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Abstract. We develop finite element exterior calculus over weakly Lipschitz

domains. Specifically, we construct commuting projections from Lp de Rham
complexes over weakly Lipschitz domains onto finite element de Rham com-

plexes. These projections satisfy uniform bounds for finite element spaces with

bounded polynomial degree over shape-regular families of triangulations. Thus
we extend the theory of finite element differential forms to polyhedral domains

that are weakly Lipschitz but not strongly Lipschitz. As new mathematical

tools, we use the collar theorem in the Lipschitz category, and we show that
the degrees of freedom in finite element exterior calculus are flat chains in the

sense of geometric measure theory.

1. Introduction

The aim of this article is to contribute to the understanding of finite element
methods for partial differential equations over domains of low regularity. For partial
differential equations associated to a differential complex, projections that commute
with the relevant differential operators are central to the analysis of mixed finite
element methods. In particular, smoothed projections from Sobolev de Rham com-
plexes to finite element de Rham complexes are used in finite element exterior
calculus (FEEC) [1, 3]. This was researched for the case that the underlying do-
main is a Lipschitz domain. In this article, we study finite element exterior calculus
more generally when the underlying domain is merely a weakly Lipschitz domain.
Specifically, we construct and analyze smoothed projections. Thus we enable the
abstract Galerkin theory of finite element exterior calculus within that generalized
geometric setting.

It is easy to motivate the class of weakly Lipschitz domains in the context of
finite element methods. A domain is called weakly Lipschitz if its boundary can
be flattened locally by a Lipschitz coordinate transformation. This generalizes the
classical notion of (strongly) Lipschitz domains, whose boundaries, by definition,
can be written locally as Lipschitz graphs. Although Lipschitz domains are a com-
mon choice for the geometric ambient in the theoretical and numerical analysis of
partial differential equations, they exclude several practically relevant domains. It
is easy to find three-dimensional polyhedral domains that are not Lipschitz do-
mains, such as the “crossed bricks domain” [24, p.39, Figure 3.1]. But as we show
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in this article, every three-dimensional polyhedral domain is still a weakly Lipschitz
domain (see Theorem 4.1 for the precise statement).

Moreover, weakly Lipschitz domains have attracted interest in the theory of
partial differential equations because basic results in vector calculus, well-known
for strongly Lipschitz domains, are still available in this geometric setting [19, 20,
14, 6, 5]. For example, one can show that the differential complex

H1(Ω)
grad−−−−→ H(curl,Ω)

curl−−−−→ H(div,Ω)
div−−−−→ L2(Ω)(1.1)

over a bounded three-dimensional weakly Lipschitz domain Ω satisfies Poincaré-
Friedrichs inequalities, and realizes the Betti numbers of the domain on cohomology.
Furthermore, a vector field version of a Rellich-type compact embedding theorem
is valid, and the scalar and vector Laplacians over Ω have a discrete spectrum.
Recasting this in the calculus of differential forms, one can more generally establish
the analogous properties for the L2 de Rham complex

HΛ0(Ω)
d−−−−→ HΛ1(Ω)

d−−−−→ · · · d−−−−→ HΛn(Ω)(1.2)

over a bounded weakly Lipschitz domain Ω ⊂ Rn.
It is therefore of interest to develop finite element analysis over weakly Lipschitz

domains. Since the analytical theory is formulated within the calculus of differential
forms, we wish to adopt this calculus on the discrete level. Specifically, we use
the framework of finite element exterior calculus; our agenda is to extend that
framework to numerical analysis on weakly Lipschitz domains. The foundational
idea is to mimic the L2 de Rham complex by a finite element de Rham complex

PΛ0(T )
d−−−−→ PΛ1(T )

d−−−−→ · · · d−−−−→ PΛn(T ).(1.3)

Here, each PΛk(T ) is a subspace of HΛk(Ω) whose members are piecewise polyno-
mial with respect to a triangulation T of the domain. Arnold, Falk, and Winther
[1] have determined specific finite element de Rham complexes that aid the con-
struction and analysis of stable mixed finite element methods.

A central component of finite element exterior calculus are uniformly bounded
smoothed projections. These are an instance of commuting finite element projection
operators, of which various examples are known in the literature [7, 26, 17, 10]. Our
main contribution in this article is to devise such a projection when the domain is
merely weakly Lipschitz (see Theorem 7.11). As an immediate consequence, the a
priori error estimates of finite element exterior calculus are applicable over weakly
Lipschitz domains. The following theorem is a condensed version of the main result.

Theorem 1.1. Let Ω ⊆ Rn be a bounded weakly Lipschitz domain, and let T be a
simplicial triangulation of Ω. Let (1.3) be a differential complex of finite element
spaces of differential forms as in finite element exterior calculus [1]. Then there
exist bounded linear projections πk : L2Λk(Ω)→ PΛk(T ) ⊆ L2Λk(Ω) such that

HΛ0(Ω)
d−−−−→ HΛ1(Ω)

d−−−−→ · · · d−−−−→ HΛn(Ω)

π0

y π1

y πn
y

PΛ0(T )
d−−−−→ PΛ1(T )

d−−−−→ · · · d−−−−→ PΛn(T )

(1.4)

is a commuting diagram. Moreover, πkω = ω for ω ∈ PΛk(T ). The operator norm
of each πk is uniformly bounded in terms of the maximum polynomial degree of
(1.3), the shape measure of the triangulation, and geometric properties of Ω.
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Let us outline the construction of the smoothed projection and the new tools
which we employ in this article. We largely follow ideas in the published literature
[1, 9] but introduce significant technical modifications. Given a differential form
over the domain, the smoothed projection is composed in several steps.

We first extend the differential form beyond the original domain by reflection
along the boundary, using a parametrized tubular neighborhood of the boundary.
For strongly Lipschitz domains, such a parametrization can be constructed using
the flow along a smooth vector field transversal to the boundary [1, 9], but for
weakly Lipschitz domains such a transversal vector field does not necessarily exist.
Instead we obtain the desired parametrized tubular neighborhood via a variant of
the collaring theorem in Lipschitz topology [22].

Next, a regularizaiton operator smooths the extended differential form. Local
control of the smoothing radius by a smoothed mesh size function guarantees uni-
form bounds for shape-regular families of meshes. This is similar to [9], but we
elaborate the details of the construction and make a minor correction; see also
Remark 7.12. The smoothed differential form has well-defined degrees of freedom.

We then apply the canonical finite element interpolant to the smoothed differen-
tial form. The resulting smoothed interpolant commutes with the exterior derivative
and satisfies uniform bounds but is not idempotent generally. We can, however,
control the interpolation error over the finite element space. If the smoothed in-
terpolant is sufficiently close to the identity over the finite element space, then
a commuting and uniformly bounded discrete inverse exists. Following an idea of
Schöberl [25], the composition of this discrete inverse with the smoothed interpolant
yields the desired smoothed projection.

In order to derive the aforementioned interpolation error estimate over the finite
element space, we call on geometric measure theory [12, 27]. The principal moti-
vation in utilizing geometric measure theory is the low regularity of the boundary,
which requires new techniques in finite element theory. A key observation, which
we believe to be of independent interest, is the identification of the degrees of free-
dom as flat chains in the sense of geometric measure theory. The desired estimate
of the interpolation error over the finite element space is proven eventually with
distortion estimates on flat chains. Moreover, we identify a non-trivial gap in the
corresponding proofs of previous works [1, 9]; see also Remark 7.10. This gives
further motivation for our recourse to geometric measure theory.

Most of the literature on commuting projections focuses on the L2 theory (but
see also [8, 11]). We consider differential forms with coefficients in general Lp

spaces, following [15]. This article moreover prepares future research on smoothed
projections which preserve partial boundary conditions.

The remainder of this work is structured as follows. In Section 2, we introduce
weakly Lipschitz domains and a collar theorem. We recapitulate the calculus of
differential forms in Section 3. We briefly review triangulations in Section 4. The
relevant background in geometric measure theory is given in Section 5. Then we
introduce finite element spaces, degrees of freedom, and interpolation operators in
Section 6. In Section 7, we finally construct the smoothed projection.
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2. Geometric Setting

We begin by establishing the geometric background. We review the notion of
weakly Lipschitz domains and prove the existence of a closed two-sided Lipschitz
collar along the boundaries of such domains. We refer to [22] for further back-
ground in the area of Lipschitz topology.

Throughout this article, and unless stated otherwise, we let finite-dimensional
real vector spaces Rn and their subsets be equipped with the canonical Euclidean
norms, which we write as ‖·‖. We letBr(U) be the closed Euclidean r-neighborhood,
r > 0, of any set U ⊆ Rn, and we write Br(x) := Br({x}).

We introduce some basic notions of Lipschitz analysis. Let X ⊆ Rn and Y ⊆ Rm,
and let f : X → Y be a mapping. For a subset U ⊆ X, we let the Lipschitz constant
Lip(f, U) ∈ [0,∞] of f over U be the minimal L ∈ [0,∞] that satisfies

∀x, x′ ∈ U : ‖f(x)− f(x′)‖ ≤ L‖x− x′‖.

We simply write Lip(f) := Lip(f, U) if U is understood. We call f Lipschitz if
Lip(f,X) < ∞. We call f locally Lipschitz or LIP if for each x ∈ X there exists
a relatively open neighborhood U ⊆ X of x such that f|U : U → Y is Lipschitz. If

f is invertible, then we call f bi-Lipschitz if both f and f−1 are Lipschitz, and we
call f a lipeomorphism if both f and f−1 are locally Lipschitz. If f : X → Y is
locally Lipschitz and injective such that f : X → f(X) is a lipeomorphism, then we
call f a LIP embedding. The composition of Lipschitz mappings is again Lipschitz,
and the composition of locally Lipschitz mappings is again locally Lipschitz. If X
is compact, then every locally Lipschitz mapping is also Lipschitz.

Let Ω ⊆ Rn be open. We call Ω a weakly Lipschitz domain if for all x ∈ ∂Ω there
exist a closed neighborhood Ux of x in Rn and a bi-Lipschitz mapping ϕx : Ux →
[−1, 1]n such that ϕx(x) = 0 and

ϕx (Ω ∩ Ux) = [−1, 1]n−1 × [−1, 0),(2.1a)

ϕx (∂Ω ∩ Ux) = [−1, 1]n−1 × {0},(2.1b)

ϕx

(
Ω
c ∩ Ux

)
= [−1, 1]n−1 × (0, 1].(2.1c)

Note that Ω is a weakly Lipschitz domain if and only if Ω
c

is a weakly Lipschitz
domain. The closed sets {∂Ω ∩ Ux | x ∈ ∂Ω} constitute a covering of ∂Ω and the
mappings ϕx|∂Ω∩Ux : ∂Ω ∩ Ux → [−1, 1]n−1 are bi-Lipschitz.

Remark 2.1. In other words, a weakly Lipschitz domain is a domain whose boundary
can be flattened locally by a bi-Lipschitz coordinate transformation. The notion
of weakly Lipschitz domain contrasts with the classical notion of Lipschitz domain,
then also called strongly Lipschitz domain. A strongly Lipschitz domain is an open
subset Ω of Rn whose boundary ∂Ω can be written locally as the graph of a Lipschitz
function in some orthogonal coordinate system. Strongly Lipschitz domains are
weakly Lipschitz domains, but the converse is generally false.
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We also note that a different access towards the idea originates from differential
topology: a weakly Lipschitz domain is a locally flat Lipschitz submanifold of Rn in
the sense of [22]. Weakly Lipschitz domains inside Lipschitz manifolds are defined
similarly [14].

Example 2.2. Every bounded domain Ω ⊂ R3 with a finite triangulation is a
weakly Lipschitz domain. We will specify and prove this statement in Section 4
after having formally defined triangulations. At this point, we review a concrete
and well-known example, namely the crossed bricks domain ΩCB , which has already
been mentioned in the introduction. Let

ΩCB := (−1, 1)× (0, 1)× (0,−1) ∪ (0, 1)× (0,−1)× (−1, 1)

∪ (0, 1)× {0} × (0,−1);
(2.2)

see also the left part of Figure 1. The domain ΩCB is not a Lipschitz domain
because at the origin it is not possible to write ∂ΩCB as the graph of a Lipschitz
function in any orthogonal coordinate system. Indeed, the contrary would imply
the existence of a vector that has positive angle both with the second coordinate
vector (0, 1, 0) and its negative, corresponding to ∂ΩCB being partly the lower side
of the upper brick and the upper side of the lower brick near the origin.

But ΩCB is a weakly Lipschitz domain. This follows from Theorem 4.1 later in
this chapter, but it is easy to verify in the particular example of ΩCB . We first
observe that near every non-zero x ∈ ∂ΩCB we can write ∂ΩCB as a Lipschitz
graph, from which we can easily construct a suitable Lipschitz coordinate chart
around x. But this approach does not work at the origin.

It is possible, however, to deform ΩCB into a strongly Lipschitz domain Ω̃CB by
a bi-Lipschitz mapping; see the right part of Figure 1. By the definition of strongly
Lipschitz domains, we can write ΩCB as the hypograph of a Lipschitz function near
the origin in an orthogonal coordinate system. From this observation, the existence
of a U0 and ϕ0 : U0 → [−1, 1] with ϕ0(0) = 0 and (2.1) is easily deduced.

For technical completeness, we describe the relevant mappings explicitly. We
first we define ϕCB : R3 → R3 by setting ϕ(x1, x2, x3) := (x1, x

′
2, x3), where

x′2 =

 x2 − 3/4(1− x2) min(1, |x3|) if x2 ∈ [0, 1],
x2 − 3/4(1 + x2) min(1, |x3|) if x2 ∈ [−1, 0],
x2 if x2 /∈ [−1, 1].

This mapping is obviously Lipschitz. Its inverse ϕ−1
CB is easily seen to be Lipschitz

too, being given by ϕ−1
CB(x1, x2, x3) = (x1, x

′
2, x3) with

x′2 =

 x2 + 3
7 (1− x2) min(1, |x3|) if x2 ∈ [−3/4, 1],

x2 + 3(1 + x2) min(1, |x3|) if x2 ∈ [−1,−3/4],
x2 if x2 /∈ [−1, 1].

The bi-Lipschitz mapping ϕCB transforms ΩCB onto Ω̃CB , as displayed in Figure 1.
As a next step, we define the vectors

ex :=

(
− 1√

2
, 0,

1√
2

)
, ey := (0, 1, 0) , ez :=

(
1√
2
, 0,

1√
2

)
,(2.3)

and for fixed δ > 0 to be determined below we define the Minkowski sum

V0 := [−3δ, 3δ] · ex + [−δ, δ] · ey + [−δ, δ] · ez.
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We write ΩCB as the hypograph of a Lipschitz function χ near the origin in the
orthogonal coordinate frame (2.3), with the graph varying in the ex direction. We
introduce χ : R2 → R by

χ(y, z) :=


−z if y ≥ 0,

−z − 2
√

2
3 y if − 3√

2
z ≤ y ≤ 0,

−z + 2
√

2
3 y if 3√

2
z ≤ y ≤ 0,

z otherwise.

By visual inspection of Figure 1 and a moment of reflection we see that for δ > 0

chosen small enough the intersection V0 ∩ Ω̃CB coincides with the set{
xex + yey + zez

∣∣ −3δ ≤ x < χ(y, z), (y, z) ∈ [−δ, δ]2
}
.

In other words, we have shown that Ω̃CB is a Lipschitz graph in an orthogonal
coordinate system near the origin. Next we define ϕ̃0 : [−1, 1]3 → V0 by

ϕ̃0(z, y, x) = x′ · ex + δy · ey + δz · ez,

where x′ :=

{
χ(δy, δz)(1− x)− 3δ(x+ 1) if x ∈ [−1, 0],
χ(δy, δz)(1− x) + 3δx if x ∈ [0, 1].

One can see that ϕ̃0 is bi-Lipschitz and maps [−1, 1]2× [−1, 0) onto V0∩ Ω̃CB . Now

U0 := ϕ−1
CBϕ̃0

(
[−1, 1]3

)
, ϕ0 := ϕ̃−1

0 ϕCB|U0
(2.4)

is the desired bi-Lipschitz coordinate chart around the origin in which ∂ΩCB is
flattened.

A variant of the crossed bricks domain is displayed in the monograph of Monk
[24, Figure 3.1, p.39], and another variant is discussed in [6]. For a generalization
of this example, we refer to Example 2.2 in [4].

Figure 1. Left: polyhedral three-dimensional domain ΩCB that
is not the graph of a Lipschitz function at the marked point. The
upper brick extends into the x-direction and the lower brick ex-
tends into the y-direction. Right: bi-Lipschitz transformation of

that domain into a domain Ω̃CB that is strongly Lipschitz domain,
as can be seen by visual inspection.

The remainder of this section builds up a key notion of this article. As a motiva-
tion, we recall that strongly Lipschitz domains have parametrized tubular neighbor-
hoods, which can be constructed with a transversal vector field near the boundary
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[26, 8, 18]. Generalizing this idea, the following theorem shows that weakly Lip-
schitz domains allow for two-sided Lipschitz collars.

Theorem 2.3. Let Ω ⊆ Rn be a bounded weakly Lipschitz domain. Then there
exists a LIP embedding Ψ : ∂Ω × [−1, 1] → Rn such that Ψ(x, 0) = x for x ∈ ∂Ω
and such that

Ψ (∂Ω, [−1, 0)) ⊆ Ω, Ψ (∂Ω, (0, 1]) ⊆ Ω
c
.(2.5)

Without loss of generality, for every t ∈ (0, 1) the sets Ω \ Ψ (∂Ω, [−t, 0)) and
Ω ∪Ψ (∂Ω, (0, t)) are weakly Lipschitz domains.

Proof. We first prove a one-sided version of the result. From definitions we deduce
that there exist a collection {Vi}i∈N of relatively open subsets of ∂Ω that constitute
a covering of ∂Ω and a collection {ψi}i∈N of LIP embeddings ψi : Vi × [0, 1) → Ω
such that for each i ∈ N we have ψi(x, 0) = x for each x ∈ ∂Ω. It follows that
{(Vi, ψi)}i∈N is a local LIP collar in the sense of Definition 7.2 in [22]. By Theo-
rem 7.4 in [22], and a successive reparametrization, there exists a LIP embedding
Ψ−(x, t) : ∂Ω× [0, 1]→ Ω such that Ψ−(x, 0) = x for all x ∈ ∂Ω.

We see that Ω
c

is a weakly Lipschitz domain too. Analogous arguments give a
LIP embedding Ψ+(x, t) : ∂Ω× [0, 1]→ Ωc such that Ψ+(x, 0) = x for all x ∈ ∂Ω.
We combine these two LIP embeddings and let

Ψ : ∂Ω× [−1, 1]→ Rn, (x, t) 7→

 Ψ−(x,−t) if x ∈ ∂Ω, t ∈ [−1, 0),
x if x ∈ ∂Ω, t = 0,

Ψ+(x, t) if x ∈ ∂Ω, t ∈ (0, 1].

Then Ψ is well-defined, bijective, and (2.5) holds. To prove that Ψ is a LIP embed-
ding, we show the existence of a constant C > 0 such that

‖Ψ(x1, t1)−Ψ(x2, t2)‖ ≤ C (‖x1 − x2‖+ |t2 − t1|) ,(2.6)

‖x1 − x2‖+ |t2 − t1| ≤ C ‖Ψ(x1, t1)−Ψ(x2, t2)‖(2.7)

for all x1, x2 ∈ ∂Ω and t1, t2 ∈ [−1, 1]. If t1 and t2 are both non-negative or both
non-positive, then the both inequalities follow directly from Ψ+ or Ψ− being LIP
embeddings with a constant C ≥ 1 that depends only on Ψ+ and Ψ−. Hence it
remains to consider the case t1 < 0 < t2. Here, (2.6) follows from

‖Ψ(x1, t1)−Ψ(x2, t2)‖ ≤ ‖Ψ(x1, t1)− x1‖+ ‖x1 − x2‖+ ‖x2 −Ψ(x2, t2)‖
≤ C|t1|+ C|t2|+ ‖x1 − x2‖
≤ C |t1 − t2|+ ‖x1 − x2‖

since Ψ+ and Ψ− are LIP embeddings. Furthermore, there exists z ∈ ∂Ω on the
straight line segment from Ψ(x1, t1) to Ψ(x2, t2). We then find (2.7) via

|t1 − t2|+ ‖x1 − x2‖ ≥ |t1|+ ‖x1 − z‖+ ‖z − x2‖+ |t2|
≥ C−1 ‖Ψ(x1, t1)− z‖+ C−1 ‖z −Ψ(x2, t2)‖
= C−1 ‖Ψ(x1, t1)−Ψ(x2, t2)‖ ,

again using that Ψ+ and Ψ− are LIP embeddings. We conclude that Ψ is a LIP
embedding. Restricting and reparametrizing Ψ completes the proof. �

Remark 2.4. Our Theorem 2.3 realizes an idea from differential topology in a Lip-
schitz setting: any locally bi-collared surface is also globally bi-collared. Such
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results are well-known in the topological or smooth sense, but it seems to be only
folklore in the Lipschitz sense. Notably, the result is mentioned in the unpublished
preprint [13]. We have provided a proof for formal completeness.

3. Differential forms

In this section we review the calculus of differential forms in a setting of low
regularity. Particular attention is given to differential forms with coefficients in
Lp spaces and their transformation properties under bi-Lipschitz mappings. We
adopt the notion of W p,q differential form of [15], to which we also refer for further
details on Lebesgue spaces of differential forms. An elementary introduction to the
calculus of differential forms is given in [21].

Let U ⊆ Rn be an open set. We let M(U) denote the vector space of Lebesgue
measurable functions over U up to equivalence almost everywhere. For k ∈ Z we let
MΛk(U) be the vector space differential k-forms over U with Lebesgue measurable
coefficients. We denote by ω∧ η ∈MΛk+l(U) the exterior product of ω ∈MΛk(U)
and η ∈MΛl(U), and we recall that ω ∧ η = (−1)klη ∧ ω.

Let e1, . . . , en be the canonical orthonormal basis of Rn. The constant 1-forms
dx1, . . . , dxn ∈ MΛ1(U) are uniquely defined by dxi(ej) = δij , where δij ∈ {0, 1}
denotes the Kronecker delta. In the sequel, we let Σ(k, n) denote the set of strictly
ascending mappings from {1, . . . , k} to {1, . . . , n}. Note that Σ(0, n) = {∅}. The
basic k-alternators are the exterior products

dxσ := dxσ(1) ∧ · · · ∧ dxσ(k) ∈MΛk(U), σ ∈ Σ(k, n),

and dx∅ := 1. The canonical volume n-form voln ∈MΛn(U) is

voln := dx1 ∧ . . . ∧ dxn.

For every ω ∈MΛk(U) and σ ∈ Σ(k, n) we define ωσ = ω(eσ(1), . . . , eσ(k)) ∈M(U)
and note that ω can be written as

ω =
∑

σ∈Σ(k,n)

ωσdx
σ.(3.1)

For every n-form ω ∈ MΛn(U) there exists a unique ωvol ∈ M(U) such that
ω = ωvol voln. We define the integral of ω ∈MΛn(U) over U as∫

U

ω :=

∫
U

ωvol dx(3.2)

whenever ωvol ∈ M(U) is integrable. Note that this definition of the integral
presumes that Rn carries the canonical orientation.

For ω, η ∈MΛk(U) we define the pointwise `2 product 〈ω, η〉 ∈M(U) by

〈ω, η〉 :=
∑

σ∈Σ(k,n)

ωσησ.(3.3)

For ω ∈ MΛk(U) we let |ω| =
√
〈ω, ω〉 ∈ M(U) be the pointwise `2 norm. We

let Lp(U) denote the Lebesgue space with exponent p ∈ [1,∞], and let LpΛk(U)
denote the Banach space of differential k-forms with coefficients in Lp(U). The
topology of LpΛk(U) is generated by the norm

‖ω‖LpΛk(U) :=
∥∥∥√〈ω, ω〉∥∥∥

Lp(U)
, ω ∈ LpΛk(U).
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We let CΛk(U) be the Banach space of bounded continuous differential k-forms over
U , equipped with the maximum norm. We let C∞Λk(U) be the space of smooth
differential k-forms over U , we let C∞Λk(U) be the subspace of C∞Λk(U) whose
members can be extended smoothly onto Rn, and we let C∞c Λk(U) be the subspace
of C∞Λk(U) whose members have compact support in U .

The exterior derivative d : C∞Λk(U)→ C∞Λk+1(U) is defined by

dω =
∑

σ∈Σ(k,n)

n∑
i=1

(
∂iωσdx

i
)
∧ dxσ, ω ∈ C∞Λk(U),(3.4)

where we use the representation (3.1). One can show that d is linear, satisfies the
differential property dd = 0, and relates to the exterior product via

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, ω ∈ C∞Λk(U), η ∈ C∞Λl(U).(3.5)

We are interested in defining the exterior derivative in a weak sense over differential
forms of low regularity. If ω ∈ MΛk(U) and ξ ∈ MΛk+1(U) are locally integrable
such that ∫

U

ξ ∧ η = (−1)k+1

∫
U

ω ∧ dη, η ∈ C∞c Λn−k−1(U),(3.6)

then ξ is the only member of MΛk+1(U) with this property, up to equivalence
almost everywhere, and we call dω := ξ the weak exterior derivative of ω. Note
that dω has vanishing weak exterior derivative, since∫

U

dω ∧ dη = (−1)k
∫
U

ω ∧ ddη = 0, η ∈ C∞c Λn−k−1(U).(3.7)

Moreover, (3.5) generalizes in the obvious manner to the weak exterior derivative,
provided that all expressions are well-defined.

Next we introduce a notion of Sobolev differential forms. For p, q ∈ [1,∞], we let
W p,qΛk(U) be the space of differential k-forms in LpΛk(U) whose members have a
weak exterior derivative in LqΛk+1(U). We equip W p,qΛk(U) with the norm

‖ω‖Wp,qΛk(U) := ‖ω‖LpΛk(U) + ‖dω‖LqΛk+1(U), ω ∈W p,qΛk(U).(3.8)

It is obvious that W p,qΛk(U) is a Banach space. Moreover, as a consequence of [15,
Lemma 1.3] we know that C∞Λk(U) is dense in W p,qΛk(U) for p, q ∈ [1,∞).

Note that dW p,qΛk(U) ⊂ W q,rΛk+1(U) for p, q, r ∈ [1,∞] by definition. Hence
one may study de Rham complexes of the form

· · · d−−−−→ W p,qΛk(U)
d−−−−→ W q,rΛk+1(U)

d−−−−→ · · ·

The choice of the Lebesgue exponents determines analytical and algebraic properties
of these de Rham complexes. This is not a subject of the present article, but we
refer to [16] for corresponding results over smooth manifolds. De Rham complexes
of the above form with a Lebesgue exponent p fixed are known as Lp de Rham
complexes (e.g. [23]). Two examples of such de Rham complexes are of specific
relevance to us.
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Example 3.1. The space HΛk(U) := W 2,2Λk(U), consisting of those L2 differen-
tial k-forms that have a weak exterior derivative with L2 integrable coefficients, is
a Hilbert space whose topology is induced by the scalar product

〈ω, η〉HΛk(U) := 〈ω, η〉L2Λk(U) + 〈dkω, dkη〉L2Λk+1(U), ω, η ∈ HΛk(U).

In particular, the norms ‖ · ‖W 2,2Λk(U) and ‖ · ‖HΛk(U) are equivalent. These spaces

constitute the L2 de Rham complex

· · · d−−−−→ HΛk(U)
d−−−−→ HΛk+1(U)

d−−−−→ · · ·
which has received considerable attention in global and numerical analysis.

Example 3.2. The spaceW∞,∞Λk(U) of flat differential forms is spanned by those
differential forms with essentially bounded coefficients whose exterior derivative has
essentially bounded coefficients. These spaces constitute the flat de Rham complex

· · · d−−−−→ W∞,∞Λk(U)
d−−−−→ W∞,∞Λk+1(U)

d−−−−→ · · ·
Flat differential forms have been studied extensively in geometric integration theory
[27]; see also Theorem 1.5 of [15].

We conclude this section with some basic results on the behavior of differen-
tial forms and their integrals under pullback by bi-Lipschitz mappings. For the
remainder of this section, we let U, V ⊆ Rn be open sets, and let Φ : U → V be a
bi-Lipschitz mapping.

We first gather some facts on the Jacobians of bi-Lipschitz mappings. It follows
from Rademacher’s theorem [12, Theorem 3.1.6] that the Jacobians

D Φ : U → Rn×n, D Φ−1 : V → Rn×n

exist almost everywhere. One can show that

‖D Φ‖L∞(U) ≤ Lip(Φ, U),
∥∥D Φ−1

∥∥
L∞(V )

≤ Lip(Φ−1, V ).(3.9)

According to [12, Lemma 3.2.8], the identities

D Φ−1
|Φ(x) ·D Φ|x = Id, D Φ|Φ−1(y) ·D Φ−1

|y = Id(3.10)

hold true almost everywhere over U and V , respectively. In particular, these Ja-
cobians have full rank almost everywhere and by [12, Corollary 4.1.26] the signs
of the Jacobians are essentially constant: under the condition that U and V are
connected, there exists o(Φ) ∈ {−1, 1} such that

o(Φ) = sgn det D Φ(3.11)

almost everywhere over U . It follows from [12, Theorem 3.2.3] that∫
U

(ω ◦ Φ) · | det D Φ| dx =

∫
V

ω(y) dy(3.12)

for ω ∈M(V ) if at least one of the integrals exists.
The pullback Φ∗ω ∈MΛk(U) of ω ∈MΛk(V ) under Φ is defined as

Φ∗ω|x(ν1, . . . , νk) := ω|Φ(x)(D Φ|x · ν1, . . . ,D Φ|x · νk), ν1, . . . , νk ∈ Rn, x ∈ U.
By the discussion at the beginning of Section 2 of [15], the algebraic identity

Φ∗(ω ∧ η) = Φ∗ω ∧ η + (−1)kω ∧ Φ∗η

holds for ω ∈MΛk(V ) and η ∈MΛl(V ). Next we show how the integral of n-forms
transforms under pullback by bi-Lipschitz mappings:
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Lemma 3.3. If Φ : U → V is a bi-Lipschitz mapping between connected open
subsets of Rn, then for every Lebesgue integrable function ω ∈M(V ) we have∫

U

Φ∗ (ω voln) = o(Φ)

∫
V

ω voln .(3.13)

Proof. Using (3.11), (3.12), and the definition of the pullback, we find∫
U

Φ∗ (ω voln) =

∫
U

(ω ◦ Φ) · det D Φ voln =

∫
U

(ω ◦ Φ) · det D Φ dx

=

∫
U

(ω ◦ Φ) · sgn det D Φ · | det D Φ| dx

= o(Φ)

∫
U

(ω ◦ Φ) · | det D Φ| dx = o(Φ)

∫
V

ω dx = o(Φ)

∫
V

ω voln .

This shows the desired identity. �

It can be shown that the pullback under bi-Lipschitz mappings commutes with
the exterior derivative and preserves the Lp and W p,q classes of differential forms.

Lemma 3.4 (Theorem 2.2 of [15]). Let Φ : U → V be a bi-Lipschitz mapping
between open subsets of Rn. If p ∈ [1,∞] and ω ∈ LpΛk(V ), then Φ∗ω ∈ LpΛk(U).
If p, q ∈ [1,∞] and ω ∈W p,qΛk(V ), then Φ∗ω ∈W p,qΛk(U) and Φ∗dω = dΦ∗ω.

We refine the preceding statement and give an explicit estimate for the operator
norm of the pullback operation. Here and in the sequel, n/∞ = 0 for n ∈ N.

Theorem 3.5. Let U, V ⊆ Rn be open sets and let Φ : U → V be a bi-Lipschitz
mapping. For every p ∈ [1,∞] and every ω ∈ LpΛk(U) we then have

‖Φ∗ω‖LpΛk(U) ≤ ‖D Φ‖kL∞(U)‖ det D Φ−1‖
1
p

L∞(V )‖ω‖LpΛk(V )

≤ ‖D Φ‖kL∞(U)‖D Φ−1‖
n
p

L∞(V )‖ω‖LpΛk(V )

(3.14)

Proof. Let Φ : U → V and p ∈ [1,∞] be as in the statement of the theorem, and
let u ∈ LpΛk(U). For almost every x ∈ U we observe

|Φ∗ω||x ≤
∥∥D Φ|x

∥∥k√ ∑
σ∈Σ(k,n)

(
ωσ|Φ(x)

)2
=
∥∥D Φ|x

∥∥k |ω||Φ(x) .

From this we easily get

‖Φ∗ω‖LpΛk(U) ≤ ‖D Φ‖kL∞(U)

∥∥|ω| ◦ Φ
∥∥
Lp(U)

.

The desired statement follows trivially if p =∞, and (3.12) gives∫
U

(|ω| ◦ Φ)
p

dx ≤
∥∥det D Φ−1

∥∥
L∞(V )

∫
U

(|ω| ◦ Φ)
p · |det D Φ|dx

≤
∥∥det D Φ−1

∥∥
L∞(V )

∫
Φ(U)

|ω|p dx

if p ∈ [1,∞). This shows the first estimate of (3.14). The second estimate in (3.14)
follows by Hadamard’s inequality, which estimates the determinant of a matrix by
the product of the norms of its columns. �



12 MARTIN WERNER LICHT

4. Triangulations

In this section we review simplicial triangulations of domains and related notions,
most of which is standard in the literature. We assume that Ω ⊆ Rn is a bounded
open set such that Ω is a topological manifold with boundary and Ω is its interior.
A finite triangulation of Ω is a finite set T of closed simplices such that the union
of the elements of T equals Ω, such that for any T ∈ T and any subsimplex S ⊆ T
we have S ∈ T , and such that for all T, T ′ ∈ T the set T ∩ T ′ is either empty or a
common subsimplex of both T and T ′. We write

∆(T ) := { S ∈ T | S ⊆ T } , T (T ) := { S ∈ T | S ∩ T 6= ∅ } .

With some abuse of notation, we let T (T ) also denote the closed set that is the
union of the simplices of T adjacent to T . We write T m for the set of m-dimensional
simplices in T .

Having formally introduced triangulations, we make precise and prove the intro-
duction’s claim that all polyhedral domains in R3 are weakly Lipschitz domains.

Theorem 4.1. Let Ω ⊂ R3 be an open set. Assume that Ω is a topological sub-
manifold of R3 with boundary whose interior submanifold equals Ω. If there exists
a finite triangulation T of Ω, then Ω is a weakly Lipschitz domain.

Proof. Let x ∈ ∂Ω and T be a finite triangulation of Ω. We seek a compact
neighborhood Ux ⊆ R3 of x and a bi-Lipschitz mapping ϕx : Ux → [−1, 1]3 such
that ϕx(x) = 0 and (2.1) holds.

If x is not a vertex of T , then x is either contained in the interior of a boundary
triangle of T , or in the interior of an edge between two adjacent boundary triangles
of T . In both cases, we may choose Ux := Br(x) for r > 0 small enough, and
ϕx : Ux → [−1, 1]3 is easily constructed.

It remains to consider the case x ∈ T 0. Let r > 0 be so small that Br(x)
intersects T ∈ T 3 if and only if x ∈ T , so ∂Br(x) ∩ ∂Ω is a simple closed curve
in ∂Br(x). Hence ∂Br(x) ∩ ∂Ω is locally flat in the sense of [22, p.100]. By the
Schoenflies theorem in the Lipschitz category (see Theorem 7.8 of [22]), there exists
a bi-Lipschitz mapping

ϕ0
x : ∂Br(x)→ ∂B1(0) ⊂ R3

which maps ∂Br(x)∩ ∂Ω onto ∂B1(0)∩ {x ∈ R3 | x3 = 0}. By radial continuation,
we extend this to a bi-Lipschitz mapping

ϕIx : Br(x)→ B1(0) ⊂ R3

which maps Br(x)∩Ω onto B1(0)∩{x ∈ R3 | x3 < 0} and which satisfies ϕIx(x) = 0.
Moreover, there exists a bi-Lipschitz mapping

ϕII : B1(0)→ [−1, 1]3

which maps B1(0)∩{x ∈ R3 | x3 < 0} onto [−1, 1]2×[−1, 0) and satisfies ϕII(0) = 0.
Specifically, we may set ϕII(0) = 0 and

ϕII(y) := ‖y‖−1
`2 ‖y‖`∞y, y ∈ B1(0) \ {0}.

Since all norms on R3 are equivalent, ϕII is a bi-Lipschitz mapping from the unit
ball in the Euclidean norm to the unit ball in the maximum norm. The theorem
follows with Ux := Br(x) and ϕx := ϕIIϕIx. �
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Remark 4.2. The class of weakly Lipschitz domains is large but still excludes several
domains that are common in finite element literature. For example, the slit domain
ΩS = (−1, 1)2\[0, 1)×{0} is not a weakly Lipschitz domain. Note that ΩS is not the
interior of ΩS , so Theorem 4.1 does not apply. Defining a smoothed projection over
such a domain remains for future research. Another example is a cube dissected
into two domains by a plane through the origin, which we exclude for analogous
reasons. In the latter example, however, we may still apply the results of this article
over each subdomain separately.

The remainder of this section is devoted to notions of regularity of triangulations.
Let us fix a finite triangulation T of Ω. When T ∈ T m is any simplex of the
triangulation, then we write hT = diam(T ) for the diameter of T , and |T | = volm(T )
for the m-dimensional volume of T . If V ∈ T 0, then |V | = 1, and hV is defined, by
convention, as the average length of all n-simplices of T that are adjacent to V .

We define the shape constant of T as the minimal Cmesh > 0 that satisfies

∀T ∈ T n : hnT ≤ Cmesh|T |,(4.1)

∀T ∈ T , S ∈ T (T ) : hT ≤ CmeshhS .(4.2)

Intuitively, (4.1) describes a bound on the flatness of the simplices, while (4.2) de-
scribes that the diameter of adjacent simplices are comparable. In applications, we
consider families of triangulations, such as generated by successive uniform refine-
ment or newest vertex bisection, whose shape constants are uniformly bounded.

We can bound some important quantities in terms of Cmesh and the geometric
ambient. There exists a constant CN > 0, depending only on Cmesh and the ambient
dimension n, such that

∀T ∈ T : |T (T )| ≤ CN.(4.3)

This bounds the numbers of neighbors of any simplex. Furthermore, there exists a
constant εh > 0, depending only on Cmesh and Ω, such that

∀T ∈ T : BεhhT (T ) ∩ Ω ⊆ T (T ).(4.4)

In the sequel, we use affine transformations to a reference simplex. Let

∆n = convex{0, e1, . . . , en} ⊆ Rn

be the n-dimensional reference simplex. For each n-simplex T ∈ T n of the trian-
gulation, we fix an affine transformation ϕT (x) = MTx + bT where bT ∈ Rn and
MT ∈ Rn×n are such that ϕT (∆n) = T . Each matrix MT is invertible, and

‖MT ‖ ≤ cMhT , ‖M−1
T ‖ ≤ CMh

−1
T(4.5)

for constants cM, CM > 0 that depend only on Cmesh and n.

5. Elements of Geometric Measure Theory

This section gives an outline of relevant ideas from geometric measure theory, for
which we use Whitney’s monograph [27] as our main reference. Our motivation for
studying geometric measure theory lies in proving Theorem 7.9 later in this arti-
cle. The key observation is that finite element differential forms are flat differential
forms, and that the degrees of freedom are flat chains (see Lemma 5.2). This allows
us to estimate Lipschitz deformations of degrees of freedom (Lemma 5.4), which is
of critical importance in the construction of the smoothed projection.
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We begin with basic notions of chains and cochains in geometric measure theory,
which can be found in Sections 1-3 of Chapter V in [27]. Throughout this section,
we fix for each simplex S ⊆ Rn an orientation. We may identify each positively
oriented simplex S with the indicator function χS : Rn → R. Let k ∈ Z. To each
finite formal sum

∑
i aiSi of (oriented) k-simplices Si with real coefficients ai we

may associate the function
∑
i aiχSi . We call two such finite formal sums

∑
i aiSi

and
∑
j bjTj equivalent, written

∑
i aiSi ∼

∑
j bjTj , if the associated functions∑

i aiχSi and
∑
j bjχTj agree almost everywhere with respect to the k-dimensional

Hausdorff measure. The space Cpol
k (Rn) of polyhedral k-chains in Rn is the vector

space of finite formal sums of positively oriented k-simplices with the equivalence

relation factored out. If S ∈ Cpol
k (Rn), then we write S ∼

∑
i aiSi if the latter

formal sum represents S. We may identify a polyhedral k-chain S ∼
∑
i aiSi in Rn

with the function χS =
∑
i aiχSi whenever convenient.

The boundary ∂S of a positively oriented k-simplex S ⊆ Rn is defined as

∂S =
∑

F∈∆(S)k−1

F,(5.1)

where each F ∈ ∆(S)k−1 carries the orientation induced by S. We define a lin-
ear operator on the finite formal sums of positively oriented k-simplices by linear
extension: ∂

∑
i aiSi =

∑
i ai∂Si. Furthermore, it is apparent that this operation

preserves the equivalence relation. The boundary operator (5.1) gives rise to a

linear mapping ∂ : Cpol
k (Rn)→ Cpol

k−1(Rn) that satisfies ∂∂ = 0.

The mass |S|k of a polyhedral k-chain S in Rn is defined as the L1 norm of
the associated function χS with respect to the k-dimensional Hausdorff measure.1

Hence, if S ∼
∑
i aiSi with the simplices Si being essentially disjoint with respect

to the k-dimensional Hausdorff measure, then

|S|k =
∑
i

|ai| volk(Si).

It is easy to see that | · |k is a norm on the polyhedral chains, called mass norm.
We write Cmass

k (Rn) for the Banach space that results from taking the completion
of the polyhedral chains with respect to the mass norm.

The flat norm ‖S‖k,[ of a polyhedral k-chain S ∈ Cpol
k (Rn) is defined as

‖S‖k,[ := inf
Q∈Cpol

k+1(Rn)

(
|S − ∂Q|k + |Q|k+1

)
.(5.2)

As the name already suggest, one can show that ‖ · ‖k,[ is a norm on the polyhedral

chains. The Banach space C[k(Rn) is defined as the completion of Cpol
k (Rn) with

respect to the flat norm. It is apparent from the definition that

‖S‖k,[ ≤ |S|k, S ∈ Cpol
k (Rn).

In particular, Cmass
k (Rn) is densely embedded in C[k(Rn).

The boundary operator is bounded with respect to the flat norm. To see this,

let S ∈ Cpol
k (Rn), let ε > 0, and let Q ∈ Cpol

k+1(Rn) such that |S − ∂Q|k + |Q|k+1 ≤

1We assume the convention that the k-dimensional Hausdorff volume of a k-simplex S equals
its k-dimensional volume volk(S).
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‖S‖k,[ + ε. We then observe that

‖∂S‖k−1,[ ≤ |∂S − ∂(S − ∂Q)|k−1 + |S − ∂Q|k = |S − ∂Q|k ≤ ‖S‖k,[ + ε.

Taking ε to zero gives ‖∂S‖k−1,[ ≤ ‖S‖k,[. Using the density of Cpol
k (Rn) in C[k(Rn),

we eventually verify that

‖∂α‖k−1,[ ≤ ‖α‖k,[, α ∈ C[k(Rn).

We remark that the boundary operator is generally not bounded with respect to
the mass norm. This can be seen by shrinking a single simplex: the surface measure
scales differently than the volume.

Remark 5.1. The space Cmass
k (Rn) is a closed subspace of the Banach space of

functions over Rn integrable with respect to the k-dimensional Hausdorff measure.

The members of Cpol
k (Rn) play a similar role as the simple functions in the theory

of the Lebesgue measure. Every polyhedral k-chain can be represented as the finite
linear combination of k-simplices that are essentially disjoint with respect to the
k-dimensional Hausdorff measure.

The Banach space C[k(Rn) can be motivated by the following example: for r ∈
(0, 1), consider the two opposing longer sides of the rectangle [0, r] × [0, 1]. The
mass norm of these two edges is 2 regardless of r, but their flat norm equals r,
corresponding to (areal) mass of the original rectangle. In this sense, the flat norm
takes into account the distance between simplices.

The chains in the space Cmass
k (Rn) are the most important ones in this chapter.

We discuss the space C[k(Rn) to utilize some technical tools in geometric measure
theory that are stated for flat chains in the literature.

The Banach space C[k(Rn) of flat chains has a dual space, which is called the
Banach space of flat cochains. The space of flat cochains can be represented by a
class of differential forms: to every cochain we associate a differential form such that
evaluating the cochain on a simplex is equal to integrating the associated differential
form over that simplex. This is another instance of a recurrent idea throughout
differential geometry. Specifically, the space of flat cochains can be represented by
the space of flat differential forms. Flat forms were studied in Whitney’s monograph
[27], there mainly as representations of flat cochains, and in functional analysis (see
[15]). For the following facts, we refer to Section 2 of [15] and Chapters IX and X
of Whitney’s monograph [27].

Flat differential forms have well-defined traces on simplices. More precisely, for
each m-simplex S ⊂ Rn there exists a bounded linear mapping

trS : W∞,∞Λk(Rn)→W∞,∞Λk(S),

which extends the trace of smooth forms. In particular, for ω ∈W∞,∞Λk(Rn) the
trace trS ω depends only on the values of ω near S. We write∫

S

ω :=

∫
S

trS ω(5.3)

for the integral of ω ∈W∞,∞Λk(Rn) over a k-simplex S. By linearity, (5.3) gives a

bilinear pairing between Cpol
k (Rn) and W∞,∞Λk(Rn). Via the density of the poly-

hedral k-chains in Cmass
k (Rn) this furthermore induces a bilinear pairing between
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Cmass
k (Rn) and W∞,∞Λk(Rn). We have∣∣∣∣∫

S

ω

∣∣∣∣ ≤ |S|k‖ω‖W∞,∞Λk(Rn), S ∈ Cmass
k (Rn), ω ∈W∞,∞Λk(Rn).(5.4)

This pairing furthermore extends to flat chains. We have∣∣∣∣∫
α

ω

∣∣∣∣ ≤ ‖α‖k,[‖ω‖W∞,∞Λk(Rn), α ∈ C[k(Rn), ω ∈W∞,∞Λk(Rn).(5.5)

The exterior derivative between spaces of flat forms is dual to the boundary oper-
ator between spaces of flat chains (see Paragraph 12 of Chapter IX of [27]), and
consequently we have∫

∂α

ω =

∫
α

dω, α ∈ C[k(Rn), ω ∈W∞,∞Λk(Rn),(5.6)

as a generalized Stokes’ theorem.

Many results in geometric measure theory are invariant under Lipschitz map-
pings. We recall some basic facts about pushforwards of chains and pullbacks of
differential forms along Lipschitz mappings. Here we refer to Paragraph 7 in Chap-
ter X of Whitney’s monograph [27].

Let ϕ : Rm → Rn be a Lipschitz mapping. Then there exists a mapping

ϕ∗ : C[k(Rm)→ C[k(Rn),(5.7)

called the pushforward along ϕ, which commutes with the boundary operator,

∂ϕ∗α = ϕ∗∂α, α ∈ C[k(Rm),(5.8)

and which satisfies the norm estimates

‖ϕ∗α‖k,[ ≤ max
{

Lip(ϕ,Rm)k,Lip(ϕ,Rm)k+1
}
‖α‖k,[, α ∈ C[k(Rm),(5.9)

|ϕ∗S|k ≤ Lip(ϕ,Rm)k|S|k, S ∈ Cmass
k (Rm).(5.10)

The pushforward of chains is dual to the pullback of differential forms. We recall
that the latter is a mapping

ϕ∗ : W∞,∞Λk(Rn)→W∞,∞Λk(Rm)(5.11)

which commutes with the exterior derivative,

dϕ∗ω = ϕ∗dω, ω ∈W∞,∞Λk(Rn),(5.12)

and satisfies the norm estimate

‖ϕ∗ω‖L∞Λk(Rm) ≤ Lip(ϕ,Rn)k‖ω‖L∞Λk(Rn), ω ∈W∞,∞Λk(Rn).(5.13)

The pushforward and the pullback are related by the identity∫
ϕ∗α

ω =

∫
α

ϕ∗ω, ω ∈W∞,∞Λk(Rn), α ∈ C[k(Rm).(5.14)

Lastly, if ϕ : Rm → Rn and ψ : Rl → Rm are Lipschitz mappings, then ϕψ : Rl →
Rn is a Lipschitz mapping, and we have (ϕψ)∗ = ϕ∗ψ∗ and (ϕψ)∗ = ψ∗ϕ∗ over the
corresponding spaces of chains and differential forms, respectively.

Having outlined basic concepts of geometric measure theory, we provide a new re-
sult which makes these notions interesting for the theory of finite element methods:
the degrees of freedom in finite element exterior calculus are flat chains.
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Lemma 5.2. Let F ⊂ Rn be a closed oriented m-simplex and η ∈ C∞Λm−k(F ).
Then there exists α(F, η) ∈ C[k(Rn) such that for all ω ∈W∞,∞Λk(Rn) we have∫

F

trF ω ∧ η =

∫
α(F,η)

ω.(5.15)

Moreover, α(F, η) ∈ Cmass
k (Rn) and ∂α(F, η) ∈ Cmass

k−1 (Rn).

Proof. We first assume that dimF = n and F is positively oriented. We use
Theorem 15A of [27, Chapter IX] to deduce the existence of α(F, η) ∈ C[k(Rn) such
that ∫

F

trF ω ∧ η =

∫
α(F,η)

ω, ω ∈W∞,∞Λk(Rn),

and such that |α(F, η)|k = ‖η‖L1Λm−k(F ). In particular, α(F, η) ∈ Cmass
k (Rn).

Now assume that dimF = m ≤ n. There exist a positively oriented simplex
F0 ⊆ Rm and an isometric inclusion ϕ : Rm → Rn which maps F0 onto F . Recall
that the pullback of a flat form along a Lipschitz mapping is well-defined. For
ω ∈W∞,∞Λk(Rn) we have∫

F

trF ω ∧ η =

∫
ϕ∗F0

trF ω ∧ η =

∫
F0

ϕ∗ trF ω ∧ ϕ∗η

=

∫
α(F0,ϕ∗η)

ϕ∗ trF ω =

∫
ϕ∗α(F0,ϕ∗η)

ω.

Thus we may choose α(F, η) = ϕ∗α(F0, ϕ
∗η) ∈ Cmass

k (Rn). It remains to show that
∂k−1α(F, η) ∈ Cmass

k−1 (Rn). For ω ∈W∞,∞Λk−1(Rn), we derive∫
∂α(F,η)

ω =

∫
α(F,η)

dω =

∫
F

trF dω ∧ η

= (−1)k
∫
F

trF ω ∧ dη +
∑

f∈∆(F )m−1

∫
f

trf ω ∧ trF,f η

= (−1)k
∫
α(F,dη)

ω +
∑

f∈∆(F )m−1

∫
α(f,trF,f η)

ω.

Here, trF,f η denotes the trace of η ∈ C∞(F ) onto a subsimplex f ∈ ∆(F )m−1,
and each such f is assumed to carry the orientation induced by F . Moreover, we
have used the generalized Stokes’ theorem (5.6). We conclude that the action of
the flat chain ∂α(F, η) on W∞,∞Λk−1(Rn) can be represented as the finite sum of
integrals against smooth differential forms over simplices. Hence ∂α ∈ Cmass

k−1 (Rn)
by the previous observations. The proof is complete. �

Remark 5.3. In the next section we review how the degrees of freedom in finite ele-
ment exterior calculus can be described in terms of integrals over simplices weighted
against polynomial differential forms. Hence Lemma 5.2 can be applied to identify
the degrees of freedom with flat chains.

We finish this excursion into geometric measure theory with an estimate on the
deformation of flat chains by Lipschitz mappings. This result is applied later in
this article and provides the rationale for considering geometric measure theory.
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Lemma 5.4. Let F ⊆ Rn be an m-simplex and η ∈ C∞Λm−k(F ). Let α(F, η) ∈
C[k(Rn) be the associated flat chain in the manner of Lemma 5.2. Let r > 0 be

fixed and let ϕ : B̊2r(F ) → B̊3r(F ) be a Lipschitz mapping that maps B̊r(F ) into

B̊2r(F ). Writing L := max{Lip(ϕ,B2r(F )), 1}, we then have

‖ϕ∗α− α‖k,[ ≤ ‖ϕ− Id‖L∞(B2r(F ),Rn)

(
Lk|α|k + Lk−1|∂α|k−1

)
.(5.16)

Proof. To prove this result, we gather several additional notions of Whitney’s mono-

graph. For any open set U ⊆ Rn, a polyhedral chain S ∼
∑
i aiSi ∈ C

pol
k (Rn) is in

U if all Si are contained in U , and S is of U if there exists an open set V ⊆ Rn
compactly contained in U such that S is a chain in V (see [27]).

The support of a flat chain α ∈ C[k(Rn) is the set of all points x ∈ Rn such that
for all ε > 0 there exists ω ∈ C∞Λk(Rn) with support in Bε(x) such that

∫
α
S 6= 0.

It follows from Definition (1) in Section I.13 of [27, p.52] and the discussion in
Section V.10 of [27] up to Theorem V.10A that our definition of support agrees
with the definition of support in [27, Section VII.3]

Having established these additional notions, the claim follows by Theorem 13A
in Chapter X in [27] together with Equation VIII.1.(7) in [27, p.233]. �

6. Finite Element Spaces, Degrees of Freedom, and Interpolation

In this section we outline the discretization theory of finite element exterior
calculus. We summarize basic facts on the finite element spaces and their spaces
of degrees of freedom. The most important construction is the canonical finite
element interpolant Ik. Moreover we consider several inverse inequalities. The
reader is assumed to be familiar with the background in [2] and [1, Section 3–5].
We outline this background and additionally apply geometric measure theory in
the perspective of the preceding section.

For the duration of this section, we fix a bounded weakly Lipschitz domain
Ω ⊂ Rn and a finite triangulation T of Ω.

The essential idea is to consider a differential complex of finite element spaces
that mimics the de Rham complex on a discrete level. The finite element spaces
are finite-dimensional spaces of piecewise polynomial differential forms.

Let T ∈ T n be an n-simplex, and let r, k ∈ Z. We define PrΛk(T ) as the
space of differential k-forms whose coefficients are polynomials over T of degree at

most r. We define P−r Λk(T ) := Pr−1Λk(T ) + ~XyPr−1Λk+1(T ), where ~Xy denotes

contraction with the source vector field ~X(x) = x. One can show that PrΛk(T )
and P−r Λk(T ) are invariant under pullback by affine automorphisms of T . Some
basic properties of these spaces are

PrΛk(T ) ⊆ P−r+1Λk(T ), P−r Λk(T ) ⊆ PrΛk(T ),

dPrΛk(T ) ⊆ Pr−1Λk+1(T ), dPrΛk(T ) = dP−r Λk(T ),

PrΛ0(T ) = P−r Λ0(T ), PrΛn(T ) = P−r+1Λn(T ).

For any subsimplex F ∈ ∆(T ) of T we let trT,F : C∞Λk(T ) → C∞Λk(F ) denote
the trace mapping from T onto F , and we set

PrΛk(F ) := trT,F PrΛk(T ), P−r Λk(F ) := trT,F P−r Λk(T ).(6.1)
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Note that these two spaces do not depend on T . We define the finite element spaces

PrΛk(T ) :=
{
ω ∈W∞,∞Λk(Ω)

∣∣ ∀T ∈ T n : ω|T ∈ PrΛk(T )
}
,

P−r Λk(T ) :=
{
ω ∈W∞,∞Λk(Ω)

∣∣ ∀T ∈ T n : ω|T ∈ P−r Λk(T )
}
.

These are spaces of piecewise polynomial differential forms. Membership of piece-
wise polynomial differential forms in W∞,∞Λk(Ω) enforces tangential continuity
along simplex boundaries. In particular, if ω ∈ PrΛk(T ) and T, T ′ ∈ T are neigh-
boring simplices, then the restrictions of ω to T and T ′ have the same trace on
their common subsimplex T ∩ T ′. Thus our definition recovers precisely the finite
element spaces of finite element exterior calculus [1].

From PrΛk(T ) and P−r Λk(T ) we can construct finite element de Rham com-
plexes, but the combination of spaces is not arbitrary. We single out a class of
differential complexes that has been discussed by Arnold, Falk and Winther [1]
and that we call FEEC-complexes in this article. A FEEC-complex is a differential
complex

0→ PΛ0(T )
d−−−−→ PΛ1(T )

d−−−−→ · · · d−−−−→ PΛn(T )→ 0(6.2)

such that for all k ∈ Z there exists r ∈ Z with

PΛk(T ) ∈
{
PrΛk(T ),P−r Λk(T )

}
(6.3)

and that for all k ∈ Z we have

PΛk(T ) ∈
{
PrΛk(T ),P−r Λk(T )

}
=⇒ PΛk+1(T ) ∈

{
Pr−1Λk+1(T ),P−r Λk+1(T )

}
.

(6.4)

Next we introduce the degrees of freedom of finite element exterior calculus. They
are represented by taking the trace of a differential form onto a simplex of T and
then integrating against a smooth differential form. By virtue of Lemma 5.2, we
introduce the degrees of freedom as chains of finite mass. Specifically, when F ∈ T
and m = dim(F ), then we define

PrCFk :=

{
S ∈ C[k(Rn)

∣∣∣∣ ∃ηS ∈ P−r+k−mΛm−k(F ) :

∫
S

· =
∫
F

ηS ∧ ·
}
,

P−r CFk :=

{
S ∈ C[k(Rn)

∣∣∣∣ ∃ηS ∈ Pr+k−m−1Λm−k(F ) :

∫
S

· =
∫
F

ηS ∧ ·
}
.

We furthermore obtain by Lemma 5.2 that the degrees of freedom are flat chains of
finite mass with boundaries of finite mass. One can show that we have direct sums

PrCk(T ) :=
∑
F∈T
PrCFk , P−r Ck(T ) :=

∑
F∈T
P−r CFk .

Moreover, these flat chains have boundaries of finite mass. One can show that

∂PrCk(T ) ⊆ P−r+1Ck−1(T ), PrCk(T ) ⊆ P−r+1Ck(T ) ⊆ Pr+1Ck(T ).

Remark 6.1. To see the first inclusion, let F ∈ T and η ∈ PrΛk(F ). These define
an element S ∈ PrCFk , and similar as in the proof of Lemma 5.2 the generalized
Stokes theorem shows for all ω ∈W∞,∞Λk−1(Rn) that∫

F

trF dω ∧ η = (−1)k
∫
F

dω ∧ η +
∑

f∈∆(F )m−1

∫
f

trT,f η ∧ trf ω.
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Here, each f ∈ ∆(F )m−1 carries the orientation induced by F . The first inclusion
has been used implicitly in the proof of Lemma 4.24 of [1]. The second chain of
inclusions follows immediately from the definition of PrCk(T ) and P−r Ck(T ).

With respect to a given FEEC-complex (6.2), we then define

PCk(T ) =

{
PrCk(T ) if PΛk(T ) = PrΛk(T ),
P−r Ck(T ) if PΛk(T ) = P−r Λk(T ).

(6.5)

for k ∈ Z. Note that ∂PCk+1(T ) ⊆ PCk(T ) by construction. One can show that

∀S ∈ PCk(T ) : S 6= 0 =⇒ ∃ω ∈ PΛk(T ) :

∫
S

ω 6= 0,(6.6a)

∀ω ∈ PΛk(T ) : ω 6= 0 =⇒ ∃S ∈ PCk(T ) :

∫
S

ω 6= 0.(6.6b)

We conclude that PCk(T ), restricted to PΛk(T ), spans the dual space of PΛk(T ).
Notably, the last implication can be strengthened to the following “local” result.
When T ∈ T and ω ∈ PΛk(T ), then

ω|T = 0 ⇐⇒ ∀F ∈ ∆(T ) : ∀S ∈ PCFk :

∫
S

ω = 0.(6.7)

So the value of ω ∈ PΛk(T ) is determined uniquely by the values of the degrees of
freedom associated with that simplex.

We introduce the canonical finite element interpolant. This linear mapping is
well-defined and bounded both over CΛk(Ω) and W∞,∞Λk(Ω). We define

Ik : CΛk(Ω) +W∞,∞Λk(Ω)→ PΛk(T )(6.8)

by requiring that∫
S

ω =

∫
S

Ikω, S ∈ PCk(T ), ω ∈ CΛk(Ω) +W∞,∞Λk(Ω).(6.9)

The finite element interpolant commutes with the exterior derivative, which follows
easily from (6.9) and (5.6). We have∫

S

Ik+1dω =

∫
S

dω =

∫
∂S

ω =

∫
∂S

Ikω =

∫
S

dIkω(6.10)

for all ω ∈W∞,∞Λk(Ω) and S ∈ PCk+1(T ). In particular,

· · · −−−−→ W∞,∞Λk(Ω)
d−−−−→ W∞,∞Λk+1(Ω) −−−−→ · · ·

Ik

y Ik+1

y
· · · −−−−→ PΛk(T )

d−−−−→ PΛk+1(T ) −−−−→ · · ·

(6.11)

is a commuting diagram. Furthermore Ik is idempotent, which means

Ikω = ω, ω ∈ PΛk(T ),(6.12)

as follows directly from (6.7).

In the remainder of this section, we introduce a number of inverse inequalities.
These rely on the equivalence of norms over finite-dimensional vector spaces.

We note that, by construction, the pullbacks ϕ∗Tω|T lie in a common finite-

dimensional vector space as ω ∈ PΛk(T ) and T ∈ T n vary. This is a fixed space
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of differential forms with polynomial coefficients of sufficiently high degree. Hence
for each p ∈ [1,∞] there exists a constant C[,p > 0 such that

‖ϕ∗Tω‖W∞,∞Λk(∆n) ≤ C[,p‖ϕ∗Tω‖LpΛk(∆n), ω ∈ PΛk(T ), T ∈ T n.(6.13)

The constant C[,p depends only on n, p, and the maximal polynomial degree in the
finite element de Rham complex.

Another inverse inequality applies to the degrees of freedom. By Lemma 5.2,
each degree of freedom can be identified with a flat chain of finite mass whose
boundary is again a flat chain of finite mass. In general, the boundary operator
is an unbounded operator as a mapping between spaces of polyhedral chains with
respect to the mass norm. But in the present setting, the pushforward of the
degrees of freedom onto the reference simplex takes values in a finite-dimensional
vector space. We conclude that there exists C∂ > 0 such that

|ϕ−1
T∗∂S|k−1 ≤ C∂ |ϕ−1

T∗S|k, S ∈ PCFk , F ∈ ∆(T ), T ∈ T n.(6.14)

Again, the constant C∂ depends only on n and the maximal polynomial degree in
the finite element de Rham complex.

Finally, we observe that there exists CI > 0, depending only on n and the
maximal polynomial degree in the finite element de Rham complex, such that

‖ϕ∗T Ikω‖L∞Λk(∆n) ≤ CI sup
F∈∆(T )

sup
S∈PCFk

|ϕ−1
T∗S|

−1
k

∫
ϕ−1
T∗S

ϕ∗Tω(6.15)

for all T ∈ T n and ω ∈ CΛk(Ω). Note that this inequality immediately implies

‖ϕ∗T Ikω‖L∞Λk(∆n) ≤ CI‖ϕ∗Tω‖CΛk(∆n), ω ∈ CΛk(T ).(6.16)

To see this, we recall that the integrals on the right-hand side of (6.15) can be
bounded in terms of the maximum of |ω| over F and the mass of ϕ−1

T∗S, as follows
from Lemma 5.2 and our definition of the degrees of freedom.

Remark 6.2. The existence of constants C[,p, C∂ , and CI as above follows trivially
if the triangulation T and the sequence (6.2) are fixed. But in applications we con-
sider families of triangulations with associated sequence (6.2), and we then demand
uniform bounds for those constants. Such uniform bounds hold if the triangula-
tions have uniformly bounded shape constants and the finite element spaces have
uniformly bounded polynomial degree. The results of this article do not attend to
estimates that are uniform in the polynomial degree, as would be relevant for p-
and hp-methods.

7. Smoothed Projection

In this section, we construct the smoothed projection in several stages. First, we
devise an extension operator Ek, applying the two-sided Lipschitz collar discussed
in Section 2. We then formulate a smoothing operator Rkεh, where we use a smooth
mesh size function h as an auxiliary construction. Successive composition with the
canonical finite element interpolant Ik from Section 6 yields an uniformly bounded
commuting mapping Qkε , the smoothed interpolant, from differential forms with co-
efficients in Lp onto finite element differential forms. Qkε is generally not idempotent
on the finite element space, but the interpolation error can be controlled. After a
small modification, we obtain the desired smoothed projection πkε .
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Throughout this section we assume that Ω ⊆ Rn is a bounded connected weakly
Lipschitz domain and that T is a finite triangulation of Ω. We additionally as-
sume that we have fixed a FEEC-complex (6.2). In the sequel, we adhere to the
convention of stating each result accompanied by explicit estimates of the various
constants and parameter ranges. We call a quantity uniformly bounded if it can be
bounded in terms of the shape-constant, the geometry, and the polynomial degree
of the finite element space.

7.1. Extension. Since Ω is a bounded weakly Lipschitz domain, we may apply
Theorem 2.3 to fix a compact neighborhood CΩ of ∂Ω in Rn and a bi-Lipschitz
mapping

Ψ : ∂Ω× [−1, 1]→ CΩ

such that Ψ(x, 0) = x for x ∈ ∂Ω, and such that

Ψ (∂Ω× [−1, 0)) = CΩ ∩ Ω, Ψ (∂Ω× (0, 1]) = CΩ ∩ Ω
c
.

Additionally we write

C−Ω := CΩ ∩ Ω, C+Ω := CΩ ∩ Ω
c
, Ωe := Ω ∪ C+Ω(7.1)

for the interior collar part C−Ω, the exterior collar part C+Ω, and the extended
domain Ωe, respectively. Eventually, we have a well-defined bi-Lipschitz mapping

R : C+Ω→ C−Ω, Ψ(x, t) 7→ Ψ(x,−t)(7.2)

from the outer collar part into the inner collar part, called collar reflection.

We define the extension operator using the pullback along the collar reflection.
If ω ∈MΛk(Ω) is a locally integrable k-form over Ω, then

Ekω :=

{
ω over Ω,

R∗ω over C+Ω,
(7.3)

is the locally integrable differential k-form constructed by extending ω onto C+Ω
using the pullback along R. For notational convenience, we define the constant

CE := max
{

Lip(R, C+Ω),Lip(R−1, C−Ω)
}

We show that the linear mapping Ek satisfies local estimates and commutes with
the exterior derivative.

Lemma 7.1. Let p ∈ [1,∞]. We have a bounded linear operator

Ek : LpΛk(Ω)→ LpΛk(Ωe), ω 7→ Ekω.

For every measurable set G ⊆ C+Ω we have

‖Ekω‖LpΛk(G) ≤ C
k+n/p
E ‖ω‖LpΛk(R(G)), ω ∈ LpΛk(Ω).(7.4)

Proof. Let p ∈ [1,∞], G ⊆ C+Ω be measurable, and ω ∈ LpΛk(Ω). Then

‖Ekω‖LpΛk(G) = ‖R∗ω‖LpΛk(G) ≤ ‖DR‖kL∞(C+Ω)‖DR−1‖n/pL∞(C−Ω)‖ω‖LpΛk(R(G)).

by Lemma 3.5, and hence (7.4) holds. In the case G = C+Ω we find

‖Ekω‖LpΛk(Ωe) ≤ ‖ω‖LpΛk(Ω) + ‖Ekω‖LpΛk(C+Ω) ≤
(

1 + C
k+n/p
E

)
‖ω‖LpΛk(Ω).

We conclude that Ek is bounded from LpΛk(Ω) to LpΛk(Ωe). �
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Lemma 7.2. There exists LE ≥ 1, depending only on Ψ, such that for all p ∈
[1,∞], all δ ≥ 0, all measurable sets A ⊂ Ω, and all ω ∈ LpΛk(Ω) we have

‖Ekω‖LpΛk(Bδ(A)∩Ωe) ≤
(

1 + C
k+n/p
E

)
‖ω‖LpΛk(BδLE (A)∩Ω).(7.5)

Proof. Let δ ≥ 0, let p ∈ [1,∞], and let A ⊂ Ω be measurable. Then

‖Ekω‖LpΛk(Bδ(A)∩Ωe) ≤ ‖ω‖LpΛk(Bδ(A)∩Ω) + ‖Ekω‖LpΛk(Bδ(A)∩C+Ω).

We set G+ := Bδ(A) ∩ C+Ω and G− = R(G+) ⊆ Ω. Using Lemma 7.1, we find

‖Ekω‖LpΛk(G+) ≤ C
k+n/p
E ‖ω‖LpΛk(G−).

Let x ∈ Bδ(A) ∩ C+Ω be fixed but arbitrary. There exist z ∈ A with ‖z − x‖ ≤ δ,
and y ∈ ∂Ω on the straight line segment between x and z. Since x ∈ C+Ω, there
exist x0 ∈ ∂Ω and t ∈ [0, 1] with x = Ψ(x0, t). It is easily seen that

‖R(x)− x‖ = ‖Ψ(x,−t)−Ψ(x, t)‖ ≤ 2 Lip(Ψ) · t,

|t| ≤
√
‖x0 − y‖2 + |t|2 ≤ Lip(Ψ−1) ‖Ψ(x0, t)−Ψ(y, 0)‖ = Lip(Ψ−1) ‖x− y‖ .

We then find that

‖R(x)− z‖ ≤ ‖R(x)− x‖+ ‖x− z‖ ≤ 2 Lip(Ψ) Lip(Ψ−1)‖x− y‖+ ‖x− z‖
≤
(
1 + 2 · Lip(Ψ) Lip(Ψ−1)

)
δ.

We choose LE :=
(
1 + 2 Lip(Ψ) Lip(Ψ−1)

)
. Hence G− ∩ Ω ⊆ BLEδ(A) ∩ Ω. This

completes the proof. �

Lemma 7.3. Let p, q ∈ [1,∞]. If ω ∈ W p,qΛk(Ω), then Ekω ∈ W p,qΛk(Ωe) and
Ek+1dω = dEkω.

Proof. Because Ω is bounded, it suffices to consider the case p = q = 1. Let
ω ∈ W 1,1Λk(Ω). We have Ekω ∈ L1Λk(Ωe) and Ek+1dkω ∈ L1Λk+1(Ωe) by
Lemma 7.1. To prove that Ekω ∈ W 1,1Λk(Ωe) with Ek+1dkω = dkEkω, it suffices
to show that there exists a covering (Ui)i∈N of Ωe by open subsets Ui ⊆ Ωe such
that Ekω|Ui ∈W 1,1Λk(Ui) and Ek+1dkω = dkEkω over each Ui.

From the definition of weakly Lipschitz domains we easily see that there exists a
family (θi)i∈N of LIP embeddings θi : (−1, 1)n−1 → ∂Ω whose images cover ∂Ω. We
define mappings ϕi : (−1, 1)n → CΩ by setting ϕi(y, t) 7→ Ψ (θi(y), t). These are
a family of LIP embeddings whose images Ui := ϕi ((−1, 1)n) cover CΩ. Together
with Ω we thus have a finite open covering of Ωe.

We recall that Ekω|Ω ∈ W 1,1Λk(Ω) with Ek+1dkω = dkEkω over Ω. It remains

to show that Ekω|Ui ∈ W 1,1Λk(Ui) and Ek+1dkω = dkEkω over Ui for i ∈ N. To

this end, we define ωi := ϕ∗i
(
Ekω|Ui

)
and ξi := ϕ∗i

(
Ek+1dkω|Ui

)
. So it suffices to

show ωi ∈W 1,1Λk((−1, 1)n) and dkωi = ξi over (−1, 1)n. We let

R : (−1, 1)n−1 × (0, 1)→ (−1, 1)n−1 × (−1, 0)

be the reflection by the n-th coordinate. It is evident that

ωi|(−1,1)n−1×(0,1) = R∗ωi|(−1,1)n−1×(−1,0)

ξi|(−1,1)n−1×(0,1) = R∗ξi|(−1,1)n−1×(−1,0) = R∗dkωi|(−1,1)n−1×(−1,0).

By the density of C∞Λk(U) inW 1,1Λk(U) there exists a sequence (ωji )j∈N of smooth
differential k-forms over (−1, 1)n−1× (−1, 0) that converge to ωi over (−1, 1)n−1×
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(−1, 0) in the W 1,1Λk norm for j → ∞. We let
‖
ωji be the extension of ωji from

(−1, 1)n−1×(−1, 0) to (−1, 1)n by pullback along R. Then
‖
ωji is a locally integrable

differential k-form over (−1, 1)n with locally integrable weak exterior derivative. It

is easy to observe that
‖
ωji converges to ωi in L1Λk ((−1, 1)n) and dk

‖
ωji converges to

ξi in L1Λk+1 ((−1, 1)n) for j → ∞. Hence ωi ∈ W 1,1Λk ((−1, 1)n) with dkωi = ξi.
The proof is complete. �

7.2. Smoothing Operators. The next step is constructing a commuting smooth-
ing operator. We define the smoothed differential form at each point by locally aver-
aging the original differential form. A technical difference to the classical smoothing
operator is that we let the smoothing radius vary across the domain.

We first discuss such smoothing operators in a very general fashion before we
focus on a specific example. We assume that % : Rn → R+ is a non-negative smooth
function that assumes a positive minimum over Ω. A concrete instance of such a
function will be discussed later in this subsection. We introduce the mapping

Φ% : Ω×B1(0)→ Rn, (x, y) 7→ x+ %(x)y.(7.6)

Regarding the second variable as a parameter, we get a family of mappings

Φ%,y : Ω→ Rn, x 7→ Φ%(x, y).

We study some properties of Φ%,y. This mapping is smooth and we have

D Φ%,y = Id + y ⊗ d%.

When y ∈ B1(0) and x1, x2 ∈ Ω, then

‖Φ%,y(x1)− Φ%,y(x2)‖ ≤ (1 + Lip(%)) ‖x1 − x2‖ .(7.7)

Moreover, for any y ∈ B1(0) and x ∈ Ω we have

‖Φ%,y(x)− x‖ ≤ %(x).(7.8)

The latter inequality implies that for % small enough we have

Φ%,y
(
Ω
)
⊆ Ωe.(7.9)

Under the additional condition that Lip(%) < 1/2, we observe for y ∈ B1(0) and
x1, x2 ∈ Ω that

‖Φ%,y(x1)− Φ%,y(x2)‖ = ‖x1 − x2 + (%(x1)− %(x2)) y‖

≥
∣∣∣ ‖x1 − x2‖ − Lip(%) ‖x1 − x2‖

∣∣∣ ≥ 1

2
‖x1 − x2‖ .

(7.10)

We conclude that for % and Lip(%) small enough, the mapping Φ%,y : Ω → Ωe is a
LIP embedding for every y ∈ B1(0). In the sequel, we let B%(A) for any A ⊆ Ωe

denote the union of the balls B%(x)(x) for x ∈ A.
We recall the standard mollifier. This is a non-negative smooth function

µ : Rn → R, y 7→
{
Cµ exp

(
−(1− ‖y‖2)−1

)
if ‖y‖ ≤ 1,

0 if ‖y‖ > 1,
(7.11)

with compact support, where Cµ > 0 is chosen such that µ has unit integral. We
set µr(y) := r−nµ(y/r) for y ∈ Rn and r > 0.
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The smoothing operator in this subsection uses the standard mollifier µ as a
building block and can be seen as a generalization of the classical smoothing by
convolution. For every ω ∈ L1Λk(Ωe) we define

Rk%ω|x :=

∫
Rn
µ(y)(Φ∗%,yω)|xdy, x ∈ Ω.(7.12)

We first show thatRk% maps into C∞Λk(Ω) and satisfies a local bound. In particular,

it is a bounded mapping into CΛk(Ω) with respect to the maximum norm.

Lemma 7.4. Assume that Φ%,y : Ω→ Ωe is a LIP embedding for each y ∈ B1(0).
Then we have a well-defined linear operator

Rk% : LpΛk(Ωe)→ C∞Λk(Ω), p ∈ [1,∞].

Moreover, for every p ∈ [1,∞], ω ∈ LpΛk(Ωe), and measurable set A ⊆ Ω we have

‖Rk%ω‖CΛk(A) ≤ (1 + Lip(%))
k
(

inf
A
%
)−np ‖ω‖LpΛk(Φ%(A,B1)).(7.13)

In addition,

dRk%ω = Rk+1
% dω, ω ∈W p,qΛk(Ωe), p, q ∈ [1,∞].(7.14)

Proof. Let p ∈ [1,∞] and ω ∈ LpΛk(Ωe). Since Φ%,y : Ω→ Ωe is a LIP embedding

for every y ∈ B1(0), we find that µ(y)(Φ∗%,yω)|x is measurable in y for every x ∈ Ω.
Furthermore, the integral (7.12) is well-defined. Using elementary results, we get
for every x ∈ Ω that∣∣Rk%ω∣∣|x ≤ Lip(Φ%,y,Ω)k

∫
Rn
µ(y)|ω||Φ%,y(x)dy ≤ (1 + Lip(%))

k
∫
Rn
µ(y)|ω||Φ%,y(x)dy.

A substitution of variables and Hölder’s inequality give∫
Rn
µ(y)|ω||x+%(x)y dy ≤ %(x)−

n
p ‖ω‖Lp(B%(x)(x)).

These estimates in combination yield (7.13). In order to prove the smoothness of
Rk%ω over Ω, we first change the form of the integral. By a substitution of variables
we find for x ∈ Ωe that

Rk%ω|x =
∑

σ∈Σ(1:k,0:n)

∫
Rn
µ(y)ωσ (x+ %(x)y) (Φ∗%,ydx

σ)|xdy

=
∑

σ∈Σ(1:k,0:n)

∫
Rn
µ%(x) (y − x)ωσ(y)

(
Φ∗%,%(x)−1(y−x)dx

σ
)
|x

dy.

We know that ωσ ∈ L1(Ω), that % and Φ% are smooth, and that Ω is compact. The
desired smoothness of Rk%ω over Ω is now a simple consequence of the dominated

convergence theorem. Furthermore, Rk%ω ∈ C∞Λk(Ω), as can easily be seen when

picking x in a sufficiently small open neighborhood of Ω.
It remains to show (7.14). Let η ∈ C∞c Λn−k−1(Ω). By Fubini’s theorem we have∫

Ω

Rk%ω ∧ dη =

∫
Ω

∫
Rn
µ(y)Φ∗%,yω dy ∧ dη =

∫
Rn
µ(y)

∫
Ω

Φ∗%,yω ∧ dη dy,∫
Ω

Rk%dω ∧ η =

∫
Ω

∫
Rn
µ(y)Φ∗%,ydω dy ∧ η =

∫
Rn
µ(y)

∫
Ω

Φ∗%,ydω ∧ η dy.
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When % is small enough over Ω, then Φ%,y : Ω→ Ωe is a LIP embedding for every
y ∈ B1(0). Hence by Lemma 3.4 we find∫

Ω

Φ∗%,yω ∧ dη = (−1)k+1

∫
Ω

dΦ∗%,yω ∧ η = (−1)k+1

∫
Ω

Φ∗%,ydω ∧ η.

By definition, dRk%ω = Rk+1
% dω. The proof is complete. �

We will instantiate this result for a particular choice of % that reflects the local
mesh size. First we prove the existence of a mesh size function H with Lipschitz
regularity, and then we prove the existence of a mesh size function h that is smooth.

Lemma 7.5. There exists LΩ > 0, only depending on Ω, and a Lipschitz continuous
function H : Ω→ R+

0 such that

∀F ∈ T : C−1
meshhF ≤ H|F ≤ CmeshhF ,(7.15)

Lip(H,Ω) ≤ CmeshLΩ, min
T∈T n

hT ≤ min
Ω

H, max
Ω

H ≤ max
T∈T n

hT .(7.16)

Proof. Let the function H : Ω → R+
0 be defined as follows. If V ∈ T 0, then we set

H(V ) = hV . We then extend H to each T ∈ T by affine interpolation between the
vertices of T . With this definition, H is continuous, and (7.15) follows from (4.2).
It remains to prove (7.16). Obviously, Lip(H, T ) ≤ Cmesh for T ∈ T n.

Since Ω is a bounded weakly Lipschitz domain, there exists be a finite family
(Ui)1≤i≤N of relatively open sets Ui ⊆ Ω such that such that the union of all

Ui equals Ω, and such that there exist bi-Lipschitz ϕi : Ui → [−1, 1]n for each
1 ≤ i ≤ N . By Lebesgue’s number lemma, we may pick γ > 0 so small that for
each x ∈ Ω there exists 1 ≤ i ≤ N such that Bγ(x) ∩ Ω ⊆ Ui.

First assume that x, y ∈ Ω with 0 < ‖x − y‖ ≤ γ. Then there exists 1 ≤
i ≤ N with x, y ∈ Ui. For M ∈ N, consider a partition of the line segment
in [−1, 1]n from ϕ(x) to ϕ(y) into M subsegments of equal length with points
ϕi(x) = z0, z1, . . . , zM = ϕi(x). Let xm := ϕ−1

i (zm) ∈ Ui. For M large enough, the
straight line segment between xm−1 and xm is contained in Ui for all 1 ≤ m ≤M .
After a further subpartitioning, not necessarily equidistant, we may assume to have
a sequence x = w0, . . . , wM ′ = y for some M ′ ∈ N such that for all 1 ≤ m ≤ M ′

the points wm−1 and wm are connected by a straight line segment in Ui and such
that there exists Fm ∈ T with wm−1, wm ∈ Fm. We first observe

|H(y)− H(x)| ≤
M ′∑
m=1

|H(wm)− H(wm−1)|

≤ Cmesh

M ′∑
m=1

‖wm − wm−1‖ = Cmesh

M∑
m=1

‖xm − xm−1‖.

By the Lipschitz continuity of ϕi and ϕ−1
i we then obtain

M∑
m=1

‖xm − xm−1‖ ≤ Lip(ϕ−1
i )

M∑
m=1

‖ϕi(xm)− ϕi(xm−1)‖

≤ Lip(ϕ−1
i )‖ϕi(y)− ϕi(x)‖ ≤ Lip(ϕ−1

i ) Lip(ϕi)‖y − x‖.

If we instead assume that x, y ∈ Ω with ‖x− y‖ ≥ γ, then

|H(y)− H(x)| ≤ γ−1diam(Ω)|H(x)− H(y)| ≤ γ−1diam(Ω)Cmesh‖y − x‖,
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since γ < diam(Ω). Hence Lip(H,Ω) ≤ CmeshLΩ with

LΩ := sup
{
γ−1diam(Ω), Lip(ϕ−1

1 ) Lip(ϕ1), . . . , Lip(ϕ−1
N ) Lip(ϕN )

}
.

Thus Lip(H,Ω) ≤ CmeshLΩ because any Lipschitz continuous function is Lipschitz
continuous over the closure of its domain with the same Lipschitz constant. �

Remark 7.6. The preceding result was used before in the literature, but estimating
Lip(H) did not receive much attention. An interesting observation is that Lip(H)
is the product of Cmesh, which only depends on the shape of the simplices, and
LΩ, which depends only the geometry. Conceptually, LΩ compares the inner path
metric of Ω to the Euclidean metric over Ω. The equivalence of these two metrics
is non-trivial in general, but holds true for bounded weakly Lipschitz domains.

Lemma 7.7. There exist a smooth function h : Rn → R+
0 and uniformly bounded

constants Ch ≥ 1 and Lh > 0 such that

∀F ∈ T : ∀x ∈ F : C−1
h hF ≤ h(x) ≤ ChhF ,(7.17)

Lip(h,Rn) ≤ Lh, min
T∈T n

hT ≤ min
Rn

h, max
Rn

h ≤ max
T∈T n

hT .(7.18)

Constants. We may assume Ch ≤ 2Cmesh and Lh ≤ CmeshLΩ.

Proof. Let H : Ω→ R+
0 be as in Lemma 7.5. We define H0 : Rn → R by

H0(x) := inf
x0∈Ω

H(x0) + CmeshLΩ‖x− x0‖, x ∈ Rn.

By the definition of Lipschitz continuity it is easily verified that H0(x) = H(x) for
x ∈ Ω. Furthermore, for x, y ∈ Rn we observe the Lipschitz condition∣∣H0(x)− H0(y)

∣∣ ≤ CmeshLΩ inf
x0∈Ω

∣∣‖x− x0‖ − ‖y − x0‖
∣∣ ≤ CmeshLΩ‖x− y‖.

We let M := maxΩ H and let H1 : Rn → R be defined by H1(x) = min (M, H0(x)).
Then the ranges and Lipschitz constants of H1 and H agree.

Let hmin > 0 be the smallest diameter of any simplex in T . We let r > 0 be so
small that CmeshLΩr ≤ hmin/2. Thus for all x ∈ Rn and y ∈ Br(x) we get

‖H1(y)− H1(x)‖ ≤ CmeshLΩr ≤ hmin/2 ≤ H0(x)/2.

Consequently, the convolution h := H1 ? µr of H0 with the scaled mollifier µr is
smooth, Lipschitz-continuous with constant CmeshLΩ, and satisfies H(x)/2 ≤ h(x) ≤
2H(x) for all x ∈ Ω. The desired result follows. �

We now combine the smoothed mesh size function with the general regularization
operator discussed previously in this subsection. It is easily seen that there exists
εΩ > 0 such that BεΩdiam(Ω)(Ω) ⊆ Ωe. As an immediate consequence, we have

LIP embeddings Φεh,y : Ω → Ωe provided that ε > 0 is chosen such that ε < εΩ.
We conclude that Lemma 7.4 applies in that case, and setting % = εh we obtain a
regularization operator Rεh. This operator is used in the next subsection.

7.3. Smoothed Interpolation and Smoothed Projection. Towards the defini-
tion of the smoothed projection, we first define a smoothed interpolant. Let ε > 0 be
small enough; we assume in particular ε < εΩ. Combining the extension operator,
the smoothing operator, and the finite element interpolant, we define

Qkε : LpΛk(Ω)→ PΛk(T ) ⊆ LpΛk(Ω), ω 7→ IkRkεhE
kω, p ∈ [1,∞].(7.19)
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We show that the smoothed interpolant Qkε satisfies uniform local bounds and
commutes with the exterior derivative.

Theorem 7.8. Let ε > 0 be small enough. We have a bounded linear operator

Qkε : LpΛk(Ω)→ PΛk(T ) ⊆ LpΛk(Ω), p ∈ [1,∞].

For p ∈ [1,∞] and there exists uniformly bounded CQ,p > 0 such that

‖Qkεω‖LpΛk(T ) ≤ CQ,pε−
n
p ‖ω‖LpΛk(T (T )), ω ∈ LpΛk(Ω), T ∈ T n,(7.20)

‖Qkεω‖LpΛk(Ω) ≤ C
1
p

NCQ,pε
−np ‖ω‖LpΛk(Ω), ω ∈ LpΛk(Ω).(7.21)

Moreover, we have

dQkεω = Qkε dω, ω ∈W p,qΛk(Ω), p, q ∈ [1,∞].(7.22)

Constants. For the following proof, it suffices that ε > 0 is small enough to apply
Lemma 7.4 and that LEChε < εh. We may assume

CQ,p ≤ ckMCkMCI(1 + εLh)kC
n
p

h

(
1 + C

k+n/p
E

)
.

Proof. Let ω ∈ LpΛk(Ω) and let T ∈ T n. Then

‖Qkεω‖LpΛk(T ) ≤ ‖IkRkεhEkω‖LpΛk(T ) ≤ h
n
p

T ‖I
kRkεhE

kω‖L∞Λk(T ).

Transforming to a reference geometry and using the estimate (6.16) gives

‖IkRkεhEkω‖L∞Λk(T ) ≤ CkMh−kT ‖ϕ
∗
T I

kRkεhE
kω‖L∞Λk(∆n)

≤ CICkMh−kT ‖ϕ
∗
TR

k
εhE

kω‖L∞Λk(∆n) ≤ CIckMCkM‖RkεhEkω‖CΛk(T ).

Assuming that ε > 0 is small enough, we apply Lemma 7.4,

‖RkεhEkω‖CΛk(T ) ≤ (1 + εLh)kε−
n
p h
−np
T C

n
p

h ‖E
kω‖LpΛk(BChεhT (T )),

and find by (4.4) and Corollary 7.2 that

‖Ekω‖LpΛk(BChεhT (T )) = ‖Ekω‖LpΛk(BChεhT (T )∩Ωe)

≤
(

1 + C
k+n/p
E

)
‖ω‖LpΛk(BLEChεhT (T )∩Ω).

The local bound (7.20) is now completed with the observation

BLEChεhT (T ) ∩ Ω ⊆ BεhhT (T ) ∩ Ω ⊆ T (T ).

The global bound (7.21) is obtained via

‖Qkεω‖
p
LpΛk(Ω)

=
∑
T∈T n

‖Qkεω‖
p
LpΛk(T )

≤ CpQ,p
∑
T∈T n

‖ω‖p
LpΛk(T (T ))

≤ CpQ,pCN

∑
T∈T n

‖ω‖p
LpΛk(T )

≤ CpQ,pCN‖ω‖pLpΛk(Ω)

for p ∈ [1,∞), and for p = ∞ similarly. Finally, (7.22) follows from Theorem 7.3,
Theorem 7.4, and our assumptions on Ik. The proof is complete. �

The smoothed interpolant Qkε is local and satisfies uniform bounds. Although
Qkε generally does not reduce to the identity over PΛk(T ), we can show that, for
ε > 0 small enough, it is close to the identity and satisfies a local error estimate.
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Theorem 7.9. For ε > 0 small enough, there exists uniformly bounded Ce,p > 0
for every p ∈ [1,∞] such that

‖ω −Qkεω‖LpΛk(T ) ≤ εCe,p‖ω‖LpΛk(T (T )), ω ∈ PΛk(T ), T ∈ T n.

Constants. It suffices that ε > 0 is small enough such that Theorem 7.8 is applicable
and that LELε < εh and 3Lε < λ, where L and λ are as in the proof below. With
the notation as in the following proof. Additionally we may assume

Ce,p ≤ C
2k+1+n

p

M c2k+1
M CI

(
1 + C

k+1+n
p

E

)
C[,pLmax(1,L)k (1 + C∂) .

Proof. We prove the statement by a series of inequalities. Let ω ∈ PΛk(T ) and let
T ∈ T n. First

‖ω −Qkεω‖LpΛk(T ) ≤ voln(T )
1
p ‖ω −Qkεω‖L∞Λk(T )

≤ h
n
p

T ‖ω −Q
k
εω‖L∞Λk(T ) = h

n
p

T ‖E
kω −Qkεω‖L∞Λk(T ).

With Theorem (3.5) and (4.5) we see

‖Ekω −Qkεω‖L∞Λk(T ) ≤ CkMh−kT ‖ϕ
∗
T I

k(Ekω −RkεhEkω)‖L∞Λk(ϕ−1
T T ).

By the estimate for the canonical interpolant (6.15) we have

‖ϕ∗T Ik(Ekω −RkεhEkω)‖L∞Λk(ϕ−1
T T ) ≤ CI sup

F∈∆(T )

S∈PCFk

∣∣ϕ−1
T∗S

∣∣−1

k

∫
S

Ekω −RkεhEkω.

We need to bound the last expression. Fix F ∈ ∆(T ) and S ∈ PCFk . We see that∫
S

Ekω −RkεhEkω =

∫
S

∫
Rn
µ(y)

(
Ekω − Φ∗εh,yE

kω
)

dy.

We want to change the order of integration between those two integrals. As a tech-
nical tool, we use Theorem VI.7A of [27], which implies that integrable continuous
differential k-forms over Rn are densely embedded in the space of flat chains over
Rn, such that the pairing of the induced flat chain with a flat differential form is
the usual scalar product between k-forms. Consider a sequence of continuous inte-
grable differential k-forms (ηi)i∈N such that ηi → S in C[k(Rn). We then find with
Fubini’s theorem and the theorem of dominated convergence that∫

S

∫
Rn
µ(y)Φ∗εh,yE

kω dy = lim
i→∞

∫
Rn

〈
ηi,

∫
Rn
µ(y)Φ∗εh,yE

kω dy

〉
dx

=

∫
Rn
µ(y) lim

i→∞

∫
Rn

〈
ηi,Φ

∗
εh,yE

kω
〉

dx dy =

∫
Rn
µ(y)

∫
S

Φ∗εh,yE
kω dy.

Using these observations and (5.14) again, we have∫
Rn
µ(y)

∫
S

Ekω − Φ∗εh,yE
kω dy =

∫
Rn
µ(y)

∫
ϕ−1
T∗S−ϕ

−1
T∗Φεh,y∗S

ϕ∗TE
kω dy.(7.23)

The strategy of the proof is now as follows. Within a uniformly bounded radius
of ϕ−1

T F we bound the difference Id−Φεh,y uniformly in terms of ε and y. Conse-
quently, the right-hand side of (7.23) can be bounded by the product of the flat
norm of ϕ∗TE

kω within a uniformly bounded radius of ϕ−1
T F with the flat norm of

ϕ−1
T∗S − ϕ

−1
T∗Φεh,y∗S. The latter can be estimated via Lemma 5.4 with a uniform

choice of r and the parameter ε chosen sufficiently small.
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We first proceed with some auxiliary estimates. Assuming ε < 1 for simplicity,
we observe that

sup
y∈B1(0)

Lip
(
ϕ−1
T Φεh,yϕT

)
≤ cMCM (1 + Lh) := L.

Next, let λ > 0. For any y ∈ B1(0) and x̂ ∈ Bλ(ϕ−1
T F ) we find that∥∥x̂− ϕ−1

T Φεh,y(ϕT (x̂))
∥∥ ≤ CMh

−1
T ‖ϕT (x̂)− Φεh,y(ϕT (x̂))‖ ≤ CMh

−1
T εh(ϕT (x̂)).

Let xF ∈ F such that ‖x̂− ϕ−1
T (xF )‖ ≤ λ. Then ‖ϕT (x̂)− xF ‖ ≤ λcMhT . Hence

h(ϕT (x̂)) ≤ h(xF ) + LhλcMhT ≤ (Ch + LhλcM)hT .

Assuming λ ≤ 1 for simplicity and writing L := CM (Ch + LhcM), we get

sup
x̂∈Bλ(ϕ−1

T F )

sup
y∈B1(0)

∥∥x̂− ϕ−1
T Φεh,y(ϕT (x̂))

∥∥ ≤ εL.
We continue with the main part of the proof. With (5.5), it follows that∫

ϕ−1
T∗S−ϕ

−1
T∗Φεh,y∗S

ϕ∗TE
kω

≤ sup
y∈B1(0)

‖ϕ−1
T∗S − ϕ

−1
T∗Φεh,y∗S‖k,[‖ϕ

∗
TE

kω‖W∞,∞Λk(BLε(∆n)),

We need to bound this product. To control the first factor, we apply Lemma 5.4.
Let λ > 0 as above and let ε > 0 be so small that Lε < λ/3. We can then apply
Lemma 5.4 with r = λ/3, such that for all y ∈ B1(0) we obtain

‖ϕ−1
T∗S − ϕ

−1
T∗Φεh,y∗S‖k,[ = ‖ϕ−1

T∗S − ϕ
−1
T∗Φεh,y∗ϕT∗ϕ

−1
T∗S‖k,[

≤ ε · L ·max(1,L)k ·
(
|ϕ−1
T∗S|k + |∂kϕ−1

T∗S|k−1

)
.

The inverse inequality (6.14) gives

|∂kϕ−1
T∗S|k−1 ≤ C∂ |ϕ−1

T∗S|k.

It remains to bound the second factor. We observe

‖ϕ∗TEkω‖W∞,∞Λk(BLε(∆n)) ≤
(

1 + C
k+1+n

p

E

)
ck+1
M Ck+1

M ‖ϕ∗Tω‖W∞,∞Λk(ϕ−1
T T (T ))

for ε so small that LELε < εh. To see this, we apply Lemma 7.2 to get

‖ϕ∗TEkω‖L∞Λk(BLε(∆n)) ≤ ckMhkT ‖Ekω‖L∞Λk(BLεhT (T ))

≤
(

1 + C
k+n

p

E

)
ckMh

k
T ‖ω‖L∞Λk(BLELεhT (T )∩Ω)

≤
(

1 + C
k+n

p

E

)
ckMh

k
T ‖ω‖L∞Λk(T (T )) ≤

(
1 + C

k+n
p

E

)
ckMC

k
M‖ϕ∗Tω‖L∞Λk(ϕ−1

T T (T ))

and, similarly,

‖ϕ∗TEk+1dω‖L∞Λk+1(BLε(∆n)) ≤
(

1 + C
k+1+n

p

E

)
ck+1
M Ck+1

M ‖ϕ∗T dω‖L∞Λk+1(ϕ−1
T T (T )).

The inverse inequality (6.13) and another pullback estimate give

‖ϕ∗Tω‖W∞,∞Λk(ϕ−1
T T (T )) ≤ C[,p‖ϕ

∗
Tω‖LpΛk(ϕ−1

T T (T ))

≤ C[,pckMC
n
p

Mh
k−np
T ‖ω‖LpΛk(T (T )).

This completes the proof. �
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Remark 7.10. Our Theorem 7.9 resembles Lemma 5.5 in [1] and Lemma 4.2 in [9].
Our method of proof, however, is different. In order to obtain the interpolation
error estimate over simplices T ∈ T , the authors of the aforementioned references
suppose that finite element differential forms are piecewise Lipschitz near T . This
holds if T is an interior simplex but not if T touches the boundary of Ω. In what
appears to be a gap in the proofs, it is not clear how their method applies for
such T . The reason is that their extension operator, like ours, involves a pullback
along a bi-Lipschitz mapping, so the extended finite element differential form is not
necessarily Lipschitz continuous anywhere outside of Ω. The extended differential
form, however, is still a flat form, and this motivates our utilization of geometric
measure theory to prove the desired estimate for the interpolation error.

We mention that interpolation error estimates similar to Theorem 7.9 were used
earlier in an earlier publication [25], which in turn refers to a technical report for the
details of the proof. This technical report, however, has not been published as of the
time of this writing, and so comparing our proof of the interpolation error estimate,
though desirable, is currently not possible. On the other hand, a uniformly bounded
commuting projection is constructed in [8] with different techniques.

We are now in a position to prove the main result of this article. For ε > 0
small enough, we can correct the error of the smoothed interpolation over the finite
element space. The resulting smoothed projection is, however, non-local.

Theorem 7.11. Let ε > 0 be small enough. There exists a bounded linear operator

πkε : LpΛk(Ω)→ PΛk(T ) ⊆ LpΛk(Ω), p ∈ [1,∞],

such that

πkε ω = ω, ω ∈ PΛk(T ),

such that

dπkε ω = πk+1
ε dω, ω ∈W p,qΛk(Ω), p, q ∈ [1,∞],

and such that for all p ∈ [1,∞] there exist uniformly bounded Cπ,p > 0 with

‖πkε ω‖LpΛk(T ) ≤ Cπ,pε−
n
p ‖ω‖LpΛk(Ω), ω ∈ LpΛk(Ω).

Constants. We may assume Cπ,p ≤ 2CQ,pC
1
p

N . It suffices that ε > 0 is so small that
Ce,pε < 2 and Theorem 7.8 and Theorem 7.9 apply.

Proof. If ε > 0 is small enough and p ∈ [1,∞], then Theorem 7.9 implies that

‖ω −Qkεω‖LpΛk(Ω) ≤
1

2
‖ω‖LpΛk(Ω), ω ∈ PΛk(T ).

By standard results, the operator Qkε : PΛk(T ) → PΛk(T ) is invertible. Let
Jkε : PΛk(T ) → PΛk(T ) be its inverse. Jkε does not depend on p, since Qkε does
not depend on p. The construction of Jkε via a Neumann series reveals that

‖Jkε ω‖LpΛk(Ω) ≤ 2‖ω‖LpΛk(Ω), ω ∈ PΛk(T ).

So Jkε is bounded. Moreover, Jkε commutes with the exterior derivative because

dJkε ω = Jkε Q
k
ε dJ

k
ε ω = Jkε dQ

k
εJ

k
ε ω = Jkε dω, ω ∈ PΛk(T ).

The theorem follows with πkε := Jkε Q
k
ε . �



32 MARTIN WERNER LICHT

Remark 7.12. We compare our construction of the smoothed projection with pre-
vious constructions in the literature, with particular focus on the role of the mesh
size function. The smoothed projection constructed in [1] applies to quasi-uniform
families of triangulations. A family of triangulations is called quasi-uniform if for
each triangulation T in that family we have

∀T ∈ T n : hnT ≤ Cmesh|T |,(7.24)

∀T, S ∈ T : hT ≤ CmeshhS ,(7.25)

with a common constant Cmesh > 0. In that case, a classical smoothing operator
can be used instead of our Rkεh. That result is expanded in [9] to include shape-
uniform families of triangulations, which means that the conditions (4.1) and (4.2)
are satisfied for all triangulations T in that family with a common constant Cmesh.

The Lipschitz continuous mesh size function of Lemma 7.5 is specifically inspired
by the construction in [9]. But it is easily seen that, unlike stated in [9, p.821], a
regularization operator with that mesh size function does not yield a continuous
differential form. For example, if Ω = (−1, a) ⊂ R with a > 1 is triangulated by
the two intervals [−1, 0] and [0, a], which have unequal lengths, and ω is a non-zero
constant 1-form over Ω, then their regularization operator will generally produce
discontinuous piecewise smooth differential form. This is due to the differential
of the mesh size function being discontinuous in that example. As a remedy, we
explicitly construct a mesh size function that is smooth.

But it is insightful to inspect the situation in more detail. The Lipschitz continu-
ous mesh size function in Lemma 7.5 is the limit of the smoothed mesh size function
in Lemma 7.7 for decreasing smoothing radius. It is natural to ask how this limit
process is reflected in the regularization operator. The gradient of the original mesh
size function features tangential continuity. Using this additional property, one can
show that the regularization operator of [9] yields differential forms that are piece-
wise continuous with respect to the triangulation and that are single-valued along
simplex boundaries. Consequently, their regularized differential form, though not
continuous, still has well-defined degrees of freedom, and the canonical interpolant
can be applied as intended. This is also seen in the simple example above. We
emphasize that the main result of [9] remains unchanged.

Remark 7.13. Several estimates in this section depend on a Lebesgue exponent
p ∈ [1,∞]. We carefully observe that it suffices to consider only the case p = 1.
Then a sufficiently small choice of ε > 0 enables Theorem 7.11 for all p ∈ [1,∞]
simultaneously.

Remark 7.14. Throughout this section, we have provided explicit formulas for the
admissible ranges of ε and the various constants. With the exception of CE , εΩ, εh
and LΩ, the quantities in those formulas are computable in terms of the ambient
dimension, the polynomial degree, and the mesh regularity.
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