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Section 1

Definition



Definition

A topological space X is compact if every open cover of X has a
finite subcover
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Section 2

Every Counterexample



1. Finite Discrete Topology

Definition:
• Every subset is open
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1. Finite Discrete Topology

Is it compact?
• Yes
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2. Countable Discrete Topology

Definition:
• Every subset is open
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2. Countable Discrete Topology

Is it compact?
• No
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3. Uncountable Discrete Topology

Definition:
• Every subset is open

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 9/292



3. Uncountable Discrete Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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4. Indiscrete Topology

Definition:
• Only open sets are X and ∅
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4. Indiscrete Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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5. Partition Topology

Definition:
• Any partition of a set X (along with ∅) defines a basis of a

topology, called the partition topology
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5. Partition Topology

Is it compact?
• Depends on the set and the partition
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6. Odd-Even Topology

Definition:
• Partition topology on Z where the elements of the partition
are {2k − 1, 2k}
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6. Odd-Even Topology

Is it compact?
• No
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7. Deleted Integer Topology

Definition:
• X is the union of the open intervals (n − 1,n), and the topology
on X is generated by the partition {(n − 1,n)}
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7. Deleted Integer Topology

Is it compact?
• No
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8. Finite Particular Point Topology

Definition:
• Open sets are ∅ and any subset of X which contains a

particular point p.
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8. Finite Particular Point Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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9. Countable Particular Point Topology

Definition:
• Open sets are ∅ and any subset of X which contains a

particular point p.
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9. Countable Particular Point Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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10. Uncountable Particular Point Topology

Definition:
• Open sets are ∅ and any subset of X which contains a

particular point p.
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10. Uncountable Particular Point Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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11. Sierpinski Space

Definition:
• X = {0, 1} with open sets {∅, {0},X}.
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11. Sierpinski Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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12. Closed Extension Topology

Definition:
• Let (X, τ) be any nonempty space, and let p be a point not in

X. We define X∗ = X ∪ {p}, and the topology on X∗ has that a
set is open iff it is the empty set or is of the form U ∪ {p} for
U ∈ τ
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12. Closed Extension Topology

Is it compact?
• N/A
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13. Finite Excluded Point Topology

Definition:
• X is open, as is any subset of X which does not contain a
given point p ∈ X
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13. Finite Excluded Point Topology

Is it compact?
• Yes
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14. Countable Excluded Point Topology

Definition:
• X is open, as is any subset of X which does not contain a
given point p ∈ X
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14. Countable Excluded Point Topology

Is it compact?
• Yes
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15. Uncountable Excluded Point Topology

Definition:
• X is open, as is any subset of X which does not contain a
given point p ∈ X
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15. Uncountable Excluded Point Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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16. Open Extension Topology

Definition:
• Let (X, τ) be a nonempty topological space, and let p be a

point not in X. We define X∗ = X ∪ {p}, and say that a subset
of X∗ is open iff it is X∗ or in τ
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16. Open Extension Topology

Is it compact?
• N/A
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17. Either-Or Topology

Definition:
• X = [−1, 1] and a subset of X is open iff it either does not

contain {0} or does contain (−1, 1)
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17. Either-Or Topology

Is it compact?
• Yes
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18. Finite Complement Topology on a Countable
Space

Definition:
• Open sets are those with finite complements, together with ∅

(and X)
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18. Finite Complement Topology on a Countable
Space

Is it compact?
• Yes
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19. Finite Complement Topology on an Uncountable
Space

Definition:
• Open sets are those with finite complements, together with ∅

(and X)
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19. Finite Complement Topology on an Uncountable
Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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20. Countable Complement Topology

Definition:
• Let X be an uncountable set. Open sets are those with

countable complements, together with ∅ (and X)
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20. Countable Complement Topolog

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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21. Double Pointed Countable Complement Topology

Definition:
• Product of X with the two-point indiscrete space, where X has
the countable complement topology as above.
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21. Double Pointed Countable Complement Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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22. Compact Complement Topology

Definition:
• On R, we define a topology by taking S open whenever either

S = ∅, or R \ S is compact in the usual topology on R.
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22. Compact Complement Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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23. Countable Fort Space

Definition:
• A subset of X is open iff it its complement is finite or includes p.
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23. Countable Fort Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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24. Uncountable Fort Space

Definition:
• A subset of X is open iff its complement is finite or includes p.
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24. Uncountable Fort Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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25. Fortissimo Space

Definition:
• X is uncountable, and a subset of X is open iff its complement

is countable or includes p.
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25. Fortissimo Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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26. Arens-Fort Space

Definition:
• X is the set of ordered pairs of nonnegative integers with each

pair open except (0, 0). Open neighborhoods U of (0, 0) are
defined so that, for all but a finite number of integers m, the
sets Sm = {n : (m,n) ∈ U} each contain all but a finite number
of integers.
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26. Arens-Fort Space

Is it compact?
• No
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27. Modified Fort Space

Definition:
• X is the union of any infinite set N with two distinct one-point
sets {x1} and {x2}. Then any subset of N is open, and any
subset containing x1 or x2 is open iff it contains all but a finite
number of elements of N.
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27. Modified Fort Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.

Tanny Libman 10.26.2021 58/292



28. Euclidean Topology

Definition:
• X = R with basis (a, b) for a < b.
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28. Euclidean Topology

Is it compact?
• No
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29. The Cantor Set

Definition:
• X is all points in [0, 1] which can be expressed in base 3

without using the digit 1, with the subspace topology from R.
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29. The Cantor Set

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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30. The Rational Numbers

Definition:
• The set of rational numbers as a subset of R.
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30. The Rational Numbers

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.

Tanny Libman 10.26.2021 64/292



31. The Irrational Numbers

Definition:
• The set of irrational numbers as a subset of R.
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31. The Irrational Numbers

Is it compact?
• No
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Seebach, Jr.
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32. Special Subsets Of The Real Line

Definition:
• A = {1/n : n = 1, 2, 3, . . . }
• B = {0} ∪ {1/n : n = 1, 2, 3, . . . }
• C = (0, 1/2) ∪ (1/2, 1)

• D = {1/n : n = 1, 2, . . . } ∪ (2, 3) ∪ (3, 4) ∪ {4.5} ∪ [5, 6] ∪ {x :
x is rational and 7 ≤ x < 8}
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32. Special Subsets Of The Real Line

Is it compact?
• A is no
• B is yes
• C is no
• D is no
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33. Special Subsets Of The Plane

Definition:
• A = {(x, y) : xy ≥ 1}
• B is the set of points with at least one irrational coordinate
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33. Special Subsets Of The Plane

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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34. One Point Compactification Topology

Definition:
• Let (X, τ) be a nonempty topological space and let p be a

point not in X. Let X∗ = X ∪ {p} and say that a subset of X∗ is
open iff it is in τ or it is the complement of a closed and
compact subset of (X, τ)
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34. One Point Compactification Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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35. One Point Compactification Of The Rationals

Definition:
• Same as above but with X = Q.
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35. One Point Compactification Of The Rationals

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 74/292



36. Hilbert Space

Definition:
• X is the set of sequences of real numbers (xi) such that

∑
x2i

converges, with the metric topology given by
d(x, y) =

(∑
(xi − yi)

2
)1/2
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36. Hilbert Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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37. Fréchet Space

Definition:
• X is the set of sequences of real numbers (xi) such that

∑
x2i

converges, with the metric topology given by d(x, y) = 2−i|xi−yi|
1+|xi−yi|
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37. Fréchet Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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38. Hilbert Cube

Definition:
• Let Iω denote the set of sequences of elements of I = [0, 1],
with the product topology. Then X is the subspace consisting
of elements (xi) with xi ≤ 1/i for each i
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38. Hilbert Cube

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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39. Order Topology

Definition:
• If X is any set with a linear order, then we get a topology by

taking the open intervals as basis elements
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39. Order Topology

Is it compact?
• N/A

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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40. Open Ordinal Space [0,Γ),Γ < Ω

Definition:
• X is the set of all ordinals less than some limit ordinal Γ, with

Γ < Ω, where Ω is the first uncountable ordinal, with the order
topology
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Seebach, Jr.
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40. Open Ordinal Space [0,Γ),Γ < Ω

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 84/292



41. Closed Ordinal Space [0,Γ],Γ < Ω

Definition:
• X is the set of all ordinals less than or equal to some limit

ordinal Γ, with Γ < Ω, where Ω is the first uncountable ordinal,
with the order topology

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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41. Closed Ordinal Space [0,Γ],Γ < Ω

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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42. Open Ordinal Space [0,Ω)

Definition:
• X is the set of all ordinals less than Ω, the first uncountable

ordinal, with the order topology

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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42. Open Ordinal Space [0,Ω)

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 88/292



43. Closed Ordinal Space [0,Ω]

Definition:
• X is the set of all ordinals less than or equal to Ω, the first

uncountable ordinal, with the order topology
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43. Closed Ordinal Space [0,Ω]

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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44. Uncountable Discrete Ordinal Space

Definition:
• X is the set of points α+ 1 in [0,Ω), where α is a limit ordinal,
with the subspace topology from [0,Ω)
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44. Uncountable Discrete Ordinal Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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45. The Long Line

Definition:
• X is constructed from the order space [0,Ω) by placing
between each ordinal α and its successor α+ 1 a copy of the
unit interval (0, 1), and we give X the order topology
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45. The Long Line

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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46. The Extended Long Line

Definition:
• X is constructed from the order space [0,Ω] by placing
between each ordinal α and its successor α+ 1 a copy of the
unit interval (0, 1), and we give X the order topology

Every Counterexample In Topology Appearing In The Book
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46. The Extended Long Line

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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47. An Altered Long Line

Definition:
• To the long line L, we add a point p. Open sets are the open

sets of L, together with those generated by
Uβ(p) = {p} ∪ {

∪Ω
α=β(α, α+ 1)} (where 1 ≤ β < Ω)
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Is it compact?
• No
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48. Lexicographic Ordering On The Unit Square

Definition:
• We say (x, y) < (u, v) when either x < u or x = u and y < v, and
give the unit square the order topology
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48. Lexicographic Ordering On The Unit Square

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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49. Right Order Topology

Definition:
• If X is a linearly ordered set, we take the topology generated

by Sa = {x ∈ X : x > a}
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49. Right Order Topology

Is it compact?
• N/A

Every Counterexample In Topology Appearing In The Book
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50. Right Order Topology on R

Definition:
• X = R, and we take the topology generated by

Sa = {x ∈ X : x > a}
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50. Right Order Topology on R

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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51. Right Half-Open Interval Topology

Definition:
• X = R, and we take the topology generated by {[a, b)}
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51. Right Half-Open Interval Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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52. Nested Interval Topology

Definition:
• X = (0, 1), and the open sets are (0, 1− 1/n), for n = 2, 3, 4, . . . ,

along with ∅ and X
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52. Nested Interval Topology

Is it compact?
• No
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53. Overlapping Interval Topology

Definition:
• X = [−1, 1], and the open sets are generated by [−1, b) for

b > 0 and (a, 1] for a < 0
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53. Overlapping Interval Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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54. Interlocking Interval Topology

Definition:
• X = R+ \ Z+ and the topology is generated by

(0, 1/n) ∪ (n,n + 1)
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54. Interlocking Interval Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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55. Hjalmar Ekdal Topology

Definition:
• X = Z, and a set U is open iff, for every odd integer n in U, the

integer n + 1 is in U
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“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 113/292



55. Hjalmar Ekdal Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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56. Prime Ideal Topology

Definition:
• X is the set of prime ideals of Z, and take as a basis for the

topology all sets Vx = {P ∈ X : x ̸∈ P}
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56. Prime Ideal Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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57. Divisor Topology

Definition:
• X = {x ∈ Z : x ≥ 2}, and open sets are generated by

Un = {x ∈ X : x divides n}
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57. Divisor Topology

Is it compact?
• No
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58. Evenly Spaced Integer Topology

Definition:
• X = Z, and open sets are generated by a + kZ, a, k ∈ Z
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“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 119/292



58. Evenly Spaced Integer Topology

Is it compact?
• No
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59. The p-adic Topology on Z

Definition:
• X = Z, p is a fixed prime, and we take as a basis the sets of the

form Uα(n) = {n + λpα : λ ∈ Z}
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59. The p-adic Topology on Z

Is it compact?
• No
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60. Relatively Prime Integer Topology

Definition:
• X is the set of positive integers, and we generate a topology

from the basis {Ua(b) : (a, b) = 1}
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60. Relatively Prime Integer Topology

Is it compact?
• No
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61. Prime Integer Topology

Definition:
• X is the set of positive integers, and we generate a topology

from the basis {Up(b) : p prime }
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61. Prime Integer Topology

Is it compact?
• No
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62. Double Pointed Reals

Definition:
• X is the product of R with the usual topology and {0, 1} with
the indiscrete topology
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“Counterexamples In Topology” by Lynn Steen and J. Arthur
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62. Double Pointed Reals

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 128/292



63. Countable Complement Extension Topology

Definition:
• X = R, let τ1 be the usual topology, and let τ2 be the topology

of countable complements, and we let τ be the smallest
topology generated by τ1 ∪ τ2
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63. Countable Complement Extension Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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64. Smirnov’s Deleted Sequence Topology

Definition:
• X = R and let A = {1/n : n = 1, 2, . . . }, and a set O is open if it

is equal to U \ B, for some B ⊆ A
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64. Smirnov’s Deleted Sequence Topology

Is it compact?
• No
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65. Rational Sequence Topology

Definition:
• X = R, every rational singleton is open, and for each irrational

x, we choose a sequence (xi) of rationals converging to x, and
then also the sets Un(x) = {xi}∞i=n ∪ {x} form a local basis at
each irrational point
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65. Rational Sequence Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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66. Indiscrete Rational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all sets of

the form Q ∩ U, where U is a usual open set
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Seebach, Jr.
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66. Indiscrete Rational Extension Of R

Is it compact?
• No
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67. Indiscrete Irrational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all sets of

the form (R \Q) ∩ U, where U is a usual open set

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
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67. Indiscrete Irrational Extension Of R

Is it compact?
• No
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68. Pointed Rational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all sets of

the form {x} ∪ (Q ∩ U), where U is a usual open set and x ∈ U

Every Counterexample In Topology Appearing In The Book
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68. Pointed Rational Extension Of R

Is it compact?
• No
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69. Pointed Irrational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all sets of

the form {x} ∪ ((R \Q) ∩ U), where U is a usual open set and
x ∈ U

Every Counterexample In Topology Appearing In The Book
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69. Pointed Irrational Extension Of R

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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70. Discrete Rational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all rational

singletons are open

Every Counterexample In Topology Appearing In The Book
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70. Discrete Rational Extension Of R

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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71. Discrete Irrational Extension Of R

Definition:
• X = R, topology generated by the usual sets, plus all irrational

singletons are open
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71. Discrete Irrational Extension Of R

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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72. Rational Extension In The Plane

Definition:
• X = R2, each point in the set D = {(x, y) : x, y ∈ Q} is open,
and each set of the form {x} ∪ (D ∩ U) is open, where U is
open in the usual topology, and x ∈ U
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72. Rational Extension In The Plane

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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73. Telophase Topology

Definition:
• Start with [0, 1] and add another right endpoint called 1∗, and

then the usual sets are open, plus the sets (a, 1) ∪ {1∗} form a
local basis of 1∗
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73. Telophase Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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74. Double Origin Topology

Definition:
• X = R2 ∪ {0∗}, and neighborhoods of points other than 0 and

0∗ are the usual open sets of R2 \ {0}. As a basis around the
point {0} we take the sets
Vn(0) = {(x, y) : x2 + y2 < 1/n2, y > 0} ∪ {0} and as a basis
around the point {0∗} we take the sets
Vn(0

∗) = {(x, y) : x2 + y2 < 1/n2, y < 0} ∪ {0∗}
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74. Double Origin Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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75. Irrational Slope Topology

Definition:
• X = {(x, y) ∈ R2 : y ≥ 0, (x, y) ∈ Q}, fix an irrational number θ.

Topology generated by sets of the form
Nϵ((x, y)) = {(x, y)} ∪ Bϵ(x + y/θ) ∪ Bϵ(x − y/θ), where Bϵ(ζ)
denotes the epsilon neighborhood of Q as a subset of the
x-axis.
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75. Irrational Slope Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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76. Deleted Diameter Topology

Definition:
• X = R2, and we take as a subbasis the open discs with

horizontal punctured diameter deleted
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Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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77. Deleted Radius Topology

Definition:
• X = R2, and we take as a subbasis the open discs with right

open horizontal radius deleted
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Is it compact?
• No
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78. Half-Disc Topology

Definition:
• X = {(x, y) ∈ R2 : y > 0}, and if L is the x-axis, we generate a
topology on X ∪ L by adding all sets of the form {x} ∪ (X ∩ U),
where x ∈ L and U is a usual neighborhood of x in the plane
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78. Half-Disc Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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79. Irregular Lattice Topology

Definition:
• X is the subset of Z2 consisting of points (x, y) with x > 0 and

y > 0, and (x, 0), with x ≥ 0. Each of the former points is open.
Each point of the form (i, 0), i ̸= 0 has a local basis sets of the
form Un((i, 0)) = {(i, k) : k = 0 or k ≥ n}, and the point (0, 0)
has local basis Vn = {(i, k) : i = k = 0 or i, k ≥ n}
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79. Irregular Lattice Topology

Is it compact?
• No
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80. Arens Square

Definition:
• Let S = {(x, y) ∈ (0, 1)× (0, 1) : x, y ∈ Q} and

X = S ∪ {(0, 0)} ∪ {(1, 0)} ∪ {(1/2, r
√
2) : r ∈ Q, 0 < r

√
2 < 1}

Each point of S has local basis from the subspace topology on
R2. The other points have the following local bases:

• Un(0, 0) = {(0, 0)} ∪ {(x, y) : 0 < x < 1/4, 0 < y < 1/n}
• Un(1, 0) = {(1, 0)} ∪ {(x, y) : 3/4 < x < 1, 0 < y < 1/n}
• Un(1/2, r

√
2) = {(x, y) : 1/4 < x < 3/4, |y − r

√
2| < 1/n}
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80. Arens Square

Is it compact?
• No
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81. Simplified Arens Square

Definition:
• Let S be the set of points in the interior of the unit square, and

let X = S ∪ {(0, 0), (1, 0)}. Points in S are given local bases from
the subspace topology on R2, and the other points have local
bases:

• Un(0, 0) = {(0, 0)} ∪ {(x, y) : 0 < x < 1/2, 0 < y < 1/n}
• Um(1, 0) = {(1, 0)} ∪ {(x, y) : 1/2 < x < 1, 0 < y < 1/m}
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Is it compact?
• No
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82. Niemytzki’s Tangent Disc Topology

Definition:
• Let P = {(x, y) ∈ R2 : y > 0} and L denote the x-axis. Then

X = P ∪ L, and we take the usual topology and add in all sets
of the form {x} ∪ D, where D is an open disc tangent to L at x
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Is it compact?
• No
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83. Metrizable Tangent Disc Topology

Definition:
• Let S be a countable subset of the x-axis in the plane. We take

the subspace of the tangent disc topology consisting of P ∪ S
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Is it compact?
• No
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84. Sorgenfrey’s Half-Open Square Topology

Definition:
• Let S denote the real line with the right half-open interval

topology. Then X = S × S with the product topology
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Is it compact?
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85. Michael’s Product Topology

Definition:
• Let (R, τ) denote the real line with the usual topology. Let

D = R \Q. Then X is the product space (R, τ∗)× (D, τ ′), where
τ∗ is the irrational discrete extension of τ by D, and τ ′ is the
subspace topology from the usual topology on R
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Is it compact?
• No
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Seebach, Jr.

Tanny Libman 10.26.2021 174/292



86. Tychonoff Plank

Definition:

• If Ω is the first uncountable ordinal and ω is the first countable
ordinal, then X is the product [0,Ω]× [0, ω], where both spaces
are given the interval topology.

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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86. Tychonoff Plank

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 176/292



87. Deleted Tychonoff Plank

Definition:

• If Ω is the first uncountable ordinal and ω is the first countable
ordinal, then X is the product ([0,Ω]× [0, ω]) \ {(Ω, ω)}, where
both spaces are given the interval topology.

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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87. Deleted Tychonoff Plank

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 178/292



88. Alexandroff Plank

Definition:
• X is the product [0,Ω]× [−1, 1], each with the interval

topology, and then we take the expansion generated by
adding all sets of the form U(α,n) = {(Ω, 0)} ∪ (α,Ω]× (0, 1/n)

Every Counterexample In Topology Appearing In The Book
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88. Alexandroff Plank

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 180/292



89. Dieudonné Plank

Definition:
• X = [0,Ω]× [0, ω] \ {(Ω, ω)}, and the open sets are each point

of [0,Ω)× [0, ω), along with Uα(β) = {(β, γ) : α < γ ≤ ω} and
Vα(β) = {(γ, β) : α < γ ≤ Ω}

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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89. Dieudonné Plank

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 182/292



90. Tychonoff Corkscrew

Definition:
• For each ordinal α, let Aα denote the linearly ordered set
(−0,−1, . . . , α, . . . , 2, 1, 0) with the order topology. Let P
denote the product space AΩ × Aω . Let P∗ be the subsapce
P \ {(Ω, ω)}

• Then take an infinite stack of copies of P∗ and cut each of
these planes just below the positive AΩ-axis (I don’t know
what this means), and join the fourth quadrant of each plane
to the first quadrant of the one immediately below it, and
denote this by S

• Then add two points a+ and a−, “infinity points” at the top and
bottom of the corkscrew, with open neighborhoods given by
all points of the corkscrew which lie above a certain level (or
below, for a−)
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90. Tychonoff Corkscrew

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 184/292



91. Deleted Tychonoff Corkscrew

Definition:
• Take the Tychonoff Corkscrew and delete {a−}

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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91. Deleted Tychonoff Corkscrew

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 186/292



92. Hewitt’s Condensed Corkscrew

Definition:
• Let T = S ∪ {a+} ∪ {a−} denote the Tychonoff Corkscrew, and

if [0,Ω) is the set of countable ordinals, we let A = T × [0,Ω),
and let X be the subset of A consisting of S × [0,Ω)

• We think of A as an uncountable sequence of corkscrews Aλ,
with λ ∈ [0,Ω), and X as the same sequence of corkscrews
missing all infinity points

• If Γ : X × X → [0,Ω) is a bijection, and if πi, (i = 1, 2) are the
coordinate projections X × X → X, then we define a function
ψ : A \ X → X by ψ(a+

λ ) = π1(Γ
−1(λ)) and ψ(a−

λ ) = π2(Γ
−1(λ))

• Basis neighborhoods of A are subsets N of A with the property
that ψ−1(X ∩ N) ⊆ N, along with Aλ-basis neighborhoods of
each point a ∈ A \ X

• X gets the subspace topology from A
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92. Hewitt’s Condensed Corkscrew

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 188/292



93. Thomas’s Plank

Definition:

• X =
∪∞

i=0 Li of lines in the plane, where L0 = {(x, 0) : x ∈ (0, 1)}
and for i ≥ 1, Li = {(x, 1/i) : x ∈ [0, 1)}.

• If i ≥ 1, each point of Li except for (0, 1/i) is open.
• Basis neighborhoods of (0, 1/i) are subsets of Li with finite
complements

• The sets Ui(x, 0) = {(x, 0)} ∪ {(x, 1/n) : n > i} form a basis for
the points in L0
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93. Thomas’s Plank

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 190/292



94. Thomas’s Corkscrew

Definition:
• Take an infinite stack of Thomas’s Planks to build a corkscrew,

as in the Tychonoff Corkscrew (the book is literally this vague)

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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94. Thomas’s Corkscrew

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 192/292



95. Weak Parallel Line Topology

Definition:
• Let A be the subset of the plane {(x, 0) : 0 < x ≤ 1}, and let B

be the subset {(x, 1) : 0 ≤ x < 1}
• X is the set A ∪ B
• Take as a basis sets of the form

{(x, 0) : a < x ≤ b} ∪ {(x, 1) : a < x < b} and
{(x, 0) : a < x < b} ∪ {(x, 1) : a ≤ x < b}
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95. Weak Parallel Line Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 194/292



96. Strong Parallel Line Topology

Definition:
• Same set as above, but we take as a basis all sets of the form

{(x, 1) : a ≤ x < b} and {(x, 0) : a < x ≤ b} ∪ {(x, 1) : a < x < b}
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96. Strong Parallel Line Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 196/292



97. Concentric Circles

Definition:
• X consists of two concentric circles, C1 the inner circle and C2

the outer circle

• Take as a subbasis all singleton sets in C2, and all open
intervals in C1, each together with the radial projection of all
but its midpoint on C2

Every Counterexample In Topology Appearing In The Book
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97. Concentric Circles

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 198/292



98. Appert Space

Definition:
• X is the set of positive integers, and let N(n,E) denote the

number of integers in a subset E ⊆ X which are less than or
equal to n

• Open sets are any set which excludes the integer 1, or any set
containing 1 and for which limn→∞ N(n,E)/n = 1
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98. Appert Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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99. Maximal Compact Topology

Definition:
• X is the set of all lattice points of positive integers (i, j),

together with two ideal points x and y
• Each lattice point is open, and open neighborhoods of x are

sets of the form X \ A, where A is any subset of X with at most
finitely many points in each row

• Open neighborhoods of y are sets of the form X \ B, where B is
any subset of X consisting of points from at most finitely many
rows

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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99. Maximal Compact Topology

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 202/292



100. Minimal Hausdorff Topology

Definition:
• If A is the linearly ordered set (1, 2, . . . , ω, . . . ,−3,−2,−1) with
the interval topology , and if Z+ is the set of positive integers
with the discrete topology, then we define X to be A × Z+,
together with two ideal points a and −a

• Topology is the product topology on A × Z+, as well as basis
neighborhoods Mn(a) = {a} ∪ {(i, j) : i < ω, j > n} and
Mn(−a) = {−a} ∪ {(i, j), i > ω, j > n}

Every Counterexample In Topology Appearing In The Book
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100. Minimal Hausdorff Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 204/292



101. Alexandroff Square

Definition:
• X is the closed unit square [0, 1]× [0, 1]

• For points (s, t) off the diagonal, we take as a local basis the
collection of open vertical line segments which do not
intersect the diagonal

• Neighborhoods of points on the diagonal are open horizontal
strips, minus a finite number of vertical line segments
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101. Alexandroff Square

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 206/292



102. ZZ

Definition:
• Let Z+ have the discrete topology, and let X =

∏∞
i=1 Z+ be the

countably infinite cartesian product, with the product
topology

Every Counterexample In Topology Appearing In The Book
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102. ZZ

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 208/292



103. Uncountable Products Of Z+

Definition:
• Let Z+ have the discrete topology, and let X =

∏
a∈A Z+

a be
the Cartesian product, with the product topology, where A is
uncountable
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103. Uncountable Products Of Z+

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 210/292



104. Baire Metric on Rω

Definition:
• X = Rω =

∏∞
i=1 Ri, where each Ri is a copy of the real line

• We define a metric d((xi), (yi)) = 1/i, where i is the first
coordinate in which (xi) and (yi) differ

Every Counterexample In Topology Appearing In The Book
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104. Baire Metric on Rω

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 212/292



105. II

Definition:
• X is the uncountable Cartesian product of [0, 1] with itself

Every Counterexample In Topology Appearing In The Book
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105. II

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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106. [0,Ω)× II

Definition:
• X is the product of [0,Ω) with the interval topology and II with
the product topology
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106. [0,Ω)× II

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 216/292



107. Helly Space

Definition:
• Subspace of II consisting of all nondecreasing functions

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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107. Helly Space

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 218/292



108. C[0, 1]

Definition:
• Space of real-valued continuous functions on the unit interval,

with metric given by d(f, g) = supt∈I(f(t)− g(t))

Every Counterexample In Topology Appearing In The Book
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108. C[0, 1]

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 220/292



109. Boolean Product Topology On Rω

Definition:
• X = Rω , and open sets are generated by

∏∞
i=1 Ui, where each

Ui is open in R
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109. Boolean Product Topology On Rω

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 222/292



110. Stone-Čech Compactification

Definition:
• Let (X, τ) be a completely regular space, let I be the closed

unit interval [0, 1] ⊆ R, and let C(X, I) be the collection of all
continuous functions from X to I

• Let IC(X,I) =
∏

λ∈C(X,I) Iλ, where Iλ is a copy of I (indexed by λ)

• Denote by ⟨tλ⟩ the element of IC(X,I) whose λ coordinate is tλ
• If hX : X → IC(X,I) is defined by hX(x) = ⟨λ(x)λ⟩, the image of hx

is a subset of IC(X,I)

• Then we take its closure and denote it βX
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110. Stone-Čech Compactification

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 224/292



111. Stone-Čech Compactification Of The Integers

Definition:
• X the Stone-Čech compactification of Z+, the space of
positive integers with the discrete topology

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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111. Stone-Čech Compactification Of The Integers

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 226/292



112. Novak Space

Definition:
• Let Z+ denote the space of positive integers with the discrete

topology, and S is the Stone-Čech compactification of Z+

• Let F be the family of all countably infinite subsets of S, and
well-order this set (it has cardinality 2c)

• Let {PA : A ∈ F} be a collection of subsets of S such that
card(PA) < 2c, PD ⊆ PA whenever D < A, and f̄(PA) ∩ PA = ∅,
where f̄ : S → S is the unique continuous extension of the
function f : Z → Z which interchanges each odd number with
its even successor

• Then let P =
∪
{PA : A ∈ F} and let X = P ∪ Z+
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112. Novak Space

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 228/292



113. Strong Ultrafilter Topology

Definition:
• Let Z+ be the positive integers, and let M denote the

collection of all non-principal ultrafilters on Z+

• Let X = Z+ ∪ M, with topology generated by the points of Z+,
together with all sets of the form A ∪ {F}, where A ∈ F ∈ M

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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113. Strong Ultrafilter Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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114. Single Ultrafilter Topology

Definition:
• Let X = Z+ ∪ {F}, where F is a non-principal ultrafilter on Z+,

with basis all points of Z+, together with all subsets of the form
A ∪ F, where A ∈ F

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 231/292



114. Single Ultrafilter Topology

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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115. Nested Rectangles

Definition:
• In R2, let L1 denote the line x = 1, L2 denote the line x = −1,

and Rn the boundary of rectangles centered at the origin, of
height 2n and width 2n/(n + 1), and let X = L1 ∪ L2 ∪ (

∪
Rn),

with subspace topology from R2
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115. Nested Rectangles

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 234/292



116. Topologist’s Sine Curve

Definition:
• Let S be the graph of f(x) = sin(1/x) for 0 < x ≤ 1, and then

X = S ∪ {(0, 0)} with subspace topology from R2
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116. Topologist’s Sine Curve

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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117. Closed Topologist’s Sine Curve

Definition:
• Let S be as above, and then X = S ∪ {(0, y) : −1 ≤ y ≤ 1}
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117. Closed Topologist’s Sine Curve

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.
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118. Extended Topologist’s Sine Curve

Definition:
• Take the closed topologists sine curve and add

{(x, 1) : 0 ≤ x ≤ 1}
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118. Extended Topologist’s Sine Curve

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
“Counterexamples In Topology” by Lynn Steen and J. Arthur
Seebach, Jr.

Tanny Libman 10.26.2021 240/292



119. The Infinite Broom

Definition:
• X is the union of the closed line segments joining the origin to

the points {(1, 1/n) : n = 1, 2, 3, . . . }, together with the
half-open interval (1/2, 1] on the x-axis
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119. The Infinite Broom

Is it compact?
• No

Every Counterexample In Topology Appearing In The Book
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120. The Closed Infinite Broom

Definition:
• The closure of the infinite broom, so the union of the broom

with (0, 1]
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120. The Closed Infinite Broom

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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121. The Integer Broom

Definition:
• X is the set of points with polar coordinates {(n, θ)} in the

plane, where n is a nonnegative integer and θ ∈ {1/n}∞n=1 ∪{0}
• Take as a basis all sets of the form U × V, where U is an open
set in the right-order topology on the set of nonnegative
integers, and V is open in {0} ∪ {1/n}∞n=1 in the topology
induced from the reals. The only neighborhood of the origin is
X itself
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121. The Integer Broom

Is it compact?
• Yes

Every Counterexample In Topology Appearing In The Book
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Seebach, Jr.
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122. Nested Angles

Definition:
• X is the subset of the plane consisting of line segments joining

the points (0, 1) and (n, 1/(n + 1)), for n ∈ Z+, and the
half-lines y = 1/(n + 1), when x ≤ n, and the line y = 0
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122. Nested Angles

Is it compact?
• No
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123. The Infinite Cage

Definition:
• X =

∪n
i=1 An ∪ Bn ∪ Cn is the union of three types of sets:

• An = {(1/n, y, 0) ∈ R3 : y ≥ 0}
• Bn = {(0, y, 0) ∈ R3 : 2n − 1/2 ≤ y ≤ 2n + 1/2}
• Cn = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1/n, y = 2n, z = x(1/n − x)}
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123. The Infinite Cage

Is it compact?
• No
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124. Bernstein’s Connected Sets

Definition:

• Let {Cα : α ∈ [0,Γ)} be the collection of all nondegenerate,
closed, connected subsets of R2, well-ordered by Γ, the least
ordinal equivalent to c, the cardinal of the continuum

• Define by transfinite induction two nested sequences {Aα}α<Γ

and {Bα}α<Γ such that Aα ∩ Bβ = ∅ for all pairs α, β
• A1 and B1 are distinct singletons selected from C1, and if

{Aα}α<β and {Bα}α<β have been defined, then the size of∪
α<β(Aα ∪ Bα) is less than c, but the size of Cβ is equal to c, so

we can choose two points aβ and bβ in Cβ \
∪

α<β(Aα ∪ Bα)
and add them to our sets to get Aβ and Bβ

• Then we let A be the union of all the Aα and B = R2 \ A
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124. Bernstein’s Connected Sets

Is it compact?
• N/A
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125. Gustin’s Sequence Space

Definition:
• Let Y be the collection of all finite sequences of positive integers having an even number

of terms, including the null sequence denoted by 0

• Let W be the collection of all subsets of size two of Y
• The set X is Y ∪ (Z+ × W)

• If α and β are arbitrary finite sequences, we denote by αβ the sequence you get by
adjoining β to the end of α

• We say that α ≥ i if a ≥ i for each a ∈ α

• We say β ⊇i α if there exists a sequence γ ≥ i such that β = αγ

• For a sequence α, let Ui(α) = {β ∈ Y : β ⊇i α}
• Now select a bijection between the countable set W and the set of positive prime

numbers

• Define q : (Z+ × W) → Z+ by q(n,w) = p(w)n , where p(w) is the prime corresponding
to w

• Define the topology on X by selecting Ui(α) as open neighborhoods of the point α ∈ Y,
when w = {α, β}, let Vi(n, w) = {(n, w)} ∪ Ui(αq(n, w)) ∪ Ui(βq(n, w)) be the open
neighborhoods of (n, w)
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125. Gustin’s Sequence Space

Is it compact?
• No
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126. Roy’s Lattice Space

Definition:
• Let {Ci}∞i=1 be a countable collection of disjoint dense subsets

of Q
• Let X be the set {(r, i) ∈ Q× Z+ : r ∈ Ci}, together with an
ideal point ω

• Neighborhoods of points of the form (r, 2n) are ordinary open
intervals Uϵ(r, 2n) = {(t, 2n) : |t − r| < ϵ}

• Neighborhoods of points of the form (r, 2n − 1) are stacks of
three open intervals
Vϵ(r, 2n − 1) = {(t,m) : |t − r| < ϵ,m = 2n − 2, 2n − 1, 2n}

• A basis neighborhood of the point ω consists of
{(s, i) ∈ X : i ≥ 2n}
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126. Roy’s Lattice Space

Is it compact?
• No
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127. Roy’s Lattice Subspace

Definition:
• Start with Roy’s Lattice Space and delete the point ω
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127. Roy’s Lattice Subspace

Is it compact?
• No
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128. Cantor’s Leaky Tent

Definition:
• Let C be the Cantor set on the unit interval [0, 1]
• Let p be the point (1/2, 1/2) in R2

• Let X be the cone over C with vertex at p (the union of line
segments joining p to the points in C)
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128. Cantor’s Leaky Tent

Is it compact?
• No
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129. Cantor’s Teepee

Definition:
• Let E denote the subset of C consisting of endpoints of

deleted intervals
• Let XE denote the cone over E
• Let F = C \ E, and let XF denote the cone over F
• Let YE = {(x, y) ∈ XE : y ∈ Q}
• Let YF = {(x, y) ∈ XF : y ̸∈ Q}
• Our space is Y = YE ∪ YF
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129. Cantor’s Teepee

Is it compact?
• No
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130. A Pseudo-Arc
Definition:
• We define a chain D in R2 to be a finite collection of open sets

{Di}n
i=1 (called links) such that Di ∩ Dj = ∅ iff |i − j| > 1

• A pseudo-arc joining two points a, b ∈ R2 is any set in R2 resulting
from the following construction:

• Let {Di} be a sequence of chains such that:

• The diameter of each open set in Di is less than 1/i
• The closure of each link of Di+1 is contained in some link of Di

• Di+1 is “crooked” in Di, i.e. if Di+1
m ,Di+1

n ∈ Di+1 with m < n, and
Di+1

m ⊆ Di
h, and Di+1

n ⊆ Di
k, with |k − h| > 2, then there exist

Di+1
s ,Di+1

t ∈ Di+1 with m < s < t < n such that Di+1
s is contained in a

link of Di adjacent to Di
k, and Di+1

t is contained in a link adjacent to
Di

k

• There are two points a and b with a in the first link of each chain Di
and b in the final link of each chain

• Let D∗
i =

∪
k Di

k denote the set of all elements of elements of Di, and
let X =

∩
i D∗

i
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130. A Pseudo-Arc

Is it compact?
• Yes
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131. Miller’s Biconnected Set
Definition:
• Let C be a nowhere dense perfect set contained in the unit interval I (i.e. it is closed and

has no isolated points and has empty interior)

• Let W = C × I ⊆ R2

• Let K be an indecomposable continuum (compact connected) such that K ∩ I2 = W
• X is defined using the axiom of choice: Let C be the set of composants of K (a

composant is a maximal subset in which any two points lie within some proper
subcontinuum)

• Let B be the set of continua which separate K
• Let D be the set of subsets of a fixed countable dense subset ∆ of K which are

themselved desnse in the interior of some square region with edges parallel to I2 which
intersects W

• Let C1, C2, . . . Cα be a well-ordering of the ordinals less than Ω

• Let B1, . . . and D1, . . . be well orderings of B and D
• For each α < Ω, define Mα ⊆ K and a simple closed curve Jα such that:

• Mα = pα ∈ Bα ∩ K if Bα ∩ ∆ = ∅
• Mα = ∅ if Bα ∩ ∆ ̸= ∅
• For ordinals µ ̸= λ and Mµ,Mλ ̸= ∅, Mµ and Mλ belong to different components of K
• Jα separates K
• Jα ∩ (∆ \ Dα) = Jα ∩ M = ∅, where M =

∪
α<Ω Mα

• The space X is ∆ ∪ M with the subspace topology from R2
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131. Miller’s Biconnected Set

Is it compact?
• I don’t know
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132. Wheel Without Its Hub

Definition:
• X is the closed unit disc in R2 minus the origin
• We generate a topology by adding to the usual open sets, all

radii contained in the open unit disc
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132. Wheel Without Its Hub

Is it compact?
• No
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133. Tangora’s Connected Space

Definition:
• Let X,Y,Z be mutually disjoint and exhaustive dense subsets

of R
• Expand the usual topology on R by adding as open sets X,Y,

and sets of the form {z} ∪ {w ∈ X ∪ Y : |w − z| < δ} where z ∈ Z
and δ > 0
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133. Tangora’s Connected Space

Is it compact?
• No
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134. Bounded Metrics

Definition:
• If (X, d) is a metric space, we define new metric for X by
δ = d/(1 + d) and ∆ = min(d, 1)
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134. Bounded Metrics

Is it compact?
• N/A
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135. Sierpinski’s Metric Space

Definition:
• X = {xi : i = 1, 2, 3, . . . } is a countable set, and the function

d(xi, xj) = 1 + 1/(i + j) for i ̸= j is a metric on X (d(xi, xi) = 0)
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135. Sierpinski’s Metric Space

Is it compact?
• No
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136. Duncan’s Space

Definition:
• Let N(n, x) be the number of elements of the sequence x = (xi)

which are less than n
• Let X be the set of strictly increasing sequences of positive

integers such that δ((xi)) = limn→∞ N(n, x)/n exists
• Let k(x, y) be the least integer n for which xn ̸= yn

• Define a metric on X by the condition
d(x, y) = 1/k(x, y) + |δ(x)− δ(y)|, and if x = y then d(x, y) = 0
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136. Duncan’s Space

Is it compact?
• No
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137. Cauchy Completion

Definition:
• If (X, d) is a metric space, let X∗ be the set of all equivalence
classes of Cauchy sequences, where the sequence (xn) is
equivalent to (yn) if limn→∞ d(xn, yn) = 0

• Define d∗ on X∗ by d∗(x∗, y∗) = limn→∞ d((xn), (yn)), where (xn)
and (yn) are any elements of the equivalence classes x∗ and
y∗
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137. Cauchy Completion

Is it compact?
• N/A
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138. Hausdorff’s Metric Topology

Definition:
• Let (S, d) be a metric space, and let X be the collection of all
nonempty bounded closed subsets of S

• Let f : S × X → R+ be defined by f(s,B) = infb∈B d(s, b)
• Let g : X × X → R+ be given by g(A,B) = supa∈A f(a,B)

• Let δ(A,B) = max{g(A,B), g(B,A)}
• (X, δ) is Hausdorff’s metric space
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138. Hausdorff’s Metric Topology

Is it compact?
• N/A
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139. The Post Office Metric

Definition:
• Let (X, d) be the plane with the usual metric, and let 0 be the

origin in the plane
• Define d∗ on X by the formula d∗(p, q) = d(0, p) + d(0, q) when

p ̸= q, and d∗(p, q) = 0 when p = q
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Is it compact?
• No
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140. The Radial Metric

Definition:
• Let (X, d) be the plane with the usual metric, and let 0 be the

origin in the plane
• We define d∗ on X by:
• d∗(p, q) = 0 if p = q,
• d∗(p, q) = d(p, q) if p ̸= q and the line through p and q passes

through 0

• d∗(p, q) = d(p, 0) + d(q, 0) otherwise
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140. The Radial Metric

Is it compact?
• No
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141. Radial Interval Topology

Definition:
• X is the plane, and the topology is generated by all open

intervals disjoint from the origin which lie on lines passing
through the origin, together with sets of the form∪
{Iθ : 0 ≤ θ < π}, where each Iθ is a non-empty open interval

centered at the origin on the line of slope tan θ
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Is it compact?
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142. Bing’s Discrete Extension Space

Definition:
• Let P denote the power set of R, and let X =

∏
λ∈P{0, 1}λ,

where {0, 1}λ is a copy of the two point discrete space
• For each r ∈ R, let xr be the point of X whose λ’th coordinate

equals 1 iff r ∈ λ

• Let M = {xr ∈ X : r ∈ R}
• X has the product topology, and X \ M is dense in X, so we
can form the discrete extension of X by X \ M
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Is it compact?
• No
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143. Michael’s Closed Subspace

Definition:
• Let Y be the subspace M ∪ F of Bing’s discrete extension

space, where F is the collection of all finite sets in X \ M
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Is it compact?
• No
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