1. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

2. Let

\[A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 3 \\ 2 & 5 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}. \]

(a) (3 points) Find \(A^{-1} \), showing your work.

(b) (3 points) Find a \(3 \times 2 \) matrix \(X \) that satisfies \(AX = B \), showing your work.
3. The matrix

\[A = \begin{pmatrix}
2 & 6 & 0 & 0 & 2 \\
1 & 5 & 4 & 6 & 3 \\
0 & 1 & 2 & 3 & 1 \\
1 & 4 & 2 & 5 & 2
\end{pmatrix}. \]

is row equivalent to

\[\begin{pmatrix}
1 & 0 & -6 & 0 & -2 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}. \]

(a) (3 points) Find a basis for Col(\(A\)).

(b) (3 points) Find a basis for \(\text{Row}(A)^\perp\).

(c) (2 points) What is the rank of \(A^T\)? Justify your answer.
4. In each of the following examples, a vector space V is given, along with a subset $S \subset V$. Check whether the set S is a subspace of V or not. If S is a subspace of V, find $\dim(S)$. Justify your answers.

(a) (3 points) $V = \mathbb{P}_3$ is the space of polynomials of degree ≤ 3, and
$$S = \{ p \in \mathbb{P}_3 : p(0) = p(1) - 1 \}.$$

(b) (3 points) $V = M_{2 \times 2}$ is the space of 2×2 matrices, and
$$S = \{ A \in M_{2 \times 2} : \det(A) = 2 \}.$$
(c) (3 points) \(V = \mathbb{R}^3 \), and

\[
S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x = y + 2 \right\}.
\]
5. The sets
\[B = \left\{ \begin{pmatrix} -1 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}, \quad C = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \]

are bases to \(\mathbb{R}^3 \).

(a) (3 points) Assume \([v]_B = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}\) and find \([v]_C\).

(b) (3 points) Define a linear map \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) by \(T(v) = [v]_B \) for any \(v \in \mathbb{R}^3 \). Is \(T \) one-to-one? Justify your answer.
6. Let
\[
A = \begin{pmatrix}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{pmatrix}.
\]

(a) (3 points) Find the eigenvalues of A.

(b) (2 points) Is A diagonalizable? Justify your answer.

(c) (2 points) What are the eigenvalues of A^2? Justify your answer.
7. (a) (3 points) For $x = (x_1, x_2), y = (y_1, y_2)$ let

$$< x, y >= x_1 y_2 + x_2 y_1.$$

Is $< x, y >$ an inner product? Justify your answer.

(b) (2 points) Assume $\{v_1, v_2\}$ is an orthonormal set (for the dot product). Is the set $\{v_1 + v_2, v_1 - v_2\}$ orthogonal? Justify your answer.
8. (a) (3 points) Find an orthonormal basis for
\[
W = \text{span}\left\{ \begin{pmatrix} 2 \\ 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ 1 \\ 3 \end{pmatrix} \right\},
\]
showing your work.

(b) (3 points) Find the orthogonal projection of the vector \(\mathbf{y} = \begin{pmatrix} 2 \\ 3 \\ 3 \\ 2 \end{pmatrix} \) onto \(W \), showing your work.
(c) (2 points) Assume $A = (a_1, a_2, a_3)$ where $\{a_1, a_2, a_3\}$ is an orthonormal set in \mathbb{R}^4 (A is a 4×3 matrix). Find a QR factorization for A (Q and R should be constructed using $\{a_1, a_2, a_3\}$ and numbers).

9. (5 points) **bonus question** Compute $\det(A^5)$ for

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{pmatrix}.
\]

Justify your answer.