Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and J. Arthur Seebach, Jr.

And Whether Or Not Each One Is Compact

Tanny Libman¹

¹The "Quiet" Office On The 6th Floor Of APM, UCSD – APM6446 nlibman@ucsd.edu

October 26, 2021

AVIGNON UNIVERSITÉ

Section 1

Definition

A topological space $X \, {\rm is} \, {\rm compact}$ if every open cover of $X \, {\rm has} \, {\rm a}$ finite subcover

Every Counterexample In Topology Appearing In The Book

Section 2

Every Counterexample

• Every subset is open

Every Counterexample In Topology Appearing In The Book

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

2. Countable Discrete Topology

Definition:

• Every subset is open

Every Counterexample In Topology Appearing In The Book

2. Countable Discrete Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

3. Uncountable Discrete Topology

Definition:

• Every subset is open

Every Counterexample In Topology Appearing In The Book

3. Uncountable Discrete Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Only open sets are X and Ø

Every Counterexample In Topology Appearing In The Book

4. Indiscrete Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• Any partition of a set *X* (along with Ø) defines a basis of a topology, called the partition topology

Is it compact?

• Depends on the set and the partition

Every Counterexample In Topology Appearing In The Book

• Partition topology on \mathbbm{Z} where the elements of the partition are $\{2k-1,2k\}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

• X is the union of the open intervals (n-1, n), and the topology on X is generated by the partition $\{(n-1, n)\}$

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

8. Finite Particular Point Topology

Definition:

• Open sets are Ø and any subset of X which contains a particular point p.

Every Counterexample In Topology Appearing In The Book

8. Finite Particular Point Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

9. Countable Particular Point Topology

Definition:

• Open sets are Ø and any subset of X which contains a particular point p.

Every Counterexample In Topology Appearing In The Book

9. Countable Particular Point Topology

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

10. Uncountable Particular Point Topology

Definition:

• Open sets are Ø and any subset of X which contains a particular point p.

Every Counterexample In Topology Appearing In The Book

10. Uncountable Particular Point Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \{0, 1\}$ with open sets $\{\emptyset, \{0\}, X\}$.

Every Counterexample In Topology Appearing In The Book

11. Sierpinski Space

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• Let (X, τ) be any nonempty space, and let p be a point not in X. We define $X^* = X \cup \{p\}$, and the topology on X^* has that a set is open iff it is the empty set or is of the form $U \cup \{p\}$ for $U \in \tau$

12. Closed Extension Topology

Is it compact?

• N/A

Every Counterexample In Topology Appearing In The Book

13. Finite Excluded Point Topology

Definition:

• X is open, as is any subset of X which does not contain a given point $p \in X$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

13. Finite Excluded Point Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

14. Countable Excluded Point Topology

Definition:

• X is open, as is any subset of X which does not contain a given point $p \in X$

14. Countable Excluded Point Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

15. Uncountable Excluded Point Topology

Definition:

• X is open, as is any subset of X which does not contain a given point $p \in X$

Every Counterexample in Topology Appearing in The Book

15. Uncountable Excluded Point Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• Let (X, τ) be a nonempty topological space, and let p be a point not in X. We define $X^* = X \cup \{p\}$, and say that a subset of X^* is open iff it is X^* or in τ

16. Open Extension Topology

Is it compact?

• N/A

Every Counterexample In Topology Appearing In The Book

• X = [-1, 1] and a subset of X is open iff it either does not contain $\{0\}$ or does contain (-1, 1)

Every Counterexample In Topology Appearing In The Book

17. Either-Or Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

18. Finite Complement Topology on a Countable Space

Definition:

• Open sets are those with finite complements, together with \varnothing (and X)

18. Finite Complement Topology on a Countable Space

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

19. Finite Complement Topology on an Uncountable Space

Definition:

• Open sets are those with finite complements, together with \varnothing (and X)

19. Finite Complement Topology on an Uncountable Space

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

20. Countable Complement Topology

Definition:

 Let X be an uncountable set. Open sets are those with countable complements, together with Ø (and X)

Every Counterexample in Topology Appearing in The Book

20. Countable Complement Topolog

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

21. Double Pointed Countable Complement Topology

Definition:

• Product of *X* with the two-point indiscrete space, where *X* has the countable complement topology as above.

Every Counterexample In Topology Appearing In The Book

21. Double Pointed Countable Complement Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

22. Compact Complement Topology

Definition:

• On \mathbb{R} , we define a topology by taking S open whenever either $S = \emptyset$, or $\mathbb{R} \setminus S$ is compact in the usual topology on \mathbb{R} .

Every Counterexample In Topology Appearing In The Book

22. Compact Complement Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• A subset of X is open iff it its complement is finite or includes p.

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• A subset of X is open iff its complement is finite or includes p.

Every Counterexample In Topology Appearing In The Book

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• X is uncountable, and a subset of X is open iff its complement is countable or includes p.

Every Counterexample In Topology Appearing In The Book

25. Fortissimo Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of ordered pairs of nonnegative integers with each pair open except (0,0). Open neighborhoods U of (0,0) are defined so that, for all but a finite number of integers m, the sets $S_m = \{n : (m,n) \in U\}$ each contain all but a finite number of integers.

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the union of any infinite set N with two distinct one-point sets $\{x_1\}$ and $\{x_2\}$. Then any subset of N is open, and any subset containing x_1 or x_2 is open iff it contains all but a finite number of elements of N.

27. Modified Fort Space

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}$ with basis (a, b) for a < b.

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• *X* is all points in [0, 1] which can be expressed in base 3 without using the digit 1, with the subspace topology from ℝ.

Every Counterexample In Topology Appearing In The Book

29. The Cantor Set

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• The set of rational numbers as a subset of $\mathbb R$.

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• The set of irrational numbers as a subset of $\mathbb R.$

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- $A = \{1/n : n = 1, 2, 3, \dots\}$
- $B = \{0\} \cup \{1/n : n = 1, 2, 3, \dots\}$
- $C = (0, 1/2) \cup (1/2, 1)$
- $D = \{1/n : n = 1, 2, ...\} \cup (2, 3) \cup (3, 4) \cup \{4.5\} \cup [5, 6] \cup \{x : x \text{ is rational and } 7 \le x < 8\}$

32. Special Subsets Of The Real Line

Is it compact?

- A is no
- B is yes
- C is no
- D is no

- $A = \{(x, y) : xy \ge 1\}$
- B is the set of points with at least one irrational coordinate

33. Special Subsets Of The Plane

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let (X, τ) be a nonempty topological space and let p be a point not in X. Let $X^* = X \cup \{p\}$ and say that a subset of X^* is open iff it is in τ or it is the complement of a closed and compact subset of (X, τ)

34. One Point Compactification Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

35. One Point Compactification Of The Rationals

Definition:

• Same as above but with $X = \mathbb{Q}$.

35. One Point Compactification Of The Rationals

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• X is the set of sequences of real numbers (x_i) such that $\sum x_i^2$ converges, with the metric topology given by $d(x, y) = \left(\sum (x_i - y_i)^2\right)^{1/2}$

36. Hilbert Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of sequences of real numbers (x_i) such that $\sum_{i=1}^{\infty} x_i^2$ converges, with the metric topology given by $d(x, y) = \frac{2^{-i}|x_i-y_i|}{1+|x_i-y_i|}$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

37. Fréchet Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let I^{ω} denote the set of sequences of elements of I = [0, 1], with the product topology. Then X is the subspace consisting of elements (x_i) with $x_i \leq 1/i$ for each i

38. Hilbert Cube

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• If *X* is any set with a linear order, then we get a topology by taking the open intervals as basis elements

Every Counterexample In Topology Appearing In The Book

39. Order Topology

Is it compact?

• N/A

Every Counterexample In Topology Appearing In The Book

• X is the set of all ordinals less than some limit ordinal $\Gamma,$ with $\Gamma<\Omega,$ where Ω is the first uncountable ordinal, with the order topology

40. Open Ordinal Space $[0, \Gamma), \Gamma < \Omega$

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of all ordinals less than or equal to some limit ordinal Γ , with $\Gamma < \Omega$, where Ω is the first uncountable ordinal, with the order topology

41. Closed Ordinal Space $[0, \Gamma], \Gamma < \Omega$

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• *X* is the set of all ordinals less than Ω, the first uncountable ordinal, with the order topology

Every Counterexample In Topology Appearing In The Book

42. Open Ordinal Space $[0, \Omega)$

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of all ordinals less than or equal to Ω , the first uncountable ordinal, with the order topology

Every Counterexample In Topology Appearing In The Book

43. Closed Ordinal Space $[0, \Omega]$

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

44. Uncountable Discrete Ordinal Space

Definition:

• X is the set of points $\alpha + 1$ in $[0, \Omega)$, where α is a limit ordinal, with the subspace topology from $[0, \Omega)$

Every Counterexample In Topology Appearing In The Book

44. Uncountable Discrete Ordinal Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

 X is constructed from the order space [0, Ω) by placing between each ordinal α and its successor α + 1 a copy of the unit interval (0, 1), and we give X the order topology

45. The Long Line

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

 X is constructed from the order space [0, Ω] by placing between each ordinal α and its successor α + 1 a copy of the unit interval (0, 1), and we give X the order topology

46. The Extended Long Line

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• To the long line *L*, we add a point *p*. Open sets are the open sets of *L*, together with those generated by $U_{\beta}(p) = \{p\} \cup \{\bigcup_{\alpha=\beta}^{\Omega} (\alpha, \alpha + 1)\}$ (where $1 \le \beta < \Omega$)

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

48. Lexicographic Ordering On The Unit Square

Definition:

• We say (x, y) < (u, v) when either x < u or x = u and y < v, and give the unit square the order topology

Every Counterexample In Topology Appearing In The Book

48. Lexicographic Ordering On The Unit Square

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• If X is a linearly ordered set, we take the topology generated by $S_a = \{x \in X : x > a\}$

Is it compact?

• N/A

very Counterexample In Topology Appearing In The Book Counterexamples In Topology" by Lynn Steen and L Arthur

• $X = \mathbb{R}$, and we take the topology generated by $S_a = \{x \in X : x > a\}$

Every Counterexample In Topology Appearing In The Book

50. Right Order Topology on ${\mathbb R}$

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

51. Right Half-Open Interval Topology

Definition:

• $X = \mathbb{R}$, and we take the topology generated by $\{[a, b)\}$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

51. Right Half-Open Interval Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X = (0, 1), and the open sets are (0, 1 - 1/n), for n = 2, 3, 4, ..., along with \varnothing and X

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

53. Overlapping Interval Topology

Definition:

• X = [-1, 1], and the open sets are generated by [-1, b) for b > 0 and (a, 1] for a < 0

Every Counterexample In Topology Appearing In The Book

53. Overlapping Interval Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

54. Interlocking Interval Topology

Definition:

• $X=\mathbb{R}^+\setminus\mathbb{Z}^+$ and the topology is generated by $(0,1/n)\cup(n,n+1)$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

54. Interlocking Interval Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{Z}$, and a set U is open iff, for every odd integer n in U, the integer n + 1 is in U

Every Counterexample In Topology Appearing In The Book

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

• X is the set of prime ideals of \mathbb{Z} , and take as a basis for the topology all sets $V_x = \{P \in X : x \notin P\}$

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• $X = \{x \in \mathbb{Z} : x \ge 2\}$, and open sets are generated by $U_n = \{x \in X : x \text{ divides } n\}$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steep and L Arthur

57. Divisor Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

58. Evenly Spaced Integer Topology

Definition:

• $X = \mathbb{Z}$, and open sets are generated by $a + k\mathbb{Z}$, $a, k \in \mathbb{Z}$

58. Evenly Spaced Integer Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{Z}$, p is a fixed prime, and we take as a basis the sets of the form $U_{\alpha}(n) = \{n + \lambda p^{\alpha} : \lambda \in \mathbb{Z}\}$

59. The $\mathit{p}\text{-}\text{adic}$ Topology on $\mathbb Z$

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of positive integers, and we generate a topology from the basis $\{U_a(b): (a, b) = 1\}$

Every Counterexample In Topology Appearing In The Book

60. Relatively Prime Integer Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the set of positive integers, and we generate a topology from the basis { $U_p(b) : p$ prime }

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the product of $\mathbb R$ with the usual topology and $\{0,1\}$ with the indiscrete topology

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

63. Countable Complement Extension Topology

Definition:

• $X = \mathbb{R}$, let τ_1 be the usual topology, and let τ_2 be the topology of countable complements, and we let τ be the smallest topology generated by $\tau_1 \cup \tau_2$

63. Countable Complement Extension Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}$ and let $A = \{1/n : n = 1, 2, ...\}$, and a set O is open if it is equal to $U \setminus B$, for some $B \subseteq A$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

64. Smirnov's Deleted Sequence Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}$, every rational singleton is open, and for each irrational x, we choose a sequence (x_i) of rationals converging to x, and then also the sets $U_n(x) = \{x_i\}_{i=n}^{\infty} \cup \{x\}$ form a local basis at each irrational point

65. Rational Sequence Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

66. Indiscrete Rational Extension Of $\ensuremath{\mathbb{R}}$

Definition:

• $X = \mathbb{R}$, topology generated by the usual sets, plus all sets of the form $\mathbb{Q} \cap U$, where U is a usual open set

Every Counterexample In Topology Appearing In The Book

66. Indiscrete Rational Extension Of $\ensuremath{\mathbb{R}}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

 X = ℝ, topology generated by the usual sets, plus all sets of the form (ℝ \ Q) ∩ U, where U is a usual open set

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

67. Indiscrete Irrational Extension Of ${\mathbb R}$

Is it compact?

No

very Counterexample In Topology Appearing In The Book

68. Pointed Rational Extension Of $\mathbb R$

Definition:

 X = ℝ, topology generated by the usual sets, plus all sets of the form {x} ∪ (ℚ ∩ U), where U is a usual open set and x ∈ U

Every Counterexample In Topology Appearing In The Book

68. Pointed Rational Extension Of $\ensuremath{\mathbb{R}}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}$, topology generated by the usual sets, plus all sets of the form $\{x\} \cup ((\mathbb{R} \setminus \mathbb{Q}) \cap U)$, where U is a usual open set and $x \in U$

69. Pointed Irrational Extension Of ${\ensuremath{\mathbb R}}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

70. Discrete Rational Extension Of $\ensuremath{\mathbb{R}}$

Definition:

• $X = \mathbb{R}$, topology generated by the usual sets, plus all rational singletons are open

Every Counterexample In Topology Appearing In The Book

70. Discrete Rational Extension Of ${\mathbb R}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

71. Discrete Irrational Extension Of ${\ensuremath{\mathbb R}}$

Definition:

• $X = \mathbb{R}$, topology generated by the usual sets, plus all irrational singletons are open

Every Counterexample In Topology Appearing In The Book

71. Discrete Irrational Extension Of ${\mathbb R}$

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}^2$, each point in the set $D = \{(x, y) : x, y \in \mathbb{Q}\}$ is open, and each set of the form $\{x\} \cup (D \cap U)$ is open, where U is open in the usual topology, and $x \in U$

Every Counterexample In Topology Appearing In The Book

72. Rational Extension In The Plane

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

• Start with [0,1] and add another right endpoint called $1^*,$ and then the usual sets are open, plus the sets $(a,1)\cup\{1^*\}$ form a local basis of 1^*

Every Counterexample In Topology Appearing In The Book

73. Telophase Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}^2 \cup \{0^*\}$, and neighborhoods of points other than 0 and 0^{*} are the usual open sets of $\mathbb{R}^2 \setminus \{0\}$. As a basis around the point $\{0\}$ we take the sets $V_n(0) = \{(x, y) : x^2 + y^2 < 1/n^2, y > 0\} \cup \{0\}$ and as a basis around the point $\{0^*\}$ we take the sets $V_n(0^*) = \{(x, y) : x^2 + y^2 < 1/n^2, y < 0\} \cup \{0^*\}$

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

• $X = \{(x, y) \in \mathbb{R}^2 : y \ge 0, (x, y) \in \mathbb{Q}\}$, fix an irrational number θ . Topology generated by sets of the form $N_{\epsilon}((x, y)) = \{(x, y)\} \cup B_{\epsilon}(x + y/\theta) \cup B_{\epsilon}(x - y/\theta)$, where $B_{\epsilon}(\zeta)$ denotes the epsilon neighborhood of \mathbb{Q} as a subset of the x-axis.

75. Irrational Slope Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}^2$, and we take as a subbasis the open discs with horizontal punctured diameter deleted

76. Deleted Diameter Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \mathbb{R}^2$, and we take as a subbasis the open discs with right open horizontal radius deleted

Every Counterexample In Topology Appearing In The Book

77. Deleted Radius Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \{(x, y) \in \mathbb{R}^2 : y > 0\}$, and if L is the x-axis, we generate a topology on $X \cup L$ by adding all sets of the form $\{x\} \cup (X \cap U)$, where $x \in L$ and U is a usual neighborhood of x in the plane

ny Libman

78. Half-Disc Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the subset of \mathbb{Z}^2 consisting of points (x, y) with x > 0 and y > 0, and (x, 0), with $x \ge 0$. Each of the former points is open. Each point of the form (i, 0), $i \ne 0$ has a local basis sets of the form $U_n((i, 0)) = \{(i, k) : k = 0 \text{ or } k \ge n\}$, and the point (0, 0) has local basis $V_n = \{(i, k) : i = k = 0 \text{ or } i, k \ge n\}$

79. Irregular Lattice Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- Let $S = \{(x, y) \in (0, 1) \times (0, 1) : x, y \in \mathbb{Q}\}$ and $X = S \cup \{(0, 0)\} \cup \{(1, 0)\} \cup \{(1/2, r\sqrt{2}) : r \in \mathbb{Q}, 0 < r\sqrt{2} < 1\}$ Each point of *S* has local basis from the subspace topology on \mathbb{R}^2 . The other points have the following local bases:
- $U_n(0,0) = \{(0,0)\} \cup \{(x,y) : 0 < x < 1/4, 0 < y < 1/n\}$
- $U_n(1,0) = \{(1,0)\} \cup \{(x,y): 3/4 < x < 1, 0 < y < 1/n\}$
- $U_n(1/2, r\sqrt{2}) = \{(x, y) : 1/4 < x < 3/4, |y r\sqrt{2}| < 1/n\}$

80. Arens Square

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- Let S be the set of points in the interior of the unit square, and let $X = S \cup \{(0,0), (1,0)\}$. Points in S are given local bases from the subspace topology on \mathbb{R}^2 , and the other points have local bases:
- $U_n(0,0) = \{(0,0)\} \cup \{(x,y) : 0 < x < 1/2, 0 < y < 1/n\}$
- $U_m(1,0) = \{(1,0)\} \cup \{(x,y) : 1/2 < x < 1, 0 < y < 1/m\}$

11

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let $P = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and L denote the x-axis. Then $X = P \cup L$, and we take the usual topology and add in all sets of the form $\{x\} \cup D$, where D is an open disc tangent to L at x

Every Counterexample In Topology Appearing In The Book

82. Niemytzki's Tangent Disc Topology

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

83. Metrizable Tangent Disc Topology

Definition:

• Let S be a countable subset of the x-axis in the plane. We take the subspace of the tangent disc topology consisting of $P \cup S$

Every Counterexample In Topology Appearing In The Book

83. Metrizable Tangent Disc Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

84. Sorgenfrey's Half-Open Square Topology

Definition:

• Let S denote the real line with the right half-open interval topology. Then $X = S \times S$ with the product topology

84. Sorgenfrey's Half-Open Square Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let (\mathbb{R}, τ) denote the real line with the usual topology. Let $D = \mathbb{R} \setminus \mathbb{Q}$. Then X is the product space $(\mathbb{R}, \tau^*) \times (D, \tau')$, where τ^* is the irrational discrete extension of τ by D, and τ' is the subspace topology from the usual topology on \mathbb{R}

85. Michael's Product Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• If Ω is the first uncountable ordinal and ω is the first countable ordinal, then X is the product $[0, \Omega] \times [0, \omega]$, where both spaces are given the interval topology.

86. Tychonoff Plank

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• If Ω is the first uncountable ordinal and ω is the first countable ordinal, then X is the product $([0,\Omega] \times [0,\omega]) \setminus \{(\Omega,\omega)\}$, where both spaces are given the interval topology.

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the product $[0, \Omega] \times [-1, 1]$, each with the interval topology, and then we take the expansion generated by adding all sets of the form $U(\alpha, n) = \{(\Omega, 0)\} \cup (\alpha, \Omega] \times (0, 1/n)$

88. Alexandroff Plank

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = [0, \Omega] \times [0, \omega] \setminus \{(\Omega, \omega)\}$, and the open sets are each point of $[0, \Omega) \times [0, \omega)$, along with $U_{\alpha}(\beta) = \{(\beta, \gamma) : \alpha < \gamma \leq \omega\}$ and $V_{\alpha}(\beta) = \{(\gamma, \beta) : \alpha < \gamma \leq \Omega\}$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steep and L Arthur

89. Dieudonné Plank

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- For each ordinal α , let A_{α} denote the linearly ordered set $(-0, -1, \ldots, \alpha, \ldots, 2, 1, 0)$ with the order topology. Let P denote the product space $A_{\Omega} \times A_{\omega}$. Let P^* be the subsapce $P \setminus \{(\Omega, \omega)\}$
- Then take an infinite stack of copies of P^* and cut each of these planes just below the positive A_{Ω} -axis (I don't know what this means), and join the fourth quadrant of each plane to the first quadrant of the one immediately below it, and denote this by S
- Then add two points a^+ and a^- , "infinity points" at the top and bottom of the corkscrew, with open neighborhoods given by all points of the corkscrew which lie above a certain level (or below, for a^-)

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Take the Tychonoff Corkscrew and delete $\{a^-\}$

Every Counterexample In Topology Appearing In The Book

91. Deleted Tychonoff Corkscrew

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

92. Hewitt's Condensed Corkscrew

Definition:

- Let $T = S \cup \{a^+\} \cup \{a^-\}$ denote the Tychonoff Corkscrew, and if $[0, \Omega)$ is the set of countable ordinals, we let $A = T \times [0, \Omega)$, and let X be the subset of A consisting of $S \times [0, \Omega)$
- We think of A as an uncountable sequence of corkscrews A_{λ} , with $\lambda \in [0, \Omega)$, and X as the same sequence of corkscrews missing all infinity points
- If $\Gamma: X \times X \to [0, \Omega)$ is a bijection, and if π_i , (i = 1, 2) are the coordinate projections $X \times X \to X$, then we define a function $\psi: A \setminus X \to X$ by $\psi(a_{\lambda}^+) = \pi_1(\Gamma^{-1}(\lambda))$ and $\psi(a_{\lambda}^-) = \pi_2(\Gamma^{-1}(\lambda))$
- Basis neighborhoods of A are subsets N of A with the property that $\psi^{-1}(X \cap N) \subseteq N$, along with A_{λ} -basis neighborhoods of each point $a \in A \setminus X$
- X gets the subspace topology from A

92. Hewitt's Condensed Corkscrew

Is it compact?

No

Every Counterexample In Topology Appearing In The Book

- $X = \bigcup_{i=0}^{\infty} L_i$ of lines in the plane, where $L_0 = \{(x,0) : x \in (0,1)\}$ and for $i \ge 1$, $L_i = \{(x,1/i) : x \in [0,1)\}.$
- If $i \ge 1$, each point of L_i except for (0, 1/i) is open.
- Basis neighborhoods of (0, 1/i) are subsets of L_i with finite complements
- The sets $U_i(x,0) = \{(x,0)\} \cup \{(x,1/n): n>i\}$ form a basis for the points in L_0

93. Thomas's Plank

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

 Take an infinite stack of Thomas's Planks to build a corkscrew, as in the Tychonoff Corkscrew (the book is literally this vague)

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

- Let A be the subset of the plane $\{(x,0): 0 < x \leq 1\}$, and let B be the subset $\{(x,1): 0 \leq x < 1\}$
- X is the set $A \cup B$
- Take as a basis sets of the form $\{(x,0): a < x \le b\} \cup \{(x,1): a < x < b\}$ and $\{(x,0): a < x < b\} \cup \{(x,1): a \le x < b\}$

95. Weak Parallel Line Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Same set as above, but we take as a basis all sets of the form $\{(x,1): a \le x < b\}$ and $\{(x,0): a < x \le b\} \cup \{(x,1): a < x < b\}$

96. Strong Parallel Line Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- X consists of two concentric circles, C_1 the inner circle and C_2 the outer circle
- Take as a subbasis all singleton sets in C_2 , and all open intervals in C_1 , each together with the radial projection of all but its midpoint on C_2

97. Concentric Circles

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

- X is the set of positive integers, and let N(n, E) denote the number of integers in a subset $E \subseteq X$ which are less than or equal to n
- Open sets are any set which excludes the integer 1, or any set containing 1 and for which $\lim_{n\to\infty}N(n,E)/n=1$

98. Appert Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- X is the set of all lattice points of positive integers (i, j), together with two ideal points x and y
- Each lattice point is open, and open neighborhoods of x are sets of the form $X \setminus A$, where A is any subset of X with at most finitely many points in each row
- Open neighborhoods of y are sets of the form $X \setminus B$, where B is any subset of X consisting of points from at most finitely many rows

99. Maximal Compact Topology

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

- If A is the linearly ordered set $(1, 2, \ldots, \omega, \ldots, -3, -2, -1)$ with the interval topology, and if \mathbb{Z}^+ is the set of positive integers with the discrete topology, then we define X to be $A \times \mathbb{Z}^+$, together with two ideal points a and -a
- Topology is the product topology on $A \times \mathbb{Z}^+$, as well as basis neighborhoods $M_n(a) = \{a\} \cup \{(i,j) : i < \omega, j > n\}$ and $M_n(-a) = \{-a\} \cup \{(i,j), i > \omega, j > n\}$

ar

100. Minimal Hausdorff Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- X is the closed unit square $[0,1] \times [0,1]$
- For points (*s*, *t*) off the diagonal, we take as a local basis the collection of open vertical line segments which do not intersect the diagonal
- Neighborhoods of points on the diagonal are open horizontal strips, minus a finite number of vertical line segments

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• Let \mathbb{Z}^+ have the discrete topology, and let $X=\prod_{i=1}^\infty Z^+$ be the countably infinite cartesian product, with the product topology

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

Is it compact?

• No

very Counterexample In Topology Appearing In The Book

• Let \mathbb{Z}^+ have the discrete topology, and let $X = \prod_{a \in A} Z_a^+$ be the Cartesian product, with the product topology, where A is uncountable

Every Counterexample In Topology Appearing In The Book

103. Uncountable Products Of \mathbb{Z}^+

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- $X = \mathbb{R}^{\omega} = \prod_{i=1}^{\infty} \mathbb{R}_i$, where each \mathbb{R}_i is a copy of the real line
- We define a metric $d((x_i), (y_i)) = 1/i$, where *i* is the first coordinate in which (x_i) and (y_i) differ

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• X is the uncountable Cartesian product of [0,1] with itself

Every Counterexample In Topology Appearing In The Book

Is it compact?

• Yes

every Counterexample In Topology Appearing In The Book

• X is the product of $[0,\Omega)$ with the interval topology and I^{I} with the product topology

Every Counterexample In Topology Appearing In The Book

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

• Subspace of I^{I} consisting of all nondecreasing functions

107. Helly Space

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• Space of real-valued continuous functions on the unit interval, with metric given by $d(f,g) = \sup_{t \in I} (f(t) - g(t))$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lypp Steep and L Arthur

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

109. Boolean Product Topology On \mathbb{R}^ω

Definition:

• $X = \mathbb{R}^{\omega}$, and open sets are generated by $\prod_{i=1}^{\infty} U_i$, where each U_i is open in \mathbb{R}

109. Boolean Product Topology On \mathbb{R}^ω

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- Let (X, τ) be a completely regular space, let I be the closed unit interval $[0, 1] \subseteq \mathbb{R}$, and let C(X, I) be the collection of all continuous functions from X to I
- Let $I^{C(X,I)} = \prod_{\lambda \in C(X,I)} I_{\lambda}$, where I_{λ} is a copy of I (indexed by λ)
- Denote by $\langle t_\lambda
 angle$ the element of $I^{C(X,I)}$ whose λ coordinate is t_λ
- If $h_X: X \to I^{C(X,I)}$ is defined by $h_X(x) = \langle \lambda(x)_\lambda \rangle$, the image of h_x is a subset of $I^{C(X,I)}$
- Then we take its closure and denote it βX

110. Stone-Čech Compactification

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

111. Stone-Čech Compactification Of The Integers

Definition:

• *X* the Stone-Čech compactification of ℤ⁺, the space of positive integers with the discrete topology

Every Counterexample In Topology Appearing In The Book

111. Stone-Čech Compactification Of The Integers

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

- Let \mathbb{Z}^+ denote the space of positive integers with the discrete topology, and S is the Stone-Čech compactification of \mathbb{Z}^+
- Let F be the family of all countably infinite subsets of S, and well-order this set (it has cardinality 2^c)
- Let $\{P_A : A \in F\}$ be a collection of subsets of S such that $\operatorname{card}(P_A) < 2^c$, $P_D \subseteq P_A$ whenever D < A, and $\overline{f}(P_A) \cap P_A = \emptyset$, where $\overline{f} : S \to S$ is the unique continuous extension of the function $f : \mathbb{Z} \to \mathbb{Z}$ which interchanges each odd number with its even successor
- Then let $P = \bigcup \{ P_A : A \in F \}$ and let $X = P \cup \mathbb{Z}^+$

112. Novak Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- Let Z⁺ be the positive integers, and let M denote the collection of all non-principal ultrafilters on Z⁺
- Let $X = \mathbb{Z}^+ \cup M$, with topology generated by the points of \mathbb{Z}^+ , together with all sets of the form $A \cup \{F\}$, where $A \in F \in M$

113. Strong Ultrafilter Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let $X = \mathbb{Z}^+ \cup \{F\}$, where F is a non-principal ultrafilter on \mathbb{Z}^+ , with basis all points of \mathbb{Z}^+ , together with all subsets of the form $A \cup F$, where $A \in F$

114. Single Ultrafilter Topology

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• In \mathbb{R}^2 , let L_1 denote the line x = 1, L_2 denote the line x = -1, and R_n the boundary of rectangles centered at the origin, of height 2n and width 2n/(n+1), and let $X = L_1 \cup L_2 \cup (\bigcup R_n)$, with subspace topology from \mathbb{R}^2

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let S be the graph of $f(x) = \sin(1/x)$ for $0 < x \le 1$, and then $X = S \cup \{(0,0)\}$ with subspace topology from \mathbb{R}^2

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

117. Closed Topologist's Sine Curve

Definition:

• Let S be as above, and then $X = S \cup \{(0, y) : -1 \le y \le 1\}$

117. Closed Topologist's Sine Curve

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

118. Extended Topologist's Sine Curve

Definition:

• Take the closed topologists sine curve and add $\{(x,1): 0 \leq x \leq 1\}$

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and J. Arthur

118. Extended Topologist's Sine Curve

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• X is the union of the closed line segments joining the origin to the points $\{(1, 1/n) : n = 1, 2, 3, ...\}$, together with the half-open interval (1/2, 1] on the x-axis

Every Counterexample In Topology Appearing In The Book

119. The Infinite Broom

Is it compact?

• No

very Counterexample In Topology Appearing In The Book

- The closure of the infinite broom, so the union of the broom with $\left(0,1\right]$

Every Counterexample In Topology Appearing In The Book

120. The Closed Infinite Broom

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

- X is the set of points with polar coordinates $\{(n, \theta)\}$ in the plane, where n is a nonnegative integer and $\theta \in \{1/n\}_{n=1}^{\infty} \cup \{0\}$
- Take as a basis all sets of the form $U \times V$, where U is an open set in the right-order topology on the set of nonnegative integers, and V is open in $\{0\} \cup \{1/n\}_{n=1}^{\infty}$ in the topology induced from the reals. The only neighborhood of the origin is X itself

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

• X is the subset of the plane consisting of line segments joining the points (0,1) and (n,1/(n+1)), for $n \in \mathbb{Z}^+$, and the half-lines y = 1/(n+1), when $x \le n$, and the line y = 0

122. Nested Angles

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• $X = \bigcup_{i=1}^{n} A_n \cup B_n \cup C_n$ is the union of three types of sets:

•
$$A_n = \{(1/n, y, 0) \in \mathbb{R}^3 : y \ge 0\}$$

- $B_n = \{(0, y, 0) \in \mathbb{R}^3 : 2n 1/2 \le y \le 2n + 1/2\}$
- $C_n = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1/n, y = 2n, z = x(1/n x)\}$

Is it compact?

No

124. Bernstein's Connected Sets

Definition:

- Let $\{C_{\alpha} : \alpha \in [0, \Gamma)\}$ be the collection of all nondegenerate, closed, connected subsets of \mathbb{R}^2 , well-ordered by Γ , the least ordinal equivalent to c, the cardinal of the continuum
- Define by transfinite induction two nested sequences $\{A_{\alpha}\}_{\alpha < \Gamma}$ and $\{B_{\alpha}\}_{\alpha < \Gamma}$ such that $A_{\alpha} \cap B_{\beta} = \emptyset$ for all pairs α, β
- A_1 and B_1 are distinct singletons selected from C_1 , and if $\{A_{\alpha}\}_{\alpha < \beta}$ and $\{B_{\alpha}\}_{\alpha < \beta}$ have been defined, then the size of $\bigcup_{\alpha < \beta} (A_{\alpha} \cup B_{\alpha})$ is less than c, but the size of C_{β} is equal to c, so we can choose two points a_{β} and b_{β} in $C_{\beta} \setminus \bigcup_{\alpha < \beta} (A_{\alpha} \cup B_{\alpha})$ and add them to our sets to get A_{β} and B_{β}
- Then we let A be the union of all the A_{α} and $B = \mathbb{R}^2 \setminus A$

124. Bernstein's Connected Sets

Is it compact?

• N/A

Every Counterexample In Topology Appearing In The Book

125. Gustin's Sequence Space

- Let Y be the collection of all finite sequences of positive integers having an even number of terms, including the null sequence denoted by 0
- Let W be the collection of all subsets of size two of Y
- The set X is $Y \cup (\mathbb{Z}^+ \times W)$
- If α and β are arbitrary finite sequences, we denote by αβ the sequence you get by adjoining β to the end of α
- We say that $\alpha \ge i$ if $a \ge i$ for each $a \in \alpha$
- We say $\beta \supseteq_i \alpha$ if there exists a sequence $\gamma \ge i$ such that $\beta = \alpha \gamma$
- For a sequence α , let $U_i(\alpha) = \{\beta \in Y : \beta \supseteq_i \alpha\}$
- Now select a bijection between the countable set *W* and the set of positive prime numbers
- Define $q:(\mathbb{Z}^+\times W)\to \mathbb{Z}^+$ by $q(n,w)=p(w)^n,$ where p(w) is the prime corresponding to w
- Define the topology on X by selecting $U_i(\alpha)$ as open neighborhoods of the point $\alpha \in Y$, when $w = \{\alpha, \beta\}$, let $V_i(n, w) = \{(n, w)\} \cup U_i(\alpha q(n, w)) \cup U_i(\beta q(n, w))$ be the open neighborhoods of (n, w)

• No

Every Counterexample In Topology Appearing In The Book

- Let $\{C_i\}_{i=1}^\infty$ be a countable collection of disjoint dense subsets of $\mathbb Q$
- Let X be the set $\{(r,i)\in\mathbb{Q}\times\mathbb{Z}^+:r\in C_i\}$, together with an ideal point ω
- Neighborhoods of points of the form (r, 2n) are ordinary open intervals $U_{\epsilon}(r, 2n) = \{(t, 2n) : |t r| < \epsilon\}$
- Neighborhoods of points of the form (r, 2n 1) are stacks of three open intervals $V_{\epsilon}(r, 2n - 1) = \{(t, m) : |t - r| < \epsilon, m = 2n - 2, 2n - 1, 2n\}$
- A basis neighborhood of the point ω consists of $\{(s, i) \in X : i \ge 2n\}$

No

Every Counterexample In Topology Appearing In The Book

- Start with Roy's Lattice Space and delete the point $\boldsymbol{\omega}$

No

Every Counterexample In Topology Appearing In The Book

- Let C be the Cantor set on the unit interval [0,1]
- Let p be the point (1/2, 1/2) in \mathbb{R}^2
- Let *X* be the cone over *C* with vertex at *p* (the union of line segments joining *p* to the points in *C*)

No

Every Counterexample In Topology Appearing In The Book

- Let *E* denote the subset of *C* consisting of endpoints of deleted intervals
- Let X_E denote the cone over E
- Let $F = C \setminus E$, and let X_F denote the cone over F
- Let $Y_E = \{(x, y) \in X_E : y \in \mathbb{Q}\}$
- Let $Y_F = \{(x, y) \in X_F : y \notin \mathbb{Q}\}$
- Our space is $Y = Y_E \cup Y_F$

No

Every Counterexample In Topology Appearing In The Book

130. A Pseudo-Arc

- We define a chain \mathcal{D} in \mathbb{R}^2 to be a finite collection of open sets $\{D_i\}_{i=1}^n$ (called links) such that $D_i \cap D_j = \emptyset$ iff |i-j| > 1
- A pseudo-arc joining two points $a, b \in \mathbb{R}^2$ is any set in \mathbb{R}^2 resulting from the following construction:
- Let $\{\mathcal{D}_i\}$ be a sequence of chains such that:
- The diameter of each open set in \mathcal{D}_i is less than 1/i
- The closure of each link of D_{i+1} is contained in some link of \mathcal{D}_i
- \mathcal{D}_{i+1} is "crooked" in \mathcal{D}_i , i.e. if $D_m^{i+1}, D_n^{i+1} \in \mathcal{D}_{i+1}$ with m < n, and $D_m^{i+1} \subseteq D_h^i$, and $D_n^{i+1} \subseteq D_k^i$, with |k-h| > 2, then there exist $D_s^{i+1}, D_t^{i+1} \in \mathcal{D}_{i+1}$ with m < s < t < n such that D_s^{i+1} is contained in a link of \mathcal{D}_i adjacent to D_k^i , and D_t^{i+1} is contained in a link adjacent to D_k^i
- There are two points a and b with a in the first link of each chain \mathcal{D}_i and b in the final link of each chain
- Let $\mathcal{D}_i^* = \bigcup_k \underline{D}_k^i$ denote the set of all elements of elements of \mathcal{D}_i , and let $X = \bigcap_i \overline{\mathcal{D}}_i^*$

130. A Pseudo-Arc

Is it compact?

• Yes

Every Counterexample In Topology Appearing In The Book

131. Miller's Biconnected Set

Definition:

- Let C be a nowhere dense perfect set contained in the unit interval I (i.e. it is closed and has no isolated points and has empty interior)
- Let $W = C \times I \subseteq \mathbb{R}^2$
- Let K be an indecomposable continuum (compact connected) such that $K \cap I^2 = W$
- X is defined using the axiom of choice: Let C be the set of composants of K (a composant is a maximal subset in which any two points lie within some proper subcontinuum)
- Let B be the set of continua which separate K
- Let \mathcal{D} be the set of subsets of a fixed countable dense subset Δ of K which are themselved desnse in the interior of some square region with edges parallel to I^2 which intersects W
- Let $C_1, C_2, \ldots C_{lpha}$ be a well-ordering of the ordinals less than Ω
- Let B_1, \ldots and D_1, \ldots be well orderings of $\mathcal B$ and $\mathcal D$
- For each $\alpha < \Omega$, define $M_{\alpha} \subseteq K$ and a simple closed curve J_{α} such that:
- $M_{\alpha} = p_{\alpha} \in B_{\alpha} \cap K$ if $B_{\alpha} \cap \Delta = \emptyset$
- $M_{\alpha} = \emptyset$ if $B_{\alpha} \cap \Delta \neq \emptyset$
- For ordinals $\mu \neq \lambda$ and $M_{\mu}, M_{\lambda} \neq \emptyset$, M_{μ} and M_{λ} belong to different components of K
- J_α separates K
- $J_{\alpha} \cap (\Delta \setminus D_{\alpha}) = J_{\alpha} \cap M = \emptyset$, where $M = \bigcup_{\alpha < \Omega} M_{\alpha}$
- The space X is $\Delta \cup M$ with the subspace topology from \mathbb{R}^2

10.26.202

I don't know

Every Counterexample In Topology Appearing In The Book

- X is the closed unit disc in \mathbb{R}^2 minus the origin
- We generate a topology by adding to the usual open sets, all radii contained in the open unit disc

• No

Every Counterexample In Topology Appearing In The Book

- Let X, Y, Z be mutually disjoint and exhaustive dense subsets of $\mathbb R$
- Expand the usual topology on \mathbb{R} by adding as open sets X, Y, and sets of the form $\{z\} \cup \{w \in X \cup Y : |w z| < \delta\}$ where $z \in Z$ and $\delta > 0$

133. Tangora's Connected Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- If (X, d) is a metric space, we define new metric for X by $\delta=d/(1+d)$ and $\Delta=\min(d,1)$

• N/A

Every Counterexample In Topology Appearing In The Book

• $X = \{x_i : i = 1, 2, 3, ...\}$ is a countable set, and the function $d(x_i, x_j) = 1 + 1/(i+j)$ for $i \neq j$ is a metric on $X(d(x_i, x_i) = 0)$

Every Counterexample In Topology Appearing In The Book "Counterexamples in Topology" by Lynn Steen and L Arthur

135. Sierpinski's Metric Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- Let N(n, x) be the number of elements of the sequence $x = (x_i)$ which are less than n
- Let X be the set of strictly increasing sequences of positive integers such that $\delta((x_i)) = \lim_{n \to \infty} N(n, x)/n$ exists
- Let k(x, y) be the least integer n for which $x_n \neq y_n$
- Define a metric on X by the condition $d(x,y) = 1/k(x,y) + |\delta(x) \delta(y)|$, and if x = y then d(x,y) = 0

136. Duncan's Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

- If (X, d) is a metric space, let X^* be the set of all equivalence classes of Cauchy sequences, where the sequence (x_n) is equivalent to (y_n) if $\lim_{n\to\infty} d(x_n, y_n) = 0$
- Define d^* on X^* by $d^*(x^*, y^*) = \lim_{n \to \infty} d((x_n), (y_n))$, where (x_n) and (y_n) are any elements of the equivalence classes x^* and y^*

• N/A

every Counterexample In Topology Appearing In The Book Counterexamples In Topology" by Lypp Steep and L Arthur

- Let (S, d) be a metric space, and let X be the collection of all nonempty bounded closed subsets of S
- Let $f: S \times X \to \mathbb{R}^+$ be defined by $f(s, B) = \inf_{b \in B} d(s, b)$
- Let $g: X \times X \to \mathbb{R}^+$ be given by $g(A, B) = \sup_{a \in A} f(a, B)$
- Let $\delta(A, B) = \max\{g(A, B), g(B, A)\}$
- (X, δ) is Hausdorff's metric space

138. Hausdorff's Metric Topology

Is it compact?

• N/A

Every Counterexample In Topology Appearing In The Book

- Let (*X*, *d*) be the plane with the usual metric, and let 0 be the origin in the plane
- Define d^* on X by the formula $d^*(p,q)=d(0,p)+d(0,q)$ when $p\neq q,$ and $d^*(p,q)=0$ when p=q

• No

Every Counterexample In Topology Appearing In The Book

- Let (*X*, *d*) be the plane with the usual metric, and let 0 be the origin in the plane
- We define d^* on X by:
- $d^*(p,q) = 0$ if p = q,
- $d^*(p,q) = d(p,q)$ if $p \neq q$ and the line through p and q passes through 0
- $d^*(p,q) = d(p,0) + d(q,0)$ otherwise

• No

Every Counterexample In Topology Appearing In The Book "Counterexamples In Topology" by Lynn Steen and L Arthur

• X is the plane, and the topology is generated by all open intervals disjoint from the origin which lie on lines passing through the origin, together with sets of the form $\bigcup \{I_{\theta}: 0 \le \theta < \pi\}$, where each I_{θ} is a non-empty open interval centered at the origin on the line of slope $\tan \theta$

• No

Every Counterexample In Topology Appearing In The Book

- Let \mathcal{P} denote the power set of \mathbb{R} , and let $X = \prod_{\lambda \in P} \{0, 1\}_{\lambda}$, where $\{0, 1\}_{\lambda}$ is a copy of the two point discrete space
- For each $r \in \mathbb{R}$, let x_r be the point of X whose λ 'th coordinate equals 1 iff $r \in \lambda$
- Let $M = \{x_r \in X : r \in \mathbb{R}\}$
- X has the product topology, and $X \setminus M$ is dense in X, so we can form the discrete extension of X by $X \setminus M$

142. Bing's Discrete Extension Space

Is it compact?

• No

Every Counterexample In Topology Appearing In The Book

• Let Y be the subspace $M \cup F$ of Bing's discrete extension space, where F is the collection of all finite sets in $X \setminus M$

Every Counterexample In Topology Appearing In The Book

• No

Every Counterexample In Topology Appearing In The Book

Section 3

References

References I

• Counterexamples In Topology by Lynn Steen and J. Arthur Seebach, Jr

very Counterexample In Topology Appearing In The Book