carried out in the Lie algebra that is isomorphic to R3.

For example, necessary conditions for optimality are expressed as compact vector equations on R3;

these equations are more compact than the necessary conditions expressed in terms of quaternions.

They also have the advantage of not having singularity or ambiguity.
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In summary, this dissertation develops intrinsic, coordinate-free algorithms for computational

geometric mechanics and optimal control problems for rigid bodies. All of the analytical and com-

putational results are independent of a specific choice of local coordinates, and they completely

avoid any singularity, ambiguity, complexity, and confusion associated with local coordinates.

Geometric Numerical Integrators on a Lie Group. The Lie group variational integrators presented

in Chapter 3 are geometric numerical integrators for dynamic systems that evolve on a Lie group,

such as rigid body dynamics. The variational integrators given in Marsden and West (2001) are

geometric integrators that preserve geometric properties of dynamics, but they do not necessarily

conserve the nonlinear structure of the configuration manifold. The Lie group method presented

in Iserles et al. (2000) is for kinematics equations on a Lie group, so it does not guarantee that the

geometric properties of the dynamics are preserved.

This dissertation unifies discrete-time Lagrangian or Hamiltonian mechanics and the Lie group

method. A variational integrator is developed in the context of the Lie group method, so that the

resulting Lie group variational integrator preserves the geometric properties of the dynamics as

well as the structure of the Lie group. For a mechanical system with a Lie group configuration

manifold, such as rigid body dynamics, it is shown that the Lie group variational integrator has

important computational advantages compared to other geometric integrators that preserve either

none or one of these properties (see the numerical example in Section 3.3.6). Due to these superior

computational properties, the Lie group variational integrator has been used to study the dynamics of

the binary near-Earth asteroid 66391 (1999KW4) in joint work between the University of Michigan

and the Jet Propulsion Laboratory, NASA (see Scheeres et al. 2006).

Compared with other geometric integrators for a rigid body, as in the work of Hulbert (1992);

Krysl (2005); Lewis and Simo (1994); Simo and Wong (1991), the Lie group variational integra-

tor provides a systematic method to obtain a class of numerical integrators that preserve all of the

geometric features, rather than developing a specific numerical integrator that preserves only a few

geometric characteristics. Compared with discrete-time mechanics on a Lie group developed by

Bobenko and Suris (1999); Marsden et al. (1999); Moser and Veselov (1991), the Lie group vari-

ational integrator can be applied to a wide class of rigid body dynamics acting under a potential

field.

Optimal Control for Rigid Bodies on a Lie Group. In Chapter 4, optimal control problems for

mechanical systems on a Lie group are formulated, and an intrinsic form of necessary conditions

for optimality are developed. Most existing optimal control theory on a Lie group is established

based on kinematics equations. For example, an optimal attitude control problem of a rigid body is

considered in Jurdjevic (1997) by viewing the angular velocity as a control input. This dissertation

deals with optimal control problems of dynamic systems with a Lie group configuration manifold.

More precisely, it may be considered as an optimal control problem on a tangent bundle of a Lie

group. Compared with the work by Hussein (2005), where optimal control problems on SO(3) and
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SE(3) are considered, the necessary conditions presented in Section 4.1.3 are applied to a more

general class of dynamic systems on an abstract Lie group.

A direct optimal control approach has been applied to discrete-time mechanical systems ob-

tained by variational integrators in Junge et al. (2005, 2006), where control input parameters are

optimized using a general constrained parameter optimization scheme such as sequential quadratic

programming. The computational geometric optimal control approach presented in Chapter 5 uses

a discrete-time analogue of the calculus of variations to derive an intrinsic form of discrete-time

optimality conditions, and a computational approach to solve the optimality conditions is presented.

Compared with the geometric structure-preserving optimal control approach on SO(3) by Bloch

et al. (2007); Hussein et al. (2006), the discrete-time optimality conditions presented in Section 5.1

can be applied to general optimal control problems on an arbitrary Lie group; they are applied to

nontrivial rigid body optimal control problems in Section 5.2.

Examples of Nontrivial Rigid Body Systems. In this dissertation, the abstract theory for computa-

tional geometric mechanics and optimal control is applied to several nontrivial rigid body systems.

For example, in Section 3.3, Lie group variational integrators are developed for a rigid body pen-

dulum, a pendulum with an internal proof mass, a pendulum on a moving cart, rigid bodies acting

under mutual potential, and connected rigid bodies. Computational results are also presented for

each system. In Section 3.4, several mechanical systems from various scientific fields, such as an

elastic rod, magnetic dipoles, and molecular dynamics, are considered. Computational geomet-

ric optimal control is applied to minimum time, and minimum fuel optimal control problems of a

rigid body, and extended to optimal control problems with symmetry and a combinatorial optimal

formation reconfiguration problem in Section 5.2.

New theoretical results in geometric mechanics and control are developed in an abstract form.

This dissertation also studies numerous nontrivial rigid body systems that have engineering impor-

tance.

1.4.2 Publications

The contributions in this dissertation have been published in the following journals, conference

proceedings, and book chapter. These contributions that are currently under review/revision are

indicated.

Computational Geometric Mechanics

• T. Lee, M. Leok, and N. H. McClamroch. A Lie group variational integrator for the attitude

dynamics of a rigid body with application to the 3D pendulum. In Proceedings of the IEEE

Conference on Control Application, pages 962–967, 2005.

• E. Fahnestock, T. Lee, M. Leok, N. H. McClamroch, and D. Scheeres. Polyhedral potential

and variational integrator computation of the full two body problem. In Proceedings of the

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.
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CHAPTER 2

GEOMETRIC MECHANICS FOR RIGID BODIES ON A LIE
GROUP

This chapter deals with geometric mechanics for rigid bodies that evolve on a Lie group. The

goal is to develop an intrinsic form of Euler-Lagrange equations on an arbitrary Lie group, and

to show several properties of Lagrangian flows. These are applied to several rigid body systems

evolving on a Lie group, and extended to mechanical systems on a product of two-spheres.

2.1 Lagrangian mechanics on a Lie group

2.1.2 Euler-Lagrange equations

2.1.3 Legendre transformation

2.1.4 Properties of the Lagrangian flow
2.1.5 Reduction and reconstruction

2.3 Examples of mechanical systems
on a Lie group

2.3.1 Planar pendulum

2.3.2 3D pendulum

2.3.3 3D pendulum with an internal mass

2.3.4 3D pendulum on a cart

2.3.5 Single rigid body

2.3.6 Full body problem

2.3.7 Two rigid bodies connected by a ball joint

2.2 Lagrangian mechanics on two-spheres

2.2.1 Euler-Lagrange equations

2.2.2 Legendre transformation

2.4 Examples of mechanical systems
on two-spheres

2.4.1 Double spherical pendulum
2.4.2 n-body problem on a sphere
2.4.3 Interconnection of spherical pendula
2.4.4 Pure bending of elastic rod
2.4.5 Spatial array of magnetic dipoles
2.4.6 Molecular dynamics

This chapter is organized as follows. In Section 2.1, we develop geometric mechanics on a

Lie group; Euler-Lagrange equations are developed and several properties of Lagrangian flow are

discussed. These results are applied to several rigid body dynamics in Section 2.3. The remaining

part of this chapter develops geometric mechanics on a product of two-spheres. Since the two-

sphere is a homogeneous manifold on which a Lie group acts transitively, the Lagrangian mechanics

on a Lie group developed in Section 2.1 can be easily extended to the two sphere. Euler-Lagrange

equations on a product of two-spheres are developed in Section 2.2, and they are applied to several
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mechanical systems in Section 2.4.

2.1 Lagrangian Mechanics on a Lie Group

Geometric mechanics is a modern description of classical mechanics from the perspective of dif-

ferential geometry (see, for example, Abraham and Marsden 1978; Bloch 2003a; Bullo and Lewis

2005; Jurdjevic 1997; Marsden and Ratiu 1999). It explores the geometric structure of a Lagrangian

or Hamiltonian system through the concept of vector fields, symplectic geometry, and symmetry

techniques. This section develops Lagrange mechanics on a Lie group; Euler-Lagrange equations

for a mechanical system evolving on an abstract Lie group are derived, and the symplectic property

and symmetry of Lagrangian flow are discussed.

The dynamics of rigid bodies evolve on a Lie group. For example, the configuration manifold for

the attitude dynamics of a rigid body is the special orthogonal group SO(3), and the configuration

manifold for combined translational and rotational motion of a rigid body is the special Euclidean

group SE(3). A direct product of Lie groups SE(3), SO(3), and Rn can represent a configuration

manifold of multiple rigid bodies, which is also a Lie group.

However, much of the literature on dynamics of rigid bodies relies on local coordinates of a

Lie group. For example, a time optimal attitude maneuver of a rigid body is studied in terms

of Euler angles by Bilimoria and Wie (1993), and constrained equations of motion in multibody

dynamics are developed in terms of local coordinates on a manifold by Yen (1993). As discussed

in Section 1.4.1, representing geometric objects in terms of local coordinates frequently leads to

confusion and complexity.

The analytical results of this section are coordinate-free; they are independent of a specific

choice of local coordinates, and they completely avoid any singularity, ambiguity, and confusion

associated with local coordinates. The resulting intrinsic form of the Euler-Lagrange equations are

more compact that equations expressed in terms of local coordinates. Since these are developed for

mechanical systems that evolves on an arbitrary Lie group, they provides a general framework that

can be uniformly applied to dynamics of multiple rigid bodies.

This section is organized as follows. Section 2.1.1 provides preliminaries on a Lie group.

Euler-Lagrange equations and Hamilton’s equations on an arbitrary Lie group are developed in

Section 2.1.2 and in Section 2.1.3, respectively. Properties of Lagrangian flow and Lagrange-Routh

reduction are described in Section 2.1.4 and Section 2.1.5.

2.1.1 Preliminaries on a Lie Group

We first summarize basic definitions and properties of a Lie group (see, for example, Bloch 2003a;

Bullo and Lewis 2005; Marsden and Ratiu 1999; Varadarajan 1984). A Lie group is a differentiable

manifold that has a group structure such that the group operation is a smooth map. A Lie algebra is

the tangent space of the Lie group G at the identity element e ∈ G, with a Lie bracket [·, ·] : g×g→ g

that is bilinear, skew symmetric, and satisfies the Jacobi identity.
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∂q
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Legendre transform.
p = FL(q, q̇)

?

Hamilton’s Eqn.
q̇ = Hp, ṗ = −Hq

Figure 2.1: Procedures to derive Euler-Lagrange equations

For g, h ∈ G, the left translation map Lh : G → G is defined as Lhg = hg. Similarly, the

right translation map Rh : G → G is defined as Rhg = gh. Given ξ ∈ g, define a vector field

Xξ : G→ TG such that Xξ(g) = TeLg · ξ, and let the corresponding unique integral curve passing

through the identity e at t = 0 be denoted by γξ(t). The exponential map exp : g → G is defined

by exp ξ = γξ(1). The exp is a local diffeomorphism from a neighborhood of zero in g onto a

neighborhood of e in G.

Define the inner automorphism Ig : G → G as Ig(h) = ghg−1. The adjoint operator Adg :
g → g is the differential of Ig(h) with respect to h at h = e along the direction η ∈ g, i.e.

Adgη = TeIg · η. The ad operator adξ : g → g is obtained by differentiating Adgη with respect

to g at e in the direction ξ, i.e. adξη = Te(Adgη) · ξ. This corresponds to the Lie bracket, i.e.

adξη = [ξ, η].
Let 〈·, ·〉 be a pairing between a tangent vector and a cotangent vector. The coadjoint operator

Ad∗g : G × g∗ → g∗ is defined by
〈
Ad∗gα, ξ

〉
= 〈α, Adgξ〉 for α ∈ g∗. The co-ad operator

ad∗ : g× g∗ → g∗ is defined by
〈
ad∗ηα, η

〉
= 〈α, adηξ〉 for α ∈ g∗.

2.1.2 Euler-Lagrange Equations

Consider a mechanical system evolving on a Lie group G. We develop the corresponding Euler-

Lagrange equations. The procedures to derive Euler-Lagrange equations of a mechanical system are

summarized by Figure 2.1: the trajectory of the object is derived by finding the path that minimizes

the integral of a Lagrangian over time, called the action integral. The Legendre transformation

provides an alternative description of mechanical systems, referred to as Hamiltonian mechanics.

The essential idea in applying these procedures on a Lie group G is expressing the variation of group

elements in terms of the Lie algebra g using the exponential map.
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Configuration Manifold and Lagrangian

The configuration manifold is a Lie group G. We identify the tangent bundle TG with G× g by left

trivialization. For example, a tangent vector (g, ġ) ∈ TgG is expressed as

ġ = TeLg · ξ = gξ (2.1)

for ξ ∈ g. We assume the Lagrangian of the mechanical system is given by L(g, ξ) : G× g→ R.

Action Integral

Define the action integral as

G =
∫ tf

t0

L(g, ξ) dt.

Hamilton’s principle states that the variation of the action integral is equal to zero.

δG = δ

∫ tf

t0

L(g, ξ) dt. (2.2)

Variations

Let g(t) be a differential curve in G defined for t ∈ [t0, tf ]. The variation is a differentiable mapping

gε(t) : (−c, c) × [t0, tf ] → G for c > 0 such that g0(t) = g(t) for any t ∈ [t0, tf ], and gε(t0) =
g(t0), gε(tf ) = g(tf ) for any ε ∈ (−c, c). We express the variation using the exponential map as

gε(t) = g exp εη(t), (2.3)

for a curve η(t) in g. It is easy to show that (2.3) is well defined for some constant c as the exponen-

tial map is a local diffeomorphism between g and G, and it satisfies the properties of the variation

provided η(t0) = η(tf ) = 0. Since this is obtained by a group operation, it is also guaranteed that

the variation lies on G for any η(t).

The corresponding infinitesimal variation of g is given by

δg(t) =
d

dε

∣∣∣∣
ε=0

gε(t) = TeLg(t) ·
d

dε

∣∣∣∣
ε=0

exp εη(t)

= g(t)η(t). (2.4)

For each t ∈ [t0, tf ], the infinitesimal variation δg(t) lies in the tangent space Tg(t)G. Using this

expression and (2.1), the infinitesimal variation of ξ(t) is obtained as follows (see Bloch et al. 1996;

Marsden and Ratiu 1999, and Appendix A.4).

δξ(t) = η̇(t) + adξ(t)η(t). (2.5)

Equations (2.4) and (2.5) are infinitesimal variations of (g(t), ξ(t)) : [t0, tf ]→ G× g, respectively.
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Euler-Lagrange Equations

The variation of the Lagrangian can be written as

δL(g, ξ) = DgL(g, ξ) · δg + DξL(g, ξ) · δξ,

where DgL ∈ T∗G denotes the derivative of the Lagrangian L with respect to g, given by

d

dε

∣∣∣∣
ε=0

L(gε, ξ) = DgL(g, ξ) · δg,

and DξL(g, ξ) ∈ g∗ is defined similarly. Since T(Lg ◦ Lg−1) = TLg ◦TLg−1 is equal to the identity

map on TG, this can be written as

δL(g, ξ) = 〈DgL(g, ξ), δg〉+ 〈DξL(g, ξ), δξ〉

=
〈
DgL(g, ξ), (TeLg ◦ TgLg−1) · δg

〉
+ 〈DξL(g, ξ), δξ〉 .

Substituting (2.4) and (2.5), we obtain

δL(g, ξ) = 〈DgL(g, ξ), TeLg · η〉+ 〈DξL(g, ξ), η̇ + adξη〉

=
〈
T∗eLg ·DgL(g, ξ) + ad∗ξ ·DξL(g, ξ), η

〉
+ 〈DξL(g, ξ), η̇〉 . (2.6)

Since variation and integration commute, the variation of the action integral is given by

δG =
∫ tf

t0

δL(g, ξ) dt.

Substituting (2.6) and using integration by parts, the variation of the action integral is given by

δG =
∫ tf

t0

〈
T∗eLg ·DgL(g, ξ) + ad∗ξ ·DξL(g, ξ), η

〉
+ 〈DξL(g, ξ), η̇〉 dt

= 〈DξL(g, ξ), η〉
∣∣∣∣tf
t0

+
∫ tf

t0

〈
T∗eLg ·DgL(g, ξ) + ad∗ξ ·DξL, η

〉
−
〈
d

dt
DξL(g, ξ), η

〉
dt.

(2.7)

Since η(t) = 0 at t = t0 and t = tf , the first term of the above equation vanishes. Thus, we obtain

δG =
∫ tf

t0

〈
T∗eLg ·DgL(g, ξ) + ad∗ξ ·DξL(g, ξ), η

〉
−
〈
d

dt
DξL(g, ξ), η

〉
dt. (2.8)

From Hamilton’s principle, δG = 0 for all η ∈ g, which yields the Euler-Lagrange equations on G.

Proposition 2.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent

bundle TG with G × g by left trivialization. Suppose that the Lagrangian is defined as L(g, ξ) :
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G× g→ R. The corresponding Euler-Lagrange equations are given by

d

dt
DξL(g, ξ)− ad∗ξ ·DξL(g, ξ)− T∗eLg ·DgL(g, ξ) = 0, (2.9)

ġ = gξ. (2.10)

Remark 2.1 The essential idea of this development is expressing the variation of a curve in G using

the exponential map, as given by (2.3). The expression for the variation is carefully chosen such that

the varied curve lies on the configuration manifold G. The use of the exponential map exp : g→ G

is desirable in two aspects: (i) since the variation is obtained by a group operation, it is guaranteed

to lie on G, and (ii) the variation is parameterized by a curve in a linear vector space g.

Remark 2.2 If the Lagrangian is not dependent on G, the third term of (2.9) vanishes. The resulting

equation is equivalent to the Euler-Poincaré equation, and (2.10) is a reconstruction equation (see

Marsden and Ratiu 1999). Therefore, (2.9) can be considered as a generalization of the Euler-

Poincaré equation.

Remark 2.3 These equations are obtained using the left trivialization. Therefore, the velocity ξ

may be considered as a quantity expressed in the body fixed frame. We can develop similar equa-

tions using the right trivialization to obtain the equations of motion expressed in the reference frame.

This is summarized by the following corollary.

Corollary 2.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent

bundle TG with G × g by right trivialization. Suppose that the Lagrangian is defined as L(g, ς) :
G× g→ R. The corresponding Euler-Lagrange equations are given by

d

dt
DςL(g, ς) + ad∗ς ·DςL(g, ς)− T∗eRg ·DgL(g, ς) = 0, (2.11)

ġ = ςg. (2.12)

2.1.3 Legendre Transformation

We identify the tangent bundle TG with G× g using the left trivialization. Using this, the cotangent

bundle T∗G can be identified with G × g∗. For the given Lagrangian, the Legendre transformation

FL : G× g→ G× g∗ is defined as

FL(g, ξ) = (g, µ), (2.13)

where µ ∈ g∗ is given by

µ = DξL(g, ξ). (2.14)

If the Legendre transformation is a diffeomorphism, the corresponding Lagrangian is called a
hyperregular Lagrangian, which induces a Hamiltonian system on G× g∗.
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Corollary 2.2 Consider a mechanical system evolving on a Lie group G. We identify the tangent

bundle TG with G × g by left trivialization. Suppose that the Lagrangian given by L(g, ξ) : G ×
g → R is hyperregular. Then, the Legendre transformation yields Hamilton’s equations that are

equivalent to the Euler-Lagrange equations presented in Proposition 2.1.

d

dt
µ− ad∗ξµ− T∗eLg ·DgL(g, ξ) = 0, (2.15)

ġ = gξ, (2.16)

where µ = DξL(g, ξ) ∈ g∗.

2.1.4 Properties of the Lagrangian Flow

Here we show two properties of the Lagrangian flow, namely symplecticity and momentum preser-

vation. The subsequent development can be considered as a special form of the general properties

of Lagrangian flows, applied to a Lie group configuration manifold (see Marsden and West 2001).

Symplecticity

Let ΘL be the Lagrangian one-form on G× g given by

ΘL(g, ξ) · (δg, δξ) =
〈
DξL(g, ξ), g−1δg

〉
(2.17)

The Lagrangian symplectic two-form ΩL is the exterior derivative of the Lagrangian one-forme, i.e.
ΩL = dΘL. We define the Lagrangian flow map FL : (G× g)× [0, tf − t0]→ (G× g) as the flow
of (2.9) and (2.10).

Proposition 2.2 The Lagrangian flow preserves the Lagrangian symplectic two-form as follows

(FTL )∗ΩL = ΩL (2.18)

for T = tf − t0.

Proof. Define the solution space CL to be the set of solutions g(t) : [t0, tf ] → G of (2.9) and

(2.10). Since an element of CL is uniquely determined by the initial condition (g(0), ξ(0)) ∈ G×g,

we can identify CL with the space of initial conditions G × g. Define the restricted action map

Ĝ : G× g→ R by

Ĝ(g0, ξ0) = G(g(t)),

where g(t) ∈ CL with (g(0), g−1(0)ġ(0)) = (g0, ξ0). Since the curve g(t) satisfies (2.9) and (2.10),

(2.7) reduces to

dĜ · w = ((FTL )∗ΘL −ΘL) · w (2.19)
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for any w = (δg0, δξ0) ∈ T(G × g). We take the exterior derivative of (2.19). Since exterior

derivatives and pull back commute, we obtain

d2Ĝ = ((FTL )∗dΘL − dΘL).

Since d2Ĝ = 0 for any zero-form G, we obtain (2.18).

Noether’s Theorem

Suppose that a Lie group H, with the Lie algebra h, acts on G. A left action of H on G is a smooth

mapping Φ : H× G→ G such that Φ(e, g) = g, and Φ(h,Φ(h′, g)) = Φ(hh′, g) for any g ∈ G and

h, h′ ∈ H. Let Φh : G→ G be defined such that Φh(g) = Φ(h, g).

Let φL : TG → G × g be the left trivialization given by φL(g, ġ) = (g, g−1ġ). For ζ ∈ h, the

infinitesimal generators ζG : G → G× g, and ζG×g : G× g → T(G× g) for the action are defined

by

ζG(g) = φL ◦
d

dε

∣∣∣∣
ε=0

ΦexpH εζ(g), (2.20)

ζG×g(g, ξ) =
d

dε

∣∣∣∣
ε=0

φL ◦ TgΦexpH εζ(g) · (φ−1
L (g, ξ)). (2.21)

We define the Lagrangian momentum map JL : G× g→ h∗ to be

JL(g, ξ) · ζ = ΘL · ζG×g(g, ξ). (2.22)

Proposition 2.3 Suppose that the Lagrangian is infinitesimally invariant under the lifted action, i.e.

dL(g, ξ) · ζG×g = 0 for any ζ ∈ h. Then, the Lagrangian flow preserves the momentum map.

JL(FTL (g, ξ)) = JL(g, ξ), (2.23)

This is referred to as Noether’s theorem.

Proof. Since the action is the integral of the Lagrangian, dL(g, ξ) · ζG×g = 0 implies that dG ·
ζG×g = 0, where we consider that the group action Φh is applied to each point of a curve. The

invariance of the action integral implies that the action maps a solution curve to another solution

curve. Thus, we can restrict dG · ζG×g = 0 to the solution space to obtain

dĜ · ζG×g = 0.

But, from (2.19), we have

dĜ · ζG×g = ((FTL )∗ΘL −ΘL) · ζG×g = 0 (2.24)
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for any ζ ∈ h. Substituting the definition of the momentum map given by (2.22) into this, we obtain

(2.23).

2.1.5 Reduction and Reconstruction

We have shown that if the Lagrangian is infinitesimally invariant under the lifted action of a Lie

group H on G, the corresponding momentum map is preserved along the Lagrangian flow. Suppose

that the Lie group H acts freely and properly on G, and the Lagrangian is invariant under the action

H. This is referred to as the symmetry of the Lagrangian. Then, the configuration manifold can

be reduced to a quotient space G/H, referred to as the shape space. Because the action is free and

proper, it is guaranteed that the shape space is a smooth manifold.

More precisely, for a given curve g(t) in the solution space CL and the corresponding value of

the momentum map, there exists a unique curve in the shape space G/H satisfying reduced Euler-

Lagrange equations. If the initial condition g(t0) is known, the curve g(t) in G can be reconstructed

from the solution of the reduced Euler-Lagrange equations in the shape space G/H. These are

referred to as reduction and reconstruction for mechanical systems.

The procedure for the Lagrangian-Routh reduction and reconstruction is as follows (see Mars-

den et al. 2000). We define a mechanical connectionA : G×g→ h from the momentum map. This

yields a one-form Aν on G× g paired with the value of the momentum map ν ∈ h∗. The Routhian

Rν : G × g → R is defined by subtracting the one-form Aν from the Lagrangian. The Routhian

satisfies the Lagrange-d’Alembert principle with the magnetic two-form obtained from the exterior

derivative of the one-form Aν . This form of the variational principle and the Routhian reduce onto

the ν-level set of the momentum map, which provides the reduced Euler-Lagrange equations on the

shape space.

For a given solution of the reduced Euler-Lagrange equations, we find the horizontal lift of the

curve on G. Applying the mechanical connection to the time derivatives of the lifted curve provides a

reconstruction equation. A particular example for the Lagrange-Routh reduction and reconstruction

is presented in Appendix A.3.

2.2 Lagrangian Mechanics on Two-Spheres

In the previous section, we have developed Euler-Lagrange equations for mechanical systems evolv-

ing on a Lie group, and the symplectic property and symmetry of the Lagrangian flow are discussed.

The essential idea in developing the Euler-Lagrange equations on a Lie group is to express the vari-

ation of a curve on a Lie group in terms of a curve on the corresponding Lie algebra using the

exponential map.

In this section, we develop Euler-Lagrange equations for mechanical systems evolving on a

product of two-spheres

S2 = {q ∈ R3 | q · q = 1}.
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The two-sphere S2 is not a Lie group, but the special orthogonal group SO(3) = {R ∈ R3×3 |RTR =
I, detR = 1} acts on the two-sphere transitively, i.e. for any q1, q2 ∈ S2, there exists a R ∈ SO(3)
such that q2 = Rq1. Therefore, we can express the variation of a curve on S2 in terms of a curve

on so(3) ' R3 using the exponential map of SO(3), from which Euler-Lagrange equations can be

developed.

In most of the literature that treats dynamic systems on (S2)n, either 2n angles or n explicit

equality constraints enforcing unit length are used to describe the configuration of the system (see,

for example, Bendersky and Sandler 2006; Marsden et al. 1993). These descriptions involve compli-

cated trigonometric expressions and introduce additional complexity in analysis and computations.

In this section, we develop Euler-Lagrange equations on (S2)n without need of local parame-

terizations, constraints, or reprojections. This yields a remarkably compact form of the equations

of motion, and also provides insight into the global dynamics on (S2)n. A manifold on which a

Lie group acts in a transitively way is referred to as a homogeneous manifold. The key idea of this

development can be generalized to an abstract homogeneous manifold.

2.2.1 Euler-Lagrange equations

The procedures to derive Euler-Lagrange equations are summarized by Figure 2.1: the trajectory of

the object is derived by finding the path that minimizes the integral of a Lagrangian over time, called

the action integral. The Legendre transformation provides an alternative description of mechanical

systems, referred to as Hamiltonian mechanics. The essential idea is to express the variation of a

curve on S2 in terms of the Lie algebra so(3) using the exponential map.

Configuration Manifold and Lagrangian

The two-sphere is the set of points that have unit length from the origin of R3, i.e. S2 = {q ∈
R3 | q · q = 1}. The tangent space TqS

2 for q ∈ S2 is a plane tangent to the two-sphere at the point

q. Thus, a curve q : R→ S2 and its time derivative satisfy q · q̇ = 0. The time-derivative of a curve

can be written as

q̇ = ω × q, (2.25)

where the angular velocity ω ∈ R3 is constrained to be orthogonal to q, i.e. q · ω = 0. The time

derivative of the angular velocity is also orthogonal to q, i.e. q · ω̇ = 0.

We consider a mechanical system evolving on an n product of two-spheres, S2 × · · · × S2 =
(S2)n. We assume that the Lagrangian L : T(S2)n → R is given by the difference between a

quadratic kinetic energy and a configuration-dependent potential energy as follows.

L(q1, . . . , qn, q̇1, . . . , q̇n) =
1
2

n∑
i,j=1

Mij q̇i · q̇j − U(q1, . . . , qn), (2.26)

where (qi, q̇i) ∈ TS2 for i ∈ {1, . . . , n}, and Mij ∈ R is the i, j-th element of a symmetric positive

20



definite inertia matrix M ∈ Rn×n for i, j ∈ {1, . . . , n}. The configuration dependent potential is

denoted by U : (S2)n → R. Here, we assume the inertia matrix is constant, but it can be readily

generalized to mechanical systems with a configuration dependent inertia.

Action Integral

Define the action integral as

G =
∫ tf

t0

L(q1, . . . , qn, q̇1, . . . , q̇n) dt.

Hamilton’s principle states that the variation of the action integral is equal to zero.

Variations

Let qi(t) be a differentiable curve in S2 defined for t ∈ [t0, tf ]. The variation is a differentiable

mapping qεi (t) : (−c, c) × [t0, tf ] → S2 for c > 0 such that q0
i (t) = qi(t) for any t ∈ [t0, tf ] and

qεi (t0) = qi(t0), qεi (tf ) = q(tf ) for any ε ∈ (−c, c). Since the special orthogonal group SO(3) acts

on S2 in a transitive way, we can express the variation of qi(t) using the exponential map on SO(3)
as follows.

qεi (t) = exp εη̂i(t) qi(t) (2.27)

for a curve ηi(t) in R3. It is easy to show that (2.27) is well defined since the exponential map is a

local diffeomorphism between so(3) and SO(3), and SO(3) acts on S2. It satisfies other properties

of the variation provided that ηi(t0) = ηi(tf ) = 0. We assume ηi(t) · qi(t) = 0 for t ∈ [t0, tf ].
The corresponding infinitesimal variation is given by

δqi(t) =
d

dε

∣∣∣∣
ε=0

qε(t) = η̂i(t)q(i) = ηi(t)× qi(t). (2.28)

Since the variation and the differentiation commute, the expression for the infinitesimal variation of

q̇i(t) is given by

δq̇i(t) = η̇i(t)× qi(t) + ηi(t)× q̇i(t). (2.29)

These expressions are key elements to derive the Euler-Lagrange equations on (S2)n.

Euler-Lagrange Equations

The variation of the Lagrangian can be written as

δL =
n∑

i,j=1

δq̇i ·Mij q̇j −
n∑
i=1

δqi ·
∂U

∂qi
,
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where the symmetric property Mij = Mji is used. Substituting (2.28) and (2.29) into this, and

using the vector identity (a× b) · c = a · (b× c) for any a, b, c ∈ R3, we obtain

δL =
n∑

i,j=1

η̇i · (qi ×Mij q̇j) + ηi · (q̇i ×Mij q̇j)−
n∑
i=1

ηi ·
(
qi ×

∂U

∂qi

)
.

Using the above equation and integrating by parts, the variation of the action integral is given by

δG =
n∑

i,j=1

ηi · (qi ×Mij q̇j)
∣∣∣∣tf
t0

−
n∑
i=1

∫ tf

t0

ηi ·

(qi ×
n∑
j=1

Mij q̈j) + qi ×
∂U

∂qi

 dt.
From Hamilton’s principle δG = 0 for any ηi vanishing at t0, and tf . Since ηi is orthogonal to qi,

the continuous equations of motion are given by

(qi ×
n∑
j=1

Mij q̈j) + qi ×
∂U

∂qi
= ciqi (2.30)

for a curve ci(t) in R for i ∈ {1, . . . , n}. Taking the cross product of (2.30) and qi yields

qi × (qi ×
n∑
j=1

Mij q̈j) + qi ×
(
qi ×

∂U

∂qi

)
= 0. (2.31)

From the vector identity a× (b× c) = (a · c)b− (a · b)c for any a, b, c ∈ R3, we have

qi × (qi × q̈i) = (qi · q̈i)qi − (qi · qi)q̈i
= −(q̇i · q̇i)qi − q̈i,

where we use the properties d
dt(qi · q̇i) = qi · q̈i + q̇i · q̇i = 0 and qi · qi = 1. Substituting these into

(2.31), we obtain an expression for q̈i, which is summarized as follows.

Proposition 2.4 Consider a mechanical system on (S2)n whose Lagrangian is expressed as (2.26).

The Euler-Lagrange equations are given by

Miiq̈i = qi × (qi ×
n∑
j=1
j 6=i

Mij q̈j)− (q̇i · q̇i)Miiqi + qi ×
(
qi ×

∂U

∂qi

)
(2.32)

for i ∈ {1, . . . , n}. Equivalently, this can be written in a matrix form as
M11I3×3 −M12q̂1q̂1 · · · −M1nq̂1q̂1

−M21q̂2q̂2 M22I3×3 · · · −M2nq̂2q̂2

...
...

...

−Mn1q̂nq̂n −Mn2q̂nq̂n · · · MnnI3×3



q̈1

q̈2

...

q̈n

 =


−(q̇1 · q̇1)M11q1 + q̂2

1
∂U
∂q1

−(q̇2 · q̇2)M22q2 + q̂2
2
∂U
∂q2

...

−(q̇n · q̇n)Mnnqn + q̂2
n
∂U
∂qn

 . (2.33)
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Since q̇i = ωi × qi for the angular velocity ωi satisfying qi · ωi = 0, we have

q̈i = ω̇i × qi + ωi × (ωi × qi) = ω̇i × qi − (ωi · ωi)qi.

Substituting this into (2.30) and using the fact that qi · ω̇i = 0, we obtain the Euler-Lagrange

equations in terms of the angular velocity.

Corollary 2.3 The Euler-Lagrange equations on (S2)n given by (2.32) can be written in terms of

the angular velocity as

Miiω̇i =
n∑
j=1
j 6=i

(Mijqi × (qj × ω̇j) +Mij(ωj · ωj)qi × qj)− qi ×
∂U

∂qi
, (2.34)

q̇i = ωi × qi (2.35)

for i ∈ {1, . . . , n}. Equivalently, (2.34) can be written in a matrix form as
M11I3×3 −M12q̂1q̂2 · · · −M1nq̂1q̂n

−M21q̂2q̂1 M22I3×3 · · · −M2nq̂2q̂n
...

...
...

−Mn1q̂nq̂1 −Mn2q̂nq̂2 · · · MnnI3×3



ω̇1

ω̇2

...

ω̇n

 =


∑n

j=2M1j(ωj · ωj)q̂1qj − q̂1
∂U
∂q1∑n

j=1,j 6=2M2j(ωj · ωj)q̂2qj − q̂2
∂U
∂q2

...∑n−1
j=1 Mnj(ωj · ωj)q̂nqj − q̂n ∂U∂qn

 .
(2.36)

Equations (2.32)–(2.36) are global continuous equations of motion for a mechanical system on

(S2)n. They avoid singularities completely, and they preserve the structure of T(S2)n automati-

cally, if an initial condition is chosen properly. These equations are useful to understand global

characteristics of the dynamics. In addition, these expressions are remarkably more compact than

the equations of motion written in terms of any local parametrization.

We need to check that the 3n × 3n matrices given by the first terms of (2.33) and (2.36) are

nonsingular. This is a property of the mechanical system itself, rather than a consequence of these

particular form of the equations of motion. For example, when n = 2, it can be shown that

det

[
M11I3×3 −M12q̂1q̂1

−M12q̂2q̂2 M22I3×3

]
= det

[
M11I3×3 −M12q̂1q̂2

−M12q̂2q̂1 M22I3×3

]
= M2

11M
2
22(M11M22 −M2

12(q1 · q2)2)(M11M22 −M2
12).

Since the inertia matrix is symmetric positive definite, M11,M22 > 0, M11M22 > M2
12, and from

the Cauchy-Schwarz inequality, (q1 ·q2)2 ≤ (q1 ·q1)(q2 ·q2) = 1. Thus, the above matrices are non-

singular. One may show a similar property for n > 2. Throughout this dissertation, it is assumed

that the 3n× 3n matrices given by the first terms of (2.33) and (2.36) are nonsingular.
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2.2.2 Legendre Transformation

The Legendre transformation of the Lagrangian gives an equivalent Hamiltonian form of equations

of motion in terms of conjugate momenta if the Lagrangian is hyperregular. Here, we find expres-

sions for the conjugate momenta, which are used in the following chapter for the discrete equations

of motion. For qi ∈ S2, the corresponding conjugate momentum pi lies in the dual space T∗qiS
2. We

identify the tangent space TqiS
2 and its dual space T∗qiS

2 by using the usual dot product in R3. The

Legendre transformation is given by

pi · δqi = Dq̇iL(q1, . . . , qn, q̇1, . . . , q̇n) · δqi

=
n∑
j=1

Mij q̇j · δqi,

which is satisfied for any δqi perpendicular to qi. Here Dq̇iL denotes the derivative of the La-

grangian with respect to q̇i. The momentum pi is an element of the dual space identified with the

tangent space, and the component parallel to qi has no effect since δqi · qi = 0. As such, the vector

representing pi is perpendicular to qi, and pi is equal to the projection of
∑n

j=1Mij q̇j onto the

orthogonal complement to qi,

pi =
n∑
j=1

(Mij q̇j − (qi ·Mij q̇j)qi) =
n∑
j=1

((qi · qi)Mij q̇j − (qi ·Mij q̇j)qi)

= Miiq̇i − qi × (qi ×
n∑
j=1
j 6=i

Mij q̇j). (2.37)

The time derivative of pi is given by

ṗi = Miiq̈i − q̇i × (qi ×
n∑
j=1
j 6=i

Mij q̇j)− qi × (q̇i ×
n∑
j=1
j 6=i

Mij q̇j)− qi × (qi ×
n∑
j=1
j 6=i

Mij q̈j)

Substituting (2.32), and using the vector identity a × (b × c) = (a · c)b − (a · b)c, we obtain the

Hamilton’s equations.

Corollary 2.4 Consider a mechanical system on (S2)n whose Lagrangian is expressed as (2.26).

The Hamilton’s equations are given by

pi = Miiq̇i − qi × (qi ×
n∑
j=1
j 6=i

Mij q̇j), (2.38)

ṗi = −
n∑
j=1

(q̇i ·Mij q̇j)qi −
n∑
j=1
j 6=i

(qi ·Mij q̇j)q̇i + qi ×
(
qi ×

∂U

∂qi

)
(2.39)
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for i ∈ {1, . . . , n}. Equivalently, (2.38) can be written in a matrix form as


q̇1

q̇2

...

q̇n

 =


M11I3×3 −M12q̂1q̂1 · · · −M1nq̂1q̂1

−M21q̂2q̂2 M22I3×3 · · · −M2nq̂2q̂2

...
...

...

−Mn1q̂nq̂n −Mn2q̂nq̂n · · · MnnI3×3


−1 

p1

p2

...

pn

 . (2.40)
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2.3 Examples of Mechanical Systems on a Lie Group

In Section 2.1, we have developed Lagrangian mechanics on an abstract Lie group. Since the

configuration manifold of dynamics of rigid bodies is a Lie group, the result provides a unified

framework that can be applied to various rigid body dynamics.

In this section, we apply the general theory developed in Section 2.1 to the following rigid body

dynamics. For each example, a rigid body model is defined, and the corresponding expression for

the Lagrangian is derived. Euler-Lagrange equations and Legendre transformations are obtained

from Proposition 2.1 and Corollary 2.2.

Section Mechanical System G

2.3.1 Planar pendulum SO(2)
2.3.2 3D pendulum SO(3)
2.3.3 3D pendulum with an internal degree of freedom SO(3)× R
2.3.4 3D pendulum on a cart SO(3)× R2

2.3.5 Single rigid body SE(3)
2.3.6 Full body problem (SE(3))n

2.3.7 Two rigid bodies connected by a ball joint SO(3)× SO(3)× R3

2.3.1 Planar Pendulum

We consider a planar pendulum model; a mass particle with mass m, connected to a frictionless

pivot point by a rigid massless link with length l under a uniform gravitational potential.

Configuration manifold. Consider a reference frame, and a body fixed frame that is attached to the

pendulum. We assume that the origin of these frames is located at the pivot point, and the second

axis of the body fixed frame is along the rigid link. The configuration manifold is the one-sphere

S1 = {q ∈ R2 | qT q = 1}, and we identify it with SO(2) = {R ∈ R2×2 |RTR = I2×2, det[R] =
1}. A rotation matrix R ∈ SO(3) represents the linear transformation from the body fixed frame to

the reference frame. The Lie algebra so(2) is identified with R by an isomorphism ·̂ : R → so(2)
given by

Ω̂ =

[
0 −Ω
Ω 0

]
,

for Ω ∈ R. We define an inner product on so(2) using the standard inner product on R as〈
Ω̂1, Ω̂2

〉
= 1

2 tr
[
Ω̂T

1 Ω̂2

]
= Ω1 · Ω2. This defines an inner product on TSO(2) by the left-

trivialization as 〈X, Y 〉 = 〈TRLR−1 ·X,TRLR−1 · Y 〉 for X,Y ∈ TRSO(2). The dual space

T∗SO(2) is identified with TSO(2) using this inner product. Let J : so(2)→ so(2)∗ be defined as

J(Ω̂) = ml2Ω̂. This induces a metric on so(2) as 〈〈Ω1,Ω2〉〉 =
〈
J(Ω̂1), Ω̂2

〉
. This defines a metric

on TSO(2) by the left-trivialization. The ad operation for SO(2) is zero, i.e. adΩ = 0.
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Lagrangian. The Lagrangian L : SO(2)× so(2)→ R of the planar pendulum is given by

L(R, Ω̂) =
1
2
〈〈Ω̂, Ω̂〉〉+mgeT2 Rρ, (2.41)

where ρ = le2 ∈ R2 is a vector from the pivot point to the mass in the body fixed frame, and

e2 ∈ R2 is a unit vector along the gravity direction in the inertial frame.

Euler-Lagrange equations. The derivatives of the Lagrangian are given by

DΩL(R, Ω̂) · δΩ̂ =
〈
J(Ω̂), δΩ̂

〉
= ml2Ω · δΩ,

ad∗Ω ·DΩL(R, Ω̂) = 0,〈
TeL

∗
R ·DRL(R, Ω̂), η̂

〉
= mgeT2 Rη̂le2 = −mgleT2 Re1 · η.

Substituting these into (2.9) and (2.10), we obtain

ml2Ω̇ +mgleT2 Re1 = 0, (2.42)

Ṙ = RΩ̂. (2.43)

Legendre Transformation. From (2.14), the Legendre transformation is given by Π = DΩL =
ml2Ω ∈ so(2)∗ ' R∗, which represents the angular momentum of the pendulum. The Hamilton’s

equations are given by

Π̇ +mgleT2 Re1 = 0, (2.44)

Ṙ = R
1̂
ml2

Π. (2.45)

If we parameterize the rotation matrix as R =

[
cos θ − sin θ
sin θ cos θ

]
for θ ∈ S1, these equations are

equivalent to

ml2θ̈ +mgl sin θ = 0. (2.46)

2.3.2 3D Pendulum

A 3D pendulum is a rigid body supported by a frictionless pivot acting under gravitational poten-

tial (see Shen et al. 2004). This is a generalization of a planar pendulum and a spherical pendulum,

as it has three rotational degrees of freedom. It has been shown that the 3D pendulum may exhibit

irregular, possibly chaotic, attitude dynamics (see Chaturvedi et al. 2007).

Configuration Manifold. Consider a reference frame, and a body fixed frame that is attached to

the 3D pendulum body. We assume that the origin of the body fixed frame is located at the pivot

point. The attitude of the pendulum is the orientation of the body fixed frame with respect to the
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e3

m

Figure 2.2: 3D Pendulum

reference frame, and it is described by a rotation matrix that represents the linear transformation

from the body fixed frame to the reference frame. The configuration manifold of the 3D pendulum

is the special orthogonal group

SO(3) = {R ∈ R3×3 |RTR = I, detR = 1}. (2.47)

The group operation for SO(3) corresponds to matrix multiplication.

The attitude kinematics equation is given by

Ṙ = RΩ̂, (2.48)

where the angular velocity represented in the body fixed frame is denoted by Ω ∈ R3, and the hat

map ·̂ : R3 → so(3) is an isomorphism between R3 and the set of 3× 3 skew symmetric matrices,

the Lie algebra so(3), defined by

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 (2.49)

for Ω = [Ω1; Ω2; Ω3] ∈ R3. The Lie bracket on so(3) corresponds to the cross product on R3, i.e.

[Ω̂, Ω̂′] = Ω×Ω′ for Ω,Ω′ ∈ R3. Several properties of the hat map are summarized in Appendix A.1.

Using the kinematics equation, the tangent bundle TSO(3) is identified with SO(3)×so(3), and it is

further identified with SO(3)×R3 using the hat map. This defines an inner product on so(3) using

the standard inner product on R3 as
〈

Ω̂1, Ω̂2

〉
= 1

2 tr
[
Ω̂T

1 Ω̂2

]
= Ω1 ·Ω2 for Ω1,Ω2 ∈ R3. The inner

product of TSO(3) is defined by the left trivialization as 〈X, Y 〉 = 〈TRLR−1 ·X, TRLR−1 · Y 〉 for

X,Y ∈ TRSO(3). The cotangent bundle T∗SO(3) is identified with TSO(3) using this inner

product. The ad operation on SO(3) is given by adΩΩ′ = Ω̂Ω′, ad∗ΩΩ′ = −Ω̂Ω′.
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Lagrangian. The Lagrangian L : SO(3)× so(3)→ R is the difference between the kinetic energy

T : SO(3)× so(3)→ R and the gravitational potential energy U : SO(3)→ R.

L(R,Ω) = T (R,Ω)− U(R). (2.50)

Let ρ ∈ R3 be the vector from the pivot to a mass element represented in the body fixed frame.

The mass element has a velocity Ω× ρ. Thus, the kinetic energy is given by

T (Ω) =
1
2

∫
B
‖Ω̂ρ‖2 dm(ρ), (2.51)

where the body region is denoted by B. Since Ω̂ρ = −ρ̂Ω, this can be written as

T (Ω) =
1
2

∫
B
‖ρ̂Ω‖2 dm(ρ) =

1
2

∫
B

ΩT ρ̂T ρ̂Ω dm(ρ) =
1
2

ΩTJΩ, (2.52)

where the inertia matrix J ∈ R3 is defined as J =
∫
B ρ̂

T ρ̂ dm.

Alternatively, using the property ‖x‖2 = xTx = tr
[
xxT

]
for any x ∈ R3, equation (2.51) can

be written as

T (Ω) =
1
2

∫
B

tr
[
Ω̂ρρT Ω̂T

]
dm(ρ)

=
1
2

tr
[
Ω̂JdΩ̂T

]
, (2.53)

where a nonstandard inertia matrix is defined as Jd =
∫
B ρρ

T dm. Therefore, the kinetic energy

can be written in the standard form (2.52) or in a non-standard form (2.53). In (2.52) the kinetic

energy is expressed as a function of the angular velocity vector with the standard inertia matrix, and

in (2.53) it is expressed as a function of the Lie algebra with the non-standard inertia matrix. The

relationship between the standard inertia matrix and the nonstandard inertia matrix is summarized

in Appendix A.2. It can be shown that

ĴΩ = Ω̂Jd + JdΩ̂

for any Ω ∈ R3. Here, we use the nonstandard inertia matrix, since the corresponding development

has a similar structure with the discrete-time Euler-Lagrange equations presented in Section 3.3.2.

The gravitational potential energy is given by

U(R) = −mgeT3 Rρc, (2.54)

where the constants m, g are the mass of the pendulum and the gravitational constant, respectively,

and the vector from the pivot to the mass center represented in the body fixed frame is denoted by

ρc ∈ R3.

In summary, the Lagrangian of the attitude dynamics of the 3D pendulum is given by

L(R,Ω) =
1
2

tr
[
Ω̂JdΩ̂T

]
− U(R). (2.55)
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Let J : so(3)→ so(3)∗ be the inertia operator defined as

J(Ω̂) = Ω̂Jd + JdΩ̂ = ĴΩ. (2.56)

The Lagrangian can alternatively written as

L(R,Ω) =
1
2

〈
J(Ω̂), Ω̂

〉
− U(R). (2.57)

Euler-Lagrange Equations. We find expressions for the derivatives of the Lagrangian. We have

DΩL · δΩ̂ = −1
2

tr
[
δΩ̂JdΩ̂ + Ω̂JdδΩ̂

]
.

Since tr[AB] = tr[BA] for any A,B ∈ R3×3, this can be written as

DΩL · δΩ̂ = −1
2

tr
[
δΩ̂(JdΩ̂ + Ω̂Jd)

]
= −1

2
tr
[
δΩ̂ĴΩ

]
=
〈
ĴΩ, δΩ̂

〉
. (2.58)

This can be derived directly from (2.57) using the symmetry of the inertia operator.

The derivative of the potential is given by

DRU(R) · δR =
d

dε
U(R exp εη̂)

∣∣∣∣
ε=0

=
3∑

i,j=1

∂U

∂[R]ij

∂ [R exp εη̂]ij
∂ε

∣∣∣∣
ε=0

=
3∑

i,j=1

∂U

∂[R]ij
[Rη̂]ij = −tr

[
η̂RT

∂U

∂R

]
,

where [A]ij denotes the i, jth element of a matrix A, and ∂U
∂R ∈ R3×3 is defined such that

[
∂U
∂R

]
ij

=
∂U(R)
∂[R]ij

. We use the following identity: since tr[x̂B] = −tr
[
BT x̂

]
= −tr

[
x̂BT

]
for any x ∈ R3, B ∈

R3×3,

tr[x̂B] =
1
2

tr
[
x̂(B −BT )

]
= −

〈
B −BT , x̂

〉
. (2.59)

Therefore, the derivative of the potential is given by

DRU(R) · δR = (T∗eLR ·DRU(R)) · η̂ = −
〈
M̂, η̂

〉
, (2.60)

where the moment due to the potential M ∈ R3 is determined by M̂ = ∂U
∂R

T
R − RT ∂U∂R . More

explicitly, let ri and ui ∈ R1×3 be the ith row vectors of R and ∂U
∂R , respectively. We have

M̂ =
∂U

∂R

T

R−RT ∂U
∂R

=

uT1 uT2 uT3


 r1

r2

r3

−
rT1 rT2 rT3


 u1

u2

u3


=
(
uT1 r1 − rT1 u1

)
+
(
uT2 r2 − rT2 u2

)
+
(
uT3 r3 − rT3 u3

)
,
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Since (uT r − rTu)∧ = r̂ × u, we obtain

M̂ = (r1 × u1 + r2 × u2 + r3 × u3)∧. (2.61)

Thus, the moment due to the attitude-dependent potential is explicitly given by

M = r1 × u1 + r2 × u2 + r3 × u3. (2.62)

For the gravitational potential given by (2.54), ∂U
∂R = −mge3ρ

T
c . Thus, the moment due to the

potential is M = mgρc ×RT e3.

We substitute (2.58) and (2.60) into (2.9) and (2.10) to obtain the Euler-Lagrange equations of

the 3D pendulum as

JΩ̇ + Ω× JΩ = mgρc ×RT e3, (2.63)

Ṙ = RΩ̂. (2.64)

Legendre Transformation. The Legendre transformation FL : (SO(3)×so(3))→ (SO(3)×so(3))
is given by

FL(R, Ω̂) · η̂ =
d

dε

∣∣∣∣
ε=0

L(R, Ω̂ + εη̂)

=
d

dε

∣∣∣∣
ε=0

1
2

tr
[
(Ω̂ + εη̂)TJd(Ω̂ + εη̂)

]
=

1
2

tr
[
η̂TJdΩ̂ + Ω̂TJdη̂

]
=

1
2

tr
[
−(JdΩ̂ + Ω̂Jd)η̂

]
=

1
2

tr
[
ĴΩ

T
η̂
]

= ĴΩ · η̂.

This gives the expression for the momentum Π̂ = FL(R, Ω̂) = ĴΩ, which is the angular momentum

expressed in the body fixed frame. Substituting this into (2.63) and (2.64), we obtain Hamilton’s

equations for the 3D pendulum as

Π̇ + J−1Π×Π = mgρc ×RT e3, (2.65)

Ṙ = RĴ−1Π. (2.66)

Symmetry. The Lagrangian of the 3D pendulum has a symmetry. It is invariant under an action of

H = SO(2) ' S1 given by Φ : S1 × SO(3)→ SO(3)

Φ(θ,R) = expSO(3)(θê3)R, (2.67)

which represents the rotation of the 3D pendulum about the gravity direction e3. The invariance fol-

lows from the fact that the kinetic energy is invariant under any left action, and that the gravitational

potential is invariant under a rotation about the gravity direction. As a result, the momentum map

is preserved, and the configuration manifold can be reduced to G/H = SO(3)/SO(2) ' S2. Here

31



we derive the expression for the momentum map of the 3D pendulum using the general expression

presented in Section 2.1.4: we find the infinitesimal generator and the Lagrangian one-form from

(2.21) and (2.17), respectively, and we combine them to obtain the momentum map from (2.22).

We first find the expression for the infinitesimal generator. We identify h = so(2) with R using

the hat map introduced in Section 2.3.1, and we identify h∗ with R. Using (2.21), for ζ ∈ R ' so(2),

the infinitesimal generator ζSO(3)×so(3) : SO(3)× so(3)→ T(SO(3)× so(3)) is given by

ζSO(3)×so(3)(R, Ω̂) =
d

dε

∣∣∣∣
ε=0

φL ◦ TRΦexpSO(2) εζ(R) · (R,RΩ̂). (2.68)

The exponential map in SO(2) is the identity in R. Thus, ΦexpSO(2) εζ(R) = Φεζ(R). From (2.67),

this is equal to Φεζ(R) = expSO(3)(εζê3)R. Its tangent map is given by

TRΦexpSO(2) εζ(R) · (R,RΩ̂) =
(

expSO(3)(εζê3)R,
d

ds

∣∣∣∣
s=0

expSO(3)(εζê3)R expSO(3)(sΩ̂)
)

=
(

expSO(3)(εζê3)R, expSO(3)(εζê3)RΩ̂
)
.

The left trivialization of this is given by

φL ◦ TRΦexpSO(2) εζ(R) · (R,RΩ̂) =
(

expSO(3)(εζê3)R, Ω̂
)
.

Substituting this into (2.68), we obtain the infinitesimal generator ζSO(3)×so(3) as

ζSO(3)×so(3)(R, Ω̂) =
d

dε

∣∣∣∣
ε=0

(
expSO(3)(εζê3)R, Ω̂

)
=
(
ζê3R, Ω̂

)
. (2.69)

Substituting (2.58) into (2.17), we obtain the Lagrangian one-form ΘL on SO(3)× so(3) as

ΘL(R, Ω̂) · (δR, δΩ̂) =
〈
ĴΩ, RT δR

〉
. (2.70)

Now, the expressions for the infinitesimal generator and the Lagrangian one-form are given by

(2.69) and (2.70). Substituting these into (2.22), we obtain

JL(R,Ω) · ζ = ΘL(R, Ω̂) · ζSO(3)×so(3) = ΘL(R, Ω̂) ·
(
ζê3R, Ω̂

)
=
〈
ĴΩ, ζRT ê3R

〉
=
〈
ĴΩ, ζR̂T e3

〉
= ζ eT3 RJΩ.

Since this is satisfied for any ζ ∈ R, the momentum map of the 3D pendulum JL : SO(3)×so(3)→
R∗ is given by

JL(R,Ω) = eT3 RJΩ, (2.71)

which represents the angular momentum about the gravity direction. According to Noether’s theo-

rem, this is preserved along the solution of (2.63) and (2.64).
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Reduced Euler-Lagrange Equations. Due to the symmetry of the Lagrangian, the configuration

manifold can be reduced to a shape space SO(3)/SO(2) ' S2 as discussed in Section 2.1.5. Here,

we present the reduced Euler-Lagrange equations on S2, and the detailed procedure to derive the

reduced equations is summarized in Appendix A.3 as well as the reconstruction equation (see also

Marsden et al. 2000).

Let Υ ∈ S2 be the direction of gravity expressed in the body fixed frame, i.e. Υ = RT e3.

Suppose the fixed value of the momentum map is given by ν. The reduced Euler-Lagrange equations

for the 3D pendulum are given by

Ϋ = −‖Υ̇‖2Υ + Υ× Σ, (2.72)

where the vector Σ ∈ R3, constants c, b,Υ ∈ R are defined as

Σ = bΥ̇ + J−1
[
(J(Υ̇×Υ)− bJΥ)× ((Υ̇×Υ)− bΥ) + Υ2JΥ×Υ−mgΥ× ρ− cΥ̇

]
,

(2.73)

c = Υ

{
tr[J ]− 2

‖JΥ‖2

Υ · JΥ

}
, b =

JΥ · (Υ̇×Υ)
Υ · JΥ

, Υ =
ν

Υ · JΥ
. (2.74)

2.3.3 3D Pendulum with an Internal Degree of Freedom

A 3D pendulum is a rigid body supported by a frictionless pivot point acting under a uniform

gravitational potential. An internal degree of freedom is modeled as a single mass particle that

is constrained to move along a linear slot fixed in the pendulum body. We assume that the mass

particle is connected to a linear spring.

Configuration manifold. We define three frames; a reference frame, a body fixed frame for the 3D

pendulum whose origin is located at the pivot point, and a slot frame fixed to the pendulum body.

The origin of the slot frame is located at the point along the slot whose distance d to the mass center

is minimum. The first axis is aligned to the slot, the second axis is aligned to the mass center, and

the third axis is orthogonal to the first and the second axis. Define

R ∈ SO(3) Rotation matrix from the body fixed frame to the reference frame

Ω ∈ R3 Angular velocity of the pendulum represented in the body fixed frame

Q ∈ SO(3) Rotation matrix from the slot frame to the body fixed frame

d ∈ R Minimum distance from the slot to the mass center

x ∈ R Displacement of the mass particle along the slot

ρc ∈ R3 Vector from the pivot to the mass center of the pendulum

ρx ∈ R3 Vector from the pivot to the mass particle

m ∈ R Mass of the pendulum

mx ∈ R Mass of the particle

κ ∈ R spring constant
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Figure 2.3: 3D Pendulum with an internal degree of freedom

The configuration manifold is SO(3)×R. We identify TSO(3) with SO(3)× so(3) by left triv-

ialization, and the Lie algebra so(3) is identified with R3 by an isomorphism ·̂ : R3 → so(3).

We define an inner product on so(3) using the standard inner product on R3 as
〈

Ω̂1, Ω̂2

〉
=

1
2 tr
[
Ω̂T

1 Ω̂2

]
= Ω1 · Ω2. This defines an inner product on TSO(3) by the left-trivialization as

〈X, Y 〉 = 〈TRLR−1 ·X,TRLR−1 · Y 〉 forX,Y ∈ TRSO(3). The dual space T∗SO(3) is identified

with TSO(3) using this inner product. Let J : so(3)→ so(3)∗ be defined as J(Ω̂) = JdΩ̂ + Ω̂Jd =
ĴΩ. The inertia matrix is denoted by J ∈ R3×3, and the non-standard inertia matrix is defined

by Jd = 1
2 tr[J ] I3×3 − J ∈ R3×3. This induces a metric on so(3) as 〈〈Ω1,Ω2〉〉 =

〈
J(Ω̂1), Ω̂2

〉
.

This defines a metric on TSO(3) by left trivialization. The ad operator on SO(3) × R is given by

ad(Ω,ẋ)(Ω′, ẋ′) = (Ω̂Ω′, 0), ad∗(Ω,ẋ)(Ω
′, ẋ′) = (−Ω̂Ω′, 0).

Lagrangian. The rotation matrix Q ∈ SO(3) defines the orientation of the slot with respect to the

body fixed frame: its first column denotes the direction of the slot in the body fixed frame, and its

second column denotes the direction from the mass center of the pendulum to the origin of the slot

frame.

Let r ∈ R3 be r = [x; d; 0] ∈ R3. The vector from the mass center of the pendulum to the mass

particle is represented by Qr in the body fixed frame. Therefore, the vector from the pivot to the

particle in the body fixed frame is given by

ρx = ρc +Qr,

where ρc ∈ R3 is the vector from the pivot to the mass center expressed in the body fixed frame.

Note that ρ̇x = Qe1ẋ since ρc, Q, d are fixed quantities. Thus, the velocity of the mass particle in

the inertial frame is given by

d

dt
(Rρx) = Rρ̇x + Ṙρx = RQe1ẋ+RΩ̂ρx.
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The kinetic energy is composed of the rotational kinetic energy of the 3D pendulum and the trans-

lational kinetic energy of the mass particle.

T (Ω, ẋ) =
1
2
〈〈Ω,Ω〉〉+

1
2
mx

∥∥∥Qe1ẋ+ Ω̂ρx
∥∥∥2

=
1
2

ΩTJΩ +
1
2
mx(ẋ2 − ρTx Ω̂2ρx + 2eT1 Q

T Ω̂ρxẋ).

The potential energy consists of the gravitational potential energy and the potential energy for the

linear spring,

U(R, x) = −mgeT3 Rρc −mxge
T
3 Rρx +

1
2
κx2.

Therefore, the Lagrangian L : (SO(3)× R)× (R3 × R)→ R is given by

L(R, x,Ω, ẋ) =
1
2

ΩTJΩ +
1
2
mx(ẋ2 − ρTx Ω̂2ρx + 2eT1 Q

T Ω̂ρxẋ)

+mgeT3 Rρc +mxge
T
3 Rρx −

1
2
κx2. (2.75)

Euler-Lagrange equations. The derivatives of the Lagrangian are given by

DΩL · δΩ = (JΩ−mxρ̂
2
xΩ +mxẋρ̂xQe1) · δΩ,

−ad∗Ω ·DΩL = Ω̂(JΩ−mxρ̂
2
xΩ +mxẋρ̂xQe1),

(T∗eLR ·DRL) · η̂ = (mgρ̂cRT e3 +mxgρ̂xR
T e3) · η,

DxL · δx = (−mxρ
T
x Ω̂2Qe1 +mxge

T
3 RQe1 − κx) · δx,

DẋL · δẋ = (mxẋ+mxe
T
1 Q

T Ω̂ρx) · δẋ.

Substituting these expressions into (2.9), we obtain the Euler-Lagrange equations.

(J −mxρ̂
2
x)Ω̇ +mxρ̂xQe1ẍ−mx(Q̂e1ρ̂x + ρ̂xQ̂e1)Ωẋ

+ Ω̂(JΩ−mxρ̂
2
xΩ +mxẋρ̂xQe1)− (mgρ̂cRT e3 +mxgρ̂xR

T e3) = 0,
(2.76)

Ṙ = RΩ̂, (2.77)

mxẍ−mxe
T
1 Q

T ρ̂xΩ̇ +mxρ
T
x Ω̂2Qe1 −mxge

T
3 RQe1 + κx = 0. (2.78)

Legendre Transformations. From (2.14), the Legendre transformation is given by[
pΩ

px

]
=

[
J −mxρ̂

2
x mxρ̂xQe1

(mxρ̂xQe1)T mx

][
Ω
ẋ

]
. (2.79)

From Corollary 2.2, this yields the Hamilton’s equations.

ṗΩ + Ω× pΩ − (mgρ̂cRT e3 +mxgρ̂xR
T e3) = 0, (2.80)

ṗx +mxρ
T
x Ω̂2Qe1 −mxge

T
3 RQe1 + κx = 0. (2.81)
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Figure 2.4: 3D Pendulum on a cart

2.3.4 3D Pendulum on a Cart

Consider a 3D pendulum whose pivot is attached to a cart moving on a horizontal plane.

Configuration manifold. We define two frames; a reference frame and a body fixed frame for the

3D pendulum whose origin is located at the moving pivot point. Define

x ∈ R Displacement of the cart along the e1 direction in the reference frame

y ∈ R Displacement of the cart along the e2 direction in the reference frame

R ∈ SO(3) Rotation matrix from the body fixed frame to the reference frame

Ω ∈ R3 Angular velocity of the pendulum represented in the body fixed frame

ρc ∈ R3 Vector from the pivot to the mass center of the pendulum represented in

the body fixed frame

m ∈ R Mass of the pendulum

M ∈ R Mass of the cart

The configuration manifold is SO(3)×R2. The tangent bundle T(SO(3)×R2) is identified with

(SO(3)×R2)×(R3×R2) by using the left trivialization presented in Section 2.3.3. The ad operator

on SO(3)× R2 is given by ad(Ω,ẋ,ẏ)(Ω′, ẋ′, ẏ′) = (Ω̂Ω′, 0, 0), ad∗(Ω,ẋ,ẏ)(Ω
′, ẋ′, ẏ′) = (−Ω̂Ω′, 0, 0).

Lagrangian. The Lagrangian L : (SO(3)× R2)× (R3 × R2) → R is the difference between the

kinetic energy T : (SO(3)× R2)× (R3 × R2)→ R and the potential U : SO(3)× R2 → R.

L(R, x, y,Ω, ẋ, ẏ) = T (R, x, y,Ω, ẋ, ẏ)− U(R, x, y). (2.82)

The kinetic energy of the cart is given by Tcart = 1
2M(ẋ2 + ẏ2). Let ρ ∈ R3 be the vector from

the mass center of the pendulum to a mass element represented in the body fixed frame. The vector
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to the mass element from the origin of the reference frame is given by xe1 +ye2 +R(ρc+ρ). Thus,

the kinetic energy of the pendulum can be written as

Tpend =
1
2

∫
B

∥∥∥ẋe1 + ẏe2 + Ṙ(ρc + ρ)
∥∥∥2

dm(ρ)

=
1
2

∫
B

(
ẋ2 + ẏ2 + tr

[
Ω̂(ρc + ρ)(ρc + ρ)T Ω̂T

]
+ 2ẋeT1 RΩ̂(ρc + ρ) + 2ẏeT2 RΩ̂(ρc + ρ)

)
dm(ρ).

We have
∫
B ρ dm = 0 from the definition of the mass center. Define the nonstandard moment of

inertia matrix with respect to the pivot as Jd =
∫

(ρc + ρ)(ρc + ρ)T dm. The kinetic energy of the

pendulum is given by

Tpend =
1
2
m(ẋ2 + ẏ2) +

1
2

tr
[
Ω̂JdΩ̂T

]
+mẋeT1 RΩ̂ρc +mẏeT2 RΩ̂ρc. (2.83)

Or equivalently, the second term of the above equation can be written as 1
2ΩTJΩ for the standard

moment of inertia matrix J = tr[Jd] I −Jd. The total kinetic energy is given by T = Tcart +Tpend.

The gravitational potential energy of the pendulum is U(R) = −mgeT3 Rd. Thus, the Lagrangian is

given by

L(R,Ω, ẋ, ẏ) =
1
2

(M +m)(ẋ2 + ẏ2) +
1
2

ΩTJΩ +mẋeT1 RΩ̂ρc +mẏeT2 RΩ̂ρc +mgeT3 Rρc.

(2.84)

Euler-Lagrange equations. We have

DΩL · δΩ = (JΩ +mẋρ̂cR
T e1 +mẏρ̂cR

T e2) · δΩ,

−ad∗Ω ·DΩL = Ω̂(JΩ +mẋρ̂cR
T e1 +mẏρ̂cR

T e2),

(T∗eLR ·DRL) · η̂ = (mẋ̂̂ΩρcRT e1 +mẏ
̂̂ΩρcRT e2 +mgρ̂cR

T e3) · η,

D(ẋ,ẏ)L · (δẋ, δẏ) = ((M +m)ẋ+meT1 RΩ̂ρc) · δẋ+ ((M +m)ẏ +meT2 RΩ̂ρc) · δẏ,

D(x,y)L · (δx, δy) = 0.

Substituting these into (2.9) and (2.10), we obtain the Euler-Lagrange equations.

JΩ̇ +mẍρ̂cR
T e1 +mÿρ̂cR

T e2 + Ω̂JΩ = mgρ̂cR
T e3, (2.85)

Ṙ = RΩ̂, (2.86)

(M +m)ẍ−meT1 Rρ̂cΩ̇ +meT1 RΩ̂2ρc = 0, (2.87)

(M +m)ÿ −meT2 Rρ̂cΩ̇ +meT2 RΩ̂2ρc = 0. (2.88)

In a matrix form, these can be written as J mρ̂cR
T e1 mρ̂cR

T e2

(mρ̂cRT e1)T M +m 0
(mρ̂cRT e2)T 0 M +m


Ω̇
ẍ

ÿ

+

 Ω× JΩ
meT1 RΩ̂2ρc

meT2 RΩ̂2ρc

 =

mgρ̂cR
T e3

0
0

 . (2.89)
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Legendre Transformations. The Legendre transformation is given bypΩ

px

py

 =

 J mρ̂cR
T e1 mρ̂cR

T e2

(mρ̂cRT e1)T M +m 0
(mρ̂cRT e2)T 0 M +m


Ω̇
ẍ

ÿ

 . (2.90)

From Corollary 2.2, this yields the Hamilton’s equations.

ṗΩ + Ω× pΩ − (mẋ̂̂ΩρcRT e1 +mẏ
̂̂ΩρcRT e2 +mgρ̂cR

T e3) = 0, (2.91)

ṗx = 0, (2.92)

ṗy = 0. (2.93)

2.3.5 Single Rigid Body

Consider a rigid body acting under a potential that is dependent on the attitude and the position of

the body.

Configuration manifold. Consider a reference frame, and a body fixed frame that is attached to

the rigid body. We assume that the origin of the body fixed frame is located at the mass center.

The group of rigid transformation on R3 is defined as the set of mappings g : R3 → R3 of the form

g(p) = Ry+x, whereR ∈ SO(3) and x, y ∈ R3. An element of SE(3) is written as (R, x) ∈ SE(3),

and SE(3) is embedded in the general linear group GL(4,R) using homogeneous coordinates

g =

[
R x

0 1

]
.

The rotation matrix R ∈ SO(3) represents the linear transformation from the body fixed frame to

the reference frame, and the vector x ∈ R3 represents the location of the origin of the body fixed

frame. The Lie algebra, denoted by se(3), is isomorphic to R3⊕R3 via the mapping ·̂ : R6 → se(3);

[Ω;V ]̂ =

[
Ω̂ V

0 0

]
,

where [Ω; V ] ∈ R6 and Ω̂ ∈ so(3). We use the same notation ·̂ to denote the Lie algebra isomor-

phism of so(3) and se(3).

We define an inner product on the Lie algebra se(3) using the standard inner product on R3

〈ξ1, ξ2〉 = V1 · V2 − 1
2 tr
[
Ω̂1Ω̂2

]
= V1 · V2 + Ω1 · Ω2 where ξi = (Ωi, Vi) ∈ se(3) for i ∈ {1, 2}.

This defines an inner product on TSE(3) by left-trivialization as 〈X, Y 〉 =
〈
TgLg−1X, TgLg−1Y

〉
for X,Y ∈ TgSE(3). The dual space T∗SE(3) is identified with TSE(3) using this inner product.

Let J : se(3)→ se(3)∗ be defined as

J((Ω, V )) =

[
ĴΩ mV

0 0

]
=

[
JdΩ̂ + Ω̂Jd mV

0 0

]
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for the mass m ∈ R3, and the inertia matrix J ∈ R3×3 of the rigid body. The non-standard inertia

matrix is given by Jd = 1
2 tr[J ] I3×3 − J ∈ R3×3. This induces a metric on se(3) as 〈〈ξ1, ξ2〉〉se(3) =

〈J(ξ1), ξ2〉. The corresponding metric on TSE(3) is obtained by left-trivialization as 〈〈X,Y 〉〉TSE(3)

= 〈〈TgLg−1X,TgLg−1Y 〉〉se(3) for X,Y ∈ TgSE(3).

The ad operator for se(3) can be written in a matrix form as

ad(Ω,V ) =

[
Ω̂ 0
V̂ Ω̂

]
, ad∗(Ω,V ) =

[
−Ω̂ −V̂
0 −Ω̂

]
. (2.94)

Lagrangian. The Lagrangian SE(3)× se(3)→ R is given by

L(g, ξ) =
1
2
〈〈ξ, ξ〉〉 − U(g) (2.95)

for a configuration dependent potential U : SE(3)→ R.

Euler-Lagrange equations. Derivatives of the Lagrangian are given by

DξL(g, ξ) · ξ = 〈〈ξ, δξ〉〉 = 〈J(ξ), δξ〉 ,

−ad∗ξ ·DξL(g, ξ) =

[
Ω̂ V̂

0 Ω̂

][
JΩ
mV

]
=

[
Ω̂JΩ mΩ̂V

0 0

]
,

DgL(g, ξ) · δg =

[
∂U
∂R

T
R−RT ∂U∂R −RT ∂U∂x

0 0

]
· g−1δg. (2.96)

Substituting these equations into (2.9), we obtain the continuous equation of motion for a rigid

body on SE(3) in homogeneous coordinates as[
ĴΩ̇ mV̇

0 0

]
+

[
Ω̂JΩ mΩ̂V

0 0

]
−

[
∂U
∂R

T
R−RT ∂U∂R −RT ∂U∂x

0 0

]
= 0,[

Ṙ ẋ

0 0

]
=

[
R x

0 1

][
Ω̂ V

0 0

]
.

This can be written as

JΩ̇ + Ω× JΩ = M, (2.97)

mV̇ +mΩ× V = −RT ∂U
∂x

, (2.98)

Ṙ = RΩ̂, (2.99)

ẋ = RV, (2.100)

where the moment due to the potential M ∈ R3 is determined by

M̂ =
∂U

∂R

T

R−RT ∂U
∂R

. (2.101)
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Legendre Transformation. From (2.14), the Legendre transformation for the single rigid body is

given by (Π,Γ) = (JΩ,mV ), which represents the angular momentum and the linear momentum

of the rigid body, represented with respect to the body fixed frame. This yields the Hamilton’s

equations.

Π̇ + Ω×Π = M, (2.102)

Γ̇ + Ω× Γ = −RT ∂U
∂x

, (2.103)

Ṙ = RĴ−1Γ, (2.104)

ẋ =
1
m
RΓ. (2.105)

2.3.6 Full Body Problem

A full body problem deals with the dynamics of non-spherical rigid bodies in space interacting

under their mutual potential. Since the mutual potential of distributed rigid bodies depends on both

the position and the attitude of the bodies, the translational and the rotational dynamics are coupled

in the full body problem. For example, the orbital motion and the attitude dynamics of a very large

spacecraft in the Earth’s gravity field are coupled, and the dynamics of a binary asteroid pair, with

non-spherical mass distributions of the bodies, involves coupled orbital and attitude dynamics.

Euler-Lagrange Equations. The configuration manifold of full n body problem is (SE(3))n. Since

the dynamics of each body is only coupled through the mutual potential, the development for a single

rigid body, presented in Section 2.3.5, is readily extended to the full n body problem to obtain the

Euler-Lagrange equations for the full n-body problem.

JiΩ̇i + Ωi × JiΩi = Mi, (2.106)

miV̇i +miΩi × Vi = −RTi
∂U

∂xi
, (2.107)

where the subscript i denotes variables for the i-th rigid body for i ∈ {1, . . . n}.

Reduced Euler-Lagrange Equations. Suppose that the potential energy of the full body problem

is dependent only on the relative attitudes between rigid bodies. Then, the Lagrangian is invari-

ant under the action of SE(3), and the configuration manifold can be reduced to a quotient space

(SE(3))n−1. According to Noether’s theorem, the total linear momentum and the total angular

momentum are preserved. For example, the mutual gravitational potential depends on the relative

location and the relative attitude of the rigid bodies. In this case, it is desirable to write the equations

of motion in the body fixed frame of one rigid body.

Reduced Euler-Lagrange equations for a full two body problem have been developed by Lee

et al. (2007b,c). Here, we present the resulting reduced Euler-Lagrange equations for the full two

body problem.
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The reduced variables are defined with respect to the body fixed frame of the second rigid body.

X = RT2 (x1 − x2), R = RT2 R1,

where X ∈ R3 is the relative position of the first body with respect to the second body expressed in

the second body-fixed frame, and R ∈ SO(3) is the relative attitude of the first body with respect to

the second body. The corresponding linear and angular velocities are also defined as

V = RT2 (ẋ1 − ẋ2), Ω = RΩ1,

where V ∈ R3 represents the relative velocity of the first body with respect to the second body in

the second body-fixed frame, and Ω ∈ R3 is the angular velocity of the first body expressed in the

second body-fixed frame. We also define the velocity of the second body expressed in the second

body-fixed frame as V2 = RT2 ẋ2. The moment of inertia matrices of the first body are expressed

with respect to the second body-fixed frame. We define JR = RJ1R
T , JdR = RJd1R

T ∈ R3×3.

Note that JR and JdR are not constant.

The Lagrangian of the full two body problem can be written in terms of these reduced variables

as

L(R,X,Ω, V,Ω2, V2) =
1
2
m1 ‖V1 + V2‖2 +

1
2
m2 ‖V2‖2 +

1
2

tr
[
Ω̂JdRΩ̂T

]
+

1
2

tr
[
Ω̂2Jd2Ω̂T

2

]
− U(R,X).

The variations of the reduced variables must be restricted to those that can arise from the variations

of the original variables. For example, the variation of the relative attitude R is given by

δR = δRT2 R1 +RT2 δR1 = −η̂2R+ η̂R,

where η = Rη̂RT . The variations of other reduced variables can be obtained in a similar way.

δX = χ− η2X,

δΩ̂ = η̇ − Ω̂η + ηΩ̂ + Ω̂η2 − η2Ω̂ + Ω̂2η − ηΩ̂2,

δV = χ̇+ Ω̂2χ− η2V,

δΩ̂2 = η̇2 + Ω̂2η2 − η2Ω̂2,

δV2 = χ̇2 + Ω̂2χ2 − η2V2,

where χ, χ2 ∈ R3. By taking the variation of the reduced Lagrangian using these constrained vari-

ations, we obtain the reduced Euler-Lagrange equations for the full two body problem as follows.

V̇ + Ω2 × V = − 1
m

∂U

∂X
, (2.108)

˙(JRΩ) + Ω2 × JRΩ = −M, (2.109)

J2Ω̇2 + Ω2 × J2Ω2 = X × ∂U

∂X
+M, (2.110)
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Ẋ + Ω2 ×X = V, (2.111)

Ṙ = S(Ω)R− S(Ω2)R, (2.112)

where m = m1m2
m1+m2

∈ R, and the moment due to the gravity potential M ∈ R3 is obtained by

M = r1 × ur1 + r2 × ur2 + r3 × ur3 , (2.113)

where rp, urp ∈ R3 are the pth column vectors of R and ∂U
∂R , respectively.

2.3.7 Two Rigid Bodies Connected by a Ball Joint

We consider two rigid bodies connected with a ball joint. We assume that the ball joint has three

rotational degrees of freedom. The relative equilibria structure of this rigid body dynamics has been

studied by Wang (1990).

Configuration manifold. We define three frames; a reference frame, and two body fixed frames.

Define

x ∈ R3 Position of the ball joint in a reference frame

Ri ∈ SO(3) Rotation matrix from the i-th body fixed frame to a reference frame

di ∈ R3 Vector from the joint to the mass center of the i-th body in the i-th body

fixed frame

mi ∈ R Mass of the i-th body

for i ∈ {1, 2}.
The configuration manifold is SO(3)×SO(3)×R3. The tangent bundle T(SO(3)×SO(3)×R3)

is identified with (SO(3) × SO(3) × R3) × (R3 × R3 × R3) by the left trivialization presented in

Section 2.3.3.

Lagrangian. Let ρi ∈ R3 be the vector from the mass center of the i-th body to a mass element

expressed in the i-th body fixed frame. The vector to the mass element from the origin of the

reference frame is given by x+Ri(di + ρi). Thus, the kinetic energy of the i-th body is given by

Ti(Ri, xi,Ωi) =
1
2

∫
Bi

∥∥∥ẋ+ Ṙi(di + ρi)
∥∥∥2

dm(ρi)

=
1
2
miẋ · ẋ+

1
2

tr
[
Ω̂iJdiΩ̂

T
i

]
+miẋ ·RiΩ̂idi

=
1
2
miẋ · ẋ+

1
2

Ωi · JiΩi +miẋ ·RiΩ̂idi,

where Jdi = midid
T
i +

∫
Bi ρiρ

T
i dm(ρi) ∈ R3×3, and Ji = mid̂

T
i d̂i +

∫
Bi ρ̂

T
i ρ̂i dm(ρi). It can be

shown that Jdi = 1
2 tr[Ji] I3×3 − Ji. Using this expression, the Lagrangian of the connected two
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Figure 2.5: Two rigid bodies connected by a ball joint

rigid bodies L : (SO(3)× SO(3)× R3)× (R3 × R3 × R3)→ R is given by

L(R1, R2, x,Ω1,Ω2, ẋ) =
1
2

(m1 +m2)ẋ · ẋ+
1
2

Ω1 · J1Ω1 +
1
2

Ω2 · J2Ω2

+ ẋ · (m1R1Ω̂1d1 +m2R2Ω̂2d2)− U(R1, R2, x) (2.114)

for a potential U : SO(3) × SO(3) × R3 → R that depends on the configuration of the connected

rigid bodies.

Euler-Lagrange equations. Derivatives of the Lagrangian are given by

(D(Ω1,Ω2)L) · (δΩ1, δΩ2) =
(
J1Ω1 +m1d̂1R

T
1 ẋ
)
· δΩ1 +

(
J2Ω2 +m2d̂2R

T
2 ẋ
)
· δΩ2,

ad∗(Ω1,Ω2) ·D(Ω1,Ω2)L =
(
−Ω̂1(J1Ω1 +m1d̂1R

T
1 ẋ),−Ω̂2(J2Ω2 +m2d̂2R

T
2 ẋ)
)
,

(T∗eL(R1,R2) ·D(R1,R2)L) · (ξ1, ξ2) =
(
m1

̂̂Ω1d1R
T
1 ẋ+M1

)
· ξ1 +

(
m2

̂̂Ω2d2R
T
2 ẋ+M2

)
· ξ2,

DẋL = (m1 +m2)ẋ−m1R1d̂1Ω1 −m2R2d̂2Ω2,

DxL = −∂U
∂x

,

where Mi ∈ R3 is obtained by the relationship, M̂i = ∂U
∂Ri

T
Ri −RTi ∂U

∂Ri
for i = 1, 2.

Substituting these into (2.9) and (2.10), we obtain the Euler-Lagrange equations.

JiΩ̇i +mid̂iR
T
i ẍ+ Ω̂iJiΩi −Mi = 0, (2.115)

Ṙi = RiΩ̂i, (2.116)

(m1 +m2)ẍ−m1R1Ω̂2
1d1 +m2R2Ω̂2

2d2 −m1R1d̂1Ω̇1 −m2R2d̂2Ω̇2 +
∂U

∂x
= 0 (2.117)
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for i = 1, 2. In a matrix form, these can be written as J1 0 m1d̂1R
T
1

0 J2 m2d̂2R
T
2

(m1d̂1R
T
1 )T (m2d̂2R

T
2 )T (m1 +m2)I3×3


Ω̇1

Ω̇2

ẍ

+

 Ω1 × J1Ω1

Ω2 × J2Ω2

m1R1Ω̂2
1d1 +m2R2Ω̂2

2d2

 =

M1

M2

−Ux

 .
(2.118)

Legendre Transformation. The Legendre transformation is given byp1

p2

p3

 =

 J1 0 m1d̂1R
T
1

0 J2 m2d̂2R
T
2

(m1d̂1R
T
1 )T (m2d̂2R

T
2 )T (m1 +m2)I3×3


Ω1

Ω2

ẋ

 . (2.119)

From Corollary 2.2, this yields the Hamilton’s equations.

ṗ1 + Ω1 × p1 = m1
̂̂Ω1d1R

T
1 ẋ+M1, (2.120)

ṗ2 + Ω2 × p2 = m2
̂̂Ω2d2R

T
2 ẋ+M2, (2.121)

ṗ3 = −∂U
∂x

. (2.122)

2.4 Examples of Mechanical Systems on Two-Spheres

In Section 2.2, we have developed Lagrangian mechanics on a product of two-spheres. This result

can be applied to any mechanical system whose Lagrangian is expressed as a difference between a

kinetic energy with constant inertia terms, and a configuration dependent potential.

In this section, we apply the general theory developed in Section 2.2 to the following mechan-

ical systems that evolve on a product of two-spheres. For each example, a mathematical model is

defined, and the corresponding expression for Lagrangian is derived. Euler-Lagrange equations are

obtained from Proposition 2.4 and Corollary 2.3.

Section Mechanical System

2.4.1 Double Spherical Pendulum

2.4.2 n-body Problem on a Sphere

2.4.3 Interconnection of Spherical Pendula

2.4.4 Pure Bending of Elastic Rod

2.4.5 Spatial Array of Magnetic Dipoles

2.4.6 Molecular Dynamics on a Sphere

2.4.1 Double Spherical Pendulum

A double spherical pendulum is defined by two mass particles serially connected to frictionless

spherical joints by rigid massless links acting under a uniform gravitational potential. The dynamics

of a double spherical pendulum has been studied in Marsden et al. (1993).
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Let the masses and the lengths of the pendula be m1,m2, l1, l2 ∈ R, respectively, and let e3 =
[0, 0, 1] ∈ R3 be the direction of gravity. The vector q1 ∈ S2 represents the direction from the pivot

to the first mass, and the vector q2 ∈ S2 represents the direction from the first mass to the second

mass. The kinetic energy is given by

T (q̇1, q̇2) =
1
2
m1 ‖l1q̇1‖2 +

1
2
m2 ‖l1q̇1 + l2q̇2‖2

=
1
2

(m1 +m2)lq1(q̇1 · q̇1) +m2l1l2(q̇1 · q̇2) +
1
2
m2l

2
2(q̇2 · q̇2).

Thus, the inertia matrix is given by M11 = (m1 + m2)l21, M12 = m2l1l2, and M22 = m2l
2
2. The

gravitational potential is written as U(q1, q2) = −(m1 +m2)gl1e3 · q1 −m2gl2e3 · q2.

Substituting these into (2.35)–(2.36), the equations of motion for the double spherical pendulum

are given by[
(m1 +m2)l21I3×3 −m2l1l2q̂1q̂2

−m2l1l2q̂2q̂1 m2l
2
2I3×3

][
ω̇1

ω̇2

]
=

[
m2l1l2(ω2 · ω2)q̂1q2 + (m1 +m2)gl1q̂1e3

m2l1l2(ω1 · ω1)q̂2q1 +m2gl2q̂2e3

]
,

(2.123)

q̇1 = ω1 × q1, q̇2 = ω2 × q2, (2.124)

which are more compact than if the equations were written in terms of angles. Another nice property

is that the same structure for the equations of motion is maintained for n > 2. Thus, it is easy

to generalize these equations of motion to a triple, or more generally, a multiple-link spherical

pendulum.

2.4.2 n-body Problem on a Sphere

An n-body problem on the two-sphere deals with the motion of n mass particles constrained to lie

on a two-sphere, acting under a mutual potential (see Hairer et al. 2003). Let mi ∈ R and qi ∈ S2

be the mass and the position vector of the i-th particle, respectively. The kinetic energy is given by

T (q̇1, . . . , q̇n) =
n∑
i=1

1
2
mi(q̇i · q̇i).

Thus, the i, j-th element of the inertia matrix is Mij = mi when i = j, and Mij = 0 otherwise.

In Kozlov and Harin (1992), the following expression for the potential is introduced as an ana-

logue of a gravitational potential,

U(q1, . . . , qn) = −γ
2

n∑
i,j=1
i 6=j

qi · qj√
1− (qi · qj)2

for a constant γ. Substituting these into (2.32), the equations of motion for the n-body problem on
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a sphere are given by

miq̈i = −mi(q̇i · q̇i)qi − qi ×
(
qi × γ

n∑
j=1
j 6=i

qj

(1− (qi · qj)2)3/2

)
(2.125)

for i ∈ {1, . . . , n}.

2.4.3 Interconnection of Spherical Pendula

We now study the dynamics of n spherical pendula connected by linear springs. Each pendulum is a

mass particle connected to a frictionless two degree-of-freedom pivot by a rigid massless link acting

under a uniform gravitational potential. It is assumed that all of the pivot points lie on a common

horizontal plane, and some pairs of pendula are connected by linear springs at the centers of links.

Let the mass and the length of the i-th pendulum bemi, li ∈ R, respectively. The vector qi ∈ S2

represents the direction from the i-th pivot to the i-th mass. The kinetic energy is given by

T (q̇1, . . . , q̇n) =
n∑
i=1

1
2
mil

2
i (q̇i · q̇i).

Thus, the inertia matrix is given by Mij = mil
2
i when i = j, and Mij = 0 otherwise.

Let Ξ be a set defined such that (i, j) ∈ Ξ if the i-th pendulum and the j-th pendulum are

connected. For a connected pair (i, j) ∈ Ξ, define κij ∈ R and rij ∈ R3 as the corresponding

spring constant and the vector from the i-th pivot to the j-th pivot, respectively. The direction

along the gravity is denoted by e3 = [0, 0, 1] ∈ R3, and the horizontal plane is spanned by e1 =
[0, 0, 1], e2 = [0, 1, 0] ∈ R3. The potential energy is given by

U(q1, . . . qn) = −
n∑
i=1

migliqi · e3 +
∑

(i,j)∈Ξ

1
2
κij

(∥∥∥∥rij +
1
2
ljqj −

1
2
liqi

∥∥∥∥− ‖rij‖)2

.

Substituting these into (2.34)–(2.35), the equations of motion for the interconnection of spheri-

cal pendula are given by

mil
2
i ω̇i = −qi ×

∂U

∂qi
, (2.126)

q̇i = ωi × qi (2.127)

for i ∈ {1, . . . , n}.

2.4.4 Pure Bending of an Elastic Rod

Consider a pure bending motion of a slender elastic rod. We approximate the elastic rod by n + 1
slender rigid rod elements that are serially connected by spherical joints. Each rigid rod element is

modeled as a line along which the mass is uniformly distributed. We assume that the ‘zeroth’ rod is

fixed to a rigid wall. The joint has two rotational degrees of freedom; the tip of the i-th rod lies on
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(a) Interconnection of spherical
pendula

(b) Pure bending of an elastic
rod

(c) Spatial array of magnetic dipoles

Figure 2.6: Examples of mechanical systems on two-spheres

a sphere centered at the i-th joint. Let qi ∈ S2 be the direction of the i-th rod in the inertial frame,

and let mi, li ∈ R be the mass and the length of the i-th rod. The configuration manifold is (S2)n.

The vector from the first joint to the i-th joint is given by l1q1 + · · · + li−1qi−1 =
∑i−1

j=1 ljqj .

Let si ∈ [0, li] be the distance from the i-th joint to a mass element dmi in the i-th rod. Since the

mass is uniformly distributed, we have dmi = mi
li
dsi. The kinetic energy of the i-th rod is given by

Ti =
1
2
mi

li

∫ li

0

∥∥ i−1∑
j=1

lj q̇j + siq̇i
∥∥2
dsi

=
1
6
mil

2
i (q̇i · q̇i) +

1
2
mili

i−1∑
j=1

lj q̇j · q̇i +
1
2
mi

∥∥ i−1∑
j=1

lj q̇j
∥∥2
.

Using this, the total kinetic energy can be written as

T =
1
2

n∑
i,j=1

Mij q̇i · q̇j , (2.128)

where constants Mij for j < i are defined as

Mii =
1
3
mil

2
i +

n∑
p=i+1

mpl
2
i , (2.129)

Mij =
1
2

 n∑
p=i+1

2mpljli

+miljli

 . (2.130)

The potential energy is composed of a gravitational potential and a strain energy. The vector

from the first joint to the mass center of the i-th rod is given by l1q1 + · · ·+ li−1qi−1 + 1
2 liqi. Thus,

the gravitational potential is given by

Ug(q1, . . . , qn) =
n∑
i=1

−mig

 i−1∑
j=1

qjlj +
1
2
liqi

 · e3

 . (2.131)
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The strain potential energy for pure bending of an elastic beam is given by

Uε =
∫ l

0

EI

2R2
ds,

where E is Young’s modulus, I is sectional area moment, and R is the radius of curvature. We

assume that the radius of curvature is constant along the i-th rod, and is approximated by Ri =
li

sin θi/2
, where θi denotes the angle between the i-th rod and the i − 1-th rod. The strain potential

energy is approximated as

Uε(q1, . . . , qn) =
n∑
i=1

EI sin2(θi/2)
2l2i

li =
n∑
i=1

EI

4l2i
(1− cos θi) =

n∑
i=1

EI

4l2i
(1− qi−1 · qi). (2.132)

Therefore, the total potential energy is given by

U(q1, . . . , qn) =
n∑
i=1

−mig

 i−1∑
j=1

qjlj +
1
2
liqi

 · e3 +
EI

4l2i
(1− qi−1 · qi)

 . (2.133)

Substituting these expressions for the inertia matrix Mij and the potential energy into (2.34)–

(2.35), we obtain the equations of motion for the finite element model of the pure bending motion

of the elastic rod.

Miiω̇i =
n∑
j=1
j 6=i

(Mijqi × (qj × ω̇j) +Mij(ωj · ωj)qi × qj)− qi ×
∂U

∂qi
, (2.134)

q̇i = ωi × qi (2.135)

for i ∈ {1, . . . , n}.

2.4.5 Spatial Array of Magnetic Dipoles

We now study the dynamics of n magnetic dipoles uniformly distributed on a plane. Each magnetic

dipole is modeled as a spherical compass; a thin rod magnet supported by a frictionless, two degree-

of-freedom pivot. The n magnetic dipoles act under their mutual magnetic field. This can be

considered as a simplified model for the dynamics of micro-magnetic particles (see Cheng et al.

2006).

The mass and the length of the i-th magnet are denoted by mi, li ∈ R, respectively. The mag-

netic dipole moment of the i-th magnet is denoted by νiqi, where νi ∈ R is the constant magnitude

of the magnetic moment, and qi ∈ S2 is the direction of the north pole from the pivot point. Thus,

the configuration manifold is (S2)n. The inertia matrix is given by Mij = 1
12mil

2
i when i = j, and

Mij = 0 otherwise. Let rij ∈ R3 be the vector from the i-pivot point to the j-th pivot point. The

48



mutual potential energy of the array of magnetic dipoles is given by

U(q1, . . . , qn) =
1
2

n∑
i,j=1
j 6=i

µ νiνj
4π‖rij‖3

[
(qi · qj)−

3
‖rij‖2

(qi · rij)(qj · rij)
]
,

where µ is the permeability constant.

Substituting these into (2.34)–(2.35), the equations of motion of the spatial array of magnetic

dipoles are given by

1
12
mil

2
i ω̇i = −qi ×

n∑
j=1
j 6=i

µ νiνj
4π‖rij‖3

[
qj −

3
‖rij‖2

rij(qj · rij)
]
, (2.136)

q̇i = ωi × qi (2.137)

for i ∈ {1, . . . , n}.

2.4.6 Molecular Dynamics on a Sphere

We now study molecular dynamics on S2. Each molecule is modeled as a particle moving on S2.

Molecules are subject to two distinct forces: an attractive force at long range and a repulsive force

at short range. Let mi ∈ R and qi ∈ S2 be the mass and the position vector of the i-th molecule,

respectively. The i, j-th element of the inertia matrix is Mij = mi when i = j, and Mij = 0
otherwise.

The Lennard-Jones potential is often used in molecular dynamics (see Lennard-Jones 1931)

U(q1, . . . , qn) =
1
2

n∑
i,j=1
j 6=i

4ε

[(
σ

‖qi − qj‖

)12

−
(

σ

‖qi − qj‖

)6
]
,

where the first term models repulsion between nearby molecules according to the Pauli principle,

and the second term models attraction at long distances generated by Van der Waals forces. The

constants ε and σ are molecular constants; ε is proportional to the strength of the mutual potential,

and σ characterizes inter-molecular forces.

Substituting these into (2.32), the equations of motion for molecular dynamics on a sphere are

given by

miq̈i = −mi(q̇i · q̇i)qi − qi ×
(
qi ×

n∑
j=1
j 6=i

4ε
qi − qj
‖qi − qj‖

[
12σ12

‖qi − qj‖13 −
6σ6

‖qi − qj‖7

] )
(2.138)

for i ∈ {1, . . . , n}.

49



2.5 Conclusions

In Section 2.1, we have developed Euler-Lagrange equations for dynamic systems on an arbitrary

Lie group. The symplectic property of Lagrangian flow, symmetry, and Lagrange-Routh reduction

have been discussed. The Euler-Lagrange equations presented in Proposition 2.1 can be consid-

ered as either a generalized form of the Euler-Poincaré equation or a left-trivialized form of Euler-

Lagrange equations on a manifold. The tangent bundle of a Lie group TG is identified with G × g

by left trivialization, and the equations of motion are expressed in terms of Lie group elements and

Lie algebra elements. Even if the Lagrangian is not left invariant, this approach is still desirable:

since the Lie algebra is a linear vector space at the fixed identity element, there is no need to deal

with covariant derivatives or Christoffel symbols.

Since these expressions are coordinate-free, they are independent of a specific choice of local

coordinates, and they completely avoid any singularity, ambiguity, and confusion associated with

local coordinates. They provides a general framework that can be uniformly applied to dynamics of

multiple rigid bodies that evolve on a Lie group. In Section 2.3, we have shown that the resulting

intrinsic form of the Euler-Lagrange equations are more compact than equations expressed in terms

of local coordinates, when applied to dynamics of rigid bodies.

In Section 2.2, we have extended these results to mechanical systems evolving on a product of

two-spheres. The variation of a curve on S2 is expressed in terms of so(3) using the fact that the

special orthogonal group acts on the two-sphere transitively. Using this property, we have derived

a coordinate-free form of the Euler-Lagrange equations on (S2)n. Compared with the previous

literature, this approach does not require 2n angles or n explicit equality constraints.

As shown in Section 2.4, this approach yields a compact form of the equations of motion, and

also provides insight into the global dynamics on (S2)n. A manifold on which a Lie group acts in

a transitively way is referred to as a homogeneous manifold. The key idea of this development can

be generalized to an abstract homogeneous manifold.
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CHAPTER 3

COMPUTATIONAL GEOMETRIC MECHANICS FOR RIGID
BODIES ON A LIE GROUP

This chapter deals with computational geometric mechanics for rigid bodies that evolve on a

Lie group. The goal is to develop numerical integrators that preserve the geometric properties of

the rigid body dynamics. The core idea is constructing computational algorithms from discrete ana-

logues of physical principles, so that the physical properties of the dynamics are preserved naturally

by the numerical computations. In particular, we discretize Hamilton’s principle with careful con-

sideration for the Lie group structure in order to develop structure-preserving numerical integrators,

referred to as Lie group variational integrators or discrete-time Euler-Lagrange equations. Through-

out this dissertation, these are viewed as discrete-time mechanical systems. This is in contrast with

the perspective that considers numerical integration as an approximation for continuous-time equa-

tions.

3.1 Lie group variational integrator

3.1.1 Discrete-time Euler-Lagrange equations

3.1.2 Discrete Legendre transformation

3.1.3 Properties of the discrete Lagrangian flow
3.1.4 Discrete reduction and reconstruction

3.3 Examples of mechanical systems
on a Lie group

3.3.1 Planar pendulum

3.3.2 3D pendulum

3.3.3 3D pendulum with an internal mass

3.3.4 3D pendulum on a cart

3.3.5 Single rigid body

3.3.6 Full body problem

3.3.7 Two rigid bodies connected by a ball joint

3.2 Lie homogeneous variational integrator

3.2.1 Discrete-time Euler-Lagrange equations

3.2.2 Discrete Legendre transformation

3.4 Examples of mechanical systems
on two-spheres

3.4.1 Double spherical pendulum
3.4.2 n-body problem on a sphere
3.4.3 Interconnection of spherical pendula
3.4.4 Pure bending of elastic rod
3.4.5 Spatial array of magnetic dipoles
3.4.6 Molecular dynamics

This chapter has a parallel structure with Chapter 2; it may be considered as a discrete-time
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version of geometric mechanics on a Lie group presented in Chapter 2. In Section 3.1, we develop

discrete-time Euler-Lagrange equations for dynamic systems evolving on an abstract Lie group,

and several properties of the discrete Lagrangian flow are discussed. These results are applied to

several rigid body dynamics problems in Section 3.3, and numerical results are presented. The

remaining part of this chapter develops computational geometric mechanics on a product of two-

spheres: discrete-time Euler-Lagrange equations are developed in Section 3.2, and they are applied

to several mechanical systems in Section 3.4.

Throughout this chapter, a subscript k denotes the value of a variable at t = kh+ t0 for a fixed

time step size h > 0, and an integer N is defined such that tf − t0 = Nh.

3.1 Lie Group Variational Integrator

Geometric numerical integration deals with numerical integration methods that preserve geometric

properties of the flow of a differential equation, such as invariants, symplecticity, and the structure

of a configuration manifold (see Hairer et al. 2000; Leimkuhler and Reich 2004; McLachlan and

Quispel 2001).

Numerical methods that conserve energy, momentum, or symplecticity of mechanical systems

have been developed (see, for example, LaBudde and Greenspan 1976; Lasagni 1988; Sanz-Serna

1992, 1988; Simo et al. 1992). But the conservation property is often enforced by nonlinear con-

straints or by a projection onto the manifold defined by the constant conserved quantity.

Alternatively, a discrete-time mechanical system has been developed according to Hamilton’s

principle by Moser and Veselov (1991); Veselov (1988). The variational view of discrete-time me-

chanics is further developed by Kane et al. (1999, 2000); Wendlandt and Marsden (1997), and an

intrinsic form of discrete-time variational principle is established by Marsden and West (2001). The

resulting geometric numerical integrators, referred to as variational integrators, have desirable prop-

erties; they are symplectic, momentum preserving, and they exhibit excellent energy conservation

property.

For differential equations that evolve on a Lie group, a group element can be updated by the

corresponding group action so that the group structure is preserved naturally. This is referred to

as a Lie group method (see Iserles et al. 2000). For mechanical systems evolving on a Lie group,

a discrete-time Euler-Poincaré equation has been introduced for a left-invariant Lagrangian system

by Marsden et al. (1999), with application to the free attitude dynamics of a rigid body. A simi-

lar work is presented for the attitude dynamics of an axially symmetric rigid body acting under a

gravitational potential in Bobenko and Suris (1999).

In this section, we develop discrete-time Euler-Lagrange equations for a mechanical system

evolving on an abstract Lie group G. The Lie group method is explicitly adopted in the context

of a variational integrator to construct a unified geometric integrator, referred to as a Lie group

variational integrator. It preserves the geometric features of dynamics, such as symplecticity and any

momentum map, as well as the geometry of the configuration manifold by automatically remaining
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Configuration manifold
(q, q̇) ∈ TQ

?
Lagrangian
L(q, q̇)

?

?

Action integral
G =

∫ tf
t0
L(q, q̇) dt

?
Variation

δG = d
dε

Gε = 0

?
Euler-Lagrange eqn.
d
dt
∂L
∂q̇
− ∂L

∂q
= 0

Legendre transform.
p = FL(q, q̇)

?

Hamilton’s Eqn.
q̇ = Hp, ṗ = −Hq

Configuration manifold
(qk, qk+1) ∈ Q× Q

?
Discrete Lagrangian

Ld(qk, qk+1)

?

?

Action Sum
Gd =

∑
Ld(qk, qk+1)

?
Variation

δGd = d
dε

Gε
d = 0

?
Dis. E-L Eqn.

D2Ldk−1 +D1Ldk
= 0

Legendre transform.
pk = FL(q, q̇)

∣∣
k

?
Dis. Hamilton’s Eqn.
pk = −D1Ldk

,

pk+1 = D2Ldk

Figure 3.1: Procedures to derive the continuous/discrete Euler-Lagrange equations

on a Lie group. This provides a unified geometric numerical integrator for rigid body systems whose

configuration manifold is expressed as a Lie group.

3.1.1 Discrete-time Euler-Lagrange Equations

Consider a mechanical system evolving on a Lie group G. The procedures to derive the discrete-

time Euler-Lagrange equations on G are summarized by Figure 3.1: the discrete-time trajectory is

derived such that it minimizes the summation of a discrete Lagrangian, called the action sum. The

discrete-time Legendre transformation provides an alternative description of mechanical systems,

referred to as discrete-time Hamiltonian mechanics. The essential ideas are discretizing Hamilton’s

principle, where the variations of group elements are expressed in term of the Lie algebra g using

the exponential map, and updating group elements using group operations.

Configuration Manifold and Discrete Lagrangian

Discrete-time Euler-Lagrange equations evolve on G× G. Define fk ∈ G such that

gk+1 = gkfk. (3.1)

This may be considered as a discrete-time kinematics equation, where the group element gk+1

is obtained by a group action of fk on gk. This is the essential idea of Lie group methods (see

Iserles et al. 2000): this guarantees that the discrete-time flow lies on G without need for additional

constraints or projections.

We choose the discrete Lagrangian Ld : G×G→ R such that it approximates the integral of the

Lagrangian along the exact solution of the Euler-Lagrange equations over a single time step, which
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is referred to as the exact discrete Lagrangian

Lexact
d (gk, fk) =

∫ h

0
L(g̃(t), g̃−1(t) ˙̃g(t)) dt,

where g̃(t) : [0, h]→ G satisfies the Euler-Lagrange equations (2.9), (2.10) over [0, h] with bound-

ary conditions g̃(0) = gk, g̃(h) = gkfk. The accuracy of the resulting variational integrator is equal

to the accuracy of the discrete Lagrangian (see Marsden and West 2001).

Action Sum

Define the action sum as

Gd =
N−1∑
k=0

Ld(gk, fk). (3.2)

Since the discrete Lagrangian approximates the integral of the Lagrangian over one time step, the

action sum approximates the action integral. Discrete Hamilton’s principle states that this action

sum does not vary to the first order for all possible variations of a curve in G.

δGd =
N−1∑
k=0

δLd(gk, fk) = 0. (3.3)

Variations

Similar to the continuous time case given by (2.4), the variation of a sequence {gk}Nk=0 is expressed

as

gεk = gk exp εηk (3.4)

for k ∈ {0, . . . , N}, where {ηk}Nk=0 is a sequence in g satisfying η0 = ηN = 0. The corresponding

infinitesimal variation is given by

δgk = gkηk. (3.5)

Using (3.1), the infinitesimal variation of fk is given by

δfk =
d

dε

∣∣∣∣
ε=0

(gεk)
−1gεk+1 =

d

dε

∣∣∣∣
ε=0

exp(−εηk)g−1
k gk+1 exp(εηk+1)

= −TeRfk · ηk + TeLfk · ηk+1

= −(Tfk(Lfk ◦ Lf−1
k

) ◦ TeRfk) · ηk + TeLfk · ηk+1

= TeLfk ·
{
−Adf−1

k
ηk + ηk+1

}
. (3.6)
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Discrete-time Euler-Lagrange Equations

The variation of the discrete Lagrangian is given by

δLd(gk, fk) = DgkLd(gk, fk) · δgk + DfkLd(gk, fk) · δfk.

Using the definition of the cotangent map, we obtain

δLd(gk, fk) =
〈
DgkLd(gk, fk), (TeLgk ◦ TgkLg−1

k
) · δgk

〉
+
〈
DfkLd(gk, fk), (TeLfk ◦ TgkLf−1

k
) · δfk

〉
=
〈
T∗eLgk ·DgkLd(gk, fk), TgkLg−1

k
· δgk

〉
+
〈
T∗eLfk ·DfkLd(gk, fk), TgkLf−1

k
· δfk

〉
.

Substituting (3.5) and (3.6) into this, the variation of the Lagrangian is given by

δLd(gk, fk) = 〈T∗eLgk ·DgkLd(gk, fk), ηk〉+
〈
T∗eLfk ·DfkLd(gk, fk), −Adf−1

k
ηk + ηk+1

〉
=
〈
T∗eLgk ·DgkLd(gk, fk)−Ad∗

f−1
k

· (T∗eLfk ·DfkLd(gk, fk)), ηk
〉

+ 〈T∗eLfk ·DfkLd(gk, fk), ηk+1〉 . (3.7)

Therefore, the variation of the action sum is given by

δGd =
N−1∑
k=0

〈
T∗eLgk ·DgkLd(gk, fk)−Ad∗

f−1
k

· (T∗eLfk ·DfkLd(gk, fk)), ηk
〉

+ 〈T∗eLfk ·DfkLd(gk, fk), ηk+1〉 . (3.8)

The summation index can be rewritten as

δGd =
〈
T∗eLfN−1

·DfN−1
Ld(gN−1, fN−1), ηN

〉
+
〈
T∗eLg0 ·Dg0Ld(g0, f0)−Ad∗

f−1
0
· (T∗eLf0 ·Df0Ld(g0, f0)), η0

〉
+
N−1∑
k=1

〈
T∗eLgk ·DgkLd(gk, fk)−Ad∗

f−1
k

· (T∗eLfk ·DfkLd(gk, fk)), ηk
〉

+
〈
T∗eLfk−1

·Dfk−1
Ld(gk−1, fk−1), ηk

〉
. (3.9)

Since ηk = 0 at k = 0, N , the first two terms of the above equation vanish. From discrete Hamil-

ton’s principle, δGd = 0 for all possible variations, which yields the discrete-time Euler-Lagrange

equations on G.

Proposition 3.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-

matics equation is defined as (3.11), where the group element gk+1 is updated by the right group

action of fk ∈ G on gk. For the given discrete Lagrangian Ld(gk, fk) : G × G → R, the corre-
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sponding discrete-time Euler-Lagrange equations are given by

T∗eLfk−1
·Dfk−1

Ld(gk−1, fk−1)−Ad∗
f−1
k

· (T∗eLfk ·DfkLd(gk, fk)) + T∗eLgk ·DgkLd(gk, fk) = 0,

(3.10)

gk+1 = gkfk. (3.11)

For given (gk−1, fk−1), we obtain gk = gk−1fk−1 from (3.11), and we solve (3.10) to find fk. This

yields a discrete-time flow map (gk−1, fk−1)→ (gk, fk), and this process is repeated.

Remark 3.1 If the discrete Lagrangian is not dependent on gk, then the third term of (3.10) van-

ishes. The resulting equations are equivalent to the discrete Euler-Poincaré equations (see Marsden

et al. 1999). Therefore, (3.10) can be considered as a generalization of the discrete Euler-Poincaré

equations.

Remark 3.2 These equations are obtained using the right group action of fk on gk at (3.11). We

can develop similar equations using the left group action on gk. This is summarized by the following

corollary.

Corollary 3.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-

matics equation is defined as (3.13), where the group element gk+1 is updated by the left group

action of rk on gk. For the given discrete Lagrangian Ld(gk, rk) : G × G → R the corresponding

discrete-time Euler-Lagrange equations are given by

T∗eRrk−1
·Drk−1

Ld(gk−1, rk−1)−Ad∗rk · (T
∗
eRrk ·DrkLd(gk, rk)) + T∗eRgk ·DgkLd(gk, rk) = 0,

(3.12)

gk+1 = rkgk. (3.13)

3.1.2 Discrete Legendre Transformation

Equations (3.10) and (3.11) yield the discrete-time Lagrangian flow map (gk, fk) → (gk+1, fk+1).

But sometimes, it is more useful to express the discrete-time flow map in the cotangent bundle using

the discrete Legendre transformation.

Define discrete Legendre transforms F+Ld,F−Ld : G× G→ G× g∗ as

F+Ld(gk, fk) = (gkfk, µk+1),

F−Ld(gk, fk) = (gk, µk),

where µk, µk+1 ∈ g∗ are given by

µk = −T∗eLgk ·DgkLdk + Ad∗
f−1
k

· (T∗eLfk ·DfkLdk), (3.14)

µk+1 = T∗eLfk ·DfkLdk . (3.15)
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These are well-defined, since (3.10) can be expressed in terms of these discrete Legendre transforms

as

F+Ld(gk−1, fk−1) = F−Ld(gk, fk). (3.16)

For a given (gk, µk) ∈ G × g∗, the inverse of the negative discrete Legendre transformation

gives (F−Ld)−1(gk, µk) = (gk, fk), and the positive discrete Legendre transformation of this gives

F+Ld(gk, fk) = (gk+1, µk+1). We combine these to obtain the discrete-time Hamiltonian flow

F̃Ld : G× g∗ → G× g∗ as

F̃Ld = F+Ld ◦ (F−Ld)−1, (3.17)

Using the discrete-time Lagrangian flow map FLd(gk, fk) = (gk+1, fk+1), (3.16) can be written as

F+Ld = F−Ld ◦ FLd .

Using this, the discrete-time Hamiltonian flow map can be alternatively written as

F̃Ld = F±Ld ◦ FLd ◦ (F±Ld)−1. (3.18)

The Hamiltonian flow map that corresponds to (3.17) is summarized as follows.

Corollary 3.2 Consider a mechanical system evolving on a Lie group G. The discrete-time kinemat-

ics equation is defined as (3.11), where the group element gk+1 is updated by the right group action

of fk ∈ G on gk. For the given discrete Lagrangian Ld(gk, fk) : G × G → R, the corresponding

discrete-time Hamilton’s equations are given by

Ad∗
f−1
k

· (T∗eLfk ·DfkLdk) = µk + T∗eLgk ·DgkLdk , (3.19)

gk+1 = gkfk, (3.20)

µk+1 = Ad∗fk · (µk + T∗eLgk ·DgkLdk). (3.21)

For given (gk, µk), we solve (3.19) to find fk. Then, gk+1 and µk+1 are obtained from (3.20) and

(3.21), respectively. This yields a discrete-time flow map (gk, µk)→ (gk+1, µk+1), and this process

is repeated.

3.1.3 Properties of the Discrete-time Lagrangian Flow

We show two properties of the discrete-time Lagrangian flow, namely symplecticity and momentum

preservation. The subsequent development can be considered as a special form of general properties

of discrete Lagrangian flows, applied to a Lie group configuration manifold (see Marsden and West

2001).
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Symplecticity

Let Θ+
Ld
,Θ−Ld be the discrete Lagrangian one-forms on G× G given by

Θ+
Ld

(gk, fk) · (δgk, δfk) =
〈
T∗eLfk ·DfkLdk , f

−1
k δfk + Adf−1

k
· g−1
k δgk

〉
, (3.22)

Θ−Ld(gk, fk) · (δgk, δfk) = −
〈
T∗eLgk ·DgkLdk −Ad∗

f−1
k

· (T∗eLfk ·DfkLdk), g−1
k δgk

〉
. (3.23)

From (3.6), we have

ηk+1 = f−1
k δfk + Adf−1

k
· g−1
k δgk.

Substituting this into (3.22) and comparing with (3.7), it can be shown that dLd = Θ+
Ld
− Θ−Ld .

Since the second-order exterior derivatives of any form is zero, i.e. d2 = 0, the exterior derivatives

of two discrete Lagrangian one-forms are the same dΘ+
Ld

= dΘ−Ld , which is defined to be the

discrete Lagrangian symplectic form ΩLd on G× G.

ΩLd = dΘ+
Ld

= dΘ−Ld . (3.24)

We define the discrete-time Lagrangian flow map FLd : G× G→ G× G as the flow of the discrete

Euler-Lagrange equations (3.10), (3.11).

Proposition 3.2 The discrete-time Lagrangian flow preserves the discrete Lagrangian two-form as

follows

(FN−1
Ld

)∗ΩLd = ΩLd . (3.25)

Proof. Define the solution space CLd to be the set of solutions {gk ∈ G}Nk=0 of (3.10) and (3.11).

Since an element of CLd is uniquely determined by the initial condition (g0, f0) ∈ G × G, we

can identify CLd with the manifold of initial conditions G × G. Define the restricted action map

Ĝd : G× G→ R by

Ĝd(g0, f0) = Gd(
{
g′k
}N
k=0

),

where {g′k}
N
k=0 ∈ CL is the solution of the discrete-time Euler-Lagrange equations with the initial

conditions (g′0, g
′
1) = (g0, g0f0). Since this satisfies (3.10), (3.9) reduces to

dĜd · w = ((FN−1
Ld

)∗Θ+
Ld
−Θ−Ld) · w (3.26)

for any w = (δgk, δfk) ∈ TG × TG. We take a derivative of (3.26). Since exterior derivatives and

pull backs commute, we obtain

d2Ĝd = ((FN−1
Ld

)∗dΘ+
Ld
− dΘ−Ld).

Since d2Ĝd = 0, we obtain (3.25).
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Discrete Noether’s theorem

Consider the action of a Lie group H on G, Φ : H× G→ G introduced in Section 2.1.4. Recall the

infinitesimal generator ζG : G→ G×g defined as (2.20) for ζ ∈ H. Here, we define the infinitesimal

generator ζG×G : G× G→ TG× TG as

ζG×G(gk, fk) =
(
TeLgk · ζG(gk),TeLfk · (−Adf−1

k
ζG(gk) + ζG(gkfk))

)
. (3.27)

We define two discrete Lagrangian momentum map J+
Ld
, J−Ld : G× G→ h∗ as

J+
Ld

(gk, fk) · ζ = Θ+
Ld
· ζG×G(gk, fk), (3.28)

J−Ld(gk, fk) · ζ = Θ−Ld · ζG×G(gk, fk). (3.29)

Proposition 3.3 Suppose that the discrete Lagrangian is invariant under the lifted action, i.e. dLd ·
ζG×G = 0 for any ζ ∈ h. Then, the two discrete Lagrangian momentum map are the same, J+

Ld
=

J−Ld , which is denoted by JLd : G × G → h∗, and the discrete-time Lagrangian flow preserves the

discrete Lagrangian momentum map.

JLd((F
N−1
Ld

(g0, f0)) = JLd(g0, f0). (3.30)

This is called discrete Noether’s theorem.

Proof. Since dLd = Θ+
Ld
−Θ−Ld , we have

dLd · ζG×G = (Θ+
Ld
−Θ−Ld) · ζG×G = (J+

Ld
− J−Ld) · ζ,

which is equal to zero for any ζ ∈ h since the discrete Lagrangian is invariant under the lifted action.

Thus, J+
Ld

= J−Ld .

Since the action is the summation of the discrete Lagrangian, Ld(gk, fk) · ζG×G implies that

Gd · ζG×G = 0. We can restrict it to the solution space to obtain

dĜd · ζG×G = 0.

But, from (3.26), we obtain

dĜd · ζG×G = ((FN−1
Ld

)∗Θ+
Ld
−Θ−Ld) · ζG×G

= (J+
Ld

(FN−1
Ld

(gk, fk))− J−Ld(gk, fk)) · ζ (3.31)

for any ζ ∈ h, which yields (3.30).

3.1.4 Discrete Reduction and Reconstruction

In Section 2.1.5, we have discussed that if there is a symmetry in the Lagrangian, the configuration

manifold can be reduced to a shape space. Similarly, if the discrete Lagrangian has a symmetry,
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discrete-time reduced Euler-Lagrange equations evolving on the shape space can be derived. The

discrete-time flow in the original configuration manifold can be reconstructed from the solution of

the discrete-time reduced Euler-Lagrange equations.

The procedure for the discrete Lagrange-Routh reduction is similar to that of continuous-time

Lagrange-Routh reduction (see Jalnapurkar et al. 2006). In essence, the discrete reduced Lagrangian

satisfies a reduced variational principle with a one-form derived from the connection. This yields the

discrete-time flow on the shape space. For a given trajectory on the shape space, we reconstruct the

flow on the original configuration manifold by finding the horizontal lift of the reduced trajectory

and applying the momentum map preservation property.

Discrete-time reduction and reconstruction for the full body problem has been studied in Lee

et al. (2007c), and the results are summarized in Section 3.3.6.

3.2 Lie Homogeneous Variational Integrator on Two-Spheres

In this section, we develop discrete-time Euler-Lagrange equations for mechanical systems evolving

on a product of two-spheres. The goal is to develop geometric numerical integrators that preserve

the geometric properties of the Lagrangian/Hamiltonian dynamics as well as the structure of two-

spheres.

As discussed in Section 2.2, the special orthogonal group SO(3) = {R ∈ R3×3 |RTR =
I, detR = 1} acts on the two-sphere transitively, i.e. for any q1, q2 ∈ S2, there exists a R ∈ SO(3)
such that q2 = Rq1. The essential idea to derive discrete-time Euler-Lagrange equations on two-

spheres is to update elements in the two-sphere using the group action for the special orthogonal

group SO(3). Consequently, the discrete flow evolves on the two-spheres without need for con-

straints or reprojection. This is referred to as a Lie homogeneous variational integrator on two-

spheres.

Compared with geometric numerical integrators on S2 developed by Lewis and Nigam (2003);

Lewis and Olver (2001); Munthe-Kaas and Zanna (1997), this approach conserves the geometric

properties of dynamic systems as well as the structure of two-spheres, and it does not require local

coordinates or explicit equality constraints. The subsequent development can also be generalized to

mechanical systems evolving on an abstract homogeneous manifold.

3.2.1 Discrete-time Euler-Lagrange Equations

The procedures to derive the discrete-time Euler-Lagrange equations on (S2)n are summarized by

Figure 3.1: the discrete-time trajectory is derived such that it minimizes the summation of a discrete

Lagrangian, called the action sum. The discrete-time Legendre transformation provides an alterna-

tive description of mechanical systems, referred to as discrete-time Hamiltonian mechanics. The

essential ideas are discretizing Hamilton’s principle, where the variations are expressed in term of

the Lie algebra so(3) using the exponential map, and updating elements in two-spheres using the

group operation of SO(3).
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Configuration Manifold and Discrete Lagrangian

We consider a mechanical system evolving on a product of n two-spheres (S2)n introduced in

Section 2.2. Recalling (2.26), the Lagrangian has the following structure

L(q1, . . . , qn, q̇1, . . . , q̇n) =
1
2

n∑
i,j=1

Mij q̇i · q̇j − U(q1, . . . , qn) (3.32)

for a constant symmetric positive definite inertia matrix {Mij}ni,j=1 and a configuration dependent

potential U : (S2)n → R.

According to the trapezoidal rule, we define a discrete Lagrangian Ld : (S2)n × (S2)n → R

Ld(q1k , . . . , qnk , q1k+1
, . . . , qnk+1

) =
1

2h

n∑
i,j=1

Mij(qik+1
− qik) · (qjk+1

− qjk)− h

2
Uk −

h

2
Uk+1,

(3.33)

where Uk denotes the value of the potential at the k-th step, i.e. Uk = U(q1k , . . . , qnk). Here,

we assume that the inertia matrix is constant and the discrete Lagrangian is obtained by using the

trapezoidal rule. The following development can be generalized to mechanical systems with a

configuration dependent inertia or a general form of the discrete Lagrangian.

Action Sum

Using the expression for the discrete Lagrangian, the action sum is defined as

Gd =
N−1∑
k=0

Ld(q1k , . . . , qnk , q1k+1
, . . . , qnk+1

)

=
1

2h

N−1∑
k=0

n∑
i,j=1

Mij(qik+1
− qik) · (qjk+1

− qjk)− h

2
Uk −

h

2
Uk+1.

Since the discrete Lagrangian approximates the integral of the Lagrangian over one time step, the

action sum approximates the action integral. Discrete Hamilton’s principle states that the variation

of the action sum is zero.

Variations

Similar to the continuous time case given by (2.28), the variation of a discrete-time curve {qik}Nk=0

is expressed as

qεik = exp εη̂ikqik (3.34)

for a discrete-time curve {ηik}Nk=0 on R3 satisfying ηi0 = ηiN = 0 for i ∈ {1, . . . , n}. We assume

ηik ∈ R3 is constrained to be orthogonal to qik , i.e. ηik · qik = 0. The corresponding infinitesimal
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variation of qik is written as

δqik = ηik × qik . (3.35)

Discrete-time Euler-Lagrange Equations

The variation of the discrete Lagrangian can be written as

δLdk =
1
h

n∑
i,j=1

(δqik+1
− δqik) ·Mij(qjk+1

− qjk)− h

2

n∑
i=1

(
δqik ·

∂Uk
∂qik

+ δqik+1
· ∂Uk+1

∂qik+1

)
.

(3.36)

Substituting (3.35) into (3.36), and using the vector identity (a × b) · c = a · (b × c) for any

a, b, c ∈ R3, we obtain

δLdk =
1
h

n∑
i,j=1

(
ηik+1

· (qik+1
×Mij(qjk+1

− qjk))− ηik · (qik ×Mij(qjk+1
− qjk))

)
− h

2

n∑
i=1

(
ηik ·

(
qik ×

∂Uk
∂qik

)
+ ηik+1

·
(
qik+1

× ∂Uk+1

∂qik+1

))
. (3.37)

Therefore, the variation of the action sum is given by

δGd =
1
h

N−1∑
k=0

n∑
i,j=1

(
ηik+1

· (qik+1
×Mij(qjk+1

− qjk))− ηik · (qik ×Mij(qjk+1
− qjk))

)
− h

2

N−1∑
k=0

n∑
i=1

(
ηik ·

(
qik ×

∂Uk
∂qik

)
+ ηik+1

·
(
qik+1

× ∂Uk+1

∂qik+1

))

=
n∑

i,j=1

ηiN ·
[

1
h
qiN ×Mij(qjN − qjN−1)− h

2
qiN ×

∂UN
∂qiN

]

−
n∑

i,j=1

ηi0 ·
[

1
h
qi0 ×Mij(qj1 − qj0)− h

2
qi0 ×

∂U0

∂qi0

]

+
N−1∑
k=1

n∑
i=1

ηik ·

1
h

(qik ×
n∑
j=1

Mij(−qjk+1
+ 2qjk − qjk−1

))− hqik ×
∂Uk
∂qik

 .
Since ηi0 = ηiN = 0 for i ∈ {1, . . . , n}, we obtain

δGd =
N−1∑
k=1

n∑
i=1

ηik ·

1
h

(qik ×
n∑
j=1

Mij(−qjk+1
+ 2qjk − qjk−1

))− hqik ×
∂Uk
∂qik

 . (3.38)

From discrete Hamilton’s principle δGd = 0 for any ηik perpendicular to qik . Using the same
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argument given in (2.30), the discrete-time equations of motion are given by

1
h

(qik ×
n∑
j=1

Mij(−qjk+1
+ 2qjk − qjk−1

))− hqik ×
∂Uk
∂qik

= 0 (3.39)

for i ∈ {1, . . . n}.
In addition, we require that the unit length of the vector qik be preserved. This is achieved

by viewing S2 as a homogeneous manifold. Since the special orthogonal group SO(3) acts on S2

transitively, we can define a discrete update map for qik as

qik+1
= Fikqik

for Fik ∈ SO(3). Then, the unit length of the vector qi is preserved through the discrete-time

equations of motion, since qik+1
· qik+1

= qTikF
T
ik
Fikqik = 1. These results are summarized as

follows.

Proposition 3.4 Consider a mechanical system on (S2)n whose Lagrangian is expressed as (2.26).

The discrete-time Euler-Lagrange equations are given by

Miiqik × Fikqik + qik ×
n∑
j=1
j 6=i

Mij(Fjk − I3×3)qjk = qik ×
n∑
j=1

Mij(qjk − qjk−1
)− h2qik ×

∂Uk
∂qik

,

(3.40)

qik+1
= Fikqik (3.41)

for i ∈ {1, . . . n}. For given (qik−1
, qik), we solve (3.40) to obtain Fik ∈ SO(3). Then, qik+1

is computed by (3.41). This yields a discrete-time flow map (qik−1
, qik) → (qik , qik+1

), and this

process is repeated.

3.2.2 Discrete Legendre Transformation

The discrete Legendre transformation is given as follows.

pik · δqik = −Dqik
Ldk · δqik

=

1
h

n∑
j=1

Mij(qjk+1
− qjk) +

h

2
∂Uk
∂qik

 · δqik ,
which can be directly obtained from (3.36). This is satisfied for any δqik ∈ TqikS

2 perpendicular to

qik . Using the same argument used to derive (2.37), the conjugate momenta pik is the projection of

the expression in brackets onto the orthogonal complement of qik . Thus, we obtain

pik = −1
h
qik × (qik ×

n∑
j=1

Mij(qjk+1
− qjk))− h

2
qik ×

(
qik ×

∂Uk
∂qik

)
. (3.42)
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Similarly, we obtain

pik+1
· δqik+1

= Dqik+1
Ldk · δqik+1

=

1
h

n∑
j=1

Mij(qjk+1
− qjk)− h

2
∂Uk+1

∂qik+1

 · δqik+1
.

Since pik+1
is perpendicular to qik+1

, it is given by

pik+1
= −1

h
qik+1

× (qik+1
×

n∑
j=1

Mij(qjk+1
− qjk)) +

h

2
qik+1

×
(
qik+1

× ∂Uk+1

∂qik+1

)
. (3.43)

This yields the discrete-time Hamilton’s equations as follows.

Corollary 3.3 Consider a mechanical system on (S2)n whose Lagrangian is expressed as (2.26).

The discrete-time Hamilton’s equations are given by

pik = −1
h
qik × (qik ×

n∑
j=1

Mij(Fjk − I3×3)qjk)− h

2
qik ×

(
qik ×

∂Uk
∂qik

)
, (3.44)

qik+1
= Fikqik , (3.45)

pik+1
= −1

h
qik+1

× (qik+1
×

n∑
j=1

Mij(qjk+1
− qjk)) +

h

2
qik+1

×
(
qik+1

× ∂Uk+1

∂qik+1

)
(3.46)

for i ∈ {1, . . . , n}. For given (qik , pik), we solve (3.44) to obtain Fik ∈ SO(3). Then, qik+1

and pik+1
are computed by (3.45) and (3.46), respectively. This yields a discrete-time flow map

(qik , pik)→ (qik+1
, pik+1

), and this process is repeated.

This provides a discrete-time flow map in terms of the conjugate momenta. Now, we find

a discrete-time flow map written in terms of the angular velocity. Comparing (3.44) to (2.37),

substituting q̇ik = ωik × qik , and rearranging, we obtain

qik×

Miiωik+ (qik ×
n∑
j=1
j 6=i

Mij(ωjk × qjk))− 1
h

(qik ×
n∑
j=1

Mij(qjk+1
− qjk))− h

2
qik ×

∂Uk
∂qik

= 0.

Since the expression in the brackets is orthogonal to qik , the left side is equal to zero if and only if

the expression in the brackets is zero. Thus,

Miiωik + (qik ×
n∑
j=1
j 6=i

Mij(ωjk × qjk)) =
1
h

(qik ×
n∑
j=1

Mij(qjk+1
− qjk)) +

h

2
qik ×

∂Uk
∂qik

. (3.47)
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This provides a relationship between (qik , ωik) and (qik , qik+1
). Comparing this with (3.39), we

obtain

Miiωik + (qik ×
n∑
j=1
j 6=i

Mij(ωjk × qjk)) =
1
h

(qik ×
n∑
j=1

Mij(qjk − qjk−1
))− h

2
qik ×

∂Uk
∂qik

, (3.48)

which provides a relationship between (qik , ωik) and (qik−1
, qik). Equations (3.47) and (3.48)

provide a discrete-time flow map in terms of the angular velocity; for a given (qik , ωik), we find

(qik , qik+1
) by using (3.47). Substituting this into (3.48) expressed at the k + 1th step, we obtain

(qik+1
, ωik+1

). This procedure is summarized as follows.

Corollary 3.4 The discrete-time equations of motion given by (3.40) and (3.41) can be written in

terms of the angular velocity as

Miiqik × Fikqik + qik×
n∑
j=1
j 6=i

Mij(Fjk − I3×3)qjk

= Miihωik − (qik ×
n∑
j=1
j 6=i

Mij(qjk × hωjk))− h2

2
qik ×

∂Uk
∂qik

,

(3.49)

qik+1
= Fikqik , (3.50)

Miiωik+1
− (qik+1

×
n∑
j=1
j 6=i

Mij(qjk+1
× ωjk+1

))

=
1
h

(qik+1
×

n∑
j=1

Mij(qjk+1
− qjk))− h

2
qik+1

× ∂Uk+1

∂qik+1

(3.51)

for i ∈ {1, . . . , n}. Equivalently, (3.51) can be written in a matrix form as
M11I3×3 −M12q̂1k+1

q̂2k+1
· · · −M1nq̂1q̂nk+1

−M21q̂2k+1
q̂1k+1

M22I3×3 · · · −M2nq̂2k+1
q̂nk+1

...
...

...

−Mn1q̂nk+1
q̂1k+1

−Mn2q̂nk+1
q̂2k+1

· · · MnnI3×3



ω1k+1

ω2k+1

...

ωnk+1



=



1
h(q1k+1

×
∑n

j=1M1j(qjk+1
− qjk))− h

2 q1k+1
× ∂Uk+1

∂q1k+1

1
h(q2k+1

×
∑n

j=1M2j(qjk+1
− qjk))− h

2 q2k+1
× ∂Uk+1

∂q2k+1

...
1
h(qnk+1

×
∑n

j=1Mnj(qjk+1
− qjk))− h

2 qnk+1
× ∂Uk+1

∂qnk+1

 .
(3.52)

For a given (qik , ωik), we solve (3.49) to obtain Fik ∈ SO(3). Then, qik+1
and ωik+1

are computed
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by (3.50) and (3.52), respectively. This yields a discrete-time flow map in terms of the angular

velocity (qik , ωik)→ (qik+1
, ωik+1

), and this process is repeated.

The discrete-time Euler-Lagrange equations given by (3.40) and (3.49) are implicit equations:

we need to solve an implicit equation at each time step, in order to find the relative update rep-

resented by the rotation matrix Fik ∈ SO(3). A computational approach to solve the implicit

equations is presented in Section 3.4.7, where it is shown that the discrete-time Euler-Lagrange

equations become explicit when the inertia matrix is diagonal, i.e. Mij = 0 for i 6= j. The explicit

form of the discrete-time Euler-Lagrange equations for mechanical systems evolving on a product

of two-spheres is summarized as follows.

Corollary 3.5 Consider a mechanical system on (S2)n whose Lagrangian is expressed as (2.26)

where Mij = 0 for i 6= j, i.e. the dynamics are coupled only though the potential energy. The

explicit discrete-time equations of motion are given by

qik+1
=
(
hωik −

h2

2Mii
qik ×

∂Uk
∂qik

)
× qik +

(
1−

∥∥∥∥hωik − h2

2Mii
qik ×

∂Uk
∂qik

∥∥∥∥2
)1/2

qik , (3.53)

ωik+1
= ωik −

h

2Mii
qik ×

∂Uk
∂qik

− h

2Mii
qik+1

× ∂Uk+1

∂qik+1

(3.54)

for i ∈ {1, . . . , n}.
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3.3 Examples of Mechanical Systems on a Lie Group

In Section 3.1, we have developed discrete-time Lagrangian mechanics on an abstract Lie group.

Since the configuration manifold of dynamics of rigid bodies is a Lie group, the results provide a

unified framework that can be applied to various rigid body dynamics.

In this section, we apply the general theory developed in Section 3.1 to the following rigid body

dynamics discussed in Section 2.3. For each example, a discrete Lagrangian is chosen, and Euler-

Lagrange equations and Legendre transformations are obtained, followed by numerical results.

Section Mechanical System G

3.3.1 Planar pendulum SO(2)
3.3.2 3D pendulum SO(3)
3.3.3 3D pendulum with an internal degree of freedom SO(3)× R
3.3.4 3D pendulum on a cart SO(3)× R2

3.3.5 Single rigid body SE(3)
3.3.6 Full body problem (SE(3))n

3.3.7 Two rigid bodies connected by a ball joint SO(3)× SO(3)× R3

3.3.1 Planar Pendulum

Consider the planar pendulum model presented in Section 2.3.1.

Configuration Manifold. The configuration manifold is SO(2), and the group action for SO(2) is

matrix multiplication. Thus, the discrete update map (3.11) can be written as

Rk+1 = RkFk,

for Fk ∈ SO(2). The adjoint operator AdR for R ∈ SO(2) is the identity on so(2).

Discrete Lagrangian. Recalling (2.41), the Lagrangian of the planar pendulum is given by

L(R, Ω̂) =
1
4
ml2tr

[
Ω̂T Ω̂

]
+mgeT2 Rρ. (3.55)

From the attitude kinematics equation (2.43), the angular velocity is approximated by

Ω̂k ≈
1
h
RTk (Rk+1 −Rk) =

1
h

(Fk − I).

According to the trapezoidal rule, the discrete Lagrangian is chosen as

Ld(Rk, Fk) =
1

4h
ml2tr

[
(Fk − I2×2)T (Fk − I2×2)

]
+
h

2
mgleT2 Rke2 +

h

2
mgleT2 RkFke2

=
1

2h
ml2tr[(I2×2 − Fk)] +

h

2
mgleT2 Rke2 +

h

2
mgleT2 RkFke2.
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Discrete Euler-Lagrange Equations. The variation of the discrete Lagrangian is given by

δL(Rk, Fk) = − 1
2h
ml2tr[δFk] +

h

2
mgleT2 Rkη̂ke2 +

h

2
mgleT2 Rkη̂kFke2 +

h

2
mgleT2 RkδFke2

= − 1
2h
ml2tr

[
Fk(F Tk δFk)

]
+
h

2
mgleT2 Rkη̂ke2 +

h

2
mgleT2 RkFk(F

T
k η̂kFk)e2

+
h

2
mgleT2 RkFk(F

T
k δFk)e2,

Since F η̂F T = η̂ for any F ∈ SO(2) and η̂ ∈ so(2), F Tk δFk is skew-symmetric, we obtain

δL(Rk, Fk) = − 1
4h
ml2tr

[
(Fk − F Tk )(F Tk δFk)

]
− h

2
mgleT2 (Rk +Rk+1)e1 · ηk

− h

2
mgleT2 Rk+1e1 · (F Tk δFk)∧

=
〈

1
2h
ml2(Fk − F Tk )− h

2
mgl ̂eT2 Rk+1e1, F

T
k δFk

〉
−
〈
h

2
mgl( ̂eT2 Rke1 + ̂eT2 Rk+1e1), η̂k

〉
,

Therefore, we obtain

T∗eLFk ·DFkLd(Rk, Fk) =
1

2h
ml2(Fk − F Tk )− h

2
mgl ̂eT2 Rk+1e1,

T∗eLRk ·DRkLd(Rk, Fk) = −h
2
mgl( ̂eT2 Rke1 + ̂eT2 Rk+1e1).

Substituting these equations into (3.10), we obtain the discrete-time Euler-Lagrange equations

for the planar pendulum as

1
2h
ml2(Fk − F Tk )− 1

2h
ml2(Fk+1 − F Tk+1)− hmgl ̂eT2 Rk+1e1 = 0, (3.56)

Rk+1 = RkFk. (3.57)

Discrete Legendre Transformation. From (3.14) and (3.15), the discrete Legendre transformations

are given by

Π̂k =
1

2h
ml2(Fk − F Tk ) +

h

2
mgl ̂eT2 Rke1,

Π̂k+1 =
1

2h
ml2(Fk − F Tk )− h

2
mgl ̂eT2 Rk+1e1,

where Πk = ml2Ω ∈ so(2)∗ ' R∗. These yield the discrete-time Hamilton’s equations as

1
2h
ml2(Fk − F Tk ) = Π̂k −

h

2
mgl ̂eT2 Rke1, (3.58)

Rk+1 = RkFk, (3.59)

Π̂k+1 = Π̂k −
h

2
mgl ̂eT2 Rke1 −

h

2
mgl ̂eT2 Rk+1e1. (3.60)
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Figure 3.2: Numerical simulation for a planar pendulum: computed total energy (LGVI: red, solid, RK4(5): blue, dotted)

For a given (Rk, Π̂k), we solve (3.58) to obtain Fk. Using this, (Rk+1, Π̂k+1) is obtained by (3.59)

and (3.60). This yields a discrete-time flow map (Rk, Π̂k) → (Rk+1, Π̂k+1). If we parameterize

Rk using θk, (3.58) and (3.59) are equivalent to

θk+1 = θk + sin−1

(
h

ml2
Πk −

h2g

2l
eT2 Rke1

)
. (3.61)

Numerical Results. We compare the computational properties of the discrete-time equations of

motion given by (3.58)–(3.60) with a 4(5)-th order variable step size Runge-Kutta method. We

choose m = 1 kg, l = 9.81 m. The initial conditions are θ0 = π/2 rad, Ω = 0, and the total

energy is E = 0 Nm. The simulation time is 1000 sec, and the step-size h = 0.03 of the discrete-

time equations of motion is chosen such that the CPU times are identical. Figure 3.2 shows the

computed total energy for both methods. The variational integrator preserves the total energy well.

There is no drift in the computed total energy, and the mean variation is 1.0835× 10−2 Nm. There

is a notable dissipation of the computed total energy for the Runge-Kutta method. Note that the

computed total energy would further decrease as the simulation time increases.

3.3.2 3D Pendulum

Consider the 3D pendulum model presented in Section 2.3.2.

Configuration manifold. The configuration manifold for the 3D pendulum is the special orthogo-

nal group, SO(3). A rotation matrix R ∈ SO(3) is a linear transformation from a representation of

a vector in the body fixed frame into a representation of the vector in the inertial frame.

We define Fk ∈ SO(3) as Fk = RTkRk+1. Thus, we have the discrete-time attitude kinematics

equation as

Rk+1 = RkFk. (3.62)

The rotation matrix Fk represents the relative attitude update between two integration steps, and by
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requiring that Fk lies on SO(3) we guarantee that the discrete flow Rk for k ∈ {0, . . . , N} evolves

on SO(3) automatically.

The adjoint operator is as follows.

AdF η̂ = F η̂F T = F̂ η, Ad∗F η̂ = F T η̂F = F̂ T η (3.63)

for F ∈ SO(3), η̂ ∈ so(3).

Discrete Lagrangian. Recall that the Lagrangian L : SO(3)×so(3)→ R of the attitude dynamics

of the 3D pendulum is given by

L(R, Ω̂) =
1
2

tr
[
Ω̂JdΩ̂T

]
− U(R) (3.64)

for an attitude dependent gravitational potential U : SO(3)→ R.

Using the kinematics equations (2.48), (3.62), Ω̂k can be approximated as

Ω̂k = RTk Ṙk ≈
1
h
RTk (Rk+1 −Rk) =

1
h

(Fk − I). (3.65)

From the trapezoidal rule, we choose the following form of the discrete Lagrangian Ld : SO(3) ×
SO(3)→ R.

Ld(Rk, Fk) =
h

2
L(Rk,

1
h

(Fk − I)) +
h

2
L(Rk+1,

1
h

(Fk − I))

=
1

2h
tr
[
(Fk − I)Jd(Fk − I)T

]
− h

2
U(Rk)−

h

2
U(Rk+1)

=
1

2h
tr
[
FkJdF

T
k − FkJd − JdF Tk + Jd

]
− h

2
U(Rk)−

h

2
U(Rk+1).

Since tr
[
FkJdF

T
k

]
= tr

[
JdF

T
k Fk

]
= tr[Jd], and tr

[
JdF

T
k

]
= tr[FkJd], the discrete Lagrangian can

be written as

Ld(Rk, Fk) =
1
h

tr[(I − Fk)Jd]−
h

2
U(Rk)−

h

2
U(RkFk). (3.66)

Discrete-time Euler-Lagrange Equations. We first find expressions for the derivatives of the dis-

crete Lagrangian. Let Td : SO(3)→ R be the first term of the discrete Lagrangian

Td(Fk) =
1
h

tr[(I − Fk)Jd] .

The derivative of Td(Fk) with respect to Fk is given by

DFkTd(Fk) · δFk = −1
h

tr[δFkJd] · δFk = −1
h

tr
[
FkF

T
k δFkJd

]
= −1

h
tr
[
(F Tk δFk)(JdFk)

]
, (3.67)
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where we use the property of the trace tr[AB] = tr[BA] for any A,B ∈ Rn×n. The following

identity is satisfied for any x ∈ R3, B ∈ R3×3, since tr[x̂B] = −tr
[
BT x̂

]
= −tr

[
x̂BT

]
:

tr[x̂B] =
1
2

tr
[
x̂(B −BT )

]
= −

〈
B −BT , x̂

〉
. (3.68)

Since F Tk δFk is skew symmetric, (3.67) can be written as

DFkTd(Fk) · δFk = −1
h

tr[δFkJd] =
1
h

〈
JdFk − F Tk Jd, F Tk δFk

〉
. (3.69)

As in (2.60), the derivative of the potential is given by

DRkU(Rk) · δRk = −
〈
M̂k, R

T
k δRk

〉
=

1
2

tr
[
M̂kR

T
k δRk

]
, (3.70)

where Mk is determined by M̂k = ∂Uk
∂Rk

RTk −Rk
∂Uk
∂Rk

T
. Therefore, we have

DRkU(RkFk) · δRk =
1
2

tr
[
M̂k+1F

T
k R

T
k δRkFk

]
=

1
2

tr
[
(RTk δRk)(FkM̂k+1F

T
k )
]

= −
〈

̂FkMk+1, R
T
k δRk

〉
. (3.71)

Similarly, we also have

DFkU(RkFk) · δFk = −
〈
M̂k+1, F

T
k δFk

〉
. (3.72)

From (3.69), (3.70), (3.71), and (3.72), the derivatives of the discrete Lagrangian are given by

DFkLd(Rk, Fk) · δFk = DFkTd(Fk) · δFk −
h

2
DFkU(RkFk) · δFk

=
〈

1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1, F

T
k δFk

〉
,

DRkLd(Rk, Fk) · δRK = −h
2
DRkU(Rk) · δRk −

h

2
DRkU(RkFk) · δRk

=
h

2

〈
M̂k + ̂FkMk+1, R

T
k δRk

〉
.

Therefore, we obtain

T∗eLFk ·DFkLd(Rk, Fk) =
1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1, (3.73)

Ad∗
FTk+1

T∗eLFk+1
·DFk+1

Ld(Rk+1, Fk+1) =
1
h

(Fk+1Jd − JdF Tk+1) +
h

2
̂Fk+1Mk+2, (3.74)

T∗eLRk+1
·DRk+1

Ld(Rk+1, Fk+1) =
h

2
(M̂k+1 + ̂Fk+1Mk+2). (3.75)

Substituting these into (3.10) and (3.11), the discrete-time Euler-Lagrange equations for the 3D

71



pendulum are given by

1
h

(
Fk+1Jd − JdF Tk+1 − JdFk + F Tk Jd

)
= hM̂k+1, (3.76)

Rk+1 = RkFk, (3.77)

where Mk = mgρc × RTk e3. For given (Rk, Rk+1) and Fk = RTkRk+1, we solve the implicit

equation (3.76) to find Fk+1. Then, Rk+2 is obtained from (3.77). This yields a discrete-time flow

map (Rk, Rk+1)→ (Rk+1, Rk+2), and this procedure is repeated.

Discrete Legendre Transformation. From (3.14), (3.15), the discrete Legendre transformation is

given by

Π̂k = −T∗eLRk ·DRkLd(Rk, Fk) + Ad∗
FTk
· T∗eLFk ·DFkLd(Rk, Fk)

=
1
h

(FkJd − JdF Tk )− h

2
M̂k, (3.78)

Π̂k+1 = T∗eLFk ·DFkLd(Rk, Fk)

=
1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1. (3.79)

Combining these, we have

Π̂k+1 =
1
h
F Tk (FkJd − JdF Tk )Fk +

h

2
M̂k+1,

Π̂k+1 = F Tk Π̂kFk +
h

2
M̂k +

h

2
M̂k+1.

Using the fact that F T Π̂F = F̂ TΠ for any Π ∈ R3 and F ∈ SO(3), we obtain equivalent equations

in a vector form. In summary, the discrete-time Hamilton’s equations are given by

h
(
Πk +

h

2
Mk

)∧ = FkJd − JdF Tk , (3.80)

Rk+1 = RkFk, (3.81)

Πk+1 = F Tk Πk +
h

2
F Tk Mk +

h

2
Mk+1. (3.82)

For given (Rk,Πk), we solve the implicit equation (3.80) to find Fk. Then, Rk+1 is obtained from

(3.81), and Πk+1 is obtained from (3.82). This yields a discrete map (Rk,Πk) → (Rk+1,Πk+1),

and this procedure is repeated.

The discrete-time equations given by (3.76) and (3.80) are implicit equations: we need to solve

an implicit equation at each time step in order to find the relative update represented by the rota-

tion matrix Fk ∈ SO(3). A computational approach for these implicit equations is presented in

Section 3.3.8.

Remark 3.3 In this section, we have developed discrete-time Euler-Lagrange equations and discrete-

time Hamilton’s equations for the 3D pendulum by substituting the discrete Lagrangian given by
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(3.66) into the discrete-time Euler-Lagrange equations on a general Lie group (3.10). Alternatively,

the discrete Euler-Lagrange equations for the 3D pendulum can be derived by following the pro-

cedure presented in Section 3.1.1. The corresponding discrete Hamilton’s principle on SO(3) has

been studied in Lee et al. (2005b).

Symmetry. Recall that the symmetry action of the 3D pendulum Φ : S1×SO(3)→ SO(3) is given

by

Φ(θ,R) = expSO(3)(θê3)R, (3.83)

which represents the rotation of the 3D pendulum about the gravity direction e3.

We first find expressions for the infinitesimal generators. We identify h = so(2) with R. From

(2.20), for ζ ∈ R, the infinitesimal generator ζSO(3) : SO(3)→ SO(3)× so(3) is given by

ζSO(3)(R) = φL ◦
d

dε

∣∣∣∣
ε=0

ΦexpSO(2) εζ(R) = φL ◦
d

dε

∣∣∣∣
ε=0

expSO(3)(εζê3)R

= φL ◦ (R, ζê3R) = (R, ζR̂T e3). (3.84)

From the definition (3.27), the infinitesimal generator ζSO(3)×SO(3) : SO(3)× SO(3)→ TSO(3)×
TSO(3) is given by

ζSO(3)×SO(3)(Rk, Fk) =
(
TeLRk · ζSO(3)(Rk), TeLFk · (−AdFTk ζSO(3)(Rk) + ζSO(3)(RkFk))

)
= ζ

(
RkR̂

T
k e3, Fk(RTk+1e3 − F Tk RTk e3)∧

)
. (3.85)

Now we show that the discrete Lagrangian is infinitesimally invariant under the symmetry ac-

tion. From (3.22), (3.23), the discrete Lagrangian one-forms on SO(3)× SO(3) are given by

Θ+
Ld

(Rk, Fk) · (δRk, δFk) =
〈
T∗eLFk ·DFkLdk , F

T
k δFk + AdFTk ·R

T
k δRk

〉
=
〈

1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1, F

T
k δFk + F Tk R

T
k δRkFk

〉
,

Θ−Ld(Rk, Fk) · (δRk, δFk) = −
〈
T∗eLRk ·DRkLdk −Ad∗

FTk
· (T∗eLFk ·DFkLdk), RTk δRk

〉
=
〈

1
h

(FkJd − JdF Tk )− h

2
M̂k, R

T
k δRk

〉
.

Since Ldk = Θ+
Ld
−Θ−Ld , we obtain

Ld(Rk, Fk) · ζSO(3)×SO(3) = (Θ+
Ld
−Θ−Ld) · ζSO(3)×SO(3)

=
〈

1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1, ζR̂

T
k+1e3

〉
−
〈

1
h

(FkJd − JdF Tk )− h

2
M̂k, ζR̂

T
k e3

〉
.
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Since Mk = mgρc ×RTk e3, we have
〈
M̂k, R̂

T
k e3

〉
= 0,

〈
M̂k+1, R̂

T
k+1e3

〉
= 0. Thus, we obtain

Ld(Rk, Fk) · ζSO(3)×SO(3) =
〈

1
h

(JdFk − F Tk Jd), ζR̂Tk+1e3

〉
−
〈

1
h

(FkJd − JdF Tk ), ζR̂Tk e3

〉
=
〈

1
h

(JdFk − F Tk Jd), ζR̂Tk+1e3

〉
−
〈

1
h
F Tk (FkJd − JdF Tk )Fk, ζF Tk R̂Tk e3Fk

〉
=
〈

1
h

(JdFk − F Tk Jd), ζR̂Tk+1e3

〉
−
〈

1
h

(JdFk − F Tk Jd), ζ ̂(FkRk)T e3

〉
= 0.

Therefore, the discrete Lagrangian is infinitesimally invariant under the symmetry action.

We now find an expression for the discrete momentum map. According to (3.28), the momentum

map J+
Ld

: SO(3)× SO(3)→ R∗ is given by

J+
Ld

(Rk, Fk) · ζ = Θ+
Ld
· ζG×G(Rk, Fk)

=
〈

1
h

(JdFk − F Tk Jd) +
h

2
M̂k+1, ζR̂

T
k+1e3

〉
=
〈

Π̂k+1, ζR̂
T
k+1e3

〉
= ζeT3 Rk+1Πk+1, (3.86)

where we use the discrete Legendre transformation (3.79). Thus, J+
Ld

(Rk, Fk) = eT3 Rk+1Πk+1,

which represents the angular momentum of the 3D pendulum about the gravity direction. This is

preserved by the discrete-time flow according to the discrete Noether’s theorem.

Remark 3.4 The preservation of the angular momentum about the gravity direction can be directly

shown from (3.82). Multiplying the left and right sides of (3.82) by eT3 Rk+1, we obtain

eT3 Rk+1Πk+1 = eT3 Rk+1F
T
k Πk +

h

2
eT3 Rk+1F

T
k Mk +

h

2
eT3 Rk+1Mk+1

= eT3 RkFkΠk +
h

2
eT3 RkMk +

h

2
eT3 Rk+1Mk+1.

Since eT3 RkMk = 0, eT3 Rk+1Mk+1 = 0, this reduces to

eT3 Rk+1Πk+1 = eT3 RkFkΠk,

which shows conservation of the momentum map by the discrete-time flow. This is a more concise

proof. The preceding development shows a formal application of the abstract discrete Noether’s

theorem to the 3D pendulum model.

Numerical Results. We compute the flow of discrete-time Hamilton’s equations. The physical

constants for the 3D pendulum are chosen as

m = 1 kg, ρc = [0, 0, 0.3] m, J = diag[0.13, 0.28, 0.17] kgm2.
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Figure 3.3: Numerical simulation for a 3D pendulum

Initial conditions are chosen as

R0 = I, Ω0 = [4.14, 4.14, 4.14] rad/s.

The simulation time and step size are tf = 100 seconds, h = 0.01 seconds.

Figure 3.3 shows responses of angular velocity of the pendulum, computed total energy, orthog-

onality error, and the deviation of the angular momentum along the gravity direction. As shown by

Figure 3.3(b), the computed total energy of the Lie group variational integrator oscillates near the

initial value, but there is no increasing or decreasing drift for long time periods. The orthogonality

error of rotation matrices and the error in conservation of the angular momentum about the gravity

direction remain at machine precision level.
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3.3.3 3D Pendulum with an Internal Degree of Freedom

Consider the 3D pendulum with an internal degree of freedom presented in Section 2.3.3.

Configuration Manifold. The configuration manifold is SO(3) × R. The group action defines the

discrete-time update map as

(Rk+1, xk+1) = (Rk, xk)(Fk,∆xk)

= (RkFk, xk + ∆xk) (3.87)

for (Fk,∆xk) ∈ SO(3)× R. The Ad operator also has the product structure.

Ad(F,∆x)(η̂, x
′) = (F η̂F T , x′) = (F̂ η, x′), Ad∗(F,∆x)(η̂, x

′) = (F T η̂F, x′) = (F̂ T η, x′).

Discrete Lagrangian. Recalling (2.75), the Lagrangian is given by

L(R, x,Ω, ẋ) =
1
2

ΩTJΩ +
1
2
mx(ẋ2 − ρTx Ω̂2ρx + 2eT1 Q

T Ω̂ρxẋ)

+mgeT3 Rρc +mxge
T
3 Rρx −

1
2
κx2.

The discrete Lagrangian is chosen as

Ld(Rk, xk, Fk,∆xk) =
1
h

tr[(I − Fk)Jd] +
mx

2h
∆x2

k −
mx

2h
tr
[
ρxkρ

T
xk

(Fk − I)2
]

− mx

h
tr
[
Qe1∆xkρTxk(Fk − I)

]
+
h

2
mgeT3 Rkρc +

h

2
mxge

T
3 Rkρxk

+
h

2
mgeT3 RkFkρc +

h

2
mxge

T
3 RkFkρxk+1

− h

4
κx2

k −
h

4
κ(xk + ∆xk)2.

(3.88)

We find expressions for the derivatives of the discrete Lagrangian. The derivative of the discrete

Lagrangian with respect to Fk is given by

DFkLdk · δFk = −1
h

tr[δFkJd]−
mx

2h
tr
[
ρxkρ

T
xk

(FkδFk + δFkFk − 2δFk)
]

− mx

h
tr
[
Qe1∆xkρTxkδFk

]
+
h

2
mgeT3 RkδFkρc +

h

2
mxge

T
3 RkδFkρxk+1

= −1
h

tr[δFkAk] +
h

2
mgeT3 RkδFkρc +

h

2
mxge

T
3 RkδFkρxk+1

,

where Ak ∈ R3×3 is defined as

Ak = Jd +
mx

2
(ρxkρ

T
xk
Fk + Fkρxkρ

T
xk
− 2ρxkρ

T
xk

) +mxQe1∆xkρTxk .
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This can be written as

DFkLdk · δFk = −1
h

tr
[
(F Tk δFk)AkFk

]
+
h

2
mgeT3 Rk+1(F Tk δFk)ρc

+
h

2
mxge

T
3 Rk+1(F Tk δFk)ρxk+1

. (3.89)

Since F Tk δFk is skew symmetric, using (3.68), the first term of (3.89) can be written as

−1
h

tr
[
(F Tk δFk)AkFk

]
=

1
h

〈
AkFk − F Tk ATk , F Tk δFk

〉
.

Since x̂y = −ŷx for any x, y ∈ R3, the last two terms of (3.89) can be written as

h

2
mgeT3 Rk+1(F Tk δFk)ρc +

h

2
mxge

T
3 Rk+1(F Tk δFk)ρxk+1

= −h
2
mgeT3 Rk+1ρ̂c(F Tk δFk)

∨ − h

2
mxge

T
3 Rk+1ρ̂xk+1

(F Tk δFk)
∨

=
h

2
〈
mgρ̂cR

T
k+1e3 +mxgρ̂xk+1

RTk+1e3, (F Tk δFk)
∨〉 . (3.90)

Therefore, we obtain

T∗eLFk ·DFkLdk =
1
h

(AkFk − F Tk ATk ) +
(
h

2
mgρ̂cR

T
k+1e3 +

h

2
mxgρ̂xk+1

RTk+1e3

)∧
. (3.91)

The Ad∗ operation gives

Ad∗
FTk
· (T∗eLFk ·DFkLdk) =

1
h

(FkAk −ATk F Tk )

+
(
h

2
mgFkρ̂cR

T
k+1e3 +

h

2
mxgFkρ̂xk+1

RTk+1e3

)∧
. (3.92)

The derivative of the discrete Lagrangian with respect to Rk is given by

DRkLdk · δRk =
h

2
mgeT3 δRkρc +

h

2
mxge

T
3 δRkρxk +

h

2
mgeT3 δRkFkρc +

h

2
mxge

T
3 δRkFkρxk+1

=
h

2
mgeT3 Rk(R

T
k δRk)ρc +

h

2
mxge

T
3 Rk(R

T
k δRk)ρxk

+
h

2
mgeT3 Rk(R

T
k δRk)Fkρc +

h

2
mxge

T
3 Rk(R

T
k δRk)Fkρxk+1

.

By following the same procedure used to derive (3.90), we obtain

T∗eLRk ·DRkLdk =
h

2
mgρ̂cR

T
k e3 +

h

2
mxgρ̂xkR

T
k e3 +

h

2
mgFkρ̂cR

T
k+1e3 +

h

2
mxgFkρ̂xkR

T
k+1e3.

(3.93)

The derivative of the discrete Lagrangian with respect to ∆xk is given by

D∆xkLdk =
mx

h
∆xk −

mx

h
tr
[
Qe1ρ

T
xk

(Fk − I)
]

+
h

2
mxge

T
3 Rk+1Qe1 −

h

2
κxk+1. (3.94)
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The Ad∗ operation is the identity on R. Since δρxk = Qe1δxk, the derivative of the discrete

Lagrangian with respect to xk is given by

DxkLdk = −mx

2h
tr
[
(Qe1ρ

T
xk

+ ρxe
T
1 Q

T )(Fk − I)2 + 2∆xk(Fk − I)
]

+
h

2
mxge

T
3 RkQe1 +

h

2
mxge

T
3 Rk+1Qe1 −

h

2
κxk −

h

2
κxk+1. (3.95)

Discrete-time Euler-Lagrange Equations. We substitute (3.91)-(3.95) to (3.10) for gk = (Rk, xk)
and fk = (Fk,∆xk) to obtain the discrete-time Euler-Lagrange equations

1
h

(Ak−1Fk−1 − F Tk−1A
T
k−1 − FkAk +ATk F

T
k )∨

+ hmgρ̂cR
T
k e3 + hmxgρ̂xkR

T
k e3 = 0,

(3.96)

Ak = Jd +
mx

2
(ρxkρ

T
xk
Fk + Fkρxkρ

T
xk
− 2ρxkρ

T
xk

) +mxQe1∆xkρTxk , (3.97)

−mx

h
(xk+1 − 2xk+xk−1)− mx

h
tr
[
Qe1ρ

T
xk−1

(Fk−1 − I)
]

+
mx

h
tr
[
Qe1ρ

T
xk

(Fk − I)
]

− mx

2h
tr
[
(Qe1ρ

T
xk

+ ρxe
T
1 Q

T )(Fk − I)2 + 2(xk+1 − xk)(Fk − I)
]

+ hmxge
T
3 RkQe1 − hκxk = 0.

(3.98)

Discrete-time Legendre Transformation. The discrete Legendre transformation yields the follow-

ing discrete-time Hamilton’s equations.

pΩk =
1
h

(FkAk −ATk F Tk )∨ − h

2
mgρ̂cR

T
k e3 −

h

2
mxgρ̂xkR

T
k e3, (3.99)

pxk =
mx

h
∆xk −

mx

h
tr
[
Qe1ρ

T
xk

(Fk − I)
]

+
mx

2h
tr
[
(Qe1ρ

T
xk

+ ρxe
T
1 Q

T )(Fk − I)2 + 2∆xk(Fk − I)
]
− h

2
mxge

T
3 RkQe1 +

h

2
κxk,

(3.100)

Ak = Jd +
mx

2
(ρxkρ

T
xk
Fk + Fkρxkρ

T
xk
− 2ρxkρ

T
xk

) +mxQe1∆xkρTxk , (3.101)

pΩk+1
=

1
h

(AkFk − F Tk Ak)∨ +
h

2
mgρ̂cR

T
k+1e3 +

h

2
mxgρ̂xk+1

RTk+1e3, (3.102)

pxk+1
=
mx

h
∆xk −

mx

h
tr
[
Qe1ρ

T
xk

(Fk − I)
]

+
h

2
mxge

T
3 Rk+1Qe1 −

h

2
κxk+1. (3.103)

For given (Rk, xk,Ωk, ẋk), we find (pΩk , pxk) by (2.79). We use a fixed point iteration to deter-

mine Fk. For an initial guess of Fk, the corresponding ∆xk is determined from (3.100), and Ak
is determined from (3.101). Then, we can find Fk by solving (3.99). This is repeated until Fk
converges. (Rk+1, xk+1) are obtained from (3.87), and (pΩk+1

, pxk+1
) are obtained from (3.102),

(3.103). The velocities (Ωk+1, ẋk+1) can be determined by (2.79). This yields a discrete-time flow

map (Rk, xk,Ωk, ẋk)→ (Rk+1, xk+1,Ωk+1, ẋk+1).
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Figure 3.4: Numerical simulation for a 3D pendulum with an internal degree of freedom

Numerical Results. We compute the flow of discrete-time Hamilton’s equations. The physical

constants for the 3D pendulum with an internal degree of freedom are chosen as

m = 1 kg, mx = 0.1 kg, ρc = [0, 0, 1] m, d = 0.15 m, κ = 1.1 N/m,

J = diag[1.03, 1.06, 0.05] kgm2, Q =

1.00 0.00 0.00
0.00 0.25 0.96
0.00 0.96 −0.25

 .
Initial conditions are chosen as

x0 = 0.10 m, ẋ0 = 0.00 m/s,

R0 = exp(
π

6
ê2), Ω0 = [0.1, 0.2, 1.0] rad/s.

Figure 3.4 shows responses of the angular velocity of the pendulum, the position of the particle

with respect to the 3D pendulum, and the velocity of the particle. The computed orthogonality error

of the rotation matrix is also shown.

3.3.4 3D Pendulum on a Cart

Consider the 3D pendulum whose pivot is attached to a cart moving on a horizontal plane, presented

in Section 2.3.4.

Configuration Manifold. The configuration manifold is SO(3)×R2. The group action defines the

discrete-time update map (3.11) as

(Rk+1, xk+1, yk+1) = (Rk, xk, yk)(Fk,∆xk,∆yk)

= (RkFk, xk + ∆xk, yk + ∆yk),

for (Fk,∆xk,∆yk) ∈ SO(3)× R2. The adjoint operator also has a product structure as follows

Ad(F,∆x,∆y)(η̂, x
′, y′) = (F η̂F T , x′, y′), Ad∗(F,∆x,∆y)(η̂, x

′, y′) = (F T η̂F, x′, y′).
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Discrete Lagrangian. Recalling (2.84), the Lagrangian is given by

L(R,Ω, ẋ, ẏ) =
1
2

(M +m)(ẋ2 + ẏ2) +
1
2

ΩTJΩ +mẋeT1 Ṙρc +mẏeT2 Ṙρc +mgeT3 Rρc.

The discrete Lagrangian is chosen as

Ld(Rk, xk, yk, Fk,∆xk,∆yk) =
1

2h
(M +m)((∆xk)2 + (∆yk)2) +

1
h

tr[(I − Fk)Jd]

+
m

h
∆xkeT1 Rk(Fk − I)ρc +

m

h
∆ykeT2 Fk(Rk − I)ρc +

h

2
mgeT3 Rkρc +

h

2
mgeT3 RkFkρc.

(3.104)

We find the expressions for the derivatives of the discrete Lagrangian. We have

DFkLdk · δFk = −1
h

tr[δFkJd] +
m

h
∆xkeT1 RkδFkρc +

m

h
∆ykeT2 RkδFkρc +

h

2
mgeT3 RkδFkρc

= −1
h

tr
[
FkF

T
k δFkJd

]
+
m

h
∆xkeT1 Rk+1F

T
k δFkρc +

m

h
∆ykeT2 Rk+1F

T
k δFkρc

+
h

2
mgeT3 Rk+1F

T
k δFkρc. (3.105)

Since F Tk δFk is skew-symmetric, and using (3.68), the first term of (3.105) can be written as

−1
h

tr
[
Fk(F Tk δFk)Jd

]
= −1

h
tr
[
(F Tk δFk)JdFk

]
=

1
h

〈
JdFk − F Tk Jd, F Tk δFk

〉
.

We use the identity: for any x, y, z ∈ R3,

yT x̂z = −tr
[
yzT x̂

]
=
〈
yzT − zyT , x̂

〉
. (3.106)

Using (3.106), the second term of (3.105) can be written as

m

h
∆xkeT1 Rk+1F

T
k δFkρc =

m

h
∆xk

〈
RTk+1e1ρ

T
c − ρceT1 Rk+1, F

T
k δFk

〉
.

We apply the same identity to the remaining terms of (3.105) to obtain

T∗eLFk ·DFkLdk =
1
h

(JdFk − F Tk Jd) +
m

h
∆xk(RTk+1e1ρ

T
c − ρceT1 Rk+1)

+
m

h
∆yk(RTk+1e2ρ

T
c − ρceT2 Rk+1) +

h

2
mg(RTk+1e3ρ

T
c − ρceT3 Rk+1).

(3.107)

Similarly, we obtain

T∗eLRk ·DRkLdk =
m

h
∆xk(RTk e1ρ

T
c (F Tk − I)− (Fk − I)ρce1Rk)

+
m

h
∆yk(RTk e2ρ

T
c (F Tk − I)− (Fk − I)ρce2Rk)

+
h

2
mg(RTk e3ρ

T
c − ρceT3 Rk) +

h

2
mg(RTk e3ρ

T
c F

T
k − FkρceT3 Rk). (3.108)

80



We have Ad∗
F−1
k

(T∗eLFk · DFkLdk) = Fk(T∗eLFk · DFkLdk)F Tk . The derivatives of the discrete

Lagrangian with respect to ∆xk, ∆yk are given by

D∆xkLdk =
1
h

(M +m)∆xk +
m

h
eT1 (Rk+1 −Rk)ρc, (3.109)

D∆ykLdk =
1
h

(M +m)∆yk +
m

h
eT2 (Rk+1 −Rk)ρc. (3.110)

Discrete-time Euler-Lagrange Equations. Substituting (3.107)-(3.110) into (3.10), we obtain the

discrete Euler-Lagrange equations for the 3D pendulum on a cart.

1
h

(M +m)(xk+1 − 2xk + xk−1) +
m

h
eT1 (Rk+1 − 2Rk +Rk−1)ρc = 0, (3.111)

1
h

(M +m)(yk+1 − 2yk + yk−1) +
m

h
eT2 (Rk+1 − 2Rk +Rk−1)ρc = 0, (3.112)

1
h

(FkJd − JdF Tk − JdFk−1 + F Tk−1Jd) = −m
h

(xk+1 − 2xk + xk−1)(RTk e1ρ
T
c − ρceT1 Rk)

− m

h
(yk+1 − 2yk + yk−1)(RTk e2ρ

T
c − ρceT2 Rk) + hmg(RTk e3ρ

T
c − ρceT3 Rk).

(3.113)

Using the property x̂× y = yxT − xyT , the third equation can be written as

1
h

(FkJd − JdF Tk − JdFk−1 + F Tk−1Jd)
∨

= −m
h

(xk+1 − 2xk + xk−1)ρ̂cRTk e1 −
m

h
(yk+1 − 2yk + yk−1)ρ̂cRTk e2 + hmgρ̂cR

T
k e3.

(3.114)

Discrete-time Legendre Transformation. The discrete Legendre transformation yields the follow-

ing discrete-time Hamilton’s equations.

pxk =
1
h

(M +m)(xk+1 − xk) +
m

h
e1(Rk+1 −Rk)ρc, (3.115)

pyk =
1
h

(M +m)(yk+1 − yk) +
m

h
e2(Rk+1 −Rk)ρc, (3.116)

p̂Ωk =
1
h

(FkJd − JdF Tk )

+
{
m

h
(xk+1 − xk)ρ̂cRTk e1 +

m

h
(yk+1 − yk)ρ̂cRTk e2 −

h

2
mgρ̂cR

T
k e3

}∧
, (3.117)

Rk+1 = RkFk, (3.118)

pxk+1
= pxk , (3.119)

pyk+1
= pyk , (3.120)

p̂Ωk+1
=

1
h

(JdFk − F Tk Jd)

+
{
m

h
(xk+1 − xk)ρ̂cRTk+1e1 +

m

h
(yk+1 − yk)ρ̂cRTk+1e2 +

h

2
mgρ̂cR

T
k+1e3

}∧
.

(3.121)
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For given (Rk, xk, yk,Ωk, ẋk, ẏk), we find (pΩk , pxk , pyk) by (2.90). We use a fixed point itera-

tion to determine Rk+1. For an initial guess of Rk+1, the corresponding xk+1, yk+1 are obtained

from (3.115), (3.116). Then, we can find Fk by solving (3.117). The new value for Rk+1 is

given by (3.118). This is repeated until Rk+1 converges. Then, xk+1, yk+1 are obtained from

(3.115), (3.116), and (pΩk+1
, pxk+1

, pyk+1
) are obtained by (3.119), (3.120), and (3.121). The

velocities (Ωk+1, ẋk+1, ẏk+1) can be obtained from (2.90). This yields a discrete-time flow map

(Rk, xk, yk,Ωk, ẋk, ẏk)→ (Rk+1, xk+1, yk+1,Ωk+1, ẋk+1, ẏk+1).

Numerical Results. We compare the computational properties of the discrete-time equations of

motion given by (3.115)-(3.121) with a 4(5)-th variables step size Runge-Kutta method. The physi-

cal constants for the 3D pendulum on a cart are chosen as

M = m = 1 kg, ρc = [0.25, 0.25, 1] m, J =

 1.09 −0.06 −0.25
−0.05 1.10 −0.25
−0.25 −0.25 0.15

 kgm2.

Initial conditions are chosen such that the mass center of the system is located at the origin, and the

total linear momentum is zero.

x0 = −0.125 m, ẋ0 = 0.525 m/s, y0 = 0.5 m, ẏ0 = −0.0125 m/s,

R0 =

1 0 0
0 0 −1
0 1 0

 , Ω0 = [0.1, 0.2, 5.0] rad/s.

Figure 3.5(a) shows the computed total energy for 50 seconds. The Lie group variational inte-

grator preserves the total energy well. But there is a notable dissipation of the computed total energy

using the Runge-Kutta method. Similar characteristics are observed for the orthogonality error of

the rotation matrices in Figure 3.5(b).

It can be shown that the horizontal component of the total linear momentum is conserved. As

a result, the mass center moves along the vertical e3 axis, and the horizontal location of the mass

center of the system is fixed. Figure 3.5(c)-3.5(d) show the trajectory of the cart on the horizontal

plane, and Figure 3.5(e)-3.5(g) show the initial configuration and the configuration at t = 700 sec.

It is interesting to observe that the computed mass center of the Runge-Kutta method drifts in the

horizontal plane, as it does not preserve the total linear momentum properly.
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Figure 3.5: Numerical simulation for a 3D pendulum on a cart (LGVI: red, solid, RK4(5): blue, dotted)
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3.3.5 Single Rigid Body

Consider a rigid body acting under a potential that is dependent of the attitude and the position of

the body, presented in Section 2.3.5.

Configuration Manifold. Let gk = (Rk, xk), fk = (Fk, Yk) ∈ SE(3) for Rk, Fk ∈ SO(3),

xk, Yk ∈ R3. The group action of SE(3) is matrix multiplication in homogeneous coordinates.

The discrete-time kinematics equation (3.11) can be written as[
Rk+1 xk+1

0 1

]
=

[
Rk xk

0 1

][
Fk Yk

0 1

]
=

[
RkFk xk +RkYk

0 1

]
. (3.122)

The adjoint operator for SE(3) can be written in a matrix form as

Ad(R,x) =

[
R 0
x̂R R

]
, Ad∗(R,x) =

[
RT −RT x̂
0 RT

]
. (3.123)

Discrete Lagrangian. The discrete Lagrangian is chosen as

Ld(gk, fk) = T (fk)−
h

2
U(gk)−

h

2
U(gkfk), (3.124)

where the discrete kinetic energy term is defined as

T (fk) =
1
h
〈〈fk − e, fk − e〉〉 =

m

2h
Yk · Yk +

1
h

tr[(I3×3 − Fk)Jd] .

Thus, δT (fk) is given by

δT (fk) =
m

h
Yk · δYk +

1
h

tr[−δFkJd]

=
m

h
Yk · δYk +

1
h

tr
[
−F Tk δFJdFk

]
.

Since F Tk δFk is skew-symmetric, this can be rewritten as

δT (fk) =
m

h
F Tk Yk · F Tk δYk −

1
2h

tr
[
F Tk δF (JdFk − F Tk Jd)

]
=

〈[
1
h(JdFk − F Tk Jd)

m
h F

T
k Yk

0 0

]
,

[
F Tk δFk F Tk δYk

0 0

]〉
. (3.125)

Using (2.96) and (2.62), the derivatives of the potential term can be written as

−Dgk(U(gk) + U(gkfk)) · δgk −DfkU(gkfk) · δfk

=

[
M̂k −RTk

∂Uk
∂xk

0 0

]
· ηk +

[
M̂k+1 −RTk+1

∂Uk+1

∂xk+1

0 0

]
· (Adf−1

k
ηk + f−1

k δfk). (3.126)
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From (3.125) and (3.126), T∗eLfk ·DfkLd(gk, fk) is given by

T∗eLfk ·DfkLd(gk, fk) =

[
1
h(JdFk − F Tk Jd)

m
h F

T
k Yk

0 0

]
+

[
h
2M̂k+1 −h

2R
T
k+1

∂Uk+1

∂xk+1

0 0

]
.

(3.127)

Using (3.123), Ad∗
f−1
k

(T∗eLfk ·DfkLd(gk, fk)) is computed in R6 as

Ad∗
f−1
k

(T∗eLfk ·DfkLd(gk, fk))

=

[
Fk FkF̂

T
k Yk

0 Fk

][
1
h (̌JdFk − F Tk Jd)

m
h F

T
k Yk

]
+ Ad∗

f−1
k

[
h
2M̂k+1

h
2 −R

T
k+1

∂Uk+1

∂xk+1

0 0

]

=

[
1
h (̌FkJd − JdF Tk )

m
h Yk

]
+ Ad∗

f−1
k

[
h
2M̂k+1 −h

2R
T
k+1

∂Uk+1

∂xk+1

0 0

]
. (3.128)

An expression for T∗eLgk ·DgkLd(gk, fk) is obtained from (3.126).

T∗eLgk ·DgkLd(gk, fk) =

[
h
2M̂k −h

2R
T
k
∂Uk
∂xk

0 0

]
+ Ad∗

f−1
k

[
h
2M̂k+1 −h

2R
T
k+1

∂Uk+1

∂xk+1

0 0

]
. (3.129)

Discrete-time Euler-Lagrange Equations. Substituting (3.127), (3.128), and (3.129) into (3.10),

JdFk−1 − F Tk−1Jd − (FkJd − JdF Tk ) + h2M̂k = 0, (3.130)

m

h2
F Tk−1Yk−1 −

m

h2
Yk −RTk

∂Uk
∂xk

= 0. (3.131)

Since the left-trivialization is used, these equations are expressed in the body fixed frame. From

(3.122), Yk = RTk (xk+1 − xk). Substituting this into the above equation, we obtain

m

h2
F Tk−1R

T
k−1(xk − xk−1)− m

h2
RTk (xk+1 − xk)−RTk

∂Uk
∂xk

= 0.

Multiplying this by Rk, and rearranging, we obtain

m

h2
(xk+1 − 2xk + xk−1) = −∂Uk

∂xk
. (3.132)

Therefore, the discrete-time Euler-Lagrange equations are given by (3.130) and (3.132).

Discrete Legendre Transformation. Let (Πk,Γk) ∈ se(3)∗ be the angular momentum and the

linear momentum of the rigid body, represented with respect to the body fixed frame. From (3.14)

and (3.15), the discrete Legendre transformations are given by[
Π̂k Γk
0 0

]
=

[
1
h(FkJd − JdF Tk )− h

2M̂k
m
h Yk + h

2R
T
k
∂Uk
∂xk

0 0

]
,
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[
Π̂k+1 Γk+1

0 0

]
=

[
1
h(JdFk − F Tk Jd)

m
h F

T
k Yk

0 0

]
+

[
h
2M̂k+1 −h

2R
T
k+1

∂Uk+1

∂xk+1

0 0

]
.

It is desirable to express the discrete-time equations for the location and the linear momentum of

the rigid body with respect to the reference frame. Let γ ∈ R3∗ be the linear momentum represented

with respect to the reference frame, i.e. γ = RΓ. The discrete-time Hamilton’s equations can be

written as

hΠ̂k +
h2

2
M̂k = JdFk − F Tk Jd, (3.133)

Πk+1 = F Tk Πk +
h

2
F Tk Mk +

h

2
Mk+1, (3.134)

xk+1 = xk +
h

m
γk −

h2

2m
∂Uk
∂xk

, (3.135)

γk+1 = γk −
h

2
∂Uk
∂xk

− h

2
∂Uk+1

∂xk+1
. (3.136)

Numerical Results. We simulate the dynamics of a dumbbell body acting under a gravitational

potential from a fixed spherical body. We assume that the mass of the dumbbell is negligible com-

pared to the mass of the spherical body, and the origin of the reference frame is located at the mass

center of the spherical body. The gravitational potential results in a nontrivial coupling between the

attitude dynamics and the orbital dynamics. This model is referred to as a restricted full two body

problem.

The dumbbell model consists of two equal rigid spheres and a rigid massless connecting rod.

This dumbbell rigid body model results in a simple closed form for the mutual gravitational potential

given by

U(R, x) = −GMm

2

2∑
q=1

‖x+Rρq‖,

where G is the universal gravitational constant, and M is the mass of the spherical body. The

constant m is the mass of the spherical body, and ρq ∈ R3 is a vector from the origin of the body-

fixed frame to the qth sphere of the dumbbell in the body-fixed frame.

We compare computational properties of the Lie group variational integrator with Runge-Kutta

methods applied to three types of attitude representations, namely, rotation matrices, quaternions,

and Euler-angles. The attitude kinematics equation is expressed in terms of quaternions and Euler-

angles, and the Runge-Kutta method is applied.

Figure 3.6 shows numerical simulation results for a near-circular orbit, where the trajectory of

the dumbbell, the angular velocity response, the computed total energy, and the orthogonality error

are presented. The Lie group variational integrator preserves the total energy and the Lie group

structure of SO(3). The mean total energy deviation is 2.5983× 10−4, and the mean orthogonality

error is 1.8553 × 10−13. But, there is a notable dissipation of the computed total energy and the

orthogonality error for the Runge-Kutta method.
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(a) Trajectory of the dumbbell
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Figure 3.6: Numerical simulation for a single rigid body (Lie group variational integrator:LGVI, Runge-Kutta with
rotation matrices:RK.RotMat, Runge-Kutta with Euler-angles:RK. EulAng, Runge-Kutta with quaternions:RK.qua

It is interesting to see that the Runge-Kutta method using quaternions, which is generally as-

sumed to have better computational properties than the kinematics equation with rotation matrices,

has a larger total energy error and a larger orthogonality error. Since the unit length of the quater-

nion vector is not preserved in the numerical computations, the orthogonality errors arise when

converted to a rotation matrix. This suggests that, even with conventional (non-geometric) inte-

grators, the rotation matrix has better computational properties than quaternions for the rigid body

dynamics.
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3.3.6 Full Body Problem

Consider the full body problem presented in Section 2.3.6.

Discrete-time Euler-Lagrange Equations. The configuration manifold of the full n body problem

is (SE(3))n. Since the dynamics of the full body system are only coupled through the mutual

potential, the development for a single rigid body, presented in Section 3.3.5, is readily extended to

the full n body problem to obtain the discrete-time Euler-Lagrange equations.

JdiFik−1
− F Tik−1

Jdi − (FkiJdi − JdiF
T
ki

) + h2M̂ik = 0, (3.137)

mi

h2
(xik+1

− 2xik + xik−1
) = − ∂Uk

∂xik
, (3.138)

where the subscript i refers to the i-th rigid body for i ∈ {1, . . . , n}. Similarly, discrete-time

Hamilton’s equations given by (3.133)-(3.136) can be easily extended to the full n-body problem.

Discrete-time Reduced Euler-Lagrange Equations. When the mutual potential depends only on

the relative positions and the relative attitudes of rigid bodies, the Lagrangian is invariant under the

action of SE(3), and the configuration manifold can be reduced to a quotient space (SE(3))n−1.

Discrete-time reduced Euler-Lagrange equations for the full two body problem have been de-

veloped in Lee et al. (2007b,c). The procedure to derive discrete-time reduced Euler-Lagrange

equations is the same as the procedure presented in Section 3.1. The expressions for the variations

should be carefully developed for the reduced variables. Here, we present the resulting discrete-time

reduced Euler-Lagrange equations for the full two body problem. The detailed development can be

found in Lee et al. (2007c).

The discrete-time reduced Euler-Lagrange equations for the full two body problem are given by

F2kXk+1
− 2X

k
+ F T2k−1

X
k−1

= −h
2

m

∂U
k

∂X
k

, (3.139)

F
k+1

JdRk+1
− JdRk+1

F T
k+1

= F T2k
(
F
k
JdRk − JdRkF

T
k

)
F2k − h

2M̂k+1, (3.140)

F2k+1
Jd2 − Jd2F T2k+1

= F T2k
(
F2kJd2 − Jd2F

T
2k

)
F2k + h2X

k+1
× ∂U

∂X
k+1

+ h2M̂k+1, (3.141)

R
k+1

= F T2kFkRk
, (3.142)

R2k+1
= R2kF2k . (3.143)

The discrete Legendre transformation yields the discrete-time Hamilton’s equations.

X
k+1

= F T2k

(
X
k

+ h
Γ
k

m
− h2

2m
∂U

k

∂X
k

)
, (3.144)

Γ
k+1

= F T2k

(
Γ
k
− h

2
∂U

k

∂X
k

)
− h

2
∂U

k+1

∂X
k+1

, (3.145)

Π
k+1

= F T2k

(
Π
k
− h

2
M

k

)
− h

2
M

k+1
, (3.146)
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Π2k+1
= F T2k

(
Π2k +

h

2
X
k
× ∂U

∂X
k

+
h

2
M

k

)
+
h

2
X
k+1
× ∂U

∂X
k+1

+
h

2
M

k+1
, (3.147)

R
k+1

= F T2kFkRk
, (3.148)

h

(
Πk −

h

2
M

k

)∧
= F

k
JdRk − JdRkF

T
k
, (3.149)

h

(
Π2k +

h

2
X
k
× ∂U

∂X
k

+
h

2
M

k

)∧
= F2kJd2 − Jd2F

T
2k
, (3.150)

where the reduced variables for the linear momentum and the angular momentum are given by

Γ = mV , Π = JRΩ = RJ1Ω1, and Π2 = J2Ω2.

Numerical Results. We simulate the dynamics of two simple dumbbell bodies acting under their

mutual gravity. Each dumbbell model consists of two equal rigid spheres and a rigid massless

connecting rod. This dumbbell rigid body model results in a simple closed form for the mutual

gravitational potential given by

U(X,R) = −
2∑

p,q=1

Gm1m2/4∥∥X + ρ2p +Rρ1q

∥∥ ,
where G is the universal gravitational constant, mi ∈ R is the total mass of the ith dumbbell, and

ρip ∈ R3 is a vector from the origin of the body-fixed frame to the pth sphere of the ith dumbbell in

the ith body-fixed frame. The vectors ρi1 = [li/2, 0, 0]T , ρi2 = −ρi1 , where li is the length between

the two spheres.

The mass and length of the second dumbbell are twice that of the first dumbbell. The other

simulation parameters are chosen such that the total linear momentum in the inertial frame is zero

and the relative motion between the two bodies are near-elliptic orbits. The trajectories of the two

dumbbell bodies are shown in Figure 3.7(a).

We compare the computational properties of the Lie group variational integrator (LGVI) with

other second order numerical integration methods: an explicit Runge-Kutta method (RK), a sym-

plectic Runge-Kutta method (SRK), and a Lie group method (LGM). One of the distinct features of

the LGVI is that it preserves both the symplectic property and the Lie group structure for the full

rigid body dynamics. A comparison can be made between the LGVI and other integration methods

that preserve either none or one of these properties: an integrator that does not preserve any of these

properties (RK), a symplectic integrator that does not preserve the Lie group structure (SRK), and a

Lie group integrator that does not preserve symplecticity (LGM). These methods are implemented

by an explicit mid-point rule, an implicit mid-point rule, and the Crouch-Grossman method pre-

sented in Hairer et al. (2000) for the continuous equations of motion (2.108)–(2.113), respectively.

For the LGVI, the discrete-time equations of motion given by (3.144) through (3.150) are used. All

of these integrators are second order accurate. A comparison with a higher-order integrator can be

found in Fahnestock et al. (2006).

Figure 3.7(b) shows the computed total energy response over 30 seconds with an integration step
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size h = 0.002 sec. For the LGVI, the total energy is nearly constant, and it has no tendency to drift;

while the other integrators fail to preserve the total energy. This can be observed in Figure 3.7(c),

where the mean total energy deviations are shown for varying integration step sizes. It is seen that

the total energy errors of the SRK method is close to the RK method, but the total energy error

of the LGVI is smaller by several orders. Figure 3.7(d) shows the mean orthogonality errors. The

LGVI and the LGM conserve the orthogonal structure at an error level of 10−10, while the RK and

the SRK are much less accurate.

These computational comparisons suggest that for numerical integration of Hamiltonian sys-

tems evolving on a Lie group, such as full body problems, it is critical to preserve both the symplec-

tic property and the Lie group structure. For the RK and the SRK, the orthogonality error in the ro-

tation matrix corrupts the attitude of the rigid bodies. The accumulation of this attitude degradation

results in significant errors in the computation of the gravitational forces and moments dependent

upon the position and the attitude, which affect the accuracy of the entire numerical simulation. The

LGM conserves the orthogonal structure of rotation matrices numerically, but it does not respect

the characteristics of the Hamiltonian dynamics properly as a non-symplectic integrator; this causes

a drift of the computed total energy. The LGVI is a geometrically exact integration method in the

sense that it preserves all of the geometric features of the full rigid body dynamics concurrently.

This verifies the superiority of the LGVI in terms of computational accuracy. The performance

advantages of the LGVI becomes even more dramatic as the simulation time is increased.

Computational efficiency is compared in Figure 3.7(e), where CPU times of all methods are

shown for varying step sizes. The SRK has the largest CPU time requiring solution of an implicit

equation in 36 variables at each integration step. The RK and the LGM require similar CPU times

since both are explicit. It is interesting to see that the implicit LGVI actually requires less CPU time

than the explicit methods RK and LGM. This follows from the fact that the second order explicit

methods RK and LGM require two evaluations of (2.108)–(2.113), including the expensive force

and moment computations at each step. The LGVI requires only one evaluation at each step in ad-

dition to the solution the implicit equation. The computational approach described in Section 3.3.8

is efficient for solving the implicit equation (3.149) and hence it takes less time than the evalua-

tion of (2.108)–(2.113). The difference is further increased as the rigid body model becomes more

complicated since it involves a larger computation burden in computing the gravitational forces and

moments. Based on these properties, we claim that the LGVI is almost explicit. This comparison

demonstrates the higher computational efficiency of the LGVI.

In summary, comparing both Figure 3.7(c) and 3.7(e), we see that the LGVI requires 16 times

less CPU time than the LGM, 35 times less CPU time than the RK, and 98 times less CPU time than

the SRK for similar total energy error in this computational example for the full body problem.
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(a) Trajectories of two dumbbell bodies
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(d) Mean orthogonality error ‖I −RTR‖ vs. step size
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Figure 3.7: Numerical simulation for a full two body problem (Explicit Runge-Kutta:RK, symplectic Runge-Kutta:SRK,
Lie group method:LGM, and Lie group variational integrator:LGVI )
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3.3.7 Two Rigid Bodies Connected by a Ball Joint

Consider the two rigid bodies connected by a ball joint presented in Section 2.3.7.

Configuration Manifold. The configuration manifold is SO(3)×SO(3)×R3. The discrete update

map (3.11) can be written as

(R1k+1
, R2k+1

, xk+1) = (R1k , R2k , xk)(F1k , F2k ,∆xk)

= (R1kF1k , R2kF2k , xk + ∆xk)

for (F1k , F2k ,∆xk) ∈ SO(3)× SO(3)× R3. The adjoint operator also has product structure.

Ad(F1,F2,x)(η̂1, η̂2, x
′) = (F1η̂1F

T
1 , F2η̂2F

T
2 , x), Ad∗(F1,F2,x)(η̂1, η̂2, x

′) = (F T1 η̂1F1, F
T
2 η̂2F2, x).

Discrete Lagrangian. Recall that, from (2.114), the Lagrangian is given by

L(R1, R2, x,Ω1,Ω2, ẋ) =
1
2

(m1 +m2)ẋ · ẋ+
1
2

Ω1 · J1Ω1 +
1
2

Ω2 · J2Ω2

+ ẋ · (m1R1Ω̂1d1 +m2R2Ω̂2d2)− U(R1, R2, x)

for a configuration dependent potential U : SO(3)× SO(3)× R3 → R.

For gk = (R1k , R2k , xk) and fk = (F1k , F2k ,∆xk), the discrete Lagrangian is chosen as

Ld(gk, fk) =
m1 +m2

2h
∆xk ·∆xk +

1
h

tr[(I3×3 − F1k)Jd1 ] +
1
h

tr[(I3×3 − F2k)Jd2 ]

+
1
h

tr
[
m1R1k(F1k − I3×3)d1∆xTk

]
+

1
h

tr
[
m2R2k(F2k − I3×3)d2∆xTk

]
− hU(gk).

We find the expressions for the derivatives of the discrete Lagrangian. Using the identity given in

(3.68), we obtain

δ(tr[(I3×3 − Fik)Jdi ]) = tr[−δFikJdi ] = tr
[
−F TikδFikJdiFik

]
=
〈
F TikδFik , JdiFik − F

T
ik
Jid
〉
.

Similarly, we have

δ(tr
[
miRi(Fik − I3×3)di∆xTk

]
) = −

〈
η̂i,mi(Fik − I)di∆xTkRik −miR

T
ik

∆xkdTi (F Tik − I)
〉

−
〈
F TikδFik ,midi∆xTkRikFik −miF

T
ik
RTik∆xkdTi

〉
+ ∆xTkmiRik(Fik − I)di.

From these, we have

T∗eLFik ·DFik
Ldk =

1
h

(Jdi −midi∆xTkRik)Fik −
1
h
F Tik (Jid −miR

T
ik

∆xkdTi ),

Ad∗
F−1
ik

(T∗eLFik ·DFik
Ldk) = Fik(T∗eLFik ·DFik

Ldk)F Tik ,
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T∗eLRik ·DRik
Ldk =

mi

h
RTik∆xkdTi (F Tik − I)− mi

h
(Fik − I)di∆xTkRik − hM̂ik ,

Dxk+1
Ldk =

1
h

(m1 +m2)∆xk +
m1

h
R1k∆xkd1 +

m2

h
R2k∆xkd2,

DxkLdk = −1
h

(m1 +m2)∆xk −
m1

h
R1k(F1k − I)d1 −

m2

h
R2k(F2k − I)d2 − h

∂Uk
∂xk

.

Discrete Euler-Lagrange Equations. Substituting these into (3.10), we obtain the discrete Euler-

Lagrange equations for the two rigid bodies connected by a ball joint as

ATik+1
Fik+1

− F Tik+1
Aik+1

+AikFik − F
T
ik
ATik = hB̂ik + h2M̂ik , (3.151)

Aik = Jid −miR
T
ik

(xk+1 − xk)dTi , (3.152)

B̂ik =
mi

h
(Fik − I)di(xk+1 − xk)TRik −

mi

h
RTik(xk+1 − xk)dTi (F Tik − I), (3.153)

Rik+1
= RikFik , (3.154)

1
h

(m1 +m2)(xk+2 − 2xk+1 + xk) +
m1

h
(R1k+1

(F1k+1
− 2I) +R1k)d1

+
m2

h
(R2k+1

(F2k+1
− 2I) +R2k)d2 = −h∂Uk+1

∂xk+1

(3.155)

for i ∈ {1, 2}. These equation can be solved by a fixed point iteration for xk+2. For given

(R1k , R2k , F1k , F2k , xk, xk+1), we guess xk+2. Then, Fik+1
can be obtained by solving (3.151),

and Rik+1
is obtained by (3.154). The new value of xk+2 is given by (3.155). This procedure is

repeated until xk+2 converges.

Discrete Legendre Transformation. Using the discrete Legendre transformation, the discrete equa-

tions of motion in Hamiltonian form are given by

p̂ik =
1
h

(FikJdi − JdiF
T
ik

) +
mi

h
(RTik(xk+1 − xk)dTi − di(xk+1 − xk)TRik) + hM̂k, (3.156)

pik+1
= F Tik (pik −Bik − hM̂k), (3.157)

B̂ik =
mi

h
(Fik − I)di(xk+1 − xk)TRik −

mi

h
RTik(xk+1 − xk)dTi (F Tik − I), (3.158)

p3k =
1
h

(m1 +m2)(xk+1 − xk) +
m1

h
R1k(F1k − I)d1 +

m2

h
R2k(F2k − I)d2 − h

∂Uk
∂xk

,

(3.159)

p3k+1
= p3k − h

∂Uk
∂xk

, (3.160)

Rik+1
= RikFik (3.161)

for i ∈ {1, 2}. For given (R1k , R2k , xk,Ω1k ,Ω2k , ẋk), we find (p1k , p2k , p3k) using (2.119). We

solve xk+1 iteratively: we guess xk+1, and solve (3.157) to obtain Fik+1
. Then, the new value

of xk+1 is obtained by (3.159). This procedure is repeated until xk+1 converges. Then, pik+1

93



and p3k+1
are obtained by (3.157) and (3.160), respectively, and R1k+1

, R2k+1
are obtained by

(3.161). Using (2.119), we find (Ω1k+1
,Ω2k+1

, ẋk+1). Thus, this yields a discrete-time flow map

(R1k , R2k , xk,Ω1k ,Ω2k , ẋk) → (R1k+1
, R2k+1

, xk+1,Ω1k+1
,Ω2k+1

, ẋk+1), and this process is re-

peated.

Numerical Results. We assume there is no potential field, U ≡ 0. We choose two elliptic cylinder

rigid bodies with different shapes. The properties of the rigid bodies are given by

m1 = 2km, J1 = diag[0.1000, 1.1558, 1.2358]kgm2, d1 = [−0.75, 0, 0]m, (3.162)

m1 = 1km, J2 = diag[0.0325, 0.2200, 0.2325]kgm2, d2 = [0.45, 0, 0]m. (3.163)

The initial conditions are chosen such that the total linear momentum is zero.

R10 = I, Ω10 = [0, 0.5, 0]rad/s, R20 = I, Ω20 = [1, 0, 0]rad/s,

x0 = [0.35, 0, 0]m, ẋ0 = [0, 0,−0.25]m/s.

Figure 3.8 shows the computed total energy, total linear momentum, and total angular mo-

mentum for the Lie group variational integrator and a 4(5)-th order variable step size Runge-Kutta

method. Since there is no potential, the total linear/anguar momentum should be preserved. The

Lie group variational integrators preserve the conserved quantities numerically, but there is notable

dissipation for the Runge-Kutta method.
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(a) Two rigid bodies connected by a ball joint

0 10 20 30 40 50
0.0669

0.067

0.0671

0.0672

t

E

(b) Computed total energy

0 10 20 30 40 50
−5

0

5
x 10

−4

0 10 20 30 40 50
−2

0

2
x 10

−3

γ
T

0 10 20 30 40 50
−5

0

5
x 10

−4

t

(c) Computed total linear momentum

0 10 20 30 40 50
0.0324

0.0325

0.0326

0 10 20 30 40 50
0.315

0.3155

0.316

π
T

0 10 20 30 40 50
−2

0

2
x 10

−4

t

(d) Computed total angular momentum

Figure 3.8: Numerical simulation for two rigid bodies connect by a ball joint (LGVI: red, solid, RK4(5): blue, dotted)
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3.3.8 Computational Approach

Most of the discrete-time Euler-Lagrange equations presented in this section include implicit equa-

tions. In particular, we need to find the relative update of the group elements represented by the

group action of fk ∈ G at each discrete time step. Since the implicit equations are solved repeatedly

at each time step, it is important to develop a fast computational algorithm for overall computational

efficiency of the presented discrete Euler-Lagrange equations.

The essential idea is expressing the group element fk ∈ G in terms of a Lie algebra element

using the exponential map. The exponential map is a local diffeomorphism from the Lie algebra

g near zero to the Lie group G near the identity element. Since fk represents the relative update

between two adjacent integration steps, it is close to the identity. Therefore, the implicit equations

can be expressed at the Lie algebra level.

This is desirable since the Lie algebra is a linear vector space. The implicit equation is solved

numerically in the linear space, and the corresponding group element is obtained by the exponential

map. Since the solution of the implicit equation is close to zero in the Lie algebra, the implicit

equation is easily solved as the step size is decreased.

In this section, we present a computational approach to solve the implicit equation on SO(3)
appearing in the discrete-time Euler-Lagrange equations for the 3D pendulum. This is the simplest,

but nontrivial, form of the implicit equation. The computational approach for other mechanical

systems can be obtained by extending the approach.

The discrete-time Euler-Lagrange equations (3.76) and the discrete-time Hamilton equations

(3.80) have the following form of the implicit equation; for given a ∈ R3 and Jd ∈ R3×3, we need

to find F ∈ SO(3) satisfying

â = FJd − JdF T . (3.164)

We rewrite this equation on R3 ' so(3) using the exponential map and the Cayley transformation,

to which a Newton iteration method is applied.

Exponential map

The exponential map on SO(3) has a closed form expression, referred to as Rodrigues’ formula (see

Marsden and Ratiu 1999):

F = exp f̂ = I3×3 +
sin ‖f‖
‖f‖

f̂ +
1− cos ‖f‖
‖f‖2

f̂2 (3.165)

for f ∈ R3. This physically represents the rotation about the axis f with the rotation angle ‖f‖.
Substituting (3.165) into (3.164) and using the properties f̂Jd + Jdf̂ = Ĵf , f̂ Ĵf − Ĵf f̂ =

f̂ × Jf , we obtain

â =
sin ‖f‖
‖f‖

Ĵf +
1− cos ‖f‖
‖f‖2

f̂ × Jf.
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Thus, (3.80) is converted into an equivalent vector equation in R3 as

0 = −a+
sin ‖f‖
‖f‖

Jf +
1− cos ‖f‖
‖f‖2

f × Jf ≡ A(f), (3.166)

where A : R3 → R3. We use the Newton method to solve this nonlinear vector equation 0 = A(f).

We use the following iteration formula iteration

f (i+1) = f (i) −∇A(f (i))−1A(f (i)), (3.167)

where the Jacobian∇A(f) in (3.167) can be expressed as

∇A(f) =
cos ‖f‖ ‖f‖ − sin ‖f‖

‖f‖3
JffT +

sin ‖f‖
‖f‖

J

+
sin ‖f‖ ‖f‖ − 2(1− cos ‖f‖)

‖f‖4
(f × Jf) fT +

1− cos ‖f‖
‖f‖2

{
−Ĵf + f̂J

}
.

We iterate until
∥∥f (i+1) − f (i)

∥∥ < ε for a given tolerance ε, and we find the rotation matrix F using

Rodrigues’ formula (3.165). The initial guess can be selected as the solution of the linearized vector

equation (3.166), which gives f (0) = J−1a, or the solution at the previous time step can be used as

the initial guess for the current step.

The implicit equation (3.166) expressed in R3 using the exponential map is well defined, since

the rotation matrix F represents the relative attitude update near the identity matrix. This computa-

tional approach technically avoids the nonlinear constraints associated with the rotation matrix F ;

the equivalent vector equation is iterated in R3.

However, the complicated expression for the Jacobian written in terms of trigonometric func-

tions may not be desirable for overall computational efficiency. Thus, we present another compu-

tational approach using the Cayley transformation. This approach reduces the computational load

using a numerically-efficient local diffeomorphism; the essential idea of solving an equivalent vec-

tor equation in R3 is the same as before.

Cayley transformation

The Cayley transformation is a local diffeomorphism between SO(3) and R3 given by

F = Cay(fc) = (I + f̂c)(I − f̂c)−1 = (I − f̂c)−1(I + f̂c)

=
1

1 + fTc fc
((1− fTc fc)I + 2f̂c + 2fcfTc ) (3.168)

for fc ∈ R3. This represents a rotation of a rigid body along the direction fc/ ‖fc‖ with rotation

angle θ determined by ‖fc‖ = tan θ
2 . It can be shown that exp f̂ = Cay(tan ‖f‖2

f
‖f‖). Thus,

the Cayley transformation can be considered to be a modification of the exponential map, where

the rotation angle is encoded in a different way. But, the Cayley transformation has the numerical

advantage that it does not require evaluation of computationally-expensive sin and cos terms.
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Using the Cayley transformation, we transform the implicit equation (3.164) into an equivalent

vector equation. Since the two matrices (I + f̂c) and (I − f̂c)−1 commute, we can write the Cayley

transformation in the following form for convenience.

F = Cay(fc) =
I + f̂c

I − f̂c
.

Substituting this into (3.164), we obtain

â =
I + f̂c

I − f̂c
Jd − Jd

I − f̂c
I + f̂c

.

Multiplying this by I − f̂c on the left side, by I + f̂c on the right side, we have

(I − f̂c)â(I + f̂c) = (I + f̂c)Jd(I + f̂c)− (I − f̂c)Jd(I − f̂c),

â+ â× fc − f̂câf̂c = f̂cJd + Jdf̂c + f̂cJd + Jdf̂c.

Using the following identities

f̂c × a = f̂câ− âf̂c, Ĵfc = Jdf̂c + f̂cJd, f̂câf̂c = −(aT fc)f̂c,

we obtain

(a+ a× fc + fc(aT fc))∧ = 2Ĵfc.

Therefore, (3.164) is converted into an equivalent vector equation in R3 as

0 = a+ a× fc + fc(aT fc)− 2Jfc ≡ Ac(fc). (3.169)

whereAc : R3 → R3. We use a Newton iteration to solve this nonlinear vector equation 0 = Ac(f).

We use the following iteration

f (i+1)
c = f (i)

c −∇Ac(f (i)
c )−1Ac(f (i)

c ), (3.170)

where the Jacobian∇Ac(fc) is given by

∇Ac(fc) = â+ (aT fc)I + fca
T − 2J. (3.171)

We iterate until
∥∥f (i+1) − f (i)

∥∥ < ε for a given tolerance ε, and we find the rotation matrix using

the Cayley transformation (3.168). The initial guess can be selected as the solution of the linearized

vector equation of (3.169), which gives f (0)
c = (2J − â)−1a, or the solution from the previous time

step can be used as the initial guess for the current step.
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3.3.9 Summary of Computational Properties

We have derived discrete-time Euler-Lagrange equations for several rigid body systems evolving on

a Lie group, and computational results are presented. Here, we summarize the computational prop-

erties of the Lie group variational integrator compared to other numerical integrators for dynamics

of rigid bodies.

Computational Accuracy. The Lie group variational integrators preserve the geometric properties

of mechanical systems on a Lie group. In particular, the computed total energy, momentum map,

and deviation from the Lie group configuration manifold are presented. As shown at Figure 3.2,

3.3(b), 3.5(a), 3.6(c), 3.7(b), and 3.8(b), the computed total energy of the Lie group variational

integrator oscillates near the initial value, but there is no increasing or decreasing drift for long time

periods. This is due to the fact that the numerical solutions of symplectic numerical integrators

are the exact solution of a perturbed Hamiltonian (see Hairer 1994). The perturbed value of the

Hamiltonian is preserved in the discrete-time flow. This is in contrast to other numerical integrators

evaluated in this dissertation, such as the explicit Runge-Kutta method, the symplectic Runge-Kutta

method, and (non-symplectic) Lie group methods, where the computed total energy increases (or

decreases) linearly with the simulation time.

The Lie group variational integrators preserves the momentum map exactly as discussed in

Section 3.1.3. This can be observed in Figure 3.3(d), 3.8(c) and 3.8(d), where the value of the

momentum map is preserved up to machine precision. From the numerical simulation of the 3D

pendulum on a cart in Figure 3.5(c), the mass center of the system is fixed in space, since the Lie

group variational integrator conserves the zero value of the total linear momentum. But the location

of the mass center for the explicit Runge-Kutta method drifts, as shown at Figure 3.5(d), since it

does not accurately preserve the total linear momentum. Comparing the terminal configurations of

both methods in Figure 3.5(f) and Figure 3.5(g), we see that the computational results obtained by

the explicit Runge-Kutta method are not reliable.

The structure of the Lie group configuration manifold is well preserved in the Lie group varia-

tional integrator. As shown in Figure 3.4(c), 3.5(b), 3.6(d) and 3.7(d), the deviation of the discrete-

time flow from the Lie group, measured by the orthogonality error
∥∥I −RTR∥∥, remains at machine

precision. But interestingly, the orthogonality error increases linearly with respect to the simulation

time, and accordingly, the mean orthogonality error increases as the time step decreases for a fixed

simulation time. This is due to the accumulation of roundoff errors. For example, since the rota-

tion matrix in SO(3) is updated by the group action of SO(3), which is matrix multiplication, the

k-th rotation matrix is obtained by k matrix multiplications, i.e. Rk = R0F0 · · ·Fk−1. The round-

off error at each matrix multiplication accumulates, and therefore the orthogonality error increases

linearly. The roundoff errors are unavoidable in any numerical computation with a finite digit rep-

resentation, and they are usually indiscernible. Here we can actually observe the accumulation of

roundoff errors, since there is no source for the orthogonality error except the roundoff errors in the

numerical computations. The magnitude of the orthogonality error is acceptable for any practical
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purpose. In summary, the Lie group variational integrators preserve the Lie group structure up to

roundoff errors. The explicit Runge-Kutta method and the symplectic Runge-Kutta method do not

preserve the structure of the Lie group. As shown at Figure 3.5(b) and 3.7(d), the orthogonality

error for these methods are about 1010 times larger than the Lie group variational integrators, and

consequently, the attitude of the rigid body is not computed accurately.

In summary, the Lie group variational integrators are geometrically accurate numerical integra-

tors in the sense that they preserve all of the geometric properties of the dynamics of rigid bodies,

such as symplecticity, momentum map, total energy, and Lie group structure.

Computational Efficiency. In Section 3.3.8, computational approaches to solve the implicit equa-

tions in the Lie group variational integrator are developed. The essential idea is to write the implicit

equations in terms of a Lie algebra element using the exponential map, and numerically solve the

transformed implicit equation in a vector space. The corresponding computational requirements

are much smaller than for the fully-implicit symplectic Runge-Kutta method. In Section 3.3.6, we

have shown that if the discrete Lagrangian is carefully chosen to minimize the number of function

evaluations at each step, then the computational requirements of the Lie group variational integrator

are comparable to the explicit integrators for the same step size. Therefore, we claim the Lie group

variational integrator is almost explicit.

For the same level of total energy error, the Lie group variational integrators are faster than the

explicit Runge-Kutta method, the symplectic Runge-Kutta method, and the Lie group method by

several times. This computational advantage is due to the fact that latter integrators do not preserve

all, or one, of the symplecticity and the Lie group structure of the rigid body dynamics.

The RATTLE algorithm is a symplectic numerical integrator for a constrained Hamiltonian

system (see Leimkuhler and Reich 2004). By considering the orthogonal structure of the rotation

matrix as a nonlinear constraint, one can construct a symplectic numerical integrator that preserves

orthogonality using the RATTLE algorithm. A numerical comparison for the 3D pendulum model

shows that the Lie group variational integrator is faster than the RATTLE algorithm by 17-60%.

This illustrates that it is more efficient to expressing the relative update of group elements in terms

of the Lie algebra elements as proposed in this dissertation, than considering the group structure as

a nonlinear constraint that should be satisfied at each integration step.

In summary, the Lie group variational integrators have similar computational requirements com-

pared to other explicit numerical integrators for the same step size, and they are substantially more

efficient than other numerical integrator for the same level of numerical accuracy.
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3.4 Examples of Mechanical Systems on Two-Spheres

Several mechanical systems evolving on a product of two-spheres have been introduced in Sec-

tion 2.4, and the corresponding expressions for inertia matrix, potential, and equations of motion

were presented. For the mechanical systems whose Lagrangian is expressed as (2.26), the expres-

sions for the inertia and the potential determine the corresponding discrete-time Euler-Lagrange

equations according (3.40), (3.52), (3.53), and (3.54). Therefore, the discrete-time Euler-Lagrange

equations for the mechanical systems presented in Section 2.4 have already been obtained. In this

section, computational results for the discrete-time Euler-Lagrange equations on two-spheres are

presented.

Section Mechanical System

3.4.1 Double Spherical Pendulum

3.4.2 n-body Problem on a Sphere

3.4.3 Interconnection of Spherical Pendula

3.4.4 Pure Bending of Elastic Rod

3.4.5 Spatial Array of Magnetic Dipoles

3.4.6 Molecular Dynamics on a Sphere

3.4.1 Double Spherical Pendulum

Consider the double spherical pendulum presented in Section 2.4.1. Recall that the inertia matrix is

given by M11 = (m1 +m2)l21, M12 = m2l1l2, and M22 = m2l
2
2, and the gravitational potential is

written as U(q1, q2) = −(m1 +m2)gl1e3 · q1−m2gl2e3 · q2. Substituting these into (3.49)–(3.52),

the discrete-time equations of motion for the double spherical pendulum are given by

(m1 +m2)l21q1k × F1kq1k + q1k ×m2l1l2(F2k − I)q2k

= (m1 +m2)l21hω1k − q1k ×m2l1l2(q2k × hω2k) +
h2

2
q1k × (m1 +m2)gl1e3,

(3.172)

m2l
2
2q2k × F2kq1k + q2k ×m2l1l2(F1k − I)q1k

= m2l
2
2hω2k − q2k ×m2l1l2(q1k × hω1k) +

h2

2
q1k ×m2gl2e3,

(3.173)

q1k+1
= F1kq1k , q2k+1

= F2kq2k , (3.174)[
(m1 +m2)l21I3×3 −m2l1l2q̂1k+1

q̂2k+1

−m2l1l2q̂2k+1
q̂1k+1

m2l
2
2I3×3

][
ω1k+1

ω2k+1

]

=

[
1
hq1k+1

×m2l1l2(q2k+1
− q2k) + h

2 q1k+1
× (m1 +m2)gl1e3

1
hq2k+1

×m2l1l2(q1k+1
− q1k) + h

2 q2k+1
×m2gl2e3

]
.

(3.175)

We compare the computational properties of the discrete-time equations of motion with a 4(5)-

th order variable step size Runge-Kutta method for (2.124)–(2.123). We choose m1 = m2 = 1 kg,

l1 = l2 = 9.81 m. The initial conditions are q10 = [0.8660, 0, 0.5], q20 = [0, 0, 1], ω10 =
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(c) Total angular momentum about the gravity direc-
tion
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(d) Unit length error

Figure 3.9: Numerical simulation for a double spherical pendulum (RK45: blue, dotted, VI: red, solid)

[−0.4330, 0, 0.75], ω20 = [0, 1, 0] rad/sec. The simulation time is 100 sec, and the step size of the

discrete-time equations of motion is h = 0.01. Figure 3.9 shows the computed total energy and the

configuration manifold errors. The variational integrator preserves the total energy and the structure

of (S2)n well for this chaotic motion of the double spherical pendulum. The mean total energy

variation is 2.1641×10−5 Nm, and the mean unit length error is 8.8893×10−15. There is a notable

increase of the computed total energy for the Runge-Kutta method, where the mean variation of

the total energy is 7.8586 × 10−4 Nm. The mean deviations of the angular momentum about the

gravity direction are 1.0217 × 10−10 kgm2/s for the variational integrator, and 8.0497 × 10−4 for

the Runge-Kutta method, respectively. The Runge-Kutta method also fails to preserve the structure

of (S2)n. The mean unit length error is 6.2742× 10−5.

3.4.2 n-body Problem on a Sphere

Consider the n-body problem on a sphere presented in Section 2.4.2. It deals with the motion of n

mass particles constrained to lie on a two-sphere, acting under a mutual potential. Recall that the
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(a) Trajectory of particles
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(c) Unit length error v.s. step size

Figure 3.10: Numerical simulation for a 3-body problem on sphere (RK2: blue, square, VI: red, circle)

inertia matrix is given byMij = mi when i = j, and Mij = 0 otherwise, and the gravitational

potential is given by U(q1, . . . , qn) = −γ
2

∑
j 6=i

qi·qj√
1−(qi·qj)2

. Substituting these into (3.53)–(3.54),

the discrete-time equations of motion are given by

qik+1
=
(
hωik −

h2

2mi
qik ×

∂Uk
∂qik

)
× qik +

(
1−

∥∥∥∥hωik − h2

2mi
qik ×

∂Uk
∂qik

∥∥∥∥2
)1/2

qik , (3.176)

ωik+1
= ωik −

h

2mi
qik ×

∂Uk
∂qik

− h

2mi
qik+1

× ∂Uk+1

∂qik+1

, (3.177)

where

∂Uk
∂qik

= −γ
n∑
j=1
j 6=i

qjk
(1− (qik · qjk)2)3/2

.

A two-body problem on the two-sphere under this gravitational potential is studied in Hairer

et al. (2003) by explicitly using unit length constraints. Here we study a three-body problem, n = 3.

Since there are no coupling terms in the kinetic energy, we use the explicit form of the variational

integrator. We compare the computational properties of the discrete-time equations of motion with

a 2-nd order fixed step size Runge-Kutta method for (2.125). We choose m1 = m2 = m3 = 1,

and γ = 1. The initial conditions are q10 = [0, −1, 0], q20 = [0, 0, 1], q30 = [−1, 0, 0], ω10 =
[0, 0, −1.1], ω20 = [1, 0, 0], and ω30 = [0, 1, 0]. The simulation time is 10 sec. Figure 3.10

shows the computed total energy and the unit length errors for various step sizes. The total energy

variations and the unit length errors for the variational integrator are smaller than those of the Runge-

Kutta method for the same step size by several orders of magnitude. For the variational integrator,

the total energy error is reduced by almost 100 times from 1.1717 × 10−4 to 1.1986 × 10−6 when

the step size is reduced by 10 times from 10−3 to 10−4, which verifies the second order accuracy

numerically.
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(a) Motion of pendula
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Figure 3.11: Numerical simulation for an interconnection of 4 spherical pendula (RK2: blue, dotted, RK2 with
projection: black, dashed, VI: red, solid)

3.4.3 Interconnection of Spherical Pendula

Consider the interconnection of spherical pendula presented in Section 2.4.3. Recall that the inertia

matrix is given by Mij = mil
2
i when i = j, and Mij = 0 otherwise, and the potential is given by

U(q1, . . . qn) = −
n∑
i=1

migliqi · e3 +
∑

(i,j)∈Ξ

1
2
κij

(∥∥∥∥rij +
1
2
ljqj −

1
2
liqi

∥∥∥∥− ‖rij‖)2

.

Substituting these into (3.53)–(3.54), the discrete-time equations of motion are given by

qik+1
=
(
hωik −

h2

2mil2i
qik ×

∂Uk
∂qik

)
× qik +

(
1−

∥∥∥∥hωik − h2

2mil2i
qik ×

∂Uk
∂qik

∥∥∥∥2
)1/2

qik ,

(3.178)

ωik+1
= ωik −

h

2mil2i
qik ×

∂Uk
∂qik

− h

2mil2i
qik+1

× ∂Uk+1

∂qik+1

. (3.179)

We compare the computational properties of the discrete-time equations of motion with a 2-

nd order fixed step size explicit Runge-Kutta method for (2.126)–(2.127), and the same Runge-

Kutta method with reprojection; at each time step, the vectors qik are projected onto S2 by using

normalization.

We choose four interconnected pendula, n = 4, and we assume each pendulum has the same

mass and length; mi = 0.1 kg, li = 0.1 m. A set Ξ is defined such that (i, j) ∈ Ξ if the i-th

pendulum and the j-th pendulum are connected. We choose Ξ = {(1, 2), (2, 3), (3, 4), (4, 1)}, and

the corresponding spring constants and the relative vector between pivots are given by κ12 = 10,

κ12 = 20, κ12 = 30, κ12 = 40 N/m, r12 = −r34 = lie1, and r23 = −r41 = −lie2. The initial

conditions are chosen as q10 = q20 = q40 = e3, q30 = [0.4698, 0.1710, 0.8660], ω10 = [−10, 4, 0],
and ω20 = ω30 = ω40 = 0 rad/sec

Figure 3.11 shows the computed total energy and the unit length errors. The variational inte-

grator preserves the total energy and the structure of (S2)n well. The mean total energy variation

is 3.6171 × 10−5 Nm, and the mean unit length error is 4.2712 × 10−15. For both Runge-Kutta
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(a) Deformation of rod
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(c) Unit length error

Figure 3.12: Numerical simulation for an elastic rod (RK45: blue, dotted, VI: red, solid)

methods, there is a notable increase of the computed total energy. It is interesting to see that the re-

projection approach increases the total energy error, even though it preserves the structure of (S2)n

accurately. This shows that a standard reprojection method can significantly corrupt numerical tra-

jectories (see Hairer et al. 2000; Lewis and Nigam 2003).

3.4.4 Pure Bending of Elastic Rod

Consider the pure bending motion of a slender elastic rod presented in Section 2.4.4. Recall that the

moment of inertia matrix is given by

Mii =
1
3
mil

2
i +

n∑
p=i+1

mpl
2
i ,

Mij =
1
2

 n∑
p=i+1

2mpljli

+miljli


for 1 ≤ i < j ≤ n, and the potential is given by

U(q1, . . . , qn) =
n∑
i=1

−mig

 i−1∑
j=1

qjlj +
1
2
liqi

 · e3 +
EI

4l2i
(1− qi−1 · qi)

 .
Substituting these into (3.49)–(3.52), we obtain the discrete-time equations of motion.

We compare the computational properties of the discrete-time equations of motion with a 4(5)-

th order variable step size Runge-Kutta method. We choose 10 rod elements, n = 10, and the

total mass and the total length are m = 55 g, l = 1.1,m. The spring constants are chosen as

κi = 1000 Nm. Initially, the rod is aligned horizontally; qi0 = e1 for all i ∈ 1, . . . n. The initial

angular velocity for each rod element is zero except ω50 = [0, 0, 10] rad/sec. This represents

the dynamics of the rod after an initial impact. The simulation time is 3 sec, and the step size is

h = 0.0001.

Figure 3.12 shows the computed total energy and the unit length errors. The variational in-

tegrator preserves the total energy and the structure of (S2)n. The mean total energy variation is
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1.4310×10−6 Nm, and the mean unit length error is 2.9747×10−14. There is a notable dissipation

of the computed total energy for the Runge-Kutta method, where the mean variation of the total

energy is 3.5244× 10−4 Nm. The Runge-Kutta method also fail to preserve the structure of (S2)n.

The mean unit length error is 1.8725× 10−5.

3.4.5 Spatial Array of Magnetic Dipoles

Consider the spatial array of magnetic dipoles presented in Section 2.4.5. Recall that the inertia

matrix is given by Mij = 1
12mil

2
i when i = j, and Mij = 0 otherwise. The magnetic potential is

given by

U(q1, . . . , qn) =
1
2

n∑
i,j=1
j 6=i

µ νiνj
4π‖rij‖3

[
(qi · qj)−

3
‖rij‖2

(qi · rij)(qj · rij)
]
,

Substituting these into (3.53)–(3.54), we obtain the discrete-time Euler-Lagrange equations as

qik+1
=
(
hωik −

6h2

mil2i
qik ×

∂Uk
∂qik

)
× qik +

(
1−

∥∥∥∥hωik − 6h2

mil2i
qik ×

∂Uk
∂qik

∥∥∥∥2
)1/2

qik , (3.180)

ωik+1
= ωik −

6h
mil2i

qik ×
∂Uk
∂qik

− 6h
mil2i

qik+1
× ∂Uk+1

∂qik+1

, (3.181)

where

∂Uk
∂qik

=
n∑
j=1
j 6=i

µ νiνj
4π‖rij‖3

[
qj −

3
‖rij‖2

rij(qj · rij)
]
.

We compare the computational properties of the discrete-time equations of motion with a 4(5)-th

order variable step size Runge-Kutta method for (2.136)–(2.137). We choose 16 magnetic dipoles,

n = 16, and we assume each magnetic dipole has the same mass, length, and magnitude of magnetic

moment; mi = 0.05 kg, li = 0.02 m, νi = 0.1 A ·m2. The magnetic dipoles are located at vertices

of a 4 × 4 square grid in which the edge of a unit square has the length of 1.2li. The initial

conditions are chosen as qi0 = [1, 0, 0], ωi0 = [0, 0, 0] for all i ∈ {1, . . . , 16} except q160 =
[0.3536, 0.3536,−0.8660] and ω10 = [0, 0.5, 0] rad/sec.

Figure 3.13 shows the computed total energy and the unit length errors. The variational inte-

grator preserves the total energy and the structure of (S2)n well. The mean total energy variation

is 8.5403× 10−10 Nm, and the mean unit length error is 1.6140× 10−14. There is a notable dissi-

pation of the computed total energy for the Runge-Kutta method, where the mean variation of the

total energy is 2.9989 × 10−7 Nm. The Runge-Kutta method also fail to preserve the structure of

(S2)n. The mean unit length error is 1.7594× 10−4.
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(a) Motion of magnetic dipoles
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Figure 3.13: Numerical simulation for an array of magnetic dipoles (RK45: blue, dotted, VI: red, solid)

3.4.6 Molecular Dynamics on a Sphere

Consider the molecular dynamics model on S2 presented in Section 2.4.6. Recall that the inertia

matrix is Mij = mi when i = j, and Mij = 0 otherwise. The Lennard-Jones potential is given by

U(q1, . . . , qn) =
1
2

n∑
i,j=1
j 6=i

4ε

[(
σ

‖qi − qj‖

)12

−
(

σ

‖qi − qj‖

)6
]
,

Substituting these into (3.53)–(3.54), we obtain the discrete-time Euler-Lagrange equations as

qik+1
=
(
hωik −

h2

2mil2i
qik ×

∂Uk
∂qik

)
× qik +

(
1−

∥∥∥∥hωik − h2

2mil2i
qik ×

∂Uk
∂qik

∥∥∥∥2
)1/2

qik ,

(3.182)

ωik+1
= ωik −

h

2mil2i
qik ×

∂Uk
∂qik

− h

2mil2i
qik+1

× ∂Uk+1

∂qik+1

, (3.183)

where

∂Uk
∂qik

= −
n∑
j=1
j 6=i

4ε
qi − qj
‖qi − qj‖

[
12σ12

‖qi − qj‖13 −
6σ6

‖qi − qj‖7

]
.

We choose 642 molecules, n = 642, and we assume each molecule has the same mass, mi = 1.

Initially, molecules are uniformly distributed on a sphere. The strength of the potential is chosen

as ε = 0.01, and the constant σ is chosen such that the inter-molecular force between neighbor-

ing molecules is close to zero. The initial velocities are modeled as two vortices separated by

30 degrees. The simulation time is 5 s, and the step size is h = 0.005.

Trajectories of molecules and the computed total energy are shown in Figure 3.14. The mean

deviation of the total energy is 1.8893× 10−3, and the mean unit length error is 5.2623× 10−15. In

molecular dynamics simulations, macroscopic quantities such as temperature and pressure are more

useful than trajectories of individual molecules. Figure 3.15 shows the change of kinetic energy

distributions over time, which measures the temperature (see Allen and Tildesley 1987); the sphere
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Figure 3.14: Numerical simulation for molecular dynamics on a sphere
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Figure 3.15: Numerical simulation for molecular dynamics on a sphere: kinetic energy distributions over time

is discretized by an icosahedron with 5120 triangular faces, and the color of a face is determined by

the average kinetic energy for molecules that lie within the face and within its neighboring faces.

The local kinetic energy is represented by color shading of blue, green, yellow, and red colors in

ascending order.

3.4.7 Computational Approach

For the discrete equations of motion, we need to solve (3.40) and (3.49) to obtain Fik ∈ SO(3).

Here we present a computational approach. The implicit equations given by (3.40) and (3.49) have

the following structure.

Miiqi × Fiqi + qi ×
n∑
j=1
j 6=i

Mij(Fj − I3×3)qj = di (3.184)

for i ∈ {1, . . . , n}, where Mij ∈ R, qi ∈ S2, di ∈ R3 are known, and we need to find Fi ∈ SO(3).

We derive an equivalent equation in terms of local coordinates for Fi. This is reasonable since Fi
represents the relative update between two integration steps. But, the solution is not unique since if

Fi ∈ SO(3) satisfies (3.184), then Fi exp(θqi) ∈ SO(3) also satisfies (3.184) for any θ ∈ S1. To

avoid this ambiguity, we search a 2-dimensional subgroup of SO(3) in which the solution of (3.184)

is unique.

Similar to the computational approach to solve the implicit equation of the Lie group variational

integrator on SO(3) presented in Section 3.3.8, the essential idea is to express the rotation matrix
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Fi in terms of fi ∈ R3 using the the Cayley transformation. Using the Cayley transformation,

Fi ∈ SO(3) can be expressed in terms of fi ∈ R3 as

Fi = (I3×3 + f̂i)(I3×3 − f̂i)−1

=
1

1 + fi · fi
((1− fi · fi)I3×3 + 2fifTi + 2f̂i).

The operation Fiqi can be considered as a rotation of the vector qi about the direction fi with rotation

angle 2 tan−1 ‖fi‖. Since the rotation of the vector qi about the direction qi has no effect, we can

assume that fi is orthogonal to qi, i.e. fi · qi = 0. Under this assumption, Fiqi is given by

Fiqi =
1

1 + fi · fi
((1− fi · fi)qi + 2f̂iqi). (3.185)

Thus, we obtain

qi × Fiqi =
2

1 + fi · fi
qi × (fi × qi) =

2
1 + fi · fi

fi,

(Fj − I3×3)qj = − 2
1 + fj · fj

(qjfTj + q̂j)fj ,

where we use the property, q̂ifi = qi × fi = −f̂iqi. Substituting these into (3.184), we obtain
2M11I3×3

1+f1·f1 −2M12q̂1(q̂2+q2fT2 )
1+f2·f2 · · · −2M1nq̂1(q̂n+qnfTn )

1+fn·fn
−2M21q̂2(q̂1+q1fT1 )

1+f1·f1
2M22I3×3

1+f2·f2 · · · −2M2nq̂2(q̂n+qnfTn )
1+fn·fn

...
...

...

−2Mn1q̂n(q̂1+q1fT1 )
1+f1·f1 −2Mn2q̂n(q̂2+q2fT2 )

1+f2·f2 · · · 2MnnI3×3

1+fn·fn



f1

f2

...

fn

 =


d1

d2

...

dn

 , (3.186)

which is an equation equivalent to (3.184), written in terms of local coordinates for Fi using the

Cayley transformation. Any standard numerical method to solve nonlinear equations can be applied

to find fi. Then, Fiqi is computed by using (3.185). In particular, (3.186) is written in a form for

which a fixed point iteration method can be readily applied (see Kelley 1995).

If there are no coupling terms in the kinetic energy, we can obtain an explicit solution of (3.184).

When Mij = 0 for i 6= j, (3.186) reduces to

2Mii

1 + fi · fi
fi = di.

Using the identity, 2 tan θ
1+tan2 θ

= sin 2θ for any θ ∈ R, it can be shown that the solution of this equation

is given by fi = tan
(

1
2 sin−1(‖di‖ /Mii)

)
di
‖di‖ . Substituting this into (3.185) and rearranging, we

obtain

Fiqi =
di
Mii
× qi +

(
1−

∥∥∥∥ di
Mii

∥∥∥∥2
)1/2

qi.

Using this expression, we can rewrite the discrete-time equations of motion given by (3.49)–(3.52)

109



in an explicit form as in Corollary 3.5.

3.4.8 Summary of Computational Properties

We have derived discrete-time Euler-Lagrange equations for several dynamic systems evolving on

a product of two-spheres, and some computational results are presented. Here, we summarize the

computational properties of the Lie homogeneous variational integrator compared to other numeri-

cal integrators.

Computational Accuracy. Similar to the Lie group variational integrator, the distinct feature of

the Lie homogeneous variational integrators is that they preserve the symplecticity as well as the

structure of the two-spheres. As shown at Figure 3.9(b), 3.11(b), 3.12(b), 3.13(b), and 3.14(b), the

computed total energy of the Lie homogeneous variational integrator oscillates around the initial

value, but there is no drift on long time scales. The computed total energy of the explicit Runge-

Kutta methods increases (or decreases) linearly with respect to the simulation time. As a result, the

total energy deviation for the Runge-Kutta method is larger than the Lie homogeneous variational

integrator by several times as seen in Figure 3.10(b). We find a similar property for the momentum

map at Figure 3.9(c). Figure 3.9(d), 3.11(c), 3.12(c), and 3.13(c) show that the unit length error of

the Lie homogeneous variational integrator is at the level of 10−14–10−15, but the unit length error

of the explicit Runge-Kutta method is almost 1010 times larger.

In summary, the Lie homogeneous variational integrators are geometrically accurate in the sense

that they preserve all of the geometric properties of the dynamics, such as symplecticity, momentum

map, total energy, and the structure of the two-spheres.

Computational Efficiency. We have shown that if the inertia matrix for the kinetic energy is di-

agonal, the Lie homogeneous variational integrator becomes explicit. In this case, the variational

integrator given in Corollary 3.5 is faster than the explicit Runge-Kutta method with the same sec-

ond order accuracy, as it requires one-time evaluation of the potential derivatives per time step.

The RATTLE algorithm is a symplectic numerical integrator for a constrained Hamiltonian sys-

tem (see Leimkuhler and Reich 2004). By considering the unit norm structure of the two-sphere as a

nonlinear constraint, one can construct a symplectic numerical integrator evolving on two-spheres.

It turns out that the variational integrator given at Corollary 3.4 is equivalent to the RATTLE al-

gorithm if the computational implementational details are ignored. But, rather than imposing the

constraint on the unit length at each time step, we present a computational algorithm to update the

element of the two-sphere using the group action of SO(3).

The purpose of this section is to provide a systematic method to derive a geometric numerical

integrator evolving on a homogeneous space. The specific form of the discrete Lagrangian given

in (3.33) yields an equivalent expression to the RATTLE algorithm. But, it can be extended in

various ways, such as a configuration dependent inertia or an abstract homogeneous manifold, by

following the approach presented in this section. The presented computational approach is generally
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slower than the RATTLE algorithm, but it represents a specific numerical method that updates an

element of a homogeneous space using the corresponding Lie group action explicitly. In particular,

a subgroup that guarantees the transitivity property is found for overall efficiency.

In summary, the presented form of the Lie homogeneous variational integrator is more numeri-

cally efficient if the inertia matrix is diagonal. It may be slightly slower than the RATTLE algorithm

using the presented computational algorithm. But, the computational approach provides an explicit

method to generalize the current results to mechanical systems evolving on an abstract homoge-

neous manifold.

3.5 Conclusions

In this chapter, geometric numerical integrators, referred to as Lie group variational integrators,

are developed for dynamic systems with a Lie group configuration manifold. The presented method

represents the first time that the Lie group approach is explicitly adopted in the context of variational

integrators for an arbitrary Lie group. They provide a systematic way to develop a class of geometric

numerical integrators that preserve the geometric properties of the dynamics as well as the Lie group

structure.

Numerical simulations in Section 3.3 show that it is critical to preserve both the symplectic

property of dynamics and the structure of the Lie group. The Lie group variational integrators have

substantial computational advantages compared to other geometric integrators that preserve either

none or one of these properties. They are more efficient than considering the Lie group structure as

a nonlinear algebraic constraint to be satisfied at each time step.

Compared with other geometric integrators for a rigid body, as in the work of Hulbert (1992);

Krysl (2005); Lewis and Simo (1994); Simo and Wong (1991), the Lie group variational integra-

tor provides a systematic method to obtain a class of numerical integrators that preserve all of the

geometric features, rather than developing a specific numerical integrator that preserves only a few

geometric characteristics. Compared with discrete-time mechanics on a Lie group developed by

Bobenko and Suris (1999); Marsden et al. (1999); Moser and Veselov (1991), the Lie group varia-

tional integrator can be applied to a wide class of rigid body dynamics acting under a potential field

as shown in Section 3.3.

These results are extended to mechanical systems on a product of two-spheres, to obtain Lie

homogeneous variational integrators in Section 3.2. They preserve the geometric feature of dynam-

ics as well as the structure of the two-spheres. Other geometric numerical integrators on S2 are

developed for a kinematics equations, and they do not necessarily preserve the symplectic property

or momentum map (see Lewis and Nigam 2003; Lewis and Olver 2001; Munthe-Kaas and Zanna

1997). The development in Section 3.2 also provides an overall framework to construct variational

integrators for dynamic systems on an abstract homogeneous manifold.
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CHAPTER 4

GEOMETRIC OPTIMAL CONTROL OF RIGID BODIES ON A
LIE GROUP

In this chapter, we formulate optimal control problems for mechanical systems that evolve on a

Lie group, and we derive necessary conditions for optimality. These results are illustrated by several

rigid body systems introduced in the previous chapters. This chapter is focused on developing

an intrinsic form of optimality conditions in continuous-time. Computational approaches to find

optimal control inputs are discussed in the next chapter.

4.1 Geometric optimal control on a Lie group

4.1.1 Forced Euler-Lagrange equations

4.1.2 Optimal control problem formulation

4.1.3 Necessary conditions for optimality

4.2 Examples of optimal control of rigid bodies

4.2.1 Spacecraft on a circular orbit

4.2.2 Free rigid body

4.2.3 3D Pendulum with symmetry

4.2.4 Rigid body under potential field

This chapter is organized as follows. In Section 4.1, we develop geometric optimal control

theory for dynamics on an arbitrary Lie group; the Euler-Lagrange equations derived in Chapter 2

are extended to include the effect of external control inputs, a general form of an optimal control

problem is formulated, and necessary conditions for optimality are developed. In Section 4.2, these

results are applied to several optimal control problems for rigid body dynamics.

4.1 Geometric Optimal Control on a Lie Group

Optimal control problems deal with finding trajectories, such that a certain optimality condition is

satisfied under prescribed constraints (see, for example, Bryson and Ho 1975; Kirk 1970; Sussmann

and Willems 1997). For example, a minimum time optimal control problem is studied for a space-

craft to change its attitude in a desired way while minimizing the maneuver time, and subject to

bounded control moments.

Geometric optimal control on a Lie group has been studied by Baillieul (1978); Bloch and
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Crouch (1996); Brockett (1972); Jurdjevic (1998a,b, 1997) (see also references therein). But, these

approaches are based on kinematics equations on a Lie group, and assume that group elements are

directly controlled by control input elements in the Lie algebra. For example, an optimal attitude

control problem of a rigid body is considered in Jurdjevic (1997) by viewing the angular velocity to

be a control input.

This chapter deals with optimal control problems of dynamic systems with a Lie group config-

uration manifold. More precisely, it may be considered as an optimal control problem on a tangent

bundle of a Lie group G, identified with G × g by left trivialization. For example, in Section 4.2.2,

we consider an optimal attitude control problem of a rigid body controlled by an external moment.

Another distinct feature of the presented geometric optimal control theory is that it is a coordinate-

free approach. Most of the prior work related to optimal control problems of a rigid body is based

on local coordinates of SO(3), such as Euler angles, or on quaternions (see, for example, Bilimoria

and Wie 1993; Byers and Vadali 1993; Scrivener and Thompson 1994; Seywald and Kumar 1993).

Here, we develop an intrinsic form of optimal control problems and necessary conditions. Optimal-

ity conditions and the resulting optimal control input are independent of the choice of representation

for the rigid body configuration. They are globally represented by group elements without any sin-

gularity and ambiguity, and the optimality conditions are more compact than expressions written in

terms of local parameterizations.

In summary, we develop a geometric optimal control theory to treat optimal control problems

for dynamic systems on a Lie group, expressed in a coordinate-free form. The geometric optimal

control approach is based on the Lagrangian mechanics on a Lie group presented in Chapter 2;

necessary conditions for optimality are derived using variational arguments. Here, we first extend

the Euler-Lagrange equations to include the effect of control inputs, and we formulate optimal

control problems for controlled Euler-Lagrange systems on a Lie group.

4.1.1 Forced Euler-Lagrange Equations on a Lie Group

Consider a mechanical system evolving on a Lie group G. As discussed in Chapter 2, we assume

that a Lagrangian of the system is expressed as L(g, ξ) : G×g→ R by left-trivialization, ξ = g−1ġ.

Suppose that there exists a generalized force u(t) : [t0, tf ] → g∗ acting on the system. Forced

Euler-Lagrange equations are obtained according to the Lagrange-d’Alembert principle:

δ

∫ tf

t0

L(g, ξ) dt+
∫ tf

t0

u(t) · η dt = 0 (4.1)

for any η = g−1δg ∈ g vanishing at the endpoints. This is equivalent to Hamilton’s principle with

the additional forcing term. From (2.8), this can be written as∫ tf

t0

〈
T∗eLg ·DgL(g, ξ) + ad∗ξ ·DξL(g, ξ), η

〉
−
〈
d

dt
DξL(g, ξ), η

〉
+ 〈u, η〉 dt = 0,

which yields the forced Euler-Lagrange equations on G.

113



Proposition 4.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent

bundle TG with G × g by left-trivialization. Suppose that the Lagrangian is defined as L(g, ξ) :
G × g → R, and there exists a generalized force u : [t0, tf ] → g∗ acting on the system. The

corresponding forced Euler-Lagrange equations are given by

d

dt
DξL(g, ξ)− ad∗ξ ·DξL(g, ξ)− T∗eLg ·DgL(g, ξ) = u, (4.2)

ġ = gξ. (4.3)

Special Form of Forced Euler-Lagrange Equations. Proposition 4.1 gives the forced Euler-Lagrange

equations for mechanical systems evolving on a Lie group G for a general form of the Lagrangian.

While it is possible to formulate an optimal control problem and derive necessary optimality condi-

tions for these systems, we consider mechanical systems with a structured form of the Lagrangian.

This allows us to obtain a more compact form of necessary conditions in Section 4.1.3.

Let J : g → g∗ be the inertia operator, which is linear, positive definite, and symmetric. More

explicitly, it satisfies

〈J(ξ), ξ〉 > 0, (4.4)

J(c1ξ1 + c2ξ2) = c1J(ξ1) + c2J(ξ2), (4.5)

〈J(ξ1), ξ2〉 = 〈J(ξ2), ξ1〉 , (4.6)

for any c1, c2 ∈ R, ξ 6= 0, ξ1, ξ2 ∈ g.

We assume that the Lagrangian is the difference between a kinetic energy, expressed in term of

the inertia operator, and a configuration dependent potential U : G→ R, given by

L(g, ξ) =
1
2
〈J(ξ), ξ〉 − U(g). (4.7)

We apply Proposition 4.1 to this Lagrangian. The derivatives of the Lagrangian are given by

DξL(g, ξ) · δξ =
1
2
〈J(δξ), ξ〉+

1
2
〈J(ξ), δξ〉 = 〈J(ξ), δξ〉 ,

T∗eLg ·DgL(g, ξ) = −T∗eLg ·DgU(g) ≡M(g),

where the force due to the potential is denoted by M : G → g∗. Then, the forced Euler-Lagrange

equations reduce to the following.

Corollary 4.1 Consider a mechanical system evolving on a Lie group G. We identify the tangent

bundle TG with G × g by left-trivialization. Suppose that the Lagrangian is given by (4.7) for a

positive definite, symmetric, and linear inertia operator J : g→ g∗ and the configuration dependent

potential U : G → R. There exists a force u : [t0, tf ] → g∗ acting on the system. Then, the
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corresponding forced Euler-Lagrange equations are given by

d

dt
J(ξ)− ad∗ξ · J(ξ)−M(g) = u, (4.8)

ġ = gξ, (4.9)

where the force due to the potential M : G→ g∗ is given by M(g) = −T∗eLg ·DgU(g).

4.1.2 Optimal Control Problem Formulation

We consider an optimal control problem for forced Euler-Lagrange systems described by Corollary

4.1. The optimal control problem is to find the control input that minimizes the following cost

functional:

J =
∫ tf

t0

φ(g(t), ξ(t), u(t)) dt,

where φ : G × g × g∗ → R is given. Several types of boundary conditions can be considered:

free terminal time, fixed terminal time, free terminal conditions, fixed terminal conditions, and

terminal states lying on a given surface. Additionally, equality constraints or inequality constraints

may be imposed on the trajectory of the mechanical system and the control input. For simplicity,

here we consider optimal control problems with a free terminal time and fixed terminal conditions.

The optimal control problem with a fixed final time and fixed terminal conditions is considered as a

special case. The subsequent development can be easily extended to other optimal control problems.

The optimal control problem is summarized as follows.

For given t0, g(t0), ξ(t0), gf , ξf

min
u(t),tf

{
J =

∫ tf

t0

φ(g(t), ξ(t), u(t)) dt
}
,

such that g(tf ) = gf , ξ(tf ) = ξf ,

subject to the Euler-Lagrange equations (4.8), (4.9).

4.1.3 Necessary Conditions for Optimality

We derive necessary conditions for optimality using the calculus of variations: the Euler-Lagrange

equations are constrained by using Lagrange multipliers, and the variation of the corresponding

augmented cost functional is set to zero. The resulting necessary conditions are expressed as a two

point boundary value problem.

More explicitly, define the augmented cost functional:

Ja =
∫ tf

t0

φ(g, ξ, u) +
〈
d

dt
J(ξ)− ad∗ξJ(ξ)−M(g)− u, λ1

〉
+
〈
λ2, g−1ġ − ξ

〉
dt, (4.10)

where λ1 ∈ g, λ2 ∈ g∗ are Lagrange multipliers. The variation of the augmented cost functional
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is composed of two terms: the term due to the the terminal time variation and the term due to the

variation of trajectories for a fixed terminal time:

δJa = δJ 1
a + δJ 2

a .

The variation of the augmented cost functional due to the terminal time change is given by

δJ 1
a =

[
φ(g, ξ, u) +

〈
d

dt
J(ξ)− ad∗ξJ(ξ)−M(g)− u, λ1

〉
+
〈
λ2, g−1ġ − ξ

〉] ∣∣∣∣
t=tf

δtf .

(4.11)

The variation of the augmented cost functional, for a fixed terminal time, is given by

δJ 2
a =

∫ tf

t0

Dgφ(g, ξ, u) · δg + Dξφ(g, ξ, u) · δξ + Duφ(g, ξ, u) · δu dt

+
∫ tf

t0

〈
δ

(
d

dt
J(ξ)

)
− ad∗δξJ(ξ)− ad∗ξJ(δξ)− TgM(g) · δg − δu, λ1

〉
+
〈
λ2, η̇ + adξη − δξ

〉
dt. (4.12)

We apply several properties and identities on the variations and the ad operator. Since the vari-

ation and the derivative commute, we obtain δ
(
d
dtJ(ξ)

)
= d

dtJ(δξ) (See Appendix A.4 for de-

tails). Therefore, using the symmetry of the inertial operator, we obtain
〈
δ
(
d
dtJ(ξ)

)
, λ1

〉
=〈

J(δξ̇), λ1
〉

=
〈
J(λ1), δξ̇

〉
. From the definition of the ad∗ operator and the skew-symmetry of the

ad operator,
〈
ad∗δξJ(ξ), λ1

〉
=
〈
J(ξ), adδξλ1

〉
= −〈J(ξ), adλ1δξ〉 = −

〈
ad∗λ1J(ξ), δξ

〉
. Us-

ing the symmetry of the inertia operator,
〈
ad∗ξJ(δξ), λ1

〉
=
〈
J(δξ), adξλ1

〉
=
〈
J(adξλ1), δξ

〉
.

DefineM(g, λ1) : G× g→ g∗ such that〈
TgM(g) · δg, λ1

〉
=
〈
TgM(g) · (TeLg · η), λ1

〉
=
〈
M(g, λ1), η

〉
. (4.13)

Note that this map is linear with respect to λ1. Using these properties and the definition of the map

M(g, λ1), (4.12) can be written as

δJ 2
a =

∫ tf

t0

〈
J(λ1), δξ̇

〉
+
〈
λ2, η̇

〉
dt

+
∫ tf

t0

〈
δu, Duφ− λ1

〉
+
〈
T∗eLg ·Dgφ−M(g, λ1) + ad∗ξλ

2, η
〉

+
〈
Dξφ+ ad∗λ1J(ξ)− J(adξλ1)− λ2, δξ

〉
dt.
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Using integration by parts for the first two terms, we obtain

δJ 2
a =

[〈
J(λ1), δξ

〉
+
〈
λ2, η

〉] ∣∣∣∣
t=tf

+
∫ tf

t0

〈
δu, Duφ− λ1

〉
+
〈
−λ̇2 + T∗eLg ·Dgφ−M(g, λ1) + ad∗ξλ

2, η
〉

+
〈
−J(λ̇1) + Dξφ+ ad∗λ1J(ξ)− J(adξλ1)− λ2, δξ

〉
dt, (4.14)

where we use the fact that the initial conditions are fixed, i.e. δξ(t0) = η(t0) = 0. Since the desired

terminal conditions are given, δtf and ξ(tf ), η(tf ) are related as

ġ(tf )δtf + g(tf )η(tf ) = 0, (4.15)

ξ̇(tf )δtf + δξ(tf ) = 0. (4.16)

Substituting these into the first two terms of (4.14), we obtain

δJ 2
a = −

[〈
J(λ1), ξ̇

〉
+
〈
λ2, g−1ġ

〉] ∣∣∣∣
t=tf

δtf

+
∫ tf

t0

〈
δu, Duφ− λ1

〉
+
〈
−λ̇2 + T∗eLg ·Dgφ−M(g, λ1) + ad∗ξλ

2, η
〉

+
〈
−J(λ̇1) + Dξφ+ ad∗λ1J(ξ)− J(adξλ1)− λ2, δξ

〉
dt, (4.17)

Therefore, the variation of the augmented cost functional is given by the sum of (4.11) and

(4.17) as follows.

δJa =
[
φ(g, ξ, u)−

〈
ad∗ξJ(ξ) +M(g) + u, λ1

〉
−
〈
λ2, ξ

〉] ∣∣∣∣
t=tf

δtf

+
∫ tf

t0

〈
δu, Duφ− λ1

〉
+
〈
−λ̇2 + T∗eLg ·Dgφ−M(g, λ1) + ad∗ξλ

2, η
〉

+
〈
−J(λ̇1) + Dξφ+ ad∗λ1J(ξ)− J(adξλ1)− λ2, δξ

〉
dt. (4.18)

This is zero for any variation about the optimal trajectory. Thus, we obtain necessary conditions for

optimality as follows.

Proposition 4.2 Consider a forced Euler-Lagrange system evolving on a Lie group, whose La-

grangian is given by (4.7). Necessary conditions for the optimal control problem presented in

Section 4.1.2 are as follows.

• Optimality condition

Duφ(g, ξ, u)− λ1 = 0, (4.19)
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• Multiplier equations

J(λ̇1)− ad∗λ1J(ξ) + J(adξλ1) + λ2 −Dξφ(g, ξ, u) = 0, (4.20)

λ̇2 − ad∗ξλ
2 − T∗eLg ·Dgφ(g, ξ, u) +M(g, λ1) = 0, (4.21)

whereM : G× g→ g∗ is given by (4.13).

• Boundary conditions

[
φ(g, ξ, u)−

〈
ad∗ξJ(ξ) +M(g) + u, λ1

〉
−
〈
λ2, ξ

〉] ∣∣∣∣
t=tf

= 0, (4.22)

g(tf ) = gf , ξ(tf ) = ξf . (4.23)

Remark 4.1 These necessary conditions are expressed in a coordinate-free form. Therefore, the

optimality conditions and the resulting optimal control are independent of the choice of any coordi-

nates. They are globally represented by group elements without any singularity and ambiguity, and

the optimality conditions are more compact than expressions written in terms of local parameteri-

zations.

Remark 4.2 The necessary conditions have the form of a two point boundary value problem: find

the control input u, state (g, ξ), multipliers (λ1, λ2), and terminal time tf that satisfy the optimality

condition (4.19), the Euler-Lagrange equations (4.2), (4.3), the multiplier equations (4.20), (4.21),

and the given boundary conditions. A computational approach to solve this two point boundary

value problem is discussed in Chapter 5.

Remark 4.3 The presented necessary conditions are for optimal control problems with fixed termi-

nal conditions and a free terminal time. They can be extended to other optimal control problems. For

example, if the terminal time is fixed, then the necessary conditions for the corresponding optimal

control problem are the same as presented in Proposition 4.2 without (4.22). If there is a constraint

on the control input, for example, the control input lies in a given submanifold U ⊂ g∗, then only

the optimality condition given by (4.19) is changed to∫ tf

t0

〈
δu, Duφ(g, ξ, u)− λ1

〉
dt ≥ 0 (4.24)

for all admissible variations of the control input δu and for all t ∈ [t0, tf ].
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4.2 Examples of Optimal Control of Rigid Bodies

Based on the optimal control problem formulation and the necessary conditions developed in the

previous section, we study the following optimal control problems for rigid body dynamics on a Lie

group. We formulate the specific optimal control problems and we develop necessary conditions

for optimality. Computational approaches for solving the corresponding two point boundary value

problems are discussed in Section 5.2.

Section Optimal Control Problem G

4.2.1 Fuel optimal attitude control of a spacecraft on a circular orbit SO(3)
4.2.2 Time optimal attitude control of a free rigid body SO(3)
4.2.3 Fuel optimal attitude control of a 3D pendulum with symmetry SO(3)
4.2.4 Fuel optimal control of a rigid body SE(3)

The fuel optimal attitude control of a spacecraft in Section 4.2.1, and the fuel optimal control

of a rigid body in Section 4.2.4 are direct applications of Proposition 4.2 on the Lie groups SO(3)
and SE(3), respectively. In the time optimal attitude control problem presented in Section 4.2.2,

we consider a bounded control input, where the optimality condition is as discussed in Remark 4.3.

In Section 4.2.3, we consider an optimal control problem for an underactuated control input that

guarantees satisfaction of a symmetry property.

4.2.1 Fuel Optimal Attitude Control of a Spacecraft on a Circular Orbit

Consider the attitude dynamics of a rigid spacecraft on a circular orbit about a massive central body,

including gravity gradient effects (see Hughes 1986; Wie 1998). The configuration manifold is

SO(3). We study a minimum fuel optimal control problem that rotates the spacecraft to a desired

terminal attitude and angular velocity during a fixed maneuver time.

In this section, forced Euler-Lagrange equations are derived according to Corollary 4.1, and a

mathematical formulation of the optimal control problem is presented. Necessary conditions for

optimality are developed from Proposition 4.2.

E3

E1

E2

x

e3

e1

e2

LVLH frame

Inertial frame

Figure 4.1: Spacecraft on a circular orbit
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Forced Euler-Lagrange Equations

We assume that the rigid spacecraft is on a circular orbit with a constant orbital angular velocity

ω0 ∈ R. We three frames; a reference frame, a body fixed frame, and a local vertical and local

horizontal (LVLH) frame. The first axis of the LVLH frame is tangential to the orbit, and the second

axis is perpendicular to the orbital plane. The spacecraft model with the LVLH frame is shown in

Figure 4.1.

Since the orbital angular velocity is fixed, the linear transformation from the LVLH frame to

the reference frame is given by exp(ω0tê2). Let R ∈ SO(3) be the linear transformation from the

reference frame to the body fixed frame. Therefore, the attitude of the spacecraft with respect to the

LVLH frame is given by exp(−ω0tê2)R. The gravitational potential can be written as

U(R) = −GM
r0
− 1

2
ω2

0(tr[J ]− 3eT3 exp(−ω0tê2)RJRT exp(ω0tê2)e3), (4.25)

where constants G and M are the gravitational constant and the mass of the central body, respec-

tively, and the orbital radius is given by r0 = (GM/ω2
0)1/3 (see Wie 1998). The second term

describes the gravity gradient potential that arises from the gravity variation over the spacecraft.

Let Ω ∈ R3 be the angular velocity of the spacecraft with respect to the reference frame, repre-

sented in the body fixed frame. The Lagrangian of the spacecraft on a circular orbit can be written

as (4.7), with the inertia operator J : so(3)→ so(3)∗ given by〈
J(Ω̂1), Ω̂2

〉
=
〈
ĴΩ1, Ω̂2

〉
= (JΩ1)TΩ2 (4.26)

for Ω1,Ω2 ∈ R3.

Now we find the expression for the generalized force u ∈ so(3)∗. We assume that an external

control moment τ ∈ R3 is applied to the rigid body. This represents the control moment expressed

in the body fixed frame. Let ρ ∈ R3 be the vector from the mass center to a mass element of the rigid

body. Then, the virtual displacement of the element due to the variation ofR is given by δRρ = Rη̂ρ

in the reference frame. Thus, the virtual displacement of the mass element is represented by η̂ρ in

the body fixed frame. Let dF (ρ) be the force acting on the mass element expressed in the body

fixed frame. Note that
∫
B dF (ρ) = 0 as the inter-particle forces cancel out, and

∫
B ρ× dF (ρ) = τ

as the external moment τ is applied to the rigid body. Then, the virtual work done by the control

moment on the rigid body is given by∫
B
〈dF (ρ), η̂ρ〉 =

∫
B
η · (ρ× dF (ρ)) = η · τ.

Therefore, the generalized force acting on the rigid body is equal to the external control moment

applied to the rigid body, i.e. u = τ ∈ so(3)∗ ' (R3)∗. From now on, we denote the external

moment by u for simplicity.

Recall that the ad operator on SO(3) is given by adΩ′Ω = Ω′ × Ω ad∗Ω′Ω = −Ω′ × Ω for

Ω,Ω′ ∈ so(3) ' R3. According to Corollary 4.1, the forced Euler-Lagrange equations for the
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attitude dynamics of the spacecraft on a circular orbit are given by

JΩ̇ + Ω× JΩ = M + u, (4.27)

Ṙ = RΩ̂, (4.28)

M = 3ω2
0(RT exp(−ω0tê2)e3)× (JRT exp(−ω0tê2)e3). (4.29)

Optimal Control Problem

The objective of the optimal control problem is to rotate the spacecraft from the initial attitude and

angular velocity (R(t0),Ω(t0)) to the desired terminal attitude and angular velocity (Rf ,Ωf ) for a

fixed terminal time tf , while minimizing the control effort.

For given: t0, (R(t0),Ω(t0)), tf , (Rf ,Ωf )

min
u

{
J =

∫ tf

t0

1
2
uTu dt

}
,

such that R(tf ) = Rf , Ω(tf ) = Ωf ,

subject to (4.27), (4.28), (4.29).

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in Section 4.1.2 with

φ(R,Ω, u) = 1
2u

Tu. Therefore,

DRφ = 0, DΩφ = 0, Duφ = u. (4.30)

We find the expression forM(R, λ1) : SO(3)×so(3)→ so(3)∗. The derivative of the gravitational

moment is given by

TgM(R) ·Rη̂ = −3ω2
0(JRT exp(ω0tê2)e3)∧ (−η̂RT exp(ω0tê2)e3)

− 3ω2
0(RT exp(ω0tê2)e3)∧ (Jη̂RT exp(ω0tê2)e3)

= −3ω2
0(JRT exp(ω0tê2)e3)∧ (RT exp(ω0tê2)e3)∧ η

+ 3ω2
0(RT exp(ω0tê2)e3)∧ J (RT exp(ω0tê2)e3)∧ η.

According to (4.13), the expression forM(R, λ1) is obtained as follows.

M(R, λ1) = 3ω2
[
− (JRT exp(ω0tê2)e3)∧ (RT exp(ω0tê2)e3)∧

+ (RT exp(ω0tê2)e3)∧ J (RT exp(ω0tê2)e3)∧
]T
λ1. (4.31)

Substituting (4.26), (4.30), and (4.31) into (4.19)–(4.23), we obtain the following necessary

conditions for optimality according to Proposition 4.2:
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• Optimality condition

u = λ1. (4.32)

• Multiplier equations

Jλ̇1 + λ1 × JΩ + J(Ω× λ1) + λ2 = 0, (4.33)

λ̇2 + Ω× λ2 +M(R, λ1) = 0. (4.34)

• Boundary conditions

R(tf ) = Rf , Ω(tf ) = Ωf , (4.35)

where the expression forM(R, λ1) is given by (4.31).

This is an intrinsic form of necessary conditions for an optimal attitude control problem on

SO(3). Using the fact that so(3) is isomorphic to R3, the multiplier equations are expressed as

compact vector equations on R6 in (4.33), (4.34). If the spacecraft is inertially symmetric, i.e.

J = I3×3, the multiplier equation (4.33) reduces to λ̇1+λ2 = 0. These are much more compact than

necessary conditions expressed in terms of Euler angles or quaternions, and there is no singularity

in representing the attitude of the spacecraft. Therefore, these can be used to study large angle

spacecraft rotational maneuvers. A computational approach to solve these necessary conditions to

obtain optimal attitude maneuvers of spacecraft is presented in Section 5.2.1.

4.2.2 Time Optimal Attitude Control of a Free Rigid Body

We study a time optimal control problem for the attitude dynamics of a free rigid body, that is a

rigid body acted on by a control moment but no other external moment. This rigid body model

corresponds to the spacecraft on a circular orbit presented in the previous section, where the gravity

variation over the spacecraft body is ignored. Time optimal attitude maneuvers have been exten-

sively studied in the literature (see, for example, a survey paper by Scrivener and Thompson 1994,

and references therein). For example, the time optimal control of spacecraft has received consistent

interest as rapid attitude maneuvers are critical to various space missions such as military surveil-

lance and satellite communications.

The time optimal maneuver for a single degree of freedom rigid body model, where the attitude

maneuver is constrained to an eigen-axis rotation, is derived in Etter (1989). Later, it is shown that

the eigen-axis rotation is not generally time optimal by Bilimoria and Wie (1993); Seywald and

Kumar (1993). The attitude dynamics are often simplified in optimality analyses, e.g., by assuming

an inertially symmetric rigid body model (see Bilimoria and Wie 1993; Modgalya and Bhat 2006;

Seywald and Kumar 1993), linearization of the dynamics (see Byers and Vadali 1993) and constant

magnitude angular velocity (see Modgalya and Bhat 2006). Here, we present necessary conditions

for the time optimal attitude control problem on SO(3), without any simplifying assumptions on the
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rigid body (see Lee et al. 2008a).

In this section, forced Euler-Lagrange equations are derived according to Corollary 4.1, and a

mathematical formulation of the optimal control problem is presented. Necessary conditions for

optimality are developed from Proposition 4.2; as discussed in Remark 4.3, the optimality condition

includes the effect of bounded control inputs.

Forced Euler-Lagrange Equations

Define two frame; a reference frame and a body fixed frame. Let R ∈ SO(3) be the linear transfor-

mation from the body fixed frame to the reference frame, and Ω ∈ R3 be the angular velocity of the

rigid body represented in the body fixed frame.

In this optimal control problem, we assume that there is no configuration dependent potential,

i.e. U(R) ≡ 0. According to Corollary 4.1, the forced Euler-Lagrange equations for the attitude

dynamics of the free rigid body are given by

JΩ̇ + Ω× JΩ = u, (4.36)

Ṙ = RΩ̂. (4.37)

Optimal Control Problem

We assume that the magnitude of the control moment is uniformly bounded by a constant u ∈ R,

i.e. ‖u(t)‖2 ≤ u for any t ∈ [t0, tf ]. The objective of the time optimal attitude control problem

is to transfer the rigid body with a given initial attitude and angular velocity (R(t0),Ω(t0)) to the

desired terminal condition (Rf ,Ωf ), with the constrained control moment in a minimal maneuver

time tf .

For given: t0, (R(t0),Ω(t0)), (Rf ,Ωf ), ū

min
u,tf

{
J =

∫ tf

t0

1 dt
}
,

such that R(tf ) = Rf , Ω(tf ) = Ωf ,

subject to ‖u(t)‖ ≤ ū ∀t ∈ [t0, tf ] and (4.36), (4.37).

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in Section 4.1.2 with

φ(R,Ω, u) = 1. Therefore, the derivatives of φ are zero. As discussed in Remark 4.3, the opti-

mality condition is given by ∫ tf

t0

〈
δu, −λ1

〉
dt ≥ 0
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for λ1 ∈ so(3) ' R3 and all admissible variation δu. For the given constraint, the optimal control

input is

u = u
λ1

‖λ1‖
.

According to Proposition 4.2, the necessary conditions for optimality are given by

• Optimality condition

u = u
λ1

‖λ1‖
. (4.38)

• Multiplier equations

Jλ̇1 + λ1 × JΩ + J(Ω× λ1) + λ2 = 0, (4.39)

λ̇2 + Ω× λ2 = 0. (4.40)

• Boundary conditions

[
1− λ1 · (−Ω× JΩ + u)− λ2 · Ω

] ∣∣∣∣
t=tf

= 0, (4.41)

R(tf ) = Rf , Ω(tf ) = Ωf . (4.42)

In (4.38), the optimal control input is not well-defined if λ1 is equal to zero for a finite period of

time. This is referred to as a singular arc (see Bell and Jacobson 1975). By following the approach

presented in Lee et al. (2008a), it can be shown that there is no singular arc in this optimal control

problem. Suppose that there is a singular arc, i.e. λ1 = λ̇1 = 0 for a finite time period. Then,

λ2 = 0 from (4.39), and λ̇2 = 0 from (4.40). Due to the linear structure of the multiplier equations,

it follows that λ1 = λ2 = 0 for t ∈ [t0, tf ]. Then, it is clear that the boundary condition (4.41)

cannot be satisfied. Therefore, there is no singular arc along the optimal solution.

Here we do not impose any simplifying assumptions on the rigid body, such as appear in the

current literature (see, for example, Bilimoria and Wie 1993; Byers and Vadali 1993; Modgalya and

Bhat 2006; Seywald and Kumar 1993). But the presented necessary conditions are compact, and

they have no singularity. A computational approach to solve these necessary conditions to obtain

time optimal attitude maneuvers is presented in Section 5.2.3.

4.2.3 Fuel Optimal Attitude Control of a 3D Pendulum with Symmetry

Consider the 3D pendulum model presented in Section 2.3.2. The 3D pendulum is a rigid body sup-

ported by a frictionless pivot point acting under uniform gravitational potential. We have shown that

the 3D pendulum has a symmetry represented by a group action of SO(2) ' S1, and consequently,

the angular momentum about the gravity direction is conserved, and the configuration manifold

SO(3) can be reduced to a quotient space SO(3)/S1 ' S2.
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We study an optimal attitude control of the 3D pendulum (see Lee et al. 2007f). The external

control moment does not have any component about the gravity direction, and therefore, the angular

momentum is conserved along the controlled dynamics of the 3D pendulum. Such control inputs are

physically realized by actuation mechanisms, such as point mass actuators, that change the center

of mass of the 3D pendulum.

In particular, we consider the case where the angular momentum about the gravity direction

is zero, and we choose the desired maneuver as a rest-to-rest rotation about the gravity direction.

This is interesting since the under-actuated control moment cannot generate any direct effect on the

rotation about the gravity direction. The desired maneuver depends on the geometric phase effect

discussed in Appendix A.3.3.

In this section, forced Euler-Lagrange equations are derived according to Corollary 4.1, and a

mathematical formulation of the optimal control problem is presented. Necessary conditions for

optimality are developed. Since the control input has a special structure, the necessary conditions

presented in Proposition 4.2 are appropriately modified.

Forced Euler-Lagrange Equations

We assume that the external control moment is expressed in the body fixed frame as

u = RT e3 × up

for a control parameter up ∈ R3. Since the vector RT e3 represents the gravity direction in the body

fixed frame, the external control moment has no component along the gravity direction. Therefore,

the angular momentum about the gravity direction is preserved in the controlled dynamics.

According to Corollary 4.1, the forced Euler-Lagrange equations are given by

JΩ̇ + Ω× JΩ = mgρc ×RT e3 +RT e3 × up, (4.43)

Ṙ = RΩ̂. (4.44)

Optimal Control Problem

The objective of the optimal control problem is to rotate the 3D pendulum from the initial attitude

R(t0) = I to the terminal attitude R(tf ) = exp(θê3) for a fixed terminal time tf and a rotation

angle θ ∈ S1, while minimizing the control effort. The initial angular velocity and the terminal

angular velocity are set to zero.

For given: t0, (R(t0) = I,Ω(t0) = 0), tf , θ

min
u

{
J =

∫ tf

t0

uTp up dt

}
,

such that R(tf ) = exp(θê3), Ω(tf ) = 0,

subject to (4.43), (4.44).
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Necessary Conditions for Optimality

This optimal control problem is not a special case of the general optimal control problem presented

in Section 4.1.2, where the external control inputs are dependent on time. Here, the generalized force

depends on the rotation matrix as well as the control parameter up. Therefore, the variations of the

generalized force include the effect of the variation of the rotation matrix. But, necessary condition

for optimality can be developed by following an approach that is similar to the one discussed in

Section 4.1.3.

Define the augmented cost functional:

Ja =
∫ tf

t0

1
2
uTp up +

〈
d

dt
J(Ω) + Ω× JΩ−M(R)−RT e3 × up, λ1

〉
+
〈
λ2, (RT Ṙ)∨ − Ω

〉
dt,

(4.45)

where the gravitational moment of the 3D pendulum is given by M(R) = mgρc × RT e3. This is

equal to (4.10), except that two terms φ and u in (4.10) are replaced by 1
2u

T
p up and RT e3 × up in

(4.45). Therefore, from (4.14), we obtain the variation of the augmented cost functional as follows.

δJa =
∫ tf

t0

〈δup, up〉+
〈
−λ̇2 −M(R, λ1)− Ω× λ2, η

〉
+
〈
−Jλ̇1 − λ1 × JΩ− J(Ω× λ1)− λ2, δξ

〉
−
〈
δ(RT e3 × up), λ1

〉
dt. (4.46)

We find the expression forM(R, λ1). From (4.13), we obtain〈
−mgρ̂cη̂RT e3, λ

1
〉

=
〈
mgρ̂cR̂T e3η, λ

1
〉

=
〈
mgR̂T e3ρ̂cλ

1, η
〉

=
〈
M(R, λ1), η

〉
. (4.47)

Thus, M : SO(3) × so(3) → so(3)∗ is given byM(R, λ1) = mgR̂T e3ρ̂cλ
1. Similarly, the last

term of (4.46) is given by〈
δ(RT e3 × up), λ1

〉
=
〈
−(η̂RT e3)× up +RT e3 × δup, λ1

〉
=
〈
−ûpR̂T e3 η +RT e3 × δup, λ1

〉
=
〈
−R̂T e3ûpλ

1, η
〉

+
〈
δup, λ

1 ×RT e3

〉
. (4.48)

Substituting (4.47) and (4.48) into (4.46), we obtain necessary conditions for optimality as fol-

lows.

• Optimality condition

up = −RT e3 × λ1. (4.49)
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• Multiplier equations

Jλ̇1 + λ1 × JΩ + J(Ω× λ1) + λ2 = 0, (4.50)

λ̇2 + Ω× λ2 +mgR̂T e3ρ̂cλ
1 − R̂T e3ûpλ

1 = 0. (4.51)

• Boundary conditions

R(tf ) = exp(θê3), Ω(tf ) = 0. (4.52)

It is interesting to observe that the quantity eT3 Rλ
2 is preserved along the optimal solution since

d

dt
eT3 Rλ

2 = eT3 RΩ̂λ2 + eT3 Rλ̇
2 = eT3 RΩ̂λ2 − eT3 R(Ω̂λ2) = 0.

Together with the conservation of the angular momentum about the gravity direction, this yields

numerical ill-conditioning in the optimal control problem. A simple computational approach to

overcome this difficulty is presented in Lee et al. (2007f), and it is discussed in Section 5.2.3.

4.2.4 Fuel Optimal Control of a Rigid Body

Consider a general maneuver of a rigid body, acting under a potential that is dependent on the

attitude and the position of the body, presented in Section 2.3.5. We consider an optimal control

problem to transfer the rigid body to a desired position and attitude using minimal effort during

a fixed maneuver time. In many optimal control problems, the optimal attitude control problem

and the optimal position control problem are independent and can be solved separately. Here, we

explicitly consider coupling effects of the rotational and the translational dynamics of the rigid body.

In this section, forced Euler-Lagrange equations are derived according to Corollary 4.1, and a

mathematical formulation of the optimal control problem is presented. Necessary conditions for

optimality are developed from Proposition 4.2.

Forced Euler-Lagrange Equations

The configuration manifold of the general motion of a rigid body in R3 is the special Euclidean

group SE(3). The configuration of the rigid body is represented by g = (R, x) ∈ SE(3) for a

rotation matrix R ∈ SO(3) representing the attitude and a vector x representing the location of the

mass center in a reference frame. The Lagrangian is given by (2.95) for a configuration dependent

potential U(R, x) : SE(3) → R. Recall that the inertia operator J : se(3) → se(3)∗ and the ad
operator on SE(3) are given by

J((Ω, V )) =

[
ĴΩ mV

0 0

]
=

[
JdΩ̂ + Ω̂Jd mV

0 0

]
, (4.53)

ad(Ω,V ) =

[
Ω̂ 0
V̂ Ω̂

]
, ad∗(Ω,V ) =

[
−Ω̂ −V̂
0 −Ω̂

]
. (4.54)
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We assume that the external control input is given by u = (uf , um) ∈ se(3)∗, where the control

force uf ∈ (R3)∗ and the control moment um ∈ (R3)∗, are expressed in the body fixed frame.

According to Corollary 4.1, the forced Euler-Lagrange equations are given by

JΩ̇ + Ω× JΩ = M + uf , (4.55)

mV̇ +mΩ× V = −RT ∂U
∂x

+ um, (4.56)

Ṙ = RΩ̂, (4.57)

ẋ = RV. (4.58)

The force due to the potential, in the body fixed frame, is −RT ∂U∂x , and the moment due to potential

is determined by M̂ = ∂U
∂R

T
R−RT ∂U∂R as shown in (2.101).

Optimal Control Problem

The objective of the optimal control problem is to transfer the rigid body with a given initial condi-

tion (R(t0), x(t0),Ω(t0), V (t0)) to a desired terminal condition (Rf , xf ,Ωf , V f ) at a fixed terminal

time tf , while using minimal control effort.

For given: t0, (R(t0), x(t0),Ω(t0), V (t0)), tf , (Rf , xf ,Ωf , V f )

min
u

{
J =

∫ tf

t0

1
2
〈u, W (u)〉 dt

}
,

such that R(tf ) = Rf , x(tf ) = xf , Ω(tf ) = Ωf , V (tf ) = V f ,

subject to (4.55)–(4.58),

where W : se(3)∗ → se(3) is a weighting function given by W (u) = (Wmum,W fuf ) for sym-

metric positive definite matrices W f ,Wm ∈ R3×3.

Necessary Conditions for Optimality

This is a special case of the general optimal control problem introduced in Section 4.1.2 with

φ(g, ξ, u) = 〈u, Wu〉. Since the terminal time is fixed, the boundary condition (4.22) is omitted.

Let λ1 = (λ1
R, λ

1
x) ∈ se(3) and λ2 = (λ2

R, λ
2
x) ∈ se(3)∗ be Lagrange multipliers with λ1

R, λ
1
x ∈

(R3)∗ and λ2
R, λ

2
x ∈ R3. According to (4.19), the optimality conditions are easily obtained. The

multiplier equations can be obtained by directly substituting the expressions for the inertia operator

(4.53) and ad, ad∗ operators (4.54) on SE(3) into the multiplier equations given by (4.20) and (4.21).

The expression forM(R, x, λ1
R, λ

1
x) : SE(3)× se(3)→ se(3)∗ is determined by (4.13) as follows.〈

T(R,x)

((
∂U

∂R

T

R−RT ∂U
∂R

)∨
,−RT ∂U

∂x

)
· (Rη̂, δx), (λ1

R, λ
1
x)

〉
=
〈
M(R, x, λ1

R, λ
1
x), (η, δx)

〉
. (4.59)
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In summary, the necessary conditions for optimality are given by

• Optimality condition

um = (Wm)−1λ1
R, uf = (W f )−1λ1

x. (4.60)

• Multiplier equations[
Jλ̇1

R

mλ̇1
x

]
−

[
−λ̂1

R −λ̂1
x

0 −λ̂1
R

][
JΩ
mV

]
+

[
J 0
0 mI3×3

][
Ω̂ 0
V̂ Ω̂

][
λ1
R

λ1
x

]
+

[
λ2
R

λ2
x

]
= 0, (4.61)[

λ̇2
R

λ̇2
x

]
−

[
−Ω̂ −V̂
0 −Ω̂

][
λ2
R

λ2
x

]
+M(R, x, λ1

R, λ
1
x) = 0, (4.62)

where the expression forM(R, x, λ1
R, λ

1
x) : SE(3)×se(3)→ se(3)∗ is determined by (4.59).

• Boundary conditions

R(tf ) = Rf , x(tf ) = xf , Ω(tf ) = Ωf , V (tf ) = V f . (4.63)

These necessary conditions can be used to study optimal rigid body maneuvers with explicit

consideration for the coupling effects of rotational dynamics and translational dynamics. A compu-

tational approach to solve these necessary conditions for optimal transfer maneuvers of spacecraft

is presented in Section 5.2.4.

4.3 Conclusions

In Section 4.1, we have formulated an optimal control problem for dynamic systems that evolve

on a Lie group, and we have derived necessary conditions for optimality by the calculus of varia-

tions. These results are illustrated by optimal control problems for several rigid body systems in

Section 4.2.

The intrinsic form of necessary conditions for optimality developed in this chapter can be ap-

plied to a wide class of optimal control problems on a Lie group. In particular, this chapter dealt

with optimal control problems for dynamic systems with a Lie group configuration manifold. This

is distinguished from the existing optimal control theories developed for kinematics equations on a

Lie group.

As shown in Section 4.2, this approach provides a coordinate-free form of necessary conditions.

Therefore, the optimality condition and the resulting optimal control input are independent of the

choice of representations for rigid body configurations. They are globally represented by group

elements without any singularity and ambiguity, and the optimality conditions are more compact

than expressions written in terms of local parameterizations. These results can be applied to optimal

control problems for complex multibody systems.
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CHAPTER 5

COMPUTATIONAL GEOMETRIC OPTIMAL CONTROL OF
RIGID BODIES ON A LIE GROUP

In the previous chapter, we developed necessary conditions for optimality for an optimal control

problem for mechanical systems evolving on a Lie group. While the presented necessary conditions

are expressed in a global and relatively compact form that is suitable for analytical study, the pro-

cedure to find optimal control inputs generally relies on numerical computations. This chapter dis-

cusses computational geometric approaches for finding the optimal control input numerically while

preserving geometric properties of the dynamics. These approaches are based on the formulation of

computational geometric mechanics discussed in Chapter 3.

5.1 Computational geometric optimal control
on a Lie group

5.1.1 Lie group variational integrator
with force

5.1.2 Discrete-time optimal control
problem formulation

5.1.3
Discrete-time necessary
conditions for optimality

5.1.4
Computational approach

5.1.5
Direct optimal control

approach

5.2 Examples of optimal control of rigid bodies

5.2.1 Spacecraft on a circular orbit

5.2.2 Free rigid body

5.2.3 3D pendulum with symmetry

5.2.4 Rigid body under potential field

5.2.5 Spacecraft formation reconfiguration

5.2.6 3D pendulum on a cart

5.2.7 Two connected rigid bodies

This chapter is organized as follows. In Section 5.1, we develop computational geometric op-

timal control theory for dynamics on an arbitrary Lie group; the Lie group variational integrator

derived in Chapter 3 are extended to include effect of external control inputs, and a general form

of a discrete-time optimal control problem is formulated. Two optimal control approaches are pre-

sented; in Section 5.1.3 and Section 5.1.4, discrete-time necessary conditions for optimality and a

computational approach to solve the corresponding two point boundary value problem are devel-

oped, and in Section 5.1.5, a direct optimal control approach based on a parameter optimization

technique is presented. These approaches are applied to several optimal control problems for rigid

body dynamics in Section 5.2
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5.1 Computational Geometric Optimal Control on a Lie Group

Computational geometric optimal control is concerned with developing numerical methods for op-

timal control problems, that conserve geometric properties of the dynamics and of the optimality

conditions. The essential idea is the same as that of computational geometric mechanics presented

in Chapter 3; computational methods are developed according to a discrete-time analogue of the un-

derlying fundamental principles. We developed computational geometric mechanics by discretizing

Hamilton’s principle, and the resulting Lie group variational integrators have desirable geometric

properties. In computational geometric optimal control, we discretize an optimal control problem

at the problem formulation stage using a structure-preserving geometric integrator, and we develop

discrete-time optimality conditions using the calculus of variations. This is in contrast to the usual

optimal control approaches, where discretization appears at the last stage when solving the neces-

sary conditions numerically.

Computational geometric optimal control has substantial computational advantages. As dis-

cussed in Chapter 3, discrete-time equations derived from computational geometric mechanics are

more faithful to the continuous equations of motion, and consequently a more accurate solution

to the optimal control problem is obtained. Although external control inputs often break the La-

grangian and Hamiltonian system structure, the computational superiority of numerical solutions

obtained from discrete-time geometric mechanics still holds for controlled systems. It has been

shown that they compute the energy dissipation rate of controlled systems more accurately (see

Marsden and West 2001). For example, this feature is extremely important in computing accurate

optimal trajectories for long time maneuvers using low energy control inputs.

Computational geometric optimal control not only provides an accurate optimal control input,

but it also enables us to find it efficiently. The optimal solutions are usually sensitive to small varia-

tions in the multipliers. This causes difficulties, such as numerical ill-conditioning, when solving the

necessary conditions for optimality in the form of a two point boundary value problem. Computed

sensitivity derivatives are not influenced by the numerical dissipation introduced by conventional

numerical integration schemes. Therefore, they are numerically more robust, and necessary condi-

tions can be solved in a computationally efficient way.

In summary, computational geometric optimal control is a discrete-time analogue of geometric

optimal control discussed in Chapter 4. It deals with optimal control problems for dynamic systems

on a Lie group, expressed in a coordinate-free form. The computational geometric optimal control

approach develops efficient numerical algorithms for optimal control problems, that preserve the

geometrical features. This approach is based on computation geometric mechanics presented in

Chapter 3. Here, we first extend Lie group variational integrators to include the effect of control in-

puts, and we formulate discrete-time optimal control problems. Discrete-time necessary conditions

for optimality are developed according to a discrete analogue of the calculus of variations, and a

direct optimal control approach is discussed.
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5.1.1 Lie Group Variational Integrator with Generalized Forces

Consider a mechanical system evolving on a Lie group G. Suppose that there exists a generalized

force u(t) : [t0, tf ] → g∗ acting on the system. The discrete generalized forces u+
dk
, u−dk ∈ g∗ are

chosen such that they approximate the virtual work in the Lagrange-d’Alembert principle given by

(4.1): ∫ tk+1

tk

u(t) · η dt ≈ u−dk · ηk + u+
dk
· ηk+1.

The discrete Lagrange-d’Alembert principle states that

δ
N−1∑
k=0

Ld(gk, fk) +
N−1∑
k=0

u−dk · ηk + u+
dk
· ηk+1 = 0. (5.1)

As the discrete Hamilton’s principle given by (3.3) approximates Hamilton’s principle given by

(2.2), this discrete Lagrange-d’Alembert principle approximates the Lagrange-d’Alembert principle

given by (4.1). This is equivalent to discrete Hamilton’s principle with the additional forcing term

included. From (3.9), and using the fact that η0 = ηN = 0, this can be written as

N−1∑
k=1

〈
T∗eLgk ·DgkLdk −Ad∗

f−1
k

· (T∗eLfk ·DfkLdk) + T∗eLfk−1
·Dfk−1

Ldk−1
, ηk

〉
+
N−1∑
k=1

〈
u−dk + u+

dk−1
, ηk

〉
= 0,

which yields the forced discrete Euler-Lagrange equations on G.

Proposition 5.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kine-

matics equation is given by (3.11), where the group element gk+1 is updated by the right group

action of fk ∈ G on gk. Suppose that the discrete Lagrangian is defined as Ld(gk, fk) : G×G→ R,

and there exist discrete generalized forces u−k , u
+
k ∈ g∗. The corresponding forced discrete-time

Euler-Lagrange equations are given by

T∗eLfk−1
·Dfk−1

Ld(gk−1, fk−1)−Ad∗
f−1
k

· (T∗eLfk ·DfkLd(gk, fk))

+ T∗eLgk ·DgkLd(gk, fk) + u−dk + u+
dk−1

= 0,
(5.2)

gk+1 = gkfk. (5.3)

Using the discrete Legendre transformation, we obtain the equivalent discrete-time Hamilton’s
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equations are follows.

µk = Ad∗
f−1
k

· (T∗eLfk ·DfkLdk)− T∗eLgk ·DgkLdk − u
−
dk
, (5.4)

gk+1 = gkfk, (5.5)

µk+1 = Ad∗fk · (µk + T∗eLgk ·DgkLdk + u−dk) + u+
dk
. (5.6)

Special Form of Discrete-time Forced Euler-Lagrange Equations. Proposition 5.1 provides forced

discrete-time Euler-Lagrange equations for mechanical systems evolving on a Lie group G with

the general form of the discrete Lagrangian. While it is possible to formulate an optimal control

problem and derive necessary optimality conditions for these systems, we consider mechanical sys-

tems with a discrete Lagrangian as in Section 4.1. This allow us to illustrate the essential idea of

the computational geometric optimal control approach more explicitly, and discrete-time necessary

conditions for optimality in Section 5.1.3 have a more compact form.

We assume that the discrete Lagrangian has the following form.

Ld(gk, fk) = Td(fk)− (1− c)hU(gk)− chU(gkfk), (5.7)

for a discrete kinetic energy Td : G → R and a configuration dependent potential U : G → R. The

constant c ∈ [0, 1] is a free parameter. If it is chosen as c = 1
2 , the discrete Lagrangian represents

the trapezoidal rule for the Lagrangian given by (4.7), and it has second-order accuracy. The control

inputs are parameterized by their values at each discrete time step, and the discrete generalized

forces are chosen as

u−dk = (1− c)huk, u+
dk

= chuk+1. (5.8)

From Proposition 5.1, the corresponding forced discrete Euler-Lagrange equations are given as
follows.

Corollary 5.1 Consider a mechanical system evolving on a Lie group G. The discrete-time kinemat-

ics equation is defined in (3.11), where the group element gk+1 is updated by the right group action

of fk ∈ G on gk. Suppose that the discrete Lagrangian is given by (5.7), and there exist discrete

generalized forces u−k , u
+
k ∈ g∗ given by (5.8) for a free parameter c ∈ [0, 1]. The corresponding

forced discrete Euler-Lagrange equations are given by

T∗eLfk−1
·Dfk−1

Td(fk−1)−Ad∗
f−1
k

· (T∗eLfk ·DfkTd(fk)) + hM(gk) + huk = 0, (5.9)

gk+1 = gkfk, (5.10)

where M(gk) = −T∗eLg · DU(gk). Using the discrete Legendre transformation, we obtain the

equivalent discrete-time Hamilton’s equations as follows:
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µk = Ad∗
f−1
k

· (T∗eLfk ·DTd(fk))− (1− c)hM(gk)− (1− c)huk, (5.11)

µk+1 = Ad∗fk · (µk + (1− c)hM(gk) + (1− c)huk) + chM(gk+1) + chuk+1, (5.12)

gk+1 = gkfk. (5.13)

These equations are obtained by substituting (5.7) and (5.8) into (5.2). The detailed proof is

given in Appendix A.5.

5.1.2 Discrete-time Optimal Control Problem Formulation

We consider an optimal control problem for the mechanical system described by Corollary 5.1. The

optimal control problem is to find the control input sequence that minimizes a cost function given

by

Jd =
N−1∑
k=0

φd(gk, fk, uk),

where φd : G×G× g∗ → R is given. Several types of optimal control problems can be considered.

For simplicity, we study an optimal control problem with a fixed terminal time and fixed terminal

conditions. The subsequent development can be easily extended to other types of optimal control

problems.

The discrete-time optimal control problem is summarized as follows:

For given t0, (g0, µ0), (gf , µf ), N

min
uk

{
Jd =

N−1∑
k=0

φd(gk, fk, uk)

}
,

such that gN = gf , µN = µf ,

subject to the discrete Euler-Lagrange equations (5.11), (5.12), (5.13).

5.1.3 Discrete-time Necessary Conditions for Optimality

We derive discrete-time necessary conditions for optimality. Instead of discretizing the continuous-

time necessary conditions derived in Section 4.1.3, we derive optimality conditions using a discrete-

time version of the calculus of variations: discrete-time Hamilton’s equations are enforced by us-

ing Lagrange multipliers, and the variation of the corresponding augmented cost function is set to

zero. The resulting necessary conditions are expressed as a two point boundary value problem in a

discrete-time setting.
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More explicitly, we define the augmented cost functional as,

Jad =
N−1∑
k=0

φd(gk, fk, uk) +
〈
µk −Ad∗

f−1
k

· T ′d(fk) + (1− c)hM(gk) + (1− c)huk, λ0
k

〉
+
〈
µk+1 −Ad∗fk · (µk + (1− c)hM(gk) + (1− c)huk)− chM(gk+1)− chuk+1, λ

1
k

〉
+
〈
λ2
k, log(g−1

k gk+1)− log fk
〉
, (5.14)

where λ0
k, λ

1
k ∈ g, λ2

k ∈ g∗ are sequences of Lagrange multipliers, and T ′d(fk) ∈ g∗ is defined as

T ′d(fk) = T∗eLfk ·DTd(fk) for fk ∈ G. The logarithm for fk, g−1
k gk+1 ∈ G is well-defined since

they are close to the identity element if we choose the time step size h to be sufficiently small.

The variation of the augmented cost functional yields discrete-time necessary conditions for

optimality. By the Lagrange multiplier theorem, µk, gk and fk are considered as independent vari-

ables. The infinitesimal variation of gk is defined as δgk = gkηk for ηk ∈ g in (3.5). Similarly, the

infinitesimal variation of fk is defined as

δfk = fkχk (5.15)

for χk ∈ g.

We find expressions for the variation of each term of (5.14). The variation of the first term of

(5.14) is given by

δJ1
ad

= Dgkφd(gk, fk, uk) · δgk + Dfkφd(gk, fk, uk) · δfk + Dukφd(gk, fk, uk) · δuk
= 〈T∗eLgk ·Dgkφdk , ηk〉+ 〈T∗eLfk ·Dfkφdk , χk〉+ 〈δuk, Dukφd(gk, fk, uk)〉 . (5.16)

The variation of the second term of (5.14) is given by

δJ2
ad

=
〈
δµk −Ad∗

f−1
k

· TfkT
′
d(fk) · δfk + Ad∗

f−1
k

(ad∗χkT
′
d(fk)), λ

0
k

〉
+
〈
(1− c)hTgkM(gk) · δgk + (1− c)hδuk, λ0

k

〉
,

where we use the formula for the derivative of the Ad∗ operator given by (A.53). In (4.13), we have

definedM(g, λ1) : G× g→ g∗ such that〈
TgM(g) · δg, λ1

〉
=
〈
TgM(g) · (TeLg · η), λ1

〉
=
〈
M(g, λ1), η

〉
(5.17)

for any η, λ1 ∈ g. Similarly, we define T (f, λ1) : G× g→ g∗ such that〈
TfT

′
d(f) · δf, λ0

〉
=
〈
TfT

′
d(f) · (TeLfχ), λ0

〉
=
〈
T (f, λ0), χ

〉
(5.18)

for any χ, λ0 ∈ g. Thus, the second term of δJ 2
ad

is given by〈
Ad∗

f−1
k

· TfkT
′
d(fk) · δfk, λ0

k

〉
=
〈
TfkT

′
d(fk) · δfk, Adf−1

k
λ0
k

〉
=
〈
T (fk,Adf−1

k
λ0
k), χk

〉
.
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Using the property of the Ad∗ operator, the third term of δJ 2
ad

is given by〈
Ad∗

f−1
k

(ad∗χkT
′
d(fk)), λ

0
k

〉
=
〈
T ′d(fk), adχk(Adf−1

k
λ0
k)
〉

=
〈
T ′d(fk), −adAd

f−1
k

λ0
k
(χk)

〉
=
〈
−ad∗Ad

f−1
k

λ0
k
(T ′d(fk)), χk

〉
.

Using these expressions, the variation of the second term of (5.14), δJ 2
ad

is given by

δJ 2
ad

=
〈
δµk, λ

0
k

〉
+
〈
−T (fk,Adf−1

k
λ0
k)− ad∗Ad

f−1
k

λ0
k
(T ′d(fk)), χk

〉
+
〈
(1− c)hM(gk, λ0

k), ηk
〉

+
〈
(1− c)hδuk, λ0

k

〉
. (5.19)

The variation of the third term of (5.14) is given by

δJ 3
ad

=
〈
δµk+1 −Ad∗fk · (δµk + (1− c)hTgkM(gk) · δgk + (1− c)hδuk), λ1

k

〉
+
〈
−Ad∗fk(ad∗Adfkχk

(µk + (1− c)hM(gk) + (1− c)huk)), λ1
k

〉
+
〈
−chTgk+1

M(gk+1) · δgk+1 − chδuk+1, λ
1
k

〉
,

where we use the formula for the derivative of the Ad∗ operator given by (A.52). Using the property

of the Ad∗ map, it can be shown that this is equal to

δJ 3
ad

=
〈
δµk+1, λ

1
k

〉
−
〈
δµk + (1− c)hδuk, Adfkλ

1
k

〉
−
〈
(1− c)hM(gk,Adfkλ

1
k), ηk

〉
+
〈

Ad∗fk(ad∗Adfkλ
1
k
(µk + (1− c)hM(gk) + (1− c)huk)), χk

〉
−
〈
chM(gk+1, λ

1
k), ηk+1

〉
−
〈
chδuk+1, λ

1
k

〉
. (5.20)

Instead of taking a variation of log in the fourth term of (5.14), we take a variation of fk and

g−1
k gk+1. Using (3.6), we obtain

δJ 4
ad

=
〈
λ2
k, −χk + ηk+1 −Adf−1

k
ηk

〉
=
〈
λ2
k, −χk + ηk+1

〉
−
〈

Ad∗
f−1
k

λ2
k, ηk

〉
. (5.21)

From (5.16), (5.19), (5.20), and (5.21), the variation of the cost functional is given by

δJad =
N−1∑
k=0

〈
δµk+1, λ

1
k

〉
+
〈
λ2
k − chM(gk+1, λ

1
k), ηk+1

〉
+
〈
δuk+1, −chλ1

k

〉
+
〈

T∗eLfk ·Dfkφdk − T (fk,Adf−1
k
λ0
k)− ad∗Ad

f−1
k

λ0
k
(T ′d(fk)), χk

〉
+
〈

Ad∗fk(ad∗Adfkλ
1
k
(µk + (1− c)hM(gk) + (1− c)huk))− λ2

k, χk

〉
+
〈
δµk, λ

0
k −Adfkλ

1
k

〉
+
〈
T∗eLgk ·Dgkφdk + (1− c)hM(gk, λ0

k)− (1− c)hM(gk,Adfkλ
1
k)−Ad∗

f−1
k

λ2
k, ηk

〉
+
〈
δuk, Dukφdk + (1− c)hλ0

k − (1− c)hAdfkλ
1
k

〉
.

136



Using the fact that the variations vanish at the end points, the summation can be reindexed as

follows:

δJad =
N−1∑
k=0

〈
T∗eLfk ·Dfkφdk − T (fk,Adf−1

k
λ0
k)− ad∗Ad

f−1
k

λ0
k
(T ′d(fk)), χk

〉
+
〈

Ad∗fk(ad∗Adfkλ
1
k
(µk + (1− c)hM(gk) + (1− c)huk))− λ2

k, χk

〉
+
〈
δµk, λ

1
k−1 + λ0

k −Adfkλ
1
k

〉
+
〈
λ2
k−1 − chM(gk, λ1

k−1), ηk
〉

+
〈
T∗eLgk ·Dgkφdk + (1− c)hM(gk, λ0

k)− (1− c)hM(gk,Adfkλ
1
k)−Ad∗

f−1
k

λ2
k, ηk

〉
+
〈
δuk, Dukφdk + (1− c)hλ0

k − (1− c)hAdfkλ
1
k − chλ1

k−1

〉
. (5.22)

This is equal to zero for all possible variations along the optimal solution. Thus, we obtain discrete-

time necessary conditions for optimality as follows.

Proposition 5.2 Consider a mechanical system evolving on a Lie group that is expressed by Corol-

lary 5.1 for a free parameter c ∈ [0, 1]. Discrete-time necessary conditions for optimality for the

discrete-time optimal control problem presented in Section 5.1.2 are as follows.

• Optimality condition

Dukφdk + (1− c)hλ0
k − (1− c)hAdfkλ

1
k − chλ1

k−1 = 0, (5.23)

• Multiplier equations

T∗eLg ·Dfkφdk − T (fk,Adf−1
k
λ0
k)− ad∗Ad

f−1
k

λ0
k
(T ′d(fk))

+ Ad∗fk(ad∗Adfkλ
1
k
(µk + (1− c)hM(gk) + (1− c)huk))− λ2

k = 0,
(5.24)

λ1
k−1 + λ0

k −Adfkλ
1
k = 0, (5.25)

λ2
k−1 −Ad∗

f−1
k

λ2
k + T∗eLg ·Dgkφdk − chM(gk, λ1

k−1)

+ (1− c)hM(gk, λ0
k)− (1− c)hM(gk,Adfkλ

1
k) = 0,

(5.26)

where T ′d(fk) = T∗eLfk ·DTd(fk), andM, T : G × g → g∗ are given by (5.17) and (5.18),

respectively.

• Boundary conditions

gN = gf , µN = µf . (5.27)

Remark 5.1 These necessary conditions are expressed in a coordinate-free form. Therefore, the

optimality condition and the resulting optimal control input are independent of the choice of repre-

sentations. They are globally represented by group elements without any singularity and ambiguity.
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Remark 5.2 The necessary conditions for optimality are represented by a discrete-time two point

boundary value problem. It is to find the control input sequence uk, state (gk, µk), and multipliers

(λ0
k, λ

1
k, λ

2
k) that satisfy the optimality condition (5.23), the equations of motion (5.11), (5.12),

(5.13), and the multiplier equation (5.24), (5.25), (5.26), under the given boundary conditions. A

computational approach to solve this discrete-time two point boundary value problem is discussed

in Section 5.1.4.

Remark 5.3 Here, the multiplier equations evolve on a 3n-dimensional linear space for a 2n- di-

mensional tangent bundle G × g. The n-dimensional redundancy is resolved as follows. The mul-

tiplier equation (5.24) is linear with respect to the multiplier λ0
k. Thus, it is possible to express

the multiplier λ0
k in terms of other variables at the same time step. The resulting expression can

be substituted into (5.25) and (5.26) so that the multiplier equations evolves on a 2n-dimensional

space. The detailed procedure is described in Section 5.2.1. Alternatively, (5.11) is not explicitly

constrained by using the Lagrange multiplier λ0
k, and we find the expression for the constrained

variation of fk. This procedure is described in Section 5.2.2.

Remark 5.4 The presented necessary conditions are for the optimal control problem with fixed

terminal conditions and a fixed terminal time. But, they can be extended to other types of optimal

control problems. For example, in Section 5.2.2, a time optimal control problem with a free terminal

time and a control input constraint is studied.

Remark 5.5 The free parameter c ∈ [0, 1] determines the accuracy of discrete-time equations of

motion and necessary conditions for optimality. They are second-order accurate if and only if c = 1
2 .

Otherwise, they are first-order accurate. But, the equations are simplified if the parameter is chosen

as either c = 0 or c = 1. In the optimal control problems presented in Section 5.2, we consider two

cases when c = 1
2 and c = 1.

5.1.4 Computational Approach for Discrete-time Necessary Conditions

We discuss a computational approach to solve the presented discrete-time necessary conditions for

optimality. It is based on a neighboring extremal method (see Bryson and Ho 1975). The essential

procedure is as follows. We first guess the unspecified initial multipliers. Then, the corresponding

nominal trajectory, satisfying all of the necessary conditions except the boundary conditions, is

determined by the multiplier equations and the equations of motion. The initial multipliers are

updated by successive linearization so as to satisfy the specified terminal boundary conditions in the

limit. This is also referred to as a shooting method. The main advantage of the neighboring extremal

method is that the number of iteration variables is small. In other approaches, the initial guess of the

control input history or multiplier trajectories are iterated, so the number of optimization parameters

is proportional to the number of discrete time steps.

One difficulty is that the extremal solutions are sensitive to small changes in the unspecified

initial multiplier values. The nonlinearities also make it hard to construct an accurate estimate of
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sensitivity, and may result in numerical ill-conditioning. Therefore, it is important to compute the

sensitivities accurately in order to apply the neighboring extremal method.

We compute the sensitivity of an optimal solution as follows. We first find an expression for

the multiplier λ0
k by solving (5.24), and we substitute it into the multiplier equations (5.25), (5.26).

We also substitute the optimality condition (5.23) into the equations of motion and the multiplier

equations. For the given fixed initial conditions and a guess of the initial multipliers, we can obtain

the trajectories for (gk, µk) and (λ1
k, λ

2
k), and consequently the terminal condition (gN , µN ). Then,

we obtain a solution of the optimal control problem that satisfies all of the necessary conditions

except the terminal boundary condition.

The sensitivities of the specified terminal boundary conditions with respect to the unspecified

initial multipliers is obtained by a linear analysis. By following the variational analysis that we

used to derive the necessary conditions, we can develop linearized equations of the equations of

motion and of the optimality condition. The corresponding solution of the linearized equations can

be expressed as follows. [
(ηN , δµN )
(δλ1

N , δλ
2
N )

]
=

[
Ψ11 Ψ12

Ψ21 Ψ22

][
(η0, δµ0)
(δλ1

0, δλ
2
0)

]
, (5.28)

where Ψij for i, j ∈ {1, 2} represents a computable linear operator from g× g∗ to g× g∗.

For the given two point boundary value problem, (η0, δµ0) = (0, 0) since the initial condition

is fixed. The terminal multipliers are free. Thus, we obtain

(ηN , δµN ) = Ψ12(δλ1
0, δλ

2
0). (5.29)

The linear operator Ψ12 represents the sensitivity of the specified terminal boundary conditions

with respect to the unspecified initial multipliers. Using this sensitivity, a guess of the unspecified

initial multipliers is iterated to satisfy the specified terminal conditions in the limit. Any type of

Newton iteration can be applied. We use a line search with backtracking algorithm, referred to as

the Newton-Armijo iteration described in Kelley (1995).

5.1.5 Direct Optimal Control Approach

We have developed discrete-time necessary conditions for optimality, and a computational approach

to solve the necessary condition has been discussed. This method is referred to as an indirect optimal

control approach.

Alternatively, a numerical approach for a constrained parameter optimization, such as a sequen-

tial quadratic programming, can be directly applied to the optimal control problem without deriving

necessary conditions. The discrete-time equations of motion are considered as nonlinear equality

constraints, and the parameterized control inputs are optimized to minimize the cost functional.

This method is referred to as a direct optimal control approach.

Since the discrete-time Euler-Lagrange equations are faithful to the continuous equations of

motion, more accurate solutions to the optimal control problems are obtained. They are more ef-
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ficient, since optimal control inputs can be obtained by using larger time steps which requires less

computational effort. This approach is preferable if the necessary conditions for optimality become

too complicated. We apply a direct optimal control approach to a fuel optimal control of a 3D

pendulum on a cart in Section 5.2.6, and to a fuel optimal control of two connected rigid bodies in

Section 5.2.7.
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5.2 Examples of Optimal Control of Rigid Bodies

We consider the following discrete-time optimal control problems for rigid body dynamics on a

Lie group. We mathematically formulate an optimal control problem and we derive discrete-time

necessary conditions for optimality. The direct optimal control approach is applied in Section 5.2.7.

Section Optimal Control Problem G

5.2.1 Fuel optimal attitude control of a spacecraft on a circular orbit SO(3)
5.2.2 Time optimal attitude control of a free rigid body SO(3)
5.2.3 Fuel optimal attitude control of a 3D pendulum with symmetry SO(3)
5.2.4 Fuel optimal control of a rigid body SE(3)
5.2.5 Combinatorial optimal control of formation reconfiguration SE(3)n

5.2.6 Fuel optimal control of a 3D Pendulum on a cart SO(3)× R2

5.2.7 Fuel optimal control of two rigid bodies connected by a ball joint SO(3)× SO(3)

The fuel optimal attitude control of a spacecraft in Section 5.2.1, and the fuel optimal control of

a rigid body in Section 5.2.4 are direct applications of Proposition 5.2 on SO(3) and SE(3), respec-

tively. Generalized optimal control problems are considered in Section 5.2.2 for bounded control

inputs, and in Section 5.2.3 for structured control inputs. The fuel optimal control problem of a rigid

body is extended to a combinatorial optimal control problem for formation reconfiguration in Sec-

tion 5.2.5. A direct optimal control approach is applied to a 3D pendulum on a cart in Section 5.2.6,

and two rigid bodies connected by a ball joint in Section 5.2.7. These optimal control problems

have been studied in Lee et al. (2005a, 2006a, 2007d,e,f,g, 2008a).

5.2.1 Fuel Optimal Attitude Control of a Spacecraft on a Circular Orbit

We study a fuel optimal control problem for the attitude dynamics of a spacecraft on a circular orbit,

presented in Section 4.2.1. A rigid spacecraft lies on a circular orbit about a massive central body

with an orbital angular velocity ω0. The configuration manifold is SO(3). The objective is to rotate

the spacecraft from a given initial condition to a desired terminal condition using minimal control

input during a fixed maneuver time.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary

5.1, and a mathematical formulation of the optimal control problem is presented. Discrete-time

necessary conditions for optimality are derived and computational results are presented.

Forced Hamilton’s Equations

The discrete Lagrangian of the spacecraft on a circular orbit is chosen as

Ld(Rk, Fk) =
1
h

tr[(I − Fk)Jd]−
h

2
U(Rk)−

h

2
U(RkFk). (5.30)

This corresponds to the discrete Lagrangian given by (5.7) with c = 1
2 . The expression for the

gravitational potential is given by (4.25). We assume the external control input ûk ∈ so(3)∗ is
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applied to the rigid body.

We derive forced discrete-time Hamilton’s equations. Recall that the Ad operator for SO(3) is

given as follows,

AdF η̂ = F η̂F T = F̂ η, Ad∗F η̂ = F T η̂F = F̂ T η, (5.31)

are

T ′d(Fk) = T∗eLFk ·DFkTd(Fk) =
1
h

(JdFk − F Tk Jd), (5.32)

Ad∗
FTk

(T ′d(Fk)) =
1
h

(FkJd − JdF Tk ). (5.33)

According to Corollary 5.1, forced Hamilton’s equations are given by

Π̂k +
h

2
ûk +

h

2
Mk =

1
h

(FkJd − JdF Tk ), (5.34)

Πk+1 = F Tk Πk +
h

2
F Tk (uk +Mk) +

h

2
uk+1 +

h

2
Mk+1, (5.35)

Rk+1 = RkFk, (5.36)

where the expression for the gravitational moment Mk is given by (4.29).

M = 3ω2
0(RT exp(ω0tê2)e3)× (JRT exp(ω0tê2)e3).

Optimal Control Problem

The objective of this optimal control problem is to transfer the spacecraft with a given initial attitude

and angular velocity (R0,Ω0) to a desired terminal condition (Rf ,Ωf ) during a fixed maneuver time

Nh while minimizing the control effort.

For given: (R0,Ω0), (Rf ,Ωf ), N

min
uk

{
Jd =

N−1∑
k=0

h

2
uTk uk

}
,

such that RN = Rf , ΩN = Ωf ,

subject to (5.34), (5.35), (5.36).

Discrete-time Necessary Conditions for Optimality

We derive discrete-time necessary conditions for optimality from Proposition 5.2. We first solve

(5.24) to obtain an explicit expression for the multiplier λ0
k, and we substitute it into the remaining

necessary conditions.
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Expression for λ0
k. Using (5.18), we find the expression for T (F, λ) : SO(3) × so(3) → so(3)∗

as follows.〈
TFkT

′
d(Fk) · δFk, λ̂k

〉
=

1
h

〈
JdFkχ̂k + χ̂kF

T
k Jd, λ̂k

〉
=

1
2h

tr
[
(JdFkχ̂k + χ̂kF

T
k Jd)

T λ̂k

]
=

1
2h

tr
[
(λ̂kJdFk + F Tk Jdλ̂

1
k)
T χ̂k

]
= 〈T (Fk, λk), χk〉 .

Thus, we obtain

T (Fk, λk) =
1
h

(λ̂kJdFk + F Tk Jdλ̂k), (5.37)

which yields

T (Fk,AdFTk λ
0
k) =

1
h

(F Tk λ̂
0
kFkJdFk + F Tk JdF

T
k λ̂

0
kFk). (5.38)

We find expressions for the remaining terms in (5.24). Since the ad∗ operator for a matrix Lie group

is given by ad∗ηα = ηTα− αηT for η ∈ g, α ∈ g∗, we obtain

ad∗Ad
FT
k
λ0
k
(T ′d(Fk)) =

1
h

(F Tk λ̂
0
kFk)

T (JdFk − F Tk Jd)−
1
h

(JdFk − F Tk Jd)(F Tk λ̂0
kFk)

T

=
1
h

(F Tk λ̂
0
kJd + Jdλ̂

0
kFk)−

1
h

(F Tk λ̂
0
kFkJdFk + F Tk JdF

T
k λ̂

0
kFk). (5.39)

Similarly,

Ad∗Fk(ad∗AdFkλ
1
k
(Πk +

h

2
Mk +

h

2
uk))

= F Tk

(
(Fkλ̂1

kF
T
k )T (Π̂k +

h

2
M̂k +

h

2
ûk)− (Π̂k +

h

2
M̂k +

h

2
ûk)(Fkλ̂1

kF
T
k )T

)
Fk

= −λ̂1
kF

T
k (Π̂k +

h

2
M̂k +

h

2
ûk)Fk + F Tk (Π̂k +

h

2
M̂k +

h

2
ûk)Fkλ̂1

k

=
(

(F Tk (Πk +
h

2
Mk +

h

2
uk))∧λ1

k

)∧
. (5.40)

Substituting these into (5.24), the multiplier equation for λ0
k is given by

−1
h

(F Tk λ̂
0
kJd + Jdλ̂

0
kFk) +

(
(F Tk (Πk +

h

2
Mk +

h

2
uk))∧λ1

k

)∧
− λ̂2

k = 0.

Since F Tk λ̂
0
k = F̂ Tk λ

0
kF

T
k , and using (A.9), given by x̂A + AT x̂ = ({tr[A] I − A}x)∧ for any

x ∈ R3, A ∈ R3×3, this is equivalent to

1
h

(tr
[
F Tk Jd

]
I − F Tk Jd)F Tk λ0

k = (F Tk (Πk +
h

2
Mk +

h

2
uk))∧λ1

k − λ2
k, (5.41)

which yields an explicit expression for the λ0
k.
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Necessary conditions. According to Proposition 5.2, discrete-time necessary conditions for opti-

mality are given as follows.

• Optimality condition

huk +
h

2
λ0
k −

h

2
Fkλ

1
k −

h

2
λ1
k−1 = 0, (5.42)

• Multiplier equations

λ0
k = hFk(tr

[
F Tk Jd

]
I − F Tk Jd)−1

{
(F Tk (Πk +

h

2
Mk +

h

2
uk))∧λ1

k − λ2
k

}
, (5.43)

λ1
k−1 + λ0

k − Fkλ1
k = 0, (5.44)

λ2
k−1 − Fkλ2

k +
h

2
M(Rk, λ0

k)−
h

2
M(Rk, λ1

k−1)− h

2
M(Rk, Fkλ1

k) = 0, (5.45)

• Boundary conditions

RN = Rf , ΩN = JΩf . (5.46)

where the expression forM(Rk, λk) is given by (4.31).

M(R, λ) = 3ω2
[
− (JRT exp(−ω0tê2)e3)∧ (RT exp(−ω0tê2)e3)∧

+ (RT exp(−ω0tê2)e3)∧ J (RT exp(−ω0tê2)e3)∧
]T
λ.

Numerical Results

The mass property of the spacecraft is chosen as J = diag [1, 2.8, 2]. Two boundary conditions are

considered. Each maneuver is a large attitude change completed in a quarter of the orbit, tf = π
2 .

The step size is h = 0.001 and the number of integration steps is N = 1571. The terminal angular

momentum is chosen such that the terminal attitude is maintained after the maneuver.

(i) Rotation maneuver about the LVLH axis e1:

R0 = I, Ω0 = ω0R
T
0 e2, Rf = diag [1,−1,−1] , Ωf = ω0R

d,T
N e2.

(ii) Rotation maneuver about the LVLH axes e1 and e2:

R0 = diag [1,−1,−1] , Ω0 = ω0R
T
0 e2, Rf =

−1 0 0
0 0 −1
0 −1 0

 , Ωf = ω0R
d,T
N e2.

The discrete-time necessary conditions for optimality are solved using the shooting method

described in Section 5.1.4. The optimized costs and the violation of the constraints are 23.35,

2.90 × 10−15, and 70.74, 7.31 × 10−15, respectively for each case. Figures 5.1 and 5.2 show
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(a) Attitude maneuver
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Figure 5.1: Optimal attitude control of a spacecraft: rotation about the LVLH tangential axis

(a) Attitude maneuver
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Figure 5.2: Optimal attitude control of a spacecraft: rotation about about the LVLH tangential and normal axes

the attitude maneuver of the spacecraft (clockwise direction), control inputs, and violation of the

terminal boundary condition as a function of the number of iterations.

As shown by Figure 5.1(c) and 5.2(c), the computational geometric optimal control approach

exhibits excellent numerical convergence properties. The circles denote outer iterations to compute

the sensitivity derivatives in the Newton-Armijo iteration, and the inner iterations correspond to

backtracking to decrease the step length along the search direction. For all cases, the initial guesses

of the unspecified initial multiplier are arbitrarily chosen such that the initial control inputs are close

to zero throughout the maneuver time. The error in satisfaction of the terminal boundary conditions

converges to machine precision within 25 iterations. These convergence rates demonstrate that the

sensitivity derivatives are being computed accurately. This is because the proposed computational

algorithms are geometrically exact and numerically accurate. There is no numerical dissipation

caused by the algorithm, and therefore, we obtain more accurate sensitivities along the optimal

solution.
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5.2.2 Time Optimal Attitude Control of a Free Rigid Body

We study a time optimal control problem for the attitude dynamics of a free rigid body, presented

in Section 4.2.2. The objective is to rotate a rigid body with a given initial condition to a desired

terminal condition during a minimal maneuver time using a bounded control input. The discrete-

time necessary conditions described in Proposition 5.2 cannot be directly applied to this optimal

control problem, since the maneuver time is not fixed, and control inputs are bounded.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary 5.1,

and a mathematical formulation of the optimal control problem is presented. Modified discrete-time

necessary conditions for optimality are developed by following a similar approach to that presented

in Section 5.1.3, and a numerical example is shown.

Forced Hamilton’s Equations

The discrete Lagrangian of the attitude dynamics of a free rigid body is chosen as

Ld(Rk, Fk) =
1
h

tr[(I − Fk)Jd] . (5.47)

The discrete generalized forces are u−dk = 0, u+
dk

= huk+1. This simplifies the subsequent develop-

ment for discrete-time necessary conditions.

From Corollary 5.1, the forced discrete-time Hamilton’s equations for the attitude dynamics of

a free rigid body are given by

Π̂k =
1
h

(FkJd − JdF Tk ), (5.48)

Πk+1 = F Tk Πk + huk+1, (5.49)

Rk+1 = RkFk. (5.50)

Optimal Control Problem

We assume that the magnitude of the control moment is bounded by a constant u ∈ R, i.e. ‖uk‖2 ≤
u for any k ∈ {0, . . . , N}. The objective of the time optimal attitude control problem is to transfer

the rigid body with a given initial attitude and angular velocity (R0,Ω0) to a desired terminal con-

dition (Rf ,Ωf ) within a minimal maneuver time Nh, where the 2-norm of the control moment is

constrained by the given limit u.

For given: (R0,Ω0), (Rf ,Ωf ), ū

min
uk+1,N

{
Jd =

N−1∑
k=0

1 dt

}
,

such that RN = Rf , ΩN = Ωf ,

subject to ‖uk‖ ≤ ū ∀k ∈ {0, . . . , N} and (5.48), (5.49), (5.50).
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Discrete-time Necessary Conditions for Optimality

This optimal control problem is not a special case of Proposition 5.2, since the terminal maneuver

time N is not fixed. But, the presented results can be easily extended to handle the time optimal

control problem.

We define the augmented cost functional

Jad =
N−1∑
k=0

1 +
〈
−Πk+1 + F Tk Πk + huk+1, λ

1
k

〉
+
〈
λ2
k,

1
2

(Fk − F Tk )∨ − (RTkRk+1 −RTk+1Rk)
∨
〉

(5.51)

for Lagrange multipliers λ1
k ∈ so(3), λ2

k ∈ so(3)∗. Comparing this with (5.14), the discrete equation

(5.48) is not explicitly constrained by using a multiplier. Here we develop an expression for the

constrained variation of Fk as discussed in Remark 5.3. In addition, the matrix logarithms for Fk,

RTkRk+1 are replaced by (Fk − F Tk )∨, and (RTkRk+1 − RTk+1Rk)
∨. This is based on the fact that

if the step size is chosen sufficiently small so that the relative attitude rotation between integration

steps is less than π/2, then the rotation matrix Fk is equal to RTkRk+1 if and only if their skew parts

are identical. This is a property of the matrix logarithm on SO(3), and it is easier to handle the skew

part of a rotation matrix than a matrix logarithm of it.

We find a constrained variation of Fk from (5.48): the variation of Fk is expressed as δFk =
Fkχ̂k for χk ∈ R3, and χk is written in terms of Fk and δΠk. Taking a variation of (5.48), we obtain

hδΠ̂k = Fkχ̂kJd + JdχkF
T
k = F̂kχkFkJd + JdF

T
k F̂kχk = ((tr[FkJd] I − FkJd)Fkχk)∧,

where we use the property of the hat map given by (A.9). Thus, χk is given by

χk = hF Tk (tr[FkJd] I − FkJd)−1δΠk ≡ BkδΠk, (5.52)

where Bk = hF Tk (tr[FkJd] I − FkJd)−1.

Now we consider the terminal time variation. Since the terminal conditions are fixed, the varia-

tions of the terminal attitude and angular velocity are related to the variation of the maneuver time

as follows,

δΩN + (ΩN − ΩN−1)δN = 0, (5.53)

RN η̂N +
1
2
RN (FN−1 − F TN−1)δN = 0, (5.54)

where the terminal angular velocity is approximated by Ω̂N = RTN ṘN ≈
1

2h(RTN + RTN−1)(RN −
RN−1) = 1

2h(FN−1 − F TN−1).

The next step is taking a variation of the augmented cost functional (5.51), and substituting

the constrained variation (5.52) and the variations of the terminal states (5.53), (5.54). Then the
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variation of the augmented cost functional is given by

δJad =
N−1∑
k=0

〈
hδuk+1, λ

1
k

〉
+
N−1∑
k=1

〈
δΠk, −λ1

k−1 + (Fk − BTk F̂ Tk Πk)λ1
k +

1
2
BTk (tr[Fk] I − Fk)λ2

k

〉

+
N−1∑
k=1

〈
1
2

(tr[Fk−1] I − Fk−1)λ2
k−1 −

1
2
Fk(tr[Fk] I − Fk)λ2

k, ηk

〉
+
{

1 + λ1
N−1 ·

{
−ΠN−1 + F TN−1ΠN−1 + huN

}
+ λRN−1 ·

1
4
(
(FN−1)2 − (F TN−1)2

)∨ }
δN.

The multiplier equations are chosen such that the expressions in the pairing are equal to zero, and

the transversality condition is chosen such that the expression in the last braces is equal to zero.

Then, the variation of the cost functional reduces to

δJad =
N−1∑
k=0

〈
hδuk+1, λ

1
k

〉
.

The optimality condition is chosen such that δJad ≥ 0 for all admissible variations of the control

input.

In summary, discrete-time necessary conditions for optimality are given by

• Optimality condition

uk+1 = −ū (λ1
k/
∥∥λ1

k

∥∥), (5.55)

• Multiplier equations

−λ1
k−1 + (Fk − BTk F̂ Tk Πk)λ1

k +
1
2
BTk (tr[Fk] I − Fk)λ2

k = 0, (5.56)

(tr[Fk−1] I − Fk−1)λ2
k−1 − Fk(tr[Fk] I − Fk)λ2

k, (5.57)

Bk = F Tk (tr[FkJd] I − FkJd)−1, (5.58)

• Boundary conditions

1 + λ1
N−1 ·

{
−ΠN−1 + F TN−1ΠN−1 + huN

}
+ λ2

N−1 ·
1
4
(
(FN−1)2 − (F TN−1)2

)∨
= 0,

(5.59)

RN = Rf , ΩN = Ωf . (5.60)

Numerical Results

We choose an elliptic cylinder for a rigid body model with semi-major axis 0.8 m, semi-minor axis

0.2 m, height 0.6 m, and mass 1 kg. The inertia matrix is J = diag[0.04, 0.19, 0.17] kgm2, and

the maximum control limit is chosen as u = 0.1 Nm. The desired attitude maneuver is a rest-

to-rest large angle rotation described by (R◦,Ω◦) = (I3×3, 0), (Rf ,Ωf ) = (exp θv̂, 0), where

v = 1√
3
[1, 1, 1] ∈ R3, and θ = 120◦.
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(a) Attitude maneuver
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Figure 5.3: Time optimal attitude control of a free rigid body

The discrete-time necessary conditions for optimality are solved using the shooting method de-

scribed in Section 5.1.4. In the numerical computations, we fix the number of steps as N = 1000
in this particular numerical example, and we vary the step size h. In essence, we find the seven pa-

rameters, initial multipliers and the time step h, satisfying the seven-dimensional terminal boundary

conditions under the discrete-time equations of motion, the multiplier equation, and the optimality

condition. The optimal solutions are found in 94 on Intel Pentinum M 1.73 GHz processor; the

boundary condition errors are less than 10−15.

The optimized attitude maneuver, angular velocity, and control input histories are presented in

Figure 5.3. The optimized maneuver times are 3.39 sec, and the control input is saturated during

the entire maneuver time.
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5.2.3 Fuel Optimal Attitude Control of a 3D Pendulum with Symmetry

We study a fuel optimal attitude control of a 3D pendulum introduced in Section 4.2.3 (see Lee

et al. 2007f). The 3D pendulum is a rigid body supported by a frictionless pivot point acting under

the gravitational potential. We have shown that the 3D pendulum has a symmetry represented

by a group action of SO(2) ' S1, and consequently, the angular momentum about the gravity

direction is conserved, and the configuration manifold SO(3) can be reduced to a quotient space

SO(3)/S1 ' S2.

The external control moment does not have any component about the gravity direction, and

therefore, the angular momentum about the gravity direction is conserved along the controlled dy-

namics of the 3D pendulum. Such control inputs are physically realized by actuation mechanisms,

such as point mass actuators, that change the center of mass of the 3D pendulum.

In this section, forced discrete-time Hamiltons equations are derived according to Corollary 5.1,

and a mathematical formulation of the optimal control problem is presented. This optimal control

problem cannot be considered as a special case of Proposition 5.2, since the control input has a

special structure. Here, modified discrete-time necessary conditions for optimality are developed

by following the approach presented in Section 5.1.3. The necessary conditions have numerical

ill-conditioning due to the conservation property. We also present a computational approach to

avoid this numerical ill-conditioning. The key idea is to decompose the sensitivity derivatives into

symmetric parts and asymmetric parts. The resulting numerical results are studied according to

geometric phase effects.

Forced Hamilton Equations

The discrete Lagrangian of the 3D pendulum is chosen as

Ld(Rk, Fk) =
1
h

tr[(I − Fk)Jd]− hU(RkFk). (5.61)

The gravitational potential is U(R) = mgρcR
T e3. As discussed in Section 4.2.3, control moment

is expressed in the body fixed frame as

uk = RTk e3 × upk

for a control parameter upk ∈ R3. Since the vector RT e3 represents the gravity direction in the

body fixed frame, the external control moment has no component along the gravity direction. We

choose the discrete generalized forces as u−dk = 0, u+
dk

= hRTk+1e3 × upk+1
.

From Corollary 5.1, forced discrete-time Hamilton’s equations are given by

Π̂k =
1
h

(FkJd − JdF Tk ), (5.62)

Πk+1 = F Tk Πk + hMk+1 + hRTk+1e3 × upk+1
, (5.63)

Rk+1 = RkFk, (5.64)
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where the moment due to the potential is given by M = mgρc ×RT e3.

Optimal Control Problem

The objective of the optimal control problem is to rotate the 3D pendulum from an initial attitude

R0 = I to a desired terminal attitude Rf = exp(θê3) for a fixed terminal time Nh and a rotation

angle θ ∈ S1, while minimizing the control effort. The initial angular velocity and the terminal

angular velocity are zero.

For given: (R0 = I,Ω0 = 0), N, θ

min
upk+1

{
Jd =

N−1∑
k=0

h

2
uTpk+1

upk+1

}
,

such that RN = exp(θê3), ΩN = 0,

subject to (5.62), (5.63), (5.64).

Discrete-time Necessary Conditions for Optimality

This optimal control problem cannot be considered as a special case of the Proposition 5.2, as the

generalized force is dependent on the rotation matrix Rk. But, discrete-time necessary conditions

can be easily obtained by generalizing Proposition 5.2 to include the variation of the control moment

as shown in (4.48).

Define the augmented cost functional:

Jad =
N−1∑
k=0

h

2
uTpk+1

upk+1
+
〈

Π̂k −
1
h

(FkJd − JdF Tk ), λ0
k

〉
+
〈
Πk+1 − F Tk Πk − hMk+1 − hRTk+1e3 × upk+1

, λ1
k

〉
+
〈
λ2
k, log(RTkRk+1)− logFk

〉
.

This is equal to (5.14) when c = 1, except that two terms φ and uk+1 in (5.14) are replaced by
h
2u

T
pk+1

upk+1
and RTk+1e3 × upk+1

. Therefore, we can obtain the variation of the augmented cost

functional from (5.22) with c = 1 as follows.

δJad =
N−1∑
k=0

〈
−T (Fk,AdFTk λ

0
k)− ad∗Ad

FT
k
λ0
k
(T ′d(fk)) + Ad∗Fk(ad∗AdFkλ

1
k
Πk)− λ2

k, χk

〉
+
〈
δΠk, λ

1
k−1 + λ0

k −AdFkλ
1
k

〉
+
〈
λ2
k−1 − hM(Rk, λ1

k−1)−Ad∗
FTk
λ2
k, ηk

〉
+
〈
δupk+1

, hupk+1

〉
−
〈
δ(hRTk+1e3 × upk+1

), λ1
k

〉
. (5.65)

The last term of (5.65) is given by〈
δ(hRTk+1e3 × upk+1

), λ1
k

〉
=
〈
h(−χ̂kRTk+1 − F Tk η̂kRTk )e3 × upk+1

, λ1
k

〉
+
〈
hRTk+1e3 × δupk+1

, λ1
k

〉
= −

〈
hûpk+1

R̂Tk e3χk + hûpk+1
F Tk R̂

T
k e3ηk, λ

1
k

〉
+
〈
hR̂Tk+1e3δupk+1

, λ1
k

〉
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= −
〈
hR̂Tk e3ûpk+1

λ1
k, χk

〉
−
〈
hR̂Tk e3Fkûpk+1

λ1
k, ηk

〉
−
〈
δupk+1

, hR̂Tk+1e3λ
1
k

〉
. (5.66)

From (4.47), the expression for the derivative of the gravity moment is given by M(R, λ1) =
mgR̂T e3ρ̂cλ

1. Now, we find an expression for the first term of (5.65). From (5.38), (5.39), and

(5.40), we obtain

T (Fk,AdFTk λ
0
k) =

1
h

(F Tk λ̂
0
kFkJdFk + F Tk JdF

T
k λ̂

0
kFk),

ad∗Ad
FT
k
λ0
k
(T ′d(Fk)) =

1
h

(F Tk λ̂
0
kJd + Jdλ̂

0
kFk)−

1
h

(F Tk λ̂
0
kFkJdFk + F Tk JdF

T
k λ̂

0
kFk),

Ad∗Fk(ad∗AdFkλ
1
k
Πk) =

(
F̂ Tk Πkλ

1
k

)∧
.

Using these, the first term of (5.65) can be written as〈
−T (Fk,AdF−1

k
λ0
k)− ad∗Ad

F−1
k

λ0
k
(T ′d(fk)) + Ad∗Fk(ad∗AdFkλ

1
k
Πk)− λ2

k, χk

〉
=
〈
−1
h

(F Tk λ̂
0
kJd + Jdλ̂

0
kFk)

∨ + F̂ Tk Πkλ
1
k − λ2

k, χk

〉
. (5.67)

Substituting (5.66), (5.67) into (5.65), we obtain the variation of the augmented cost functional

as follows.

δJad =
N−1∑
k=0

〈
−1
h

(F Tk λ̂
0
kJd + Jdλ̂

0
kFk)

∨ + F̂ Tk Πkλ
1
k − λ2

k + hR̂Tk e3ûpk+1
λ1
k, χk

〉
+
〈
δΠk, λ

1
k−1 + λ0

k − Fkλ1
k

〉
+
〈
δupk+1

, hupk+1
+ hR̂Tk+1e3λ

1
k

〉
+
〈
λ2
k−1 − hmgR̂Tk e3ρ̂cλ

1
k−1 − Fkλ2

k + hR̂Tk e3Fkûpk+1
λ1
k, ηk

〉
.

This is equal to zero for all admissible variations. Following the procedure used to obtain (5.41),

we can find an explicit expression for λ0
k.

In summary, discrete-time necessary conditions for optimality are as follows.

• Optimality condition

upk+1
= −RTk+1e3 × λ1

k, (5.68)

• Multiplier equations

λ0
k = hFk(tr

[
F Tk Jd

]
I − F Tk Jd)−1

{
(F̂ Tk Πk + hR̂Tk e3ûpk+1

)λ1
k − λ2

k

}
, (5.69)

λ1
k−1 + λ0

k − Fkλ1
k = 0, (5.70)

λ2
k−1 − Fkλ2

k − hmgR̂Tk e3ρ̂cλ
1
k−1 + hR̂Tk e3Fkûpk+1

λ1
k = 0, (5.71)
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• Boundary conditions

RN = exp(θê3), ΩN = 0. (5.72)

Modified Computational Approach

We solve these discrete-time necessary conditions using the computational approach discussed in

Section 5.1.4. We first substitute the expression for λ0
k into (5.69) and the optimality condition

(5.68) into (5.70) and (5.71). Then, the multiplier equations are expressed in terms of multipliers

λ1
k, λ

2
k, attitudes, and angular velocities Rk,Ωk. According to (5.29), we obtain[

ηN

δΠN

]
=

[
Ψ12

1 Ψ12
2

Ψ12
3 Ψ12

4

][
δλ1

0

δλ2
0

]
, (5.73)

where the linear operator Ψ12 from so(3) × so(3)∗ to so(3) × so(3)∗ is represented by four sub-

matrices Ψ12
i ∈ R3×3 for i ∈ {1, 2, 3, 4}. At each iteration, we require the inverse of the sensitivity

derivative represented by the matrix Ψ12 to update the initial multipliers that satisfy the terminal

boundary condition.

By Noether’s theorem, the symmetry of the 3D pendulum yields a conserved quantity, which

causes a fundamental singularity in the sensitivity derivatives for the two-point boundary value

problem. The sensitivity matrix Ψ12 has a theoretical rank deficiency of one since the vertical com-

ponent of the inertial angular momentum is conserved regardless of the initial multiplier variation.

Therefore, (5.73) is numerically ill-conditioned.

Here, we present a simple numerical scheme to avoid the numerical ill-conditioning caused by

the symmetry. The essential idea is to decompose the sensitivity derivative into a symmetric part

and an asymmetric part. Since the angular moment of the 3D pendulum is expressed in the reference

frame as πk = RkΠk, its infinitesimal variation is given by

δπN = δ(RNΠN ) = δRNΠN +RNδΠN

= −RN Π̂NηN +RNδΠN

= −RN Π̂N (Ψ12
1 δλ

1
0 + Ψ12

2 δλ
2
0) +RN (Ψ12

3 δλ
1
0 + Ψ12

4 δλ
2
0).

Now, the sensitivity derivative equation (5.73) can be rewritten in terms of the inertial angular

momentum variation as[
ηN

δπN

]
=

[
Ψ12

1 Ψ12
2

RN (Ψ12
3 − Π̂NΨ12

1 ) RN (Ψ12
4 − Π̂NΨ12

2 )

][
δλ1

0

δλ2
0

]
. (5.74)

From the symmetry, the third component of the inertial angular momentum variation is zero; thus

δ(πN )3 = 0. That is, the sixth row of the above matrix is zero. (Numerical simulation in the later

section shows that the norm of the last row of the transformed sensitivity matrix is at the level of

10−15.) Now, we find an update of the initial multiplier based on the pseudo-inverse of the 5 × 6
matrix composed of the first five rows of the transformed sensitivity derivative in (5.74).
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(a) Body (A) (b) Body (B)

Figure 5.4: Two types of the 3D pendulum body for the optimal control problem with symmetry

This approach removes the singularity in the sensitivity derivatives completely, and the resulting

optimal control problem is no longer ill-conditioned. Numerical simulations show that the numeri-

cal optimization procedure fails without this modification.

Numerical Results

Numerical optimization results for the 3D pendulum are given. Two elliptical cylinders, shown in

Figure 5.4, are used as rigid pendulum models. Properties of the 3D pendulum models are chosen

as

Body (A): m = 1, J = diag[0.13, 0.28, 0.17], ρ = 0.3e3.

Body (B): m = 1, J = diag[0.22, 0.23, 0.03], ρ = 0.4e3.

Each maneuver involves a transfer from an initial hanging equilibrium to another hanging equi-

librium corresponding a rotation about the vertical axis. The rotation angle is chosen as 180◦.
Thus, R0 = I , Rf = exp(πê3) = diag[−1,−1, 1]. Since the vertical component of the angular

momentum is exactly zero, the rotation is purely caused by the geometric phase effect given in

(A.37). These problems are challenging in the sense that the desired maneuvers are rotations about

the gravity direction, but the control input cannot directly generate any moment about the gravity

direction.

The optimized cost functions and the violations of the terminal boundary conditions are 7.32,

4.80× 10−15, and 3.37, 3.06× 10−14, respectively. It takes 2.72 minutes and 5.05 minutes with an

Intel Pentium M 740 1.73GHz processor on MATLAB. Figures 5.5 and 5.6 show snapshots of the

attitude maneuvers, the direction of the gravity in the body fixed frame Υ = RT e3 displayed on a

sphere, control input histories, and convergence rate.

The convergence rate figures show the violation of the terminal boundary conditions as it de-

pends on the number of iterations. Red circles denote outer iterations in the Newton-Armijo iteration

to compute the sensitivity derivatives. For all cases, the initial guesses of the unspecified initial mul-

tiplier are arbitrarily chosen. The error in satisfaction of the terminal boundary condition converges

quickly to machine precision after the 50th iteration. These convergence results are consistent with
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the quadratic convergence rates expected of Newton methods with accurately computed gradients. If

the sensitivity derivative is not decomposed as in (5.73), then the condition number of the sensitivity

matrix is at the level of 1019, and the numerical iterations fail to converge.

Geometric Phase of the 3D Pendulum. We interpret the optimization results using the geometric

phase formula given by (A.37).

θgeo(T ) =
∫
S

2 ‖JΥ‖2 − tr[J ] (Υ · JΥ)
(Υ · JΥ)2

dA, (5.75)

where S is the region in S2 that is enclosed by the curve Υ(t) for t ∈ [t0, tf ]. For the given initial

conditions, the vertical component of the initial angular momentum is zero. Thus, the rotation about

the vertical axis is purely caused by the geometric phase. Since the geometric phase is determined

by a surface integral on S2 whose boundary is the reduced trajectory Υ, it is more efficient for

the reduced trajectory to enclose the area at which the absolute value of the integrand of (5.75) is

maximized.

In Figure 5.5(b) and Figure 5.6(b), the infinitesimal geometric phase per unit area is shown

by color shading. The reduced trajectory, which represents the gravity direction in the body fixed

frame, is shown by a solid line. The north pole of the sphere corresponds to the hanging equilibrium

manifold, and the reduced trajectory starts and ends at the same north pole for the given boundary

conditions.

Comparing Figure 5.5(b) with Figure 5.6(b), it can be seen that Body (A) and Body (B) have

different geometric phase characteristics. This is caused by the fact that the geometric phase depends

on the moment of inertia of the body. For Body (A), the absolute value of the infinitesimal geometric

phase is maximized at a point on the equator, and for Body (B), it is maximized at the north pole.

We see that the optimized reduced trajectories try to enclose those points.

As a result, the optimized attitude maneuver of Body (A) is distinguished from that of Body

(B). The attitude maneuver of Body (A) is relatively more aggressive than that of Body (B) since

the reduced trajectory passes near the equator corresponding to a horizontal position. Body (B) does

not have to move far away from the hanging equilibrium since the infinitesimal geometric phase is

maximized at that point. The resulting attitude maneuver is relatively benign.
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(a) Attitude maneuver

(b) Geometric phase
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Figure 5.5: Optimal control of a 3D pendulum: body A, 180◦ rotation about the gravity direction
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(a) Attitude maneuver

(b) Geometric phase
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Figure 5.6: Optimal control of a 3D pendulum: body B, 180◦ rotation about the gravity direction

157



5.2.4 Fuel Optimal Control of a Rigid Body

We study a fuel optimal control problem of a rigid body acting under a potential field, introduced in

Section 4.2.4. The objective is to change the position, the attitude, the linear velocity, and the angu-

lar velocity of a rigid body during a fixed maneuver time using a minimal control force and control

moment. Here, we explicitly consider the coupling effects of the rotational attitude maneuver and

the translational maneuver of a rigid body.

In this section, forced discrete-time Hamilton’s equations are derived according to Corollary

5.1, and a mathematical formulation of the optimal control problem is presented. Discrete-time

necessary conditions for optimality are derived from Proposition 5.2 and computational results are

presented.

Forced Hamilton’s Equations

Consider a rigid body that is acting under the configuration dependent potential U(R, x) : SE(3)→
R. The configuration manifold is SE(3). This rigid body model is presented in Section 2.3.5,

and the corresponding Lie group variational integrator is developed in Section 3.3.5. The discrete

Lagrangian is chosen as

L(gk, fk) =
1

2h
m∆xTk ∆xk −

1
h

tr[(I − Fk)Jd] + hU(RkFk, xk + ∆xk).

This corresponds to the discrete Lagrangian given by (5.7) with c = 1. We assume that external

control force ufk ∈ (R3)∗ and external control moment umk ∈ so(3)∗ are applied to the rigid body,

and they are expressed in the body fixed frame. The discrete generalized forces are given by u−dk =
0, u+

dk
= (humk+1, hu

f
k+1).

From Corollary 5.1, the forced discrete-time Hamilton’s equations are given as follows.

hΠ̂k = FkJd − JdF Tk , (5.76)

Rk+1 = RkFk, (5.77)

xk+1 = xk +
h

m
γk, (5.78)

γk+1 = γk + hfk+1 + hufk+1, (5.79)

Πk+1 = F Tk Πk + hMk+1 + humk+1, (5.80)

where fk ∈ R3 is the force due to the potential, and Mk ∈ R3 is the moment due to the potential.

They are determined by the following expressions

fk = −∂Uk
∂xk

, (5.81)

M̂k =
∂Uk
∂Rk

T

Rk −RTk
∂Uk
∂Rk

. (5.82)
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Optimal Control Problem

The objective is to transfer the rigid body from a given initial condition (R0, x0,Ω0, ẋ0) to a desired

terminal condition (Rf , xf ,Ωf , ẋf ) during a fixed terminal time Nh using minimal control effort.

For given: (R0, x0,Ω0, ẋ0), N, (Rf , xf ,Ωf , ẋf )

min
u

{
Jd =

N−1∑
k=0

h

2
〈W (uk), uk〉

}
,

such that RN = Rf , xN = xf , ΩN = Ωf , ẋN = ẋf ,

subject to (5.76)–(5.82),

where W : se(3) → se(3)∗ is a weighting function given by W (u) = (Wmum,W fuf ) for sym-

metric positive definite matrices W f ,Wm ∈ R3×3.

Discrete-time Necessary Conditions for Optimality

This optimal control problem is a special case of Proposition 5.2, applied to the Lie group SE(3),

when the free parameter of the discrete Lagrangian is c = 1 and the cost is φd = h
2 〈W (uk), uk〉.

From (5.23)–(5.27), necessary conditions for optimality can be obtained as follows.

• Optimality condition

umk+1 = (Wm)−1λ1
Rk
, ufk+1 = (W f )−1λ1

xk
. (5.83)

• Multiplier equations 
λ1
Rk−1

λ1
xk−1

λ2
Rk−1

λ2
xk−1

 =


A11
k A12

k A13
k A14

k

A21
k A22

k A23
k A24

k

0 0 A33
k A34

k

A41
k A42

k 0 0


T 

λ1
Rk

λ1
xk

λ2
Rk

λ2
xk

 , (5.84)

where matrices Aijk ∈ R3×3 for i, j ∈ {1, . . . , 4} are given by

A11
k = hMxk+1 , A12

k =
h2

m
Mxk+1 , A13

k = hMRk+1A
33
k ,

A14
k = FT

k + hMRk+1A
34
k + F̂T

k ΠkA
34
k , A21

k = hFxk+1 , A22
k = I3×3 +

h2

m
Fxk+1 ,

A23
k = hFRk+1A

33
k , A24

k = hFRk+1A
34
k , A33

k = FT
k ,

A34
k = hFT

k {tr[FkJd] I3×3 − FkJd}−1
, A41 = I3×3, A42 =

h

m
I3×3,

The matrices Fxk ,FRk ,Mxk ,MRk ∈ R3×3 are determined by the following equations.

δfk = Fxk δxk + FRk ηk, (5.85)

δMk =Mxkδxk +MRkηk (5.86)
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Figure 5.7: Optimal orbit transfer of a dumbbell spacecraft (Orbital radius change)
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Figure 5.8: Optimal orbit transfer of a dumbbell spacecraft (Orbital inclination change)

• Boundary conditions

RN = Rf , xN = xf , ΩN = Ωf , VN = V f . (5.87)

Numerical Results

We study optimal maneuvers of a dumbbell spacecraft model presented in Section 3.3.6. The dumb-

bell spacecraft is composed of two spheres connected by a massless rod. We assume that it is acting

under a central gravity field, and the mass of the spacecraft is negligible compared to the mass of a

central body. The resulting model is referred to as a Restricted Full Two Body Problem (RF2BP).

Initially, the spacecraft is on a circular orbit. Two maneuvers are considered. The first maneuver

is to change the orbital radius to twice the initial orbital radius, and the second maneuver is to

increase the orbital inclination by 60 deg. The maneuver time is chosen to be a quarter of the orbital

period of the initial circular orbit. The boundary conditions are follows. Here the mass, length,

and time dimensions are normalized by the mass of the dumbbell, the radius of a reference circular

orbit, and its orbital period, respectively.
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(i) Orbital radius change

x0 = [1, 0, 0], xf = [0, 2, 0],

R0 =

0 −1 0
1 0 0
0 0 1

 , Rf =

 0 0 −1
0 −1 0
−1 0 0

 ,
ẋ0 = [0, 0.9835, 0], ẋf = [−0.7041, 0, 0],

Ω0 = [0, 0, 0.9835], Ωf = [−0.3521, 0, 0].

(ii) Orbital inclination change

x0 = [1, 0, 0], xf = [−0.3536, 0.3536, 0.8660],

R0 =

0 −1 0
1 0 0
0 0 1

 , Rf =

−0.7071 0.3535 0.6123
−0.7071 −0.3535 −0.6123

0 −0.8660 0.5

 ,
ẋ0 = [0, 0.9835, 0], ẋf = [−0.6954,−0.6954, 0],

Ω0 = [0, 0, 0.9835], Ωf = [0, 0, 0.9835].

For all cases, an initial guess of the unspecified initial multipliers is arbitrarily chosen. The

error in satisfaction of the terminal boundary condition converges quickly to machine precision

after the 25th iterations. These convergence results are consistent with the quadratic convergence

rates expected of Newton methods with accurately computed gradients. The optimal costs and the

violation of the terminal boundary conditions are 22.23, 1.85 × 10−14, and 13.03, 9.32 × 10−15

respectively. The optimal maneuver and control input histories are shown at Figure 5.7 and 5.8.

5.2.5 Combinatorial Optimal Control of Spacecraft Formation Reconfiguration

The objective of spacecraft formation control is to use multiple spacecraft for cooperative missions

such as long base-line interferometers. Formation reconfiguration can be classified into two types:

(i) each spacecraft is assigned a specified location in the desired reconfigured formation; (ii) a spec-

ified location in the desired formation can be occupied by any single spacecraft (see Wang and

Hadaegh 1999). In general, a formation is composed of identical spacecraft or groups of space-

craft of the same type, and the total fuel consumption depends on the permutational assignment of

positions in the formation configuration as well as the maneuver of each spacecraft.

In this section, we study an optimal spacecraft formation problem integrated with an inte-

ger/combinatorial optimization approach for the assignment. Usually in combinatorial optimization

problems for multiple agents, the dynamics of each agent is either ignored or simplified (see Savla

et al. 2006). Here, we use the rigid body model shown in Section 5.2.4, including both translational

dynamics and rotational attitude dynamics under a central gravitational potential. Thus, finding

optimal control inputs for spacecraft assigned to a fixed desired location is demanding even if the
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combinatorial assignment optimization problem is not considered. This combined problem is inter-

esting and challenging since it requires combining a combinatorial optimization approach and an

optimal control method for the non-trivial dynamics of multiple spacecraft evolving on SE(3).

Combinatorial Optimal Control Problem

We study an optimal formation control problem for n identical rigid bodies where the dynamics

of each body is described by (5.76)–(5.80). The objective is to find the optimal control forces

and moments such that the group moves from a given initial configuration (Ri0, x
i
0,Ω

i
0, ẋ

i
0) for

i ∈ {1, 2, . . . , n} to a desired target T during a given maneuver time Nh, where the superscript i

denotes the i-th rigid body.

More precisely, the desired target formation is defined as follows. We assume that the n desired

positions
{
xf,i(θ)

}n
i=1

, at which all rigid bodies are located at the terminal maneuver time, are

given as functions of parameters θ ∈ Rl. The desired attitude, angular velocity, and linear velocity

at the terminal time, (Rf ,Ωf , ẋf ), are assumed to be fixed and to be the same for all rigid bodies.

This type of formation appears in spacecraft interferometric imaging applications, where spacecraft

should be aligned in a single imagining plane while pointing at an object. In this case, the image

quality performance of the spacecraft is invariant under a rotation of the spacecraft formation about

the axis perpendicular to the imagining plane, passing through the object. The parameters θ allow

us to account for this symmetry in combinatorial optimal formation control.

Since all rigid bodies are identical, there are n! possible combinatorial assignments for n rigid

bodies to these n desired locations. Let {aij} be a n × n matrix composed of binary elements

{0, 1}, referred to as an assignment or a permutation matrix. Each element of the assignment matrix

aij represent a possible assignment of the i-th rigid body to the j-th desired terminal position xjd.

If aij = 1, the i-th rigid body is assigned to the j-th node, and if aij = 0, the i-th rigid body is

not assigned to the j-th node. An assignment is valid when each rigid body is assigned to a single

node, to which other rigid bodies are not assigned. Therefore, an assignment matrix is valid if∑n
j=1 aij =

∑n
i=1 aij = 1 for all i, j, i.e. there is exactly a single 1 entry for every row and every

column of the matrix A.

For a given assignment A, let Ai be the assignment for the i-th rigid body. In other words, the

(i, Ai)-th element of the assignment matrix A is equal to 1. The i-th rigid body is assigned to the

Ai-th desired location, xf,Ai . Alternatively, an assignment can be expressed as a set of pairs (i, Ai)
for 1 ≤ i ≤ n.

The target is defined in terms of a parameter θ and an assignment A as follows.

T(θ,A) =
{
xf,Ai(θ)

}n
i=1
∈ R3n.

Thus, for a given parameter θ ∈ Rl and a given assignment A, the terminal boundary conditions for

all rigid bodies are completely determined.
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The optimal control problem for a formation reconfiguration of n rigid bodies is formulated as

given:
{

(Ri0, x
i
0,Ω

i
0, ẋ

i)
}n
i=1

, (Rf ,
{
xf,i(θ)

}n
i=1

,Ωf , ẋf ), N,

min
u,θ,A

{
J =

n∑
i=1

N−1∑
k=0

h

2
(uf,ik+1)TWfu

f,i
k+1 +

h

2
(um,ik+1)TWmu

m,i
k+1

}
,

such that
{

(RiN , x
i
N ,Ω

i
N , ẋ

i
N ) = (Rf , xf,Ai(θ),Ωf , ẋf )

}n
i=1

,

aij ∈ {0, 1},
n∑
j=1

aij =
n∑
i=1

aij = 1 for any 1 ≤ i, j ≤ n,

subject to (5.76)–(5.80).

Since we have neglected the interaction between rigid bodies, the dynamics of the rigid bodies

are only coupled through the terminal boundary conditions. If the parameter θ and the assignment

A are prescribed, then the optimal control problems for n rigid bodies can be solved independently

using the computational approach presented in Section 5.2.4. The formation cost is the sum of the

resulting costs for each rigid body. Therefore, the optimal formation control problem for multiple

rigid bodies consists in finding the optimal value of the parameter and the optimal assignment of

rigid bodies among the n! possible assignments. This is similar to the optimal formation reconfigu-

ration problem presented in Junge et al. (2006) except that we include the combinatorial assignment

problem explicitly.

Hierarchical Optimization Approach

We solve this combinatorial optimal control problem using a hierarchical optimization approach.

We consider an optimal control problem for a fixed assignment, and we consider an assignment

optimization problem for a fixed target parameter. These two optimization problems define the

combinatorial optimal control problem.

Optimal Control of n Rigid Bodies. We first solve the optimal formation control problem assuming

that an assignment A is pre-determined and fixed. Since the parameter θ completely defines the

terminal configuration for the fixed assignment A, it also determines the corresponding cost by

summing the cost of the optimal trajectories for each rigid body. Thus, the optimization problem

can be decomposed into an outer optimization problem to find the optimal value of θ that minimizes

the total cost, and an inner optimization problem to find the optimal control inputs for the given

value of θ. This is a consequence of the fact that

min
u,θ
J (u, θ) = min

θ′

{
min
u

{
J (u, θ)|θ = θ′

}}
. (5.88)

The inner optimization problem is solved by using the computational approach described in

Section 5.2.4. The optimal value of θ is found by using a parameter optimization method. From

the optimality condition given by (5.83), the cost is dependent on the multipliers. Since the sen-
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sitivity of the multipliers with respect to the terminal boundary condition is available through the

computational approach of the optimal control problem given by (5.28), it is possible to obtain the

sensitivity of the cost with respect to the target parameter by applying the chain rule properly. Then,

a gradient-based parameter optimization technique can be applied. We apply the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method presented in Kelley (1995).

Assignment Optimization. Now, we solve an assignment optimization problem assuming that the

target parameter θ is fixed. For the given value of θ, the n desired points
{
xf,i
}n
i=1

, at which all

rigid bodies are located at the terminal time, are completely defined. Thus, there are n! possible

combinatorial assignments.

Let
{
cij
}

be a n×nmatrix, referred to as a cost matrix. Each element cij represents the optimal

cost of the i-th rigid body transferred to the j-th desired location. For an assignment {aij}, the total

cost is given by J =
∑n

i,j=1 c
ijaij . The optimal assignment problem is given by

min
aij

n∑
i,j=1

cijaij ,

subject to
∑n

j=1 aij = 1,
∑n

i=1 aij = 1, and aij ∈ {0, 1} for all i, j ∈ {1, 2, . . . , n}.
Since we assume that there is no interaction between rigid bodies, the cost matrix is indepen-

dent of the assignment. For the given value of the target parameter θ, we must solve at most n2

optimal control problems to obtain the cost matrix. Once we have the complete cost matrix, the

optimal assignment can be obtained by comparing costs for all possible assignments or by using the

Hungarian method (see Murty 1985).

It is often expensive to obtain the cost matrix. Each element of the cost matrix is a solution of

an optimal control problem presented in Section 5.2.4. For the formation optimization problem, we

need to find the cost matrix with varying values of the target parameter θ. Thus, the objective of

this subsection is to find the optimal assignment without solving all n2 optimal control problems.

We start with an initial single spacecraft optimal trajectory computation, and use its optimal cost

and sensitivities to populate the remaining entries of the cost matrix. We construct a combinatorial

assignment method using these approximations.

(i) Guess an initial assignment and solve the corresponding optimal control problems for this

assignment.

(ii) Estimate the cost matrix using linear approximations.

(iii) Find a new assignment using the estimated cost matrix, and solve the corresponding optimal

control problems for this assignment.

(iv) Find the best assignment using all of the solutions of the optimal control problems obtained

so far.
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(v) Construct a second-order approximation based on the best assignment, and estimate the cost

matrix.

(vi) Repeat (iii)-(v) until the best assignment is repeated for a pre-determined multiple times in a

row at (v).

Combinatorial Optimal Control. We have presented two optimization approaches; finding the op-

timal value of the target parameter for a given assignment, and finding the optimal assignment for

a given value of the target parameter. We integrate both methods using a hierarchical optimization

approach.

The original optimization problem is stated as finding the optimal control inputs, target param-

eter, and assignment that minimizes the total cost:

min
u,θ,A

J (u, θ, A).

Equivalently, this can be stated as finding the optimal assignment over the optimal control inputs

and the target parameter:

min
A′

{
min
u,θ

{
J (u, θ, A)|A = A′

}}
.

In the inner stage, we optimize the target parameter and the control inputs using a continuous opti-

mization approach, and in the outer stage, we find the optimal assignment using the combinatorial

optimization approach. The optimization process is terminated when the iterations yield a solution

that is optimal for both the inner and outer optimization stages.

Numerical Results

We study a maneuver involving 5 identical rigid spacecraft orbiting in a central gravity field. Each

spacecraft is modeled as a dumbbell, which consists of two equal spheres and a massless rod, as

presented in Section 5.2.4.

The spacecraft are initially aligned along a radial direction as shown in Figure 5.9(a). At the

terminal time, we require that the spacecraft are equally distributed on a target circle described by

the location of its center x◦ ∈ R3, the radius r◦ ∈ R, and the unit normal vector n◦ ∈ S2. Let

θi ∈ S1 be the angle of the i-th spacecraft on the target circle as shown in Figure 5.9(b). We choose

the target parameter as the angle of the first rigid body. The target T is given by

T(θ1, A) =
{
x◦ + r◦ cos θie1 + r◦ sin θie2

}n
i=1

,

where e1 = x◦
‖x◦‖ , e2 = e1 × n◦ are unit vectors in the target plane, and the angle θi is chosen to

distribute the spacecraft uniformly on the circle, i.e. θi = θ1 + 2π/5(Ai − i).

Since the target parameter θ1 determines the terminal position of the first spacecraft completely,

we require that the first spacecraft be assigned to the first desired location, i.e. A1 = 1. There
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Initial
formation

Terminal
formation

(a) The initial formation and the terminal formation

i-th body

θi

e1

e2

(b) The terminal formation on a target circle

Figure 5.9: The initial formation and the desired terminal formation of spacecraft

remain 4! assignments for the other four spacecraft. Thus, the optimization parameters are the angle

of the first spacecraft on the target circle, the 4! assignments for the remaining spacecraft, and the

control inputs.

The iteration procedure for a particular numerical implementation of the optimization are shown

as follows with computation time on an Intel Pentium M 1.73GHz processor using MATLAB.

i) The initial guess of the assignment is given by A = {(1, 1), (2, 4), (3, 2), (4, 3), (5, 5)}.

ii.a) For the given assignment, the optimal value of θ1 = 2.4520 is obtained in 48.32 minutes with

J = 8.6984.

ii.b) For the given value of θ1, the optimal assignment of A = {(1, 1), (2, 5), (3, 2), (4, 3), (5, 4)}
is obtained in 3.04 minutes with cost J = 8.6905.

ii.c) For the given θ1 and the given assignment, we check ∂J
∂θ1

= 2.42× 10−2. Repeat iteration.

iii.a) For the given assignment, the optimal value of θ1 = 2.5084 is obtained in 12.69 minutes with

J = 8.6898.

iii.b) For the given value of θ1, the same assignment of A = {(1, 1), (2, 5), (3, 2), (4, 3), (5, 4)} is

obtained in 2.98 minutes with cost J = 8.6898.

iii.c) For the given θ1 and the corresponding optimal assignment, we check ∂J
∂θ1

= 9.99× 10−5.

iv) The optimization is terminated in 67.03 minutes with J = 8.6898 for θ1 = 2.5084 and

A = {(1, 1), (2, 5), (3, 2), (4, 3), (5, 4)}.

The corresponding maneuvers for the spacecraft are shown in Figure 5.10. At each iteration, we use

the optimization data accumulated in the previous iterations in order to initialize the initial multiplier

values for the optimal control problems. This reduces the computation time as the iterations proceed.
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Figure 5.10: Optimal spacecraft formation reconfiguration maneuver
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Figure 5.11: Distribution of the total costs before and after optimization

In order to estimate the distribution of all possible solutions, we uniformly discretize the interval

[0, 2π) using 100 points for the target parameters and we find the total costs of 4! assignments for

each value of the target parameter. The histogram for total costs of the corresponding 100 × 4! =
2400 solutions is shown in Figure 5.11(a).

Numerical simulations show that the optimized solution obtained depends more strongly on

the initial guess of the assignment than the initial guesses for the target parameter and the initial

multiplier values. We repeat the numerical optimization for all possible 4! initial guesses of the

assignments. Figure 5.11(b) shows the histogram of the optimized total costs for varying initial

assignment. Six initial assignments converge to the optimal solution with the minimal cost J =
8.6898 in the pre-computed 100 × 4! = 2400 solutions; this is assumed to be close to the global

optimal solution. Seven initial assignments converged to a local optimal solution with J = 8.6985.
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5.2.6 Fuel Optimal Control of a 3D Pendulum on a Cart

Consider a 3D pendulum whose pivot is fixed to a cart moving on a horizontal plane, introduced

in Section 2.3.4. In this section, we study an optimal control problem of the 3D pendulum on a

cart model. We assume that an external control force is applied to the cart, and the 3D pendulum is

not actuated. Therefore, the 3D pendulum on a cart model is underactuated, and the motion of the

pendulum is achieved through the coupling between the cart dynamics and the pendulum dynam-

ics. We solve this optimal control problem using the direct optimal control approach discussed in

Section 5.1.5.

The 3D pendulum on a cart has symmetry represented by a rotation about the vertical axis, and

the total angular momentum about the vertical axis is preserved. In this optimal control problem,

the external control force acting on the cart breaks this symmetry, and the total angular momentum

is not conserved in the controlled dynamics. Therefore, this optimal control problem should be

distinguished from the optimal control of a 3D pendulum with symmetry, discussed in Section 5.2.3,

and from the optimal control of connected rigid bodies, discussed in Section 5.2.7, where the control

inputs respect the symmetry of free dynamics, and the momentum map is preserved in the controlled

dynamics.

We develop forced discrete-time Hamilton’s equations from the Lie group variational integra-

tor presented in Section 3.3.4, and a mathematical formulation of the optimal control problem is

presented. Computational results obtained by the direct optimal control approach are shown.

Force Hamilton’s Equations

The discrete Lagrangian of the 3D pendulum on a cart is chosen as

Ld(Rk, xk, yk, Fk,∆xk,∆yk) =
1

2h
(M +m)((∆xk)2 + (∆yk)2) +

1
h

tr[(I − Fk)Jd]

+
m

h
∆xkeT1 Rk(Fk − I)ρc +

m

h
∆ykeT2 Fk(Rk − I)ρc +

h

2
mgeT3 Rkρc +

h

2
mgeT3 RkFkρc.

We assume that an external control force u = (ux, uy) ∈ R2∗ is applied to the cart along the hor-

izontal plane. The discrete generalized forces are chosen as u−dk = (0, h2uk), u+
dk

= (0, h2uk+1) ∈
so(3)∗×R2∗. From Proposition 5.1, the forced Hamilton’s equations for the 3D pendulum on a cart

are given as follows.

pxk =
1
h

(M +m)(xk+1 − xk) +
m

h
e1(Rk+1 −Rk)ρc +

h

2
uxk , (5.89)

pyk =
1
h

(M +m)(yk+1 − yk) +
m

h
e2(Rk+1 −Rk)ρc +

h

2
uyk , (5.90)

p̂Ωk =
1
h

(FkJd − JdF Tk )

+
{
m

h
(xk+1 − xk)ρ̂cRTk e1 +

m

h
(yk+1 − yk)ρ̂cRTk e2 −

h

2
mgρ̂cR

T
k e3

}∧
, (5.91)

Rk+1 = RkFk, (5.92)
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pxk+1
= pxk +

h

2
uxk+1

, (5.93)

pyk+1
= pyk +

h

2
uyk+1

, (5.94)

p̂Ωk+1
=

1
h

(JdFk − F Tk Jd)

+
{
m

h
(xk+1 − xk)ρ̂cRTk+1e1 +

m

h
(yk+1 − yk)ρ̂cRTk+1e2 +

h

2
mgρ̂cR

T
k+1e3

}∧
. (5.95)

Optimal Control Problem

The objective of the optimal control problem is to transfer the 3D pendulum on a cart from a given

initial condition (R0, x0, y0,Ω0, ẋ0, ẏ0) to a desired terminal condition (Rf , xf , yf ,Ωf , ẋf , ẏf ) dur-

ing a fixed maneuver time Nh, while minimizing the control effort.

For given: (R0, x0, y0,Ω0, ẋ0, ẏ0), N, (Rf , xf , yf ,Ωf , ẋf , ẏf )

min
uk

{
Jd =

N∑
k=0

h

2
uTkWuk

}
,

such that (RN , xN , yN ,ΩN , ẋN , ẏN ) = (Rf , xf , yf ,Ωf , ẋf , ẏf ),

subject to (5.89)–(5.95),

where W ∈ R2×2 is a symmetric positive-definite matrix.

Numerical Results

Properties of the 3D pendulum and the cart are chosen as

M = m = 1 kg, ρc = [0.25, 0.25, 1] m, J =

 1.09 −0.06 −0.25
−0.05 1.10 −0.25
−0.25 −0.25 0.15

 kgm2.

The desired maneuver is a rest-to-rest rotation of the pendulum about the vertical axis, while the

cart returns to the initial location at the terminal time. The corresponding boundary conditions are

given by

R0 = I, Ω0 = 0, x0 = y0 = 0, ẋ0 = ẏ0 = 0,

Rf = exp(θê3), Ωf = 0, xf = yf = 0, ẋf = ẏf = 0,

where the rotation angle θ ∈ S1 varies as θ = π
2 and θ = π. The maneuver time is tf = 2 seconds,

and the time step is h = 0.01. Since only the planar motion of the cart is actuated, the rotation of

the 3D pendulum is caused by the nonlinear coupling between the cart dynamics and the pendulum

dynamics.
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We apply the direct optimal control approach discussed in Section 5.1.5. Each component of

the control inputs u = (ux, uy) is parameterized by 7 points, and the control inputs are obtained by

cubic spline interpolation. The resulting 14 control input parameters are optimized using a sequen-

tial quadratic programming method to satisfy the terminal boundary conditions while minimizing

the cost function.

The optimized maneuver, the angular velocity of the pendulum, the velocity of the cart, and

the trajectory of the cart in the horizontal plane, for θ = π
2 , and θ = π, are shown in Figure 5.12

and Figure 5.13, respectively. Blue circles denote the optimized control input parameters. The

optimal cost and the violation of the terminal boundary conditions are Jd = 171.60, 7.65 × 10−6,

and Jd = 297.43, 1.83 × 10−8, respectively for each case. The optimal motion of the cart on the

horizontal plane consists of loops, and the optimal optimal maneuver of the 3D pendulum consists

of large angle rotations.

This demonstrates the advantage of the computational geometric optimal control approach: it is

difficult to study this kind of aggressive maneuver of a multibody system using local coordinates,

due to the singularity and the complexity. The presented computational geometric optimal control

approach completely utilizes the nonlinear coupling between the cart and the pendulum dynamics

to obtain a nontrivial optimal maneuver of the 3D pendulum on a cart.
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(a) Optimal maneuver
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Figure 5.12: Optimal control of a 3D pendulum on a cart (θ = π/2)
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(a) Optimal maneuver
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Figure 5.13: Optimal control of a 3D pendulum on a cart (θ = π)
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Figure 5.14: Falling cat problem

5.2.7 Fuel Optimal Control of Two Rigid Bodies Connected by a Ball Joint with
Symmetry

Consider two rigid bodies connected by a ball joint, described in Section 2.3.7. In this section,

we study an optimal control problem for the connected rigid body model. Similar to the optimal

control of the 3D pendulum with symmetry discussed in Section 5.2.3, we construct a control input

that respects a symmetry of the system, and the optimal maneuver is indirectly achieved by geo-

metric phase effect. We solve this optimal control problem using a direct optimal control approach

discussed in Section 5.1.5.

We develop forced discrete-time Hamilton’s equations from the Lie group variational integra-

tor presented in Section 3.3.7, and a mathematical formulation of the optimal control problem is

presented. Computational results obtained by the direct optimal control approach are shown.

Forced Hamilton’s Equations

In the absence of the potential field, the connected rigid body model has two symmetries; a symme-

try of the translational action of R3, and a symmetry of the rotational action of SO(3). Due to these

symmetries, the corresponding momentum maps are preserved, and the configuration manifold can

be reduced to a quotient space.

In this optimal control problem, we reduce the configuration manifold to SO(3)× SO(3) using

the symmetry of the translational action of R3. The corresponding value of the total linear mo-

mentum is zero. The resulting connected rigid bodies with a fixed mass center represents a freely

rotating system of coupled rigid bodies; this is closely related to the falling cat problem (see Enos

1993). Interestingly, a cat, when dropped back-first from rest, is able to reorient itself and land on

its feet. A proper change of shape of the body yields a rotation of the cat according to the geometric

phase effect (see Montgomery 1991).
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Similar to the falling cat problem, we assume that an internal control moment is applied at the

joint, that controls the relative attitude between the two rigid bodies. Therefore, the control moment

changes the shape of the system. The total angular momentum is conserved for the controlled

dynamics as the control input is an internal moment of the connected rigid bodies.

The reduced discrete equations of motion on SO(3) × SO(3) can be derived by applying the

discrete Routh reduction procedure discussed in Section 3.1.4. Alternatively, they can be directly

derived from (3.156)–(3.161) by using the fact that the total linear momentum, denoted by p3k ,

is conserved in the absence of a potential: we find an expression for (xk+1 − xk) from (3.159),

and substitute it into (3.156) and (3.158). The resulting forced Hamilton’s equations are given as

follows.

p̂1k =
1
h

{
F1k(Jd1 − αm1d1d

T
1 )− (Jd1 − αm1d1d

T
1 )F T1k

}
− βm1

h
(RT1kR2kF2kd2d

T
1 − d1d

T
2 F

T
2k
RT2kR1k) + β

m1

h
(RT1kR2kd2d

T
1 − d1d

T
2 R

T
2k
R1k),

(5.96)

p̂2k =
1
h

{
F2k(Jd2 − βm2d2d

T
2 )− (Jd2 − βm2d2d

T
2 )F T2k

}
− αm2

h
(RT2kR1kF1kd1d

T
2 − d2d

T
1 F

T
1k
RT1kR2k) + α

m2

h
(RT2kR1kd1d

T
2 − d2d

T
1 R

T
1k
R2k),

(5.97)

Rik+1
= RikFik , (5.98)

p1k+1
= F T1k(p1k − (B1k −B

T
1k

)∨) + hRT1k+1
uk+1, (5.99)

p2k+1
= F T2k(p2k − (B2k −B

T
2k

)∨)− hRT2k+1
uk+1, (5.100)

where α = m1
m1+m2

, β = m2
m1+m2

∈ R, and the matrix Bik ∈ R3×3 for i ∈ {1, 2} is defined as

Bik =
mi

h
(Fik − I)di {−αR1k(F1k − I)d1 − βR2k(F2k − I)d2}T Rik . (5.101)

Optimal Control Problem

The objective of the optimal control problem is to transfer the connected rigid bodies from a given

initial condition (R10 , R20 ,Ω10 ,Ω20) to a desired terminal condition (Rf1 , R
f
2 ,Ω

f
1 ,Ω

f
2) during a

fixed maneuver time Nh, while minimizing the control effort.

For given: (R10 , R20 ,Ω10 ,Ω20), N, (Rf1 , R
f
2 ,Ω

f
1 ,Ω

f
2)

min
uk

{
Jd =

N∑
k=0

h

2
uTkWuk

}
,

such that (R1N , R2N ,Ω1N ,Ω2N ) = (Rf1 , R
f
2 ,Ω

f
1 ,Ω

f
2),

subject to (5.96)–(5.101),

174



where W ∈ R3×3 is a symmetric positive-definite matrix. In particular, we choose attitude maneu-

vers that can be described by rest-to-rest rotations of the entire system while the relative attitude at

the terminal time is the same as that at the initial time.

Numerical Results

The properties of rigid bodies are chosen as

m1 = 1.5kg, J1 =

0.18 0.32 0.32
0.32 1.88 −0.06
0.32 −0.06 1.86

 kg ·m2, d1 = [−1.08, 0.20, 0.20]m,

m2 = 1kg, J2 =

 0.11 −0.18 −0.18
−0.18 0.89 −0.04
−0.18 −0.04 0.88

 kg ·m2, d2 = [0.9, 0.2, 0.2]m.

The desired maneuver is a rest-to-rest rotation about the x axis.

R10 = I, Ω10 = 0, R20 = I, Ω20 = 0,

Rf1 = exp(θê1), Ωf
1 = 0, Rf2 = exp(θê1), Ωf

2 = 0,

where the rotation angle is denoted by θ. Two cases are considered, when θ = π
2 , and θ = π. The

maneuver time is tf = 4 sec, and the step size is h = 0.01.

We apply the direct optimal control approach discussed in Section 5.1.5. We parameterize each

component of the control input at 7 discrete points, and the control inputs are reconstructed by cubic

spline interpolation. The resulting 21 control input parameters are optimized using a sequential

quadratic programming method to satisfy the terminal boundary conditions while minimizing the

cost function. The terminal angular velocity constraint for the second body is not imposed since it is

satisfied automatically by the other three constraints due to the total angular momentum preservation

property. By formulating the optimization process this way, we eliminate a source of numerical ill-

conditioning. This is similar to the modified computational approach for the indirect optimal control

discussed in Section 5.2.3 for the optimal control of the 3D pendulum with symmetry.

The optimized maneuver, the angular velocity, the control input trajectories, and the total angu-

lar momentum in the reference frame are shown in Figure 5.15 and Figure 5.16. The optimal cost

and the violation of the terminal boundary conditions are Jd = 0.154, 1.19×10−8, and Jd = 0.574,

2.48 × 10−8, respectively for θ = π
2 , and θ = π. Throughout this complicated maneuver, the total

angular momentum is zero, and the rotation about the e1 axis is purely caused by the geometric

phase effect. This also demonstrates the advantages of the computational geometric optimal control

approach. The Lie group variational integrator computes the weak geometric phase effect accu-

rately, so that the iterations converge to a nontrivial optimal maneuver of the coupled rigid bodies.
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(a) Optimal maneuver
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Figure 5.15: Optimal control of two connected rigid bodies (θ = π/2)
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(a) Optimal maneuver
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Figure 5.16: Optimal control of two connected rigid bodies (θ = π)
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5.3 Conclusions

In this chapter, a computational geometric approach for an optimal control problem of rigid bodies

has been discussed. The essential idea is formulating a discrete-time optimal control problem using

a Lie group variational integrator, and applying standard optimal control approaches, such as an

indirect optimal control approach or a direct optimal control approach to the discrete-time equations

of motion. This method is in contrast to the usual optimal control approach, where the discretization

appears in the last stage to find the optimal control inputs numerically.

The computational geometric optimal control approach has substantial advantages in terms of

preserving the geometric properties of the optimality conditions. As discussed in Chapter 3, a

discrete flow of a Lie group variational integrator has desirable geometric properties, and it is more

reliable over long time periods. The computational geometric optimal control approach inherits the

desirable properties of the Lie group variational integrator. In necessary conditions for optimality,

multiplier equations can be considered as a dual system of linearized equations of motion. Since the

linearized flow of a Lagrangian/Hamiltonian system is symplectic, the multiplier equations also have

geometric properties. The discrete-time necessary conditions, presented in Section 5.1.3, preserve

the geometric properties of the optimality conditions, as they are derived from a symplectic discrete

flow.

The computational geometric optimal control approach allows us to find the optimal control

inputs efficiently. In indirect optimal control, the shooting method may be prone to numerical ill-

conditioning, since a small change in the initial multipliers can cause highly nonlinear behavior of

the terminal conditions. It is difficult to compute the Jacobian matrix for Newton iterations accu-

rately, and consequently, the numerical error may not converge to machine precision. However,

as shown in Figure 5.1(c), 5.2(c), 5.5(e), and 5.6(e), the computational geometric optimal con-

trol approach exhibits excellent numerical convergence properties. This is because the proposed

computational algorithms are geometrically exact and numerically accurate. There is no numerical

dissipation caused by the numerical algorithm, and therefore, we obtain more accurate sensitivities

along the optimal solution.

Another advantage of computational geometric optimal control of rigid bodies is that the method

is directly developed on a Lie group. There is no ambiguity or singularity in representing the config-

uration of rigid bodies globally. For example, we can study large-angle optimal attitude maneuvers

as presented in Section 5.2.1, Section 5.2.6, and Section 5.2.7, and we can consider nontrivial cou-

pling effects between the translational maneuver and the rotational maneuver of a rigid body, as

presented in Section 5.2.4.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusions

In this dissertation, computational geometric mechanics and optimal control have been developed

for dynamic systems evolving on a Lie group, with applications to rigid body dynamics. Theoreti-

cal results are presented both for continuous-time dynamic systems and for discrete-time dynamic

systems in parallel, and they are applied to several nontrivial rigid body dynamics.

Geometric Mechanics
for Rigid Bodies on a Lie Group

Generalized Euler-Poincaré equation on G

Euler-Lagrange equations on (S2)n

Computational Geometric Mechanics
for Rigid Bodies on a Lie Group

Lie group variational integrator on G

Homogeneous variational integrator on (S2)n

Planar pendulum, 3D pendulum, 3D pendulum with an internal degree of freedom, 3D pendulum on a cart,
Single rigid body, Full body problem, Two rigid bodies connected by a ball joint

Double Spherical Pendulum, n-body problem on a sphere, Pure bending of elastic rod,
Spatial array of magnetic dipoles, Molecular dynamics on a sphere

Geometric Optimal Control
for Rigid Bodies on a Lie Group

Necessary conditions for optimality on G

Computational Geometric Optimal Control
for Rigid Bodies on a Lie Group

Discrete-time necessary conditions for optimality on G
Direct optimal control approach

Fuel optimal attitude control of a spacecraft, Time optimal attitude control of a free rigid body,
Fuel optimal attitude control of a 3D pendulum with symmetry, Fuel optimal control of a rigid body,

Combinatorial optimal control of spacecraft formation reconfiguration,
Fuel optimal control of a 3D pendulum on a cart,

Fuel optimal control of two rigid bodies connected by a ball joint

The continuous-time equations of motion for dynamic system on a Lie group are presented in

Chapter 2. They can be considered as either a generalized form of Euler-Poincaré equations or a

left-trivialized form of Euler-Lagrange equations on a manifold. The tangent bundle of a Lie group

TG is identified with G × g by the left trivialization, and the equations of motion are expressed in

terms of Lie group elements and Lie algebra elements. Even if the Lagrangian is not left invariant,

this approach is still desirable: since a Lie algebra is a linear vector space at the fixed identity
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element, there is no need to deal with covariant derivatives or Christoffel symbols. The resulting

equations of motion for multiple rigid body systems are more compact and concise.

Geometric numerical integrators, referred to as Lie group variational integrators, are developed

for dynamic systems with a Lie group configuration manifold. The method presented in this disser-

tation represents the first time that the Lie group approach has been explicitly adopted in the context

of variational integrators for an arbitrary Lie group. They provide a systematic way to develop

a class of geometric numerical integrators that preserve the geometric properties of the dynamics

as well as the Lie group structure. Numerical simulations show that it is critical to preserve both

the symplectic property of the dynamics and the structure of the Lie group. The Lie group varia-

tional integrators have substantial computational advantages compared to other geometric integra-

tors that preserve either none or one of these properties. They are more efficient than considering

the Lie group structure as a nonlinear algebraic constraint to be satisfied at each time step. The

Lie group variational integrator is extended to mechanical systems evolving on a product of two-

spheres, which provides an overall framework to develop variational integrators on a homogeneous

manifold.

Geometric optimal control, as presented in this dissertation, is used to treat optimal control

problems for dynamic systems on a Lie group. This is distinguished from the existing optimal

control theories developed for kinematics equations on a Lie group. In Chapter 4, an intrinsic form

of necessary conditions for optimality is developed. They are applied to a wide class of dynamic

systems on a Lie group, and they are more compact than optimality conditions expressed in terms

of local coordinates.

Computational geometric optimal control formulates a discrete-time optimal control problem

based on geometric numerical integrators. This is in contrast to other optimal control approaches

where a discretization appears at the terminal stage in solving optimality conditions numerically.

The computational geometric optimal control preserves the geometric structure of the optimal con-

trol problem as well as the geometric properties of the dynamics. It turns out that the approach also

allow us to find the optimal trajectory more efficiently since there is no numerical dissipation in the

discrete-time numerical flow. This is applied to several optimal control problems for rigid bodies.

In summary, this dissertation develops computational geometric mechanics and computational

geometric optimal control approaches for dynamic systems on a Lie group. The essential idea is to

derive a computational algorithm from a discrete analogue of the underlying fundamental principles

so that the physical properties are preserved naturally. They are applied to several nontrivial rigid

body dynamics.

6.2 Future Work

This dissertation has a broad scope; it combines system and control theory in engineering and dif-

ferential geometry in applied mathematics. The resulting computational geometric methods have

broad potential impact on numerous scientific and engineering problems varying from formation re-
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configuration in aerospace engineering to molecular dynamics simulations in chemistry. Therefore,

the results in this dissertation can be extended in various directions.

Generalized Lie Group Variational Integrator. The variational integrators have been extended in

various ways. For example, a variational integrator for a Lagrangian system with a degenerate La-

grangian has been developed by Rowley and Marsden (2002) with application to point vortices, and

multisymplectic variational integrators have been developed for Hamiltonian continuum mechan-

ics (see Marsden et al. 2001). Asynchronous variational integrators in the work by Lew et al. (2003)

consider variational integrators with varying step size. Generalized variational integrators are de-

veloped for nonsmooth systems by Fetecau et al. (2003), and for nonholonomic systems by Cortés

and Martı́nez (2001).

The presented Lie group variational integrators can be extended in similar ways to obtain gen-

eralized Lie group variational integrators for various types of mechanical systems. In particular,

it would be interesting to develop a multiple time-scale Lie group variational integrator for highly

oscillatory systems. This is motivated by scientific and engineering problems from molecular dy-

namics, astrophysics, structural dynamics, and nonlinear wave equations.

Discrete-time Geometric Control Systems on a Lie Group. Geometric mechanics provides funda-

mental insights into mechanical systems and yields new approaches in control system design. For

example, the method of controlled Lagrangian is a constructive technique for stabilizing mechanical

systems, where control inputs are obtained from a Lagrangian system with a modified Lagrangian.

This approach originated by Bloch et al. (1992) has been extended in various ways (see, for example,

Bloch et al. 2000, 2001; Zenkov et al. 2000, 2002, and references therein).

In particular, a discrete-time theory of controlled Lagrangian systems was developed for vari-

ational integrators by Bloch et al. (2005, 2006), and applied to the feedback stabilization of the

unstable inverted equilibrium of a planar pendulum on a cart. It would be natural to combine the

techniques of the controlled Lagrangian method and the Lie group variational integrators developed

in this dissertation to obtain a discrete-time geometric control approach for mechanical systems on

a Lie group.

Uncertainty Propagation and Estimation on a Lie Group. A mathematical model of a dynamic

system may not capture all of the dynamic characteristics of the system exactly. It always includes

approximations, simplifications, or system identification errors. Therefore, uncertainty propagation

and estimation provide important information for many scientific and engineering problems. How-

ever, it is challenging in the sense that uncertainty propagation for a general nonlinear system is

expressed as a partial differential equation. The standard linearization approach is only applicable

to a system with frequent measurements.

A deterministic attitude estimation scheme has been developed by Lee et al. (2006b, 2007h);

Sanyal et al. (2008) using the Lie group variational integrator; limitations of the linearization ap-

proach for uncertainty propagation of attitude dynamics have been presented in Lee et al. (2007a).
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Recently, a global uncertainty propagation scheme for the attitude dynamics of a rigid body is devel-

oped by Lee et al. (2008b). This approach is based on the symplectic property of the attitude dynam-

ics and noncommutative harmonic analysis on a Lie group: the symplectic property of Hamiltonian

systems imposes a fundamental limit on the uncertainty propagation (see Hsiao and Scheeres. 2007;

Scheeres et al. 2005), which yields a particle based uncertainty propagation method. The propa-

gated probability density function is expressed in term of noncommutative harmonic analysis (see,

for example Biedenharn and Louck 1981; Chirikjian and Kyatkin 2001; Sugiura 1990).

Application to Large Scale Full n-body Problems. The full n body problem studies the motion

of n interacting bodies modeled as rigid bodies with arbitrary shapes. Since the motion of each

rigid body is described by its translation and rotation with respect to a given reference frame, the

configuration space for the full n body problem is SE(3)n. This is particularly important for various

physical systems where the mutual interaction depends on the relative attitude as well as the relative

position. For example, the mutual gravitational forces and moments in binary asteroids vary with

the rotation of each body, and the electrostatic forces between charged molecules depend on their

electric pole directions.

The computational accuracy and efficiency of Lie group variational integrators has been illus-

trated by a full two body problem. Since the computational superiority of the Lie group variational

integrators increases as the complexity of the system or the simulation time increases, they can be

applied to challenging full n body problems such as simulations of the asteroid belt or molecular

dynamics, using powerful parallel computing resources.

Applications to Multibody Systems. Multibody systems appear in advanced mechanical systems in

the area of automobiles, aerospace, robotics, and power plants. For example, solar panel deployment

in satellites, bipedal robots, cooperative multiple vehicles, or flexible bodies are often analyzed as

multibody systems.

Lie group variational integrators can be applied to any multibody system whose configuration

manifold is expressed as a product of Lie groups, Euclidean spaces or two-spheres, thereby generat-

ing structure-preserving geometric numerical integrators for the multibody system. The continuous-

time counterpart of this development provides a remarkably compact form for global equations of

motion. These give both an efficient computational approach and a powerful analysis tool for multi-

body systems.

In particular, it would be be interesting to study optimal maneuvers of a large space tether,

which controls its orbit by changing its shape. This requires significantly less expensive propulsion

than spacecraft using rocket engines. The elastic rod model presented in Section 3.4.4, and the

underactuated optimal control approach discussed in Section 5.2.3 and Section 5.2.7 might serve as

a basis for this research.
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APPENDIX A

PROPERTIES AND PROOFS

A.1 Properties of the hat Map

The hat map ·̂ : R3 → so(3) is defined as

x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (A.1)

for x = [x1;x2;x3] ∈ R3. This identifies the Lie algebra so(3) with R3 using the vector cross

product in R3.

Several properties of the hat map are summarized as follows.

x̂y = x× y = −y × x = −ŷx, (A.2)

x̂T x̂ = (xTx)I − xxT , (A.3)

x̂ŷx̂ = −(yTx)x̂, (A.4)

−1
2

tr[x̂ŷ] = xT y, (A.5)

x̂× y = x̂ŷ − ŷx̂ = yxT − xyT , (A.6)

tr[x̂A] =
1
2

tr
[
x̂(A−AT )

]
, (A.7)

Âx = x̂

(
1
2

tr[A] I −A
)

+
(

1
2

tr[A] I −A
)T

x̂, (A.8)

x̂A+AT x̂ = ({tr[A] I3×3 −A}x)∧. (A.9)

for any x, y ∈ R3, A ∈ R3×3.
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A.2 Inertia Matrix of a Rigid Body

Consider a rigid body B. We define a body fixed frame. Let ρ ∈ R3 be the vector from the origin of

the body fixed frame to a mass element of the rigid body.

The inertia matrix J ∈ R3×3 of the rigid body is given by

J =
∫
B
ρ̂T ρ̂ dm(ρ) =

∫
B

y
2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz x2 + y2

 dm(ρ), (A.10)

where x, y, z ∈ R are the coordinates of the vector ρ, i.e. ρ = [x; y; z]. We define a nonstandard

inertia matrix Jd ∈ R3×3 as

Jd =
∫
B
ρρT dm(ρ) =

∫
B

x
2 xy zx

xy y2 yz

zx yz z2

 dm(ρ). (A.11)

From the coordinate expressions, it is clear that the standard inertia matrix J and the nonstandard

inertia matrix Jd represent the second order mass distributions of the rigid body. Using the property,

ρ̂T ρ̂ = (ρTρ)I3×3 − ρρT , it can be shown that

Jd =
1
2

tr[J ] I3×3 − J, J = tr[Jd] I3×3 − Jd. (A.12)

In Section 2.3.2, we show that the rotational kinetic energy of the rigid body, when it rotates

about the origin with an angular velocity Ω ∈ R3, can be written as

T =
1
2

ΩTJΩ =
1
2

tr
[
Ω̂JdΩ̂T

]
. (A.13)

Furthermore, the following equation is satisfied for any Ω ∈ R3.

ĴΩ = Ω̂Jd + JdΩ̂. (A.14)

A proof for (A.14) is as follows. Let Ω = [Ω1,Ω2,Ω3] for any Ω1,Ω2,Ω3 ∈ R. By substitution

and rearrangement, it is straightforward to show that both the left hand side expression and the right

hand side expression of (A.14) are equal to (Jyy + Jzz)Ω1 − JxyΩ2 − JzxΩ3

−JxyΩ1 + (Jzz + Jxx)Ω2 − JyzΩ3

−JzxΩ1 − JyzΩ2 + (Jxx + Jyy)Ω3


∧

,

where Jxy =
∫
B xy dm(ρ) ∈ R, and other terms are defined similarly.
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A.3 Lagrangian-Routh Reduction of the 3D Pendulum

The 3D pendulum is a rigid body supported by a frictionless pivot point acting under a gravitational

potential (see Section 2.3.2). The configuration manifold is SO(3). The Lagrangian of the 3D

pendulum has a symmetry: it is invariant under an action of H = SO(2) ' S1 given by Φ :
S1 × SO(3)→ SO(3)

Φ(θ,R) = expSO(3)(θê3)R, (A.15)

which represents the rotation of the 3D pendulum about the gravity direction e3. As a result, the

configuration manifold can be reduced to the quotient space SO(3)/SO(2) ' S2.

Here, we summarize the Lagrange-Routh reduction and reconstruction procedure to obtain the

reduced equations of motion of the 3D pendulum on S2 (see Marsden et al. 2000). This reduc-

tion procedure is interesting and challenging, since the projection proj : SO(3) → S2 given by

proj(R) = RT e3 = Υ together with the symmetry action has a nontrivial principal bundle struc-

ture. In other words, the angle of the rotation about the vertical axis is not a global cyclic variable.

A.3.1 Reduction

The procedure for Lagrange-Routh reduction is as follows. We find expressions for the mechanical

connection, from which a Routhian is defined. The Routhian satisfies the Lagrange-d’Alembert

principle with a magnetic two-form, which yields the reduced Euler-Lagrange equations.

Routhian We identify the Lie algebra of S1 with R. At (2.71), the momentum map of the 3D

pendulum JL : SO(3)× so(3)→ R∗ is given by

JL(R, Ω̂) = eT3 RJΩ. (A.16)

The locked inertia tensor I(R) : R→ R∗ is defined as

〈I(R)%, ζ〉 = 〈〈%SO(3), ζSO(3)〉〉

for %, ζ ∈ R. Substituting the expression for the infinitesimal generator ζSO(3) = ζR̂T e3, %SO(3) =

%R̂T e3 given by (3.84), we obtain

%ζI(R) = %ζeT3 RJR
T e3.

Thus, the locked inertia tensor is given by I(R) = eT3 RJR
T e3. The mechanical connection A :

SO(3)× so(3)→ R is given by

A(R, Ω̂) = I−1(R)JL(R, Ω̂) =
eT3 RJΩ

eT3 RJR
T e3

. (A.17)

Using the mechanical connection, we decompose the tangent space into a vertical space and a
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horizontal space as follows. For a given (R, Ω̂) ∈ TSO(3), the horizontal part and the vertical part

are obtained by

ver(R, Ω̂) = (A(R, Ω̂))SO(3)(R) =
eT3 RJΩ

eT3 RJR
T e3

R̂T e3 =
Υ · JΩ
Υ · JΥ

Υ̂,

hor(R, Ω̂) = Ω̂− ver(R, Ω̂) =
(

Ω− RT e3e
T
3 RJ

eT3 RJR
T e3

Ω
)∧

=
(

Ω− ΥΥTJ

Υ · JΥ
Ω
)∧

.

Since Υ̇ = ṘT e3 = −Ω̂RT e3 = Υ× Ω, we obtain

Υ̇×Υ = (Υ× Ω)×Υ = (ΥTΥ)Ω− (ΥTΩ)Υ = Ω−ΥΥTΩ.

Using this expression, the horizontal part of Ω can be written in terms of Υ as

Ωhor = Υ̇×Υ− JΥ · (Υ̇×Υ)
Υ · JΥ

Υ = Υ̇×Υ− bΥ

for b = JΥ·(Υ̇×Υ)
Υ·JΥ . For the given value of the momentum map ν ∈ R∗, the Routhian of the 3D

pendulum is given by

Rν(Υ, Υ̇) =
1
2

Ωhor · JΩhor −mgΥ · ρ− 1
2

ν2

Υ · JΥ

=
1
2

(Υ̇×Υ) · J(Υ̇×Υ)− 1
2

(b2 + γ2)(Υ · JΥ) +mgΥ · ρ, (A.18)

where γ = ν
Υ·JΥ .

Variation of the Routhian The Routhian satisfies the variational Lagrange-d’Alembert principle.

The infinitesimal variation for Υ ∈ S2 is chosen as:

δΥ = Υ× η, (A.19)

δΥ̇ = Υ̇× η + Υ× η̇. (A.20)

Here we assume that η ·Υ = 0, since the component of η parallel to Υ has no effect on δΥ. These

expressions are essential for developing the reduced equations of motion.

Using (A.19), (A.20), and the properties Υ · Υ̇ = 0, Υ · η = 0, the variation of the Routhian is

given by

δRν = η̇ · J(Υ̇×Υ− bΥ)

− η ·Υ×
[
−Υ̇× J(Υ̇×Υ) + (b2 + λ2)JΥ− bJ(Υ̇×Υ) + b(Υ̇× JΥ) +mgρ

]
.

(A.21)
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Magnetic two-form From the given mechanical connection A and a value of the momentum map

ν ∈ R∗, define a one-form Aν on SO(3)× so(3) by

Aν(R) · (R, Ω̂) =
〈
ν,A(R, Ω̂)

〉
= ν

eT3 RJΩ
eT3 RJR

T e3
.

The magnetic two-form βν is the exterior derivative of Aν , which can be obtained by using the

identity

dAν(X,Y ) = X[Aν(Y )]− Y [Aν(X)]−Aν([X,Y ])

for X = Rη̂, Y = Rξ̂ ∈ TRSO(3), where X[Aν(Y )] denotes the Lie derivative of Aν(Y ) along

X (see Marsden and Ratiu 1999). The first term of the above equation is obtained as

X[Aν(Y )] =
d

dε

∣∣∣∣
ε=0

Aν(Y )R=R exp εη̂

=
ν

(eT3 RJRT e3)2

[
eT3 Rη̂Jξ(e

T
3 RJR

T e3) + 2eT3 RJξ(e
T
3 RJη̂R

T e3)
]

=
ν

(eT3 RJRT e3)2

[
−Jξ · (η ×RT e3)(eT3 RJR

T e3) + 2(ξ · JRT e3)(JRT e3 · (η ×RT e3))
]
.

Similarly, we find expressions for Y [Aν(X)]. The Lie bracket is given by [X,Y ] = Rη̂ × ξ.

Therefore, we obtain

dAν(X,Y ) = − ν

(eT3 RJRT e3)

[
Jξ · (η ×RT e3)− Jη · (ξ ×RT e3) + (η × ξ) · JRT e3

]
− ν

(eT3 RJRT e3)2

[
−2(ξ · JRT e3)(JRT e3 · (η ×RT e3)) + 2(η · JRT e3)(JRT e3 · (ξ ×RT e3))

]
.

Substituting Υ = RT e3 into this, the magnetic two form is given by

βν(Υ× η,Υ× ξ) = − ν

(Υ · JΥ)
[Jξ · (η ×Υ)− Jη · (ξ ×Υ) + (η × ξ) · JΥ]

− ν

(Υ · JΥ)2
[−2(ξ · JΥ)(JΥ · (η ×Υ)) + 2(η · JΥ)(JΥ · (ξ ×Υ))] .

Since (a · x)(b · y)− (a · y)(b · x) = (a× b) · (x× y) for any a, b, x, y ∈ R3, the last two terms of

the above equation are reduced to

−2(ξ · JΥ)(JΥ · (η ×Υ)) + 2(η · JΥ)(JΥ · (ξ ×Υ))

= −2(ξ · JΥ)(η · (Υ× JΥ)) + 2(η · JΥ)(ξ · (Υ× JΥ))

= 2(JΥ× (Υ× JΥ)) · (η × ξ)

= 2
{
‖JΥ‖2 Υ− (Υ · JΥ)JΥ

}
· (η × ξ).
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Thus, we obtain

βν(Υ× η,Υ× ξ)

= − ν

(Υ · JΥ)2

[
(Υ · JΥ) {Υ · (Jξ × η)−Υ · (Jη × ξ)− JΥ · (η × ξ)}+ 2 ‖JΥ‖2 Υ · (η × ξ)

]
.

Using the identity, Υ · (Jξ × η) + Υ · (ξ × Jη) + JΥ · (ξ × η) = tr[J ] Υ · (ξ × η), the magnetic

two form βν is given by

βν(Υ× η,Υ× ξ) = − ν

(Υ · JΥ)2

[
−(Υ · JΥ)tr[J ] + 2 ‖JΥ‖2

]
Υ · (η × ξ). (A.22)

Since Υ̇ = Υ×Ω, and Υ · (ω × η) = η · (Υ× ω) = η · Υ̇, the interior product of the magnetic

two-form is given by

iΥ̇βν(δΥ) = βν(Υ× Ω,Υ× η) = λ

{
tr[J ]− 2

‖JΥ‖2

Υ · JΥ

}
Υ̇ · η, (A.23)

where λ = ν
Υ·JΥ .

Lagrange-d’Alembert Principle The Routhian satisfies the Lagrange-d’Alembert principle with

the magnetic term, given by

δ

∫ T

0
Rν(Υ, Υ̇)dt =

∫ T

0
iΥ̇βν(δΥ)dt. (A.24)

Substituting (A.21) and (A.23) into (A.24), and integrating by parts, we obtain

−
∫ T

0
η ·
[
J(Ϋ×Υ− bΥ̇− ḃΥ) + Υ×X + cΥ̇

]
dt = 0, (A.25)

where

X = −Υ̇× J(Υ̇×Υ) + (b2 + λ2)JΥ− bJ(Υ̇×Υ) + b(Υ̇× JΥ) +mgρ, (A.26)

and c is given by (2.74):

c = Υ

{
tr[J ]− 2

‖JΥ‖2

Υ · JΥ

}
.

Since (A.25) is satisfied for all η with Υ · η = 0, we obtain

J(Ϋ×Υ− bΥ̇− ḃΥ) + Υ×X + cΥ̇ = aΥ, (A.27)

for a constant a ∈ R. This is the reduced equation of motion. However, this equation has an

ambiguity since the value of the constant a is unknown; this equation is implicit for Ϋ since the

term ḃ is expressed in terms of Ϋ. The next step is to determine expressions for a and ḃ using the

definition of b and several vector identities.
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We first find an expression for the constant a in terms of Υ, Υ̇. Taking the dot product of (A.27)

with Υ, we obtain

Υ · J(Ϋ×Υ− bΥ̇− ḃΥ) = a. (A.28)

From the definition of b, we can show the following identity: Υ·J(Υ̇×Υ−bΥ) = 0. Differentiating

this with time, and substituting into (A.28), we find an expression for the constant a in terms of Υ, Υ̇
as

a = −Υ̇ · J(Υ̇×Υ− bΥ). (A.29)

Substituting (A.29) into (A.27), and taking the dot product of the result with Υ, we obtain an ex-

pression for ḃ in terms of Υ, Υ̇ as

ḃ = Υ · J−1
{

Υ×X + cΥ̇ + (Υ̇ · J(Υ̇×Υ− bΥ))Υ
}
. (A.30)

Substituting (A.30) into (A.27), and using the vector identity Y −(Υ·Y )Υ = (Υ·Υ)Y −(Υ·Y )Υ =
−Υ× (Υ× Y ) for any Y ∈ R3, we obtain the following form for the reduced equation of motion

Ϋ×Υ− bΥ̇−Υ×
[
Υ× J−1

{
Υ×X + cΥ̇ + (Υ̇ · J(Υ̇×Υ− bΥ))Υ

}]
= 0.

Now, we simplify this equation. The above expression is equivalent to the following equation

Υ×
[
Ϋ×Υ− bΥ̇−Υ×

[
Υ× J−1

{
Υ×X + cΥ̇ + (Υ̇ · J(Υ̇×Υ− bΥ))Υ

}]]
= 0. (A.31)

Since Υ · Ϋ = −‖Υ̇‖2, the first term is given by

Υ× (Ϋ×Υ) = (Υ ·Υ)Ϋ− (Υ · Ϋ)Υ = Ϋ + ‖Υ̇‖2Υ.

Using the property Υ× (Υ× (Υ× Y )) = −(Υ ·Υ)Υ× Y = −Υ× Y for Y ∈ R3, the third term

of (A.31) can be simplified.

Reduced Euler-Lagrange Equations Substituting (A.26) and rearranging, the reduced Euler-Lagrange

equations for the 3D pendulum on S2 are given by

Ϋ = −‖Υ̇‖2Υ + Υ× Σ, (A.32)

where Σ = bΥ̇ + J−1
[
(J(Υ̇×Υ)− bJΥ)× ((Υ̇×Υ)− bΥ) + λ2JΥ×Υ−mgΥ× ρ− cΥ̇

]
,

which recovers (2.72)–(2.74).

A.3.2 Reconstruction

For a given integral curve of the reduced equation Υ(t) : [0, T ] → S2, the reconstruction is to find

the corresponding curve R(t) : [0, T ]→ SO(3) that is projected to the given curve and satisfies the

Euler-Lagrange equations.
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We first choose a curve R̃(t) ∈ SO(3) that is projected into the reduced curve, i.e. proj(R̃(t)) =
Υ(t). Then, the reconstructed curve can be written asR(t) = Φθ(t)(R̃(t)) for some θ(t) ∈ S1. Con-

servation of the momentum map yields the following reconstruction equation for θ(t) (see Marsden

et al. 2000).

θ(t)−1θ̇(t) = I−1(R̃(t))ν −A( ˙̃R(t)).

If we choose R̃(t) as the horizontal lift, the last term vanishes as the horizontal space is annihilated

by the mechanical connection. Since the symmetry group is abelian, the solution reduces to a

quadrature as

θ(t) = θ(0) expSO(2)

[∫ t

0
I−1(R̃(s))ν ds

]
.

In summary, the reconstruction procedure is as follows.

(i) Horizontally lift Υ(t) to obtain Rhor(t) by integrating the following equation with Rhor(0) =
R(0)

Ṙhor(t) = Rhor(t)Ω̂hor(t), (A.33)

where

Ωhor(t) = Υ̇(t)×Υ(t)− JΥ(t) · (Υ̇(t)×Υ(t))
Υ(t) · JΥ(t)

Υ(t). (A.34)

(ii) Determine θdyn(t) ∈ S by the following equation

θdyn(t) =
∫ t

0

ν

Υ(s) · JΥ(s)
ds. (A.35)

(iii) Reconstruct the curve in SO(3) as

R(t) = θdyn(t) ·Rhor(t) = exp[θdyn(t)ê3]Rhor(t). (A.36)

A.3.3 Geometric Phase

Suppose that the integral curve in S2 is a closed curve, i.e. Υ(0) = Υ(T ). Since Rhor(0) = R(0)
and Rhor(T ) are in the same fiber, Rhor(T ) can be written as

Rhor(T ) = θgeo(T ) ·R(0),

for θgeo(T ) ∈ S1. From the reconstruction equation (A.36), we obtain

R(T ) = θdyn(T ) · θgeo(T ) ·R(0),
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where θdyn(T ) ∈ S1 and θgeo(T ) ∈ S1 are referred to as the dynamic phase and the geometric

phase, respectively. If the value of the momentum map is zero, then the dynamic phase is also zero

from (A.35), and the attitude is changed only by the geometric phase effect.

It can be shown that the geometric phase is the negative of the integral of the magnetic two-form

on the area enclosed by the integral curve Υ(t)

θgeo(T ) =
∫
S

2 ‖JΥ(t)‖2 − tr[J ] (Υ(t) · JΥ(t))
(Υ(t) · JΥ(t))2

dA, (A.37)

where S is an area in S2 with Υ(t) as a boundary.
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A.4 Commutativity of the Variation and the Time Derivative

Here, we show the commutativity of the variation operation and the time derivative for ξ = g−1ġ ∈
g, i.e, d

dt(δξ) = δ( ddtξ). We give a proof for a matrix Lie group; an extension to general Lie groups

can be developed using the results presented in Bloch et al. (1996).

Recall that for a curve g in G, we define ξ = g−1ġ. The variation is chosen as gε = g exp εη for

η ∈ g so that the infinitesimal variation is given by δg = gη. Thus, η = g−1δg. We first find the

expression for δξ in (2.5) (see Marsden and Ratiu 1999)

δξ =
d

dε

∣∣∣∣
ε=0

(
(gε)−1dg

ε

dt

)
= −(g−1δgg−1)ġ + g−1d

2gε

dεdt

∣∣∣∣
ε=0

= −ηξ + g−1d
2gε

dεdt

∣∣∣∣
ε=0

. (A.38)

But, d
dtη is given by

η̇ =
d

dt

(
g−1dg

dε

) ∣∣∣∣
ε=0

= −(g−1ġg−1)δg + g−1d
2gε

dtdε

∣∣∣∣
ε=0

= −ξη + g−1d
2gε

dtdε

∣∣∣∣
ε=0

. (A.39)

Since the partial derivatives commute for smooth maps, the difference is given by δξ−η̇ = ξη−ηξ =
[ξ, η], which yields

δξ = η̇ + [ξ, η]. (A.40)

This gives (2.5).

Now we show that d
dt(δξ) = δ( ddtξ). The time derivative of δξ is given by

d

dt
(δξ) = η̈ + [ξ̇, η] + [ξ, η̇]. (A.41)

Now, we find an expression for the variation of ξ̇.

δ(
d

dt
ξ) =

d

dε

∣∣∣∣
ε=0

{
d

dt

(
(gε)−1dg

ε

dt

)}
=

d

dε

∣∣∣∣
ε=0

{
−
(

(gε)−1dg
ε

dt
(gε)−1

)
dgε

dt
+ (gε)−1d

2gε

dt2

}
= (g−1δgg−1)ġg−1ġ − g−1d

2gε

dεdt

∣∣∣∣
ε=0

g−1ġ + g−1ġ(g−1δgg−1)ġ − (g−1ġg−1)
d2gε

dεdt

∣∣∣∣
ε=0

− (g−1δgg−1)g̈ + g−1 d
3gε

dεdt2

∣∣∣∣
ε=0

Since g−1δg = η and g−1ġ = ξ, this reduces to

δ(
d

dt
ξ) = ηξξ − g−1d

2gε

dεdt

∣∣∣∣
ε=0

ξ + ξηξ − ξg−1d
2gε

dεdt

∣∣∣∣
ε=0

− ηg−1g̈ + g−1 d
3gε

dεdt2

∣∣∣∣
ε=0

. (A.42)
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From (A.39), we have g−1 d2gε

dεdt

∣∣
ε=0

= η̇ + ξη. Therefore, we obtain

g−1 d
3gε

dεdt2

∣∣∣∣
ε=0

= g−1 d

dt
(gη̇ + gξη) = (ξη̇ + η̈ + ξξη + ξ̇η + ξη̇).

Since ġ = gξ, we have g−1g̈ = ξξ + ξ̇. Substituting these into (A.42), we obtain

δ(
d

dt
ξ) = ηξξ − (η̇ + ξη)ξ + ξηξ − ξ(η̇ + ξη)− η(ξξ + ξ̇) + (ξη̇ + η̈ + ξξη + ξ̇η + ξη̇)

= η̈ + (ξ̇η − ηξ̇) + (ξη̇ − η̇ξ),

which is equal to (A.41). Therefore, d
dt(δξ) = δ( ddtξ).
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A.5 Proof of Corollary 5.1

Corollary 5.1 shows the forced discrete-time Euler-Lagrange equations and the discrete-time Hamil-

ton’s equations for a special form of the discrete Lagrangian and the generalized forces. Suppose

that the discrete Lagrangian and the generalized forces are given (5.7) and (5.8):

Ld(gk, fk) = Td(fk)− (1− c)hU(gk)− chU(gkfk),

u−dk = (1− c)huk, u+
dk

= chuk+1,

where the constant c is a free parameter lies in the interval [0, 1]. We develop the corresponding

discrete-time equations of motion from Proposition 5.1.

Derivatives of the Discrete Lagrangian We first find expressions for the derivatives of the discrete

Lagrangian. The derivative of the discrete Lagrangian with respect to fk is given by

DfkLdk · δfk = DfkTdk · δfk − chDU(gkfk) · TfkLgkδfk
= DfkTdk · (TeLfk ◦ TfkLf−1

k
δfk)− chDU(gkfk) · (TfkLgk ◦ TeLfk ◦ TfkLf−1

k
δfk)

=
〈
T∗eLfk ·DfkTdk − chT

∗
eLgkfk ·DU(gkfk), TfkLf−1

k
δfk

〉
.

Since the force due to the potential is defined as M(g) = −T∗eLg ·DU(g), we obtain

T∗eLfk ·DfkLdk = T∗eLfk ·DfkTdk + chM(gk+1). (A.43)

From the definition of the Ad operator, for any α ∈ g∗ and η ∈ g, we have〈
α, Adf−1η

〉
=
〈
α, TfLf−1 ◦ TeRfη

〉
=
〈
α, Tf−1Rf ◦ TeLf−1η

〉
=
〈
T∗eRf ◦ T∗fLf−1α, η

〉
=
〈
T∗eLf−1 ◦ T∗f−1Rfα, η

〉
=
〈

Ad∗f−1α, η
〉

Thus, Ad∗f−1α = T∗eLf−1 ◦ T∗f−1Rf = T∗eRf ◦ T∗fLf−1 . Using this, we obtain

Ad∗
f−1
k

· (T∗eLfk ·DfkLdk) = Ad∗
f−1
k

· (T∗eLfk ·DfkTdk)

− chT∗eRfk ◦ T∗fkLf−1
k

(T∗eLgkfk ·DU(gkfk))

= Ad∗
f−1
k

· (T∗eLfk ·DfkTdk)− chT∗eRfk ◦ T∗fkLgk ·DU(gkfk)).

(A.44)

The derivative of the discrete Lagrangian with respect to gk is given by

DgkLdk · δgk = −chDU(gk) · δgk − (1− c)hDU(gkfk) · TRfkδgk

= −chDU(gk) · (TeLgk ◦ TgkLg−1
k
δgk)

− (1− c)hDU(gkfk) · (TgkRfk ◦ TeLgk ◦ TgkLg−1
k
δgk)
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= −
〈
chT∗eLgk ·DU(gk) + (1− c)hT∗eLgk ◦ T∗gkRfk ·DU(gkfk), TgkLg−1

k
δgk

〉
Thus, we obtain

T∗eLgkDgkLdk = (1− c)hM(gk)− chT∗eLgk ◦ T∗gkRfk ·DU(gkfk). (A.45)

Forced Discrete-time Euler-Lagrange Equations Substituting (A.43), (A.44), and (A.45) into (5.2),

we obtain

T∗eLfk−1
·Dfk−1

Tdk−1
+ chM(gk)−Ad∗

f−1
k

· (T∗eLfk ·DfkTdk)

+ chT∗eRfk ◦ T∗fkLgk ·DUk+1 + (1− c)hM(gk)− chT∗eLgk ◦ T∗gkRfk ·DUk+1 + huk = 0.

Since T∗Lg ◦ T∗Rf = T∗Rf ◦ T∗Lg, this reduces to

T∗eLfk−1
·Dfk−1

Tdk−1
−Ad∗

f−1
k

· (T∗eLfk ·DfkTd(fk)) + hM(gk) + huk = 0, (A.46)

which yields (5.9).

Forced Discrete-time Hamilton’s Equations The forced discrete Legendre transformation is given

by

µk = −T∗eLgk ·DgkLdk + Ad∗
f−1
k

· (T∗eLfk ·DfkLdk)− u−dk .

Substituting (A.44) and (A.45) into this, we obtain

µk = Ad∗
f−1
k

· (T∗eLfk ·DfkTdk)− (1− c)hM(gk)− (1− c)huk,

which yields (5.11). From this, we obtain

T∗eLfk ·DfkTdk = Ad∗fk · (µk + (1− c)hM(gk) + (1− c)huk).

Therefore µk+1 can be written as

µk+1 = Ad∗
f−1
k+1

· (T∗eLfk+1
·Dfk+1

Tdk+1
)− (1− c)hM(gk+1)− (1− c)huk+1.

We shift the time index of (A.46) by one step, and we substitute the above two equations to obtain

Ad∗fk · (µk + (1− c)hM(gk) + (1− c)huk)− µk+1 + chM(gk+1) + chuk+1 = 0, (A.47)

which is equivalent to (5.12).
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A.6 Derivatives of the Adjoint Operator

We derive expressions for the derivatives of the Ad operator. For g ∈ G, the adjoint operator

Adg : g→ g is the tangential map of the inner automorphism

Adgξ = Tg−1Lg · TeRg−1 · ξ (A.48)

where ξ ∈ g. The derivative of Adgξ with respect to g at e in the direction η corresponds to the ad

operator adηξ = [η, ξ] (see Marsden and Ratiu 1999).

d

dε

∣∣∣∣
ε=0

Adexp εη ξ = [η, ξ]. (A.49)

Proposition A.1 The derivatives of the Ad operator are given as follows.

d

dε

∣∣∣∣
ε=0

Adg exp εη ξ = Adg[η, ξ] = [Adgη, Adgξ], (A.50)

d

dε

∣∣∣∣
ε=0

Ad(g exp εη)−1 ξ = [Adg−1ξ, η], (A.51)

d

dε

∣∣∣∣
ε=0

Ad∗g exp εη α = Ad∗g(ad∗Adgηα), (A.52)

d

dε

∣∣∣∣
ε=0

Ad∗(g exp εη)−1 α = −Ad∗g−1(ad∗ηα). (A.53)

Proof. We find the expression for the derivative of Adgξ with respect to g at g in the direction η.

Since Adgf = Adg ◦Adf for any g, f ∈ G, we obtain

d

dε

∣∣∣∣
ε=0

Adg exp εη ξ =
d

dε

∣∣∣∣
ε=0

Adg ◦Adexp εη ξ

Since Adg is a linear map, this is equal to

d

dε

∣∣∣∣
ε=0

Adg exp εη ξ = Adg ◦
(
d

dε

∣∣∣∣
ε=0

Adexp εη ξ

)
= Adg[η, ξ],

which shows the first equality of (A.50). The second equality follows from the general property

Adg[η, ξ] = [Adgη, Adgξ] (see Marsden and Ratiu 1999). Similarly, we have

d

dε

∣∣∣∣
ε=0

Ad(g exp εη)−1 ξ =
d

dε

∣∣∣∣
ε=0

Adexp(−εη) ◦ (Adg−1 ξ) = −[η, Adg−1 ξ],

which is equal to (A.51).
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We find the expressions for the derivatives of the co-adjoint operator. For α ∈ g∗, we obtain〈
d

dε

∣∣∣∣
ε=0

Ad∗g exp εη α, ξ

〉
=
〈
α,

d

dε

∣∣∣∣
ε=0

Adg exp εηξ

〉
= 〈α, [Adgη, Adgξ]〉

=
〈
α, adAdgη(Adgξ)

〉
=
〈

ad∗Adgηα, Adgξ
〉

=
〈

Ad∗g(ad∗Adgηα), ξ
〉
,

which yields (A.52). Similarly, we have〈
d

dε

∣∣∣∣
ε=0

Ad∗(g exp εη)−1 α, ξ

〉
=
〈
α,

d

dε

∣∣∣∣
ε=0

Ad(g exp εη)−1ξ

〉
=
〈
α, [Adg−1ξ, η]

〉
=
〈
α, −adη(Adg−1ξ)

〉
=
〈
−ad∗ηα, Adg−1ξ

〉
=
〈
−Ad∗g−1(ad∗ηα), ξ

〉
,

which yields (A.53).
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O. Junge, J. Marsden, and S. Ober-Blöbaum. Discrete mechanics and optimal control. In IFAC
Congress, Praha, 2005.
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