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Kadell extended Selberg’s n-dimensional beta integral formula by inserting a nor-
malized Jack polynomial as a factor in the integrand. We formulate and prove a
character sum analog of Kadell's formula in the case n =2, raising hope that such
an analog may exist for general n. 1995 Academic Press. Inc.

1. INTRODUCTION

Kadell [ 15] has proved the following far-reaching extension of Selberg’s
n-dimensional beta integral formula [2, p. 48; 18]:
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Here
n=1, c=0, Re(a)> 0, Re(b) >0, (1.2)
A=(A1 Ars e 4)) for integers A,= --- 24,20, (1.3)

(x).=1(x+c)/I(x), and s, .., is a normalized Jack polynomial
[15A, 15, Egs. (1.7), (6.28)]. If 4, =0, then s{(¢,.....¢,)=1 and (1.1)
reduces to Selberg’s integral formula. If i,=1, then si(t,,...t,) is an
elementary symmetric function and (1.1) reduces to Aomoto’s extension
[3] of Selberg’s integral formula. (For g-integral extensions of Selberg’s
integral formula, see also [7].)
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The primary purpose of this paper is to formulate and prove character
sum analogs of (1.1) and of limiting cases of (1.1) for n=2; see Theorems
2.1, 5.1, and 5.2. The existence of character sum analogs for n =2 raises
hope that they may exist for general n, although no analogs have yet been
proposed for n>2. On the other hand, character sum analogs of Selberg’s
integral formula and limiting cases were conjectured for general # in 1981
[5, Egs. {29), (29a), (29b)], and these have finally been proved in [6], due
to the remarkable work of Anderson [ 1]. Modifications of the method in
[1] have also led to evaluations of the nongeneric character sum analogs
of Selberg’s integral [20] that were conjectured in [8].

We now outline our approach for n =2. We may assume 4, =0 (see [ 15,
Eq. (1.4)]). With this reduction, the case n=2 of (1.1) is equivalent to [ 14,
Eq. (1.7)]
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where we write A in place of A, for brevity (abusing notation). In order to
formulate a character sum analog of (1.4), we first change the variables of
integration to the elementary symmetric functions in the ¢; (just as we did
to formulate an analog of Selberg’s integral formula in [ 5, Eq. (29)]). With
the change of variables

r=[1+f2, S:tlt?_» (15)

(1.4) becomes
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where we have used the quadratic transformation formula [16, p. 252,
Eq. (9.6.9)]
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with a = — A, f=¢, z=t,/t,. Now (1.6) directly suggests a “Selberg-Jack”
character sum formula of the form

L CL¢| —4F(0)
;A(F(O)) B(F(1)) CLY(Dp) »F, < Cr2 D, )
_ G(C?L?) G(ACL?) G(BC) G(A) G(B)

G(CL?) G(ABC*L?) G(ABC) '

(1.8)

where the sum is over all monic polynomials F(x) = x? —rx + 5 over a finite
field GF(q) of characteristic >2, ¢, 4, B, C, C, L, L are characters on
GF(q) (corresponding to 1/2, a, b, ¢, —c, A/2, —4/2, resp.), G(A) is a
Gauss sum (corresponding to I'(a)), D denotes the discriminant of F, and
the ,F, is a suitably normalized hypergeometric character sum [9, 10]
(corresponding to the classical ,F, hypergeometric series). This will be
made precise in Section 2 (see Theorem 2.1), where it is shown that if the
.F, in (1.8) is defined as in (2.6), then (1.8) holds generically. Theorem 2.1
is proved in Section 4. Related results (“limiting cases”) are presented in
Section 5.

2. GENERIC SELBERG-JACK CHARACTER SUMS

Let GF(q) denote the field of ¢ elements, where ¢ is a power of an odd
prime p. Let 1 and ¢ denote the trivial and quadratic characters on GF(gq),
respectively. Throughout, 4, B, C, and L will denote characters on GF(q).
By convention, A(0)=0, even for A=1. Define 4 by 44 =1. Define the
Gauss sum G{A) and Jacobi sum J(A, B) over GF(q) by

G(A)=Y. A(m) (™™, J(A4, B)=Y A(m) B(1 —m), (2.1)

m ”

where each sum is over all me GF(q), { =exp(2ni/p), and T is the trace
map from GF(q) to GF(p). Thus [13, p. 93]

G(A) G(B)/G(AB), if AB#1

—A(-1), if AB=1. (2.2)

J(A, B)={

The n-dimensional Selberg character sum L, (A4, B, C¢) over GF(q) is

LA, B, Co):= } A(=1)"F(0))B(F(1)) C(Dp), (2.3)
F

deg F=n
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where the sum is over all monic polynomials F over GF(q) of degree n and
where D,. denotes the discriminant of F. A generic character sum analog of
Selberg’s integral formula for dimension 2 is [8, Eq. (1.11)]

_ G(C?*) G(AC) G(BC) G(4) G(B)
L4, B,C9) = G(C) G(ABC?) G(ABC) (24)

when
ABC #1, ABC?* #1. (2.5)

For a proof, see [8, Section 3]. Theorem 2.1 will extend (2.4).
For 0+#te GF(q), define the character sum P(L, C; t) by

P(L. C; t):qL(—l) G(CL¢) CL(r)E¢(—t)—¢(1 1)}
G(CL*) G(L) G(¢)
1 G(CL#$) 5 M(—1) G(CL*M) G(LM) G(M)
9-1GcL> Gy G(CL¢M)

>

(2.6)

where the sum is over all characters M on GF(q). The sum P(L, C;t)
will serve as our desired normalized hypergeometric character sum
LF (FEE% | 1) in (1.8).

Let T, and T, denote the first and second terms, respectively, on the
right of (2.6). Note that the form of T, directly matches that of the classical
,F, hypergeometric series [ 16, p. 238, Eq. (9.1.1)] (the Gauss sums in 7,
match the gamma functions in the hypergeometric series). The motivation
for tacking on the extra term T, in (2.6) is as follows. When 4 =0, the
Selberg-Jack integral formula (1.4) reduces to the Selberg integral formula,
because the classical ,F; in (1.4) equals 1 for 2=0. Choosing A =0 in this
,F| corresponds in the finite field analog to choosing L to be the trivial
character in 7,. However, in contrast with the classical analog, T, does not
equal 1 when L is trivial. Tacking on the term 7, in (2.6) provides the
desired normalization

P(1,Cty=1, (2.7)

so that (2.9) reduces to the Selberg character sum formula (2.4) when
L=1. We prove (2.7) in Lemma 3.2.

Theorem 2.1 below gives a precise version of (1.8). It will be proved in
Section 4. In some cases, (2.9) holds even when the restriction (4CL)%# 1

in (2.8) is dropped. This happens, e.g., if L =1 or L = C; the proof follows
easily from (2.4)~(2.5) and Lemma 3.2.
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THEOREM 2.1. If
(ACL)?, ABCL, ABC?L?, and ABC are nontrivial, (2.8)
then
Y. A(F(0)) B(F(1)) CL§(D,) P(L, C; —4F(0)/D )

F
deg F=2

_ G(C’L?) G(ACL?) G(BC) G(A4) G(B) 29)
" G(CLY) G(ABC?L?) G(ABC) ’

where F runs through all monic quadratic polynomials over GF(q) with
Dg#0.

3. LEMMAS

Lemma 3.1 below is the analog of the Gauss duplication formula. It is
a special case of the Hasse-Davenport product formula [17, p. 211].

LEMMA 3.1. For all characters M,
G(M?) G(¢) = M(4) G(M) G(M).

The following lemma proves (2.7).

LemMMma 3.2, For all C and 0 #te GF(q),

L if L=1
PLGO=9-L-0GY) . &
G(¢L) G(L) '

Proof. For all C, L and all te GF(q),

CL(—1/4) G(C°L) G(CL?)

P(L,C;1)= - -
G(L) G(CL?)

(CL, C; 1). (3.2)

This follows easily upon replacing M by MCL’? in (2.6) and then
employing Lemma 3.1. By (3.2) and Lemma 3.1, it suffices to prove (3.1)
in the case L =1. By (2.6),
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gG(CP) C(O{¢(—1) — (1 — 1)}
P(l, C;
{ 1+ GO Gid)
B —1 G(C¢) Z M(t) GICM) G(M) G(M) M{—1)
q—1 G(C) 7 G(CopM)

q G(CP) Mt G(CM)
9—1 G(C) G(C¢M)

94 G(C9)C Z G(M)
g—1 G(C py G(¢A7[)
Gl
-1--4 GC¢ ) {ZMU (9. 5)—(g—1) ¢(—t>}

by (2.2) with 4 =¢, B= M. Since

Y M)y J(g, My=3 $(1 —m)y M(m/ty=(qg—1)$(1 —1), (3.3)
M m M

the result follows.

Lemmas 3.3 and 3.4 below are analogs of classical summation theorems
of Gauss and Saalschiitz, respectively [ 19]. Proofs of Lemma 3.3 may be
found in [10, 12]. Lemma 3.4 is proved in [11].

LEMMA 3.3. For all characters A, B, C, D,

;qz G(AM) G(BM) G(CM) G(DM)
Y wm

_G(AB) G(AD) G(BC) G(CD)
B G(ABCD)

+q(g—1) AC(—1) 6(ABCD),

where & is defined by

1, if M=1
0, otherwise.

S(M) ={ (3.4)

LeEMMA 3.4. For characters A, B, C, D, E, F with ABCDEF=1,

—— Y M(—1)G(AM) G(BM) G(CM) G(DM) G(EM) G(FM)
M

= —q*DEF(—1)+q *DEF(—1) G(AD) G(BD) G(CD) G(AE)
x G(BE) G(CE) G(AF) G(BF) G(CF),
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provided that
{D,E F}#{4, B, C}. (3.5)

Lemma 3.5 below extends (2.4). It is the special case of [8, Eq. (2.6)]
where n=2. For a proof, see {8, p. 116 and Section 3].

Lemma 3.5, If
{4, B, ABC} s not contained in {1, C}, (3.6)
then
L,(A, B, C¢)
C(—1) G(C*) G(AC) G(BC) G(A) G(B) G(ABC) G(ABC?)

- 4°G(C) - B

4. PrROOF OF THEOREM 2.1

By (2.6), the left side of (2.9) equals R+ S, where

Rz 9L(4) G(CLY) C(—4)
G(CL*) G(L) G(¢)

x ). ACL(F(0)) BIF(D)){$(F(0)) — ¢(Dp+4F(0)} (4.1)

deg F=2
and
1 G(CL$)
¢—1G(CL? G(L)
G(CL>M) G(M) G(LM) M(4) Lo(AM, B, CL$M)

xy - (4.2)
M G{CL¢pM)
with L, defined by (2.3). Since
¢(DF+4F(O)}={O’ if F(x.)=x‘+mforsomemeGF(q), 43)
1, otherwise,

o _ IL(4) G(CLY) C(~4)
G(CL*) G(L) G(9)

{LQ(ACL¢, B, 1)—L,(ACL, B, 1)

+% ACL(m) B(1 +m)}. (44)

ni



8 RONALD J. EVANS

Since ABCL # 1, the sum on m in (4.4) equals
ACL(—1) G(ACL) G(B)/G(ABCL),
by (2.2). By 8, Eq. (L7)],
L(ACL$, B, 1) = L(ACL, B, 1), (4.5)
since (ACL)? # 1. Thus (4.4) becomes

r_ICLA4) AL(~1) G(CLY) GACL) G(B) (46)
- G(CL?) G(L) G(¢) G(ABCL) '

We proceed to evaluate S. Since (4CL)* # 1 and ABCL # 1, we see that
for all M,

{AM, B, ABCL}  is not contained in {1, CLM}. (4.7)
Thus we can apply Lemma 3.5 to obtain, for all M,

L{AM, B, CLM¢)

<CLM( —1) G(C*L*M?) G{ACL) G{(BCLM) )

B x G(AM) G(B) G(ABCL) G(ABC*L*M) “5)
¢°G(CLM) ' '

Substituting (4.8) into (4.2), we obtain

_ G(CL@) CL(—1) G(ACL) G(B) G(ABCL)
- (¢— 1) 4°G(CL*) G(L)

M(4) G(C*L>M?)
{G( CLM) G(CLM¢
x M(—1) G(BCLM) G(AM) G(ABC*L*M). (4.9)

S

XY

M

)} G(CL*M) G(M) G(LM)

The expression in braces in (4.9) equals LC(4)/G(¢) by Lemma 3.1, so
(4.9) becomes

_ G(CL$) CL(—4) G(ACL) G(B) G(ABCL)
(a—1) ¢°G(CL?) G(L) G(¢)

S

x Y M(~1) G(AM) G(LM) G(ABC*L’M)
M

x G(M) G(CL*M) G(BCLM). (4.10)
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Since ABC?L*#1, ABC+#1, ACL # 1, we have
{4, L, ABC?L?) # {1, CL? BCL). @.11)

Thus we can apply Lemma 3.4 in (4.10) to obtain

BL(—1) CL(—4) G(CL¢$) G(ACL) G(B) G(ABCL)
q°G(CL?) G(L) G(¢)
x{—q*+q >G(A4) G(ACL?) G(ABCL) G(L) G(CL) G(BC)

S=

x G(ABC*L?) G(ABC) G(ACL)}. (4.12)
Combining {4.6) and (4.12), we have, since ABCL # 1,

BC(—1) CL(4) G(CL$) G(ACL) G(B) G{(ABCL)

R+5S=
g°G(CL*) G(L) G(¢)
x G(4) G(ACL?) G(ABCL) G(L) G(CL) G(BC)
x G(ABC*L?) G(ABT) G(ACL). (4.13)

Since ABC?L*+#1, ABCL #1, ACL+#1, ABC+#1, we have

CL(4) G(CL¢) G(B) G(A) (ACL?) G(CL) G(BC)
R+S= G(CL?) G(¢) G(ABC?L?) G(ABC) - (414)

By Lemma 3.1, G(C?L?) G(¢)=CL(4) G(CL)G(CL#$), so the result
follows from (4.14).

5. LiMITING CASES

A character sum analog of a limiting case of Selberg’s n-dimensional
integral formula [5, Eq. (29a)] is proved in [6]. For n=2, this analog
states that for all characters 4, C,

Z A(F(0)) Co(Dp) {7 = G(C?) G(A) GIAC)/G(C),  (51)
degf

where
F(x)=x>4+ax + 8, a, fe GF(q). (5.2)

The following theorem generalizes (5.1).
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THEOREM 5.1.  For all characters A, C, L,

Y. A(F(0)) CLH(Dp) {T'P(L, C; —4F(0)/D )
dcgfl;:l
=G(C’L?) G(A) G(ACL*)/G(CL?). (5.3)
Proof. The proof is similar to that of Theorem 2.1, except that Lemma

3.3 is used instead of Lemma 3.4.

A character sum analog of a recent n-dimensional integral formula of
Selberg [4, Eq. (2.1)] is proved in [6]. For n=2, this analog states that
for all characters 4, B, C,

Y. A(F(0)) B(1+a) CH(Dy)
deg;:=2
G(BA*C?) G(C?*) G(A) G(AC)
G(B) G(C)

G(B) G(C?*) G(A4) G(AC)
G(BA’CYH G(C)

. if B#1
(5.4)

if BA'C?#1,
where a and F are given by (5.2). The following theorem generalizes (5.4).

THEOREM 5.2. For all characters A, B, C, L,

2. A(F(0)) B(1 +a) CLH(D;) P(L, C; —4F(0)/Df)
F

deg F=2

G(BA’C’L*) G(C?L*) G(A) G(ACL?)
G(B) G(CL?)

G(B) G(C?’L?) G(A) G(ACL?)
G(BA*C’L*) G(CL?) ’

. if B#l1
(5.5)

if BACL*#1,

Proof. This follows from Theorem 5.1 in the same way that (54)
follows from (5.1); see the proof of [4, Theorem 2.2].
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