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Introduction

Mathematics has often been called the science of order. From this viewpoint
the guiding principle of Ramsey theory is perhaps best summed up by the
statement of T. 8. Motzkin: “Complete disorder is impossible”. Ramsey
theory is basically the study of structure preserved under partitions.
Before stating some background material, we first introduce the following
notation. We will adopt the usual convention of identifying the positive
integer n with the set of its predecessors {0, 1, ..., » —1}, where 0 corre-
sponds to @. The symbol « denotes {0,1,2,...}, the set of natural
numbers. For X < o, k € w, [X]* denotes the set of k-element subsets of X,
and [X]” denotes the set of infinite subsets of X (if there are any). The
generic result in Ramsey theory is due (not surprisingly) to F. P. Ramsey
[49]:

Ramsey’s Theorem (1930)

For any k7 € 0, if [0]° = C,u...uC, then there exists X e [w]® such
that [XT* < O, for some i.

An earlier result of Ramsey type was given by I. Schur [52] in 1916:

If o =Cyu...uC, then there exist x,y,z e C; for some © such that
r+y =2

The result of Schur was generalized successively as follows.

THEOREM (Rado [47 ], Folkman [17], Sanders [51]). For all m € o,
if o = Cyu ... UC, then there exists X e [w]™ such that for some i and all

nonempty F < X, D acC,.
aek
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THEOREM (Hindman [34]). If o = C,u... U0, then there exists
X e [0]” such that for some i and all finite nonempty F < X, > a e C,.
aeF
A much weaker form of the Rado-Folkman—Sanders theorem was
actually given by Hilbert in 1892:

THEOREM [33]. For all mew, if o =0,V...u 0, then there ewists
Xe[w]” and t € o such that for some ¢ and all nonempty ¥ < X, t-+ Y a C,.
acl
Finally, we mention the result which will motivate much of what we
discuss in this paper. This is:

VAN DER WAERDEN’S THEOREM (1927) [63]. If w = O,V ... UC, then
Jor some i, C; contains arbitrarily long arithmetic progressions.

The theorem of van der Waerden has proved to be an extremely fertile
seed from which a major part of modern combinatorics has developed,
especially through the work of Rado [47], [48], Erdos [16], [15], Roth [50],
Szemerédi [60], [61], Deuber [9] and many others (see [14], [31], [107]).
A particularly important generalization was given in 1963 by Hales and
Jewett. For a fixed finite set A4, call a subset L < AN a combinatorial line
if for some nonempty I = N, L can be written as

L=L = {(®y@1y...rwvy_y): 3y, =a if el and @, =b, e A if i ¢ I}.
aed

Thus, |L| = |A].

HALES-JEWETT THEOREM [32]. For all finite A and r, there exvisis
N(A,r) such that if N > N (A, r) and AY = Cyu ... UC, then some (; must
contain a combinatorial line.

To see that this implies van der Waerden’s Theorem, simply take
A =t=1{0,1,...,t—1} and identify the point Z = (%, ..., xy_,) € AV
with the integer |2| = ) ;¢ . The ¢ points in any combinatorial line clearly

ieN

correspond to ¢ integers in an arithmetic progression. Since ¢ was arbitrary,
a standard compactness argument yields van der Waerden’s Theorem.

The Hales—Jewett Theorem also implies the higher-dimensional ana-
logues of van der Waerden’s Theorem, first proved by Gallai (see [47]) and
Witt [66].

THEOREM. If o™ = O,V ... UC, then some C; must contain for all
k € w a homothetic copy of {0, 1, ..., k—1}", .., all k™ poinis

{(@iy 4Dy, @iy -+byy ..., @iy +b,): 0< by, nny i, < K}
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for suitable a, b; € w.

A much stronger “density” form of van der Waerden’s theorem was
conjectured by Erdos and Turan [16] nearly 50 years ago: If 4 = w satisfies

A Nn|

limsup

Nn—>00

>0 (%)

then A contains arbitrarily long arithmetic progressions.

It was shown by Roth [50] in 1953 that (x) implies 4 has a 3-term
arithmetic progression and by Szemerédi [60] in 1969 that (x) implies 4
has a 4-term arithmetic progression. Finally, Szemerédi [61] in 1974 in
a brilliant combinatorial tour de force established the full conjecture.
Szemerédi’s Theorem and the higher-dimensional density analogues of
van der Waerden’s Theorem have fairly recently been proved by quite
different techniques from ergodic theory and topologieal dynamics. This
exciting work of Furstenberg, Katznelson, Weiss and others (see [22],
[24], [20], [21]) has furnished a very stimulating link between these two
branches of mathematics which is just beginning to reveal its full potential.

It is very natural to ask whether there is a corresponding density version
for the Hales—-Jewett Theorem. We can phrase this as follows:

CONJECTURE.? For all finite A and ¢ > 0 there exists N (A, ¢) such that
if N>N(A,¢) and R = AV satisfies |R| > ¢|AVN| then R must contain
a combinatorial line.

The conjecture, if true, clearly implies Szemerédi’s Theorem. It is
known to be true if |4A| = 2 by the following argument. Assume without
loss of generality that 4 = {0, 1}. Identify with each point & = (@,, @4, ...
veey @y_y) € AV the subset 8(Z) = N by i e 8(%) iff 4, =1 (i.e., Z is the
characterstic function for S(%)). Thus, a combinatorial line in 4A¥ corres-
ponds to a pair of distinet subset X, ¥ < N with X « ¥. However, a well-
known result of Sperner [59] asserts that any family F of subsets of N in
which X, Y € F, X # Y implies X ¢ Y can have cardinality at most

([1\?;21) N(fiv‘)m 2%

Thus, for ¢ fixed, if N is sufficiently large then (2/nN)"* < & and the
assertion follows.

If 4 is taken to be the finite field GF(3), then Brown and Buhler [5]
have recently shown that any subset R of the affine space AV having at

1 The author is currently offering US $1000 for a proof or disproof of this conjec-
ture.
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least -3% points must contain an affine line, provided N > N (¢). (Com-
binatorial lines correspond to very special kinds of affine lines.) More
generally, Furstenberg and Katznelson have now proved (unpublished) the
following weakened form of the conjecture. Let us write 4 = {a,, a,, ...
eeey @;_}. Call a set I of t points of AV a twisted combinatorial line if for
some nonempty I < N and d; €t, i € I, I can be written as

L =\J{@®1yeeyBy_y): & =@y, if ieTand o, =bcdif i¢l}
jet

where index addition is modulo ¢.
Thus, in a twisted line, the entries in each of the coordinates which
vary have been cyclically permuted.

THEOREM [23]. For all finite A and & > 0 there ewists N (A, &) such that
if N> N(A,s) and R < AY satisfies |R|> ¢|A¥| then R must contain
a twisted combinatorial line.

This result implies as a corollary the fact that any subset R < GF(q)V
with |R| > ¢V always contains an affine line, provided N is sufficiently
large (as a function of g and &).

Partitions into infinitely many classes

If we allow partitions of w of the form w = (_J C; then it is clear that the
tew

conclusion of van der Waerden’s Theorem does not have to hold. For

example, we could take C; = {i}. However, in this case we have arbitrarily

long arithmetic progressions which hit each C; in at most one element.

The following result of Erdos and Graham shows that one of these two

possibilities must always occur.

TeEOREM [14], [11]. If @ = | J O, then either some O, contains arbii-

e

rarily long arithmetic progressions or there are arbitrarily long arithmetic
progressions hitting each C; in at most one element.

The idea behind the proof is basically this. If some C; has positive
upper density then by Szemerédi’s Theorem, C; has the desired progressions.
If not, then for NV large the number of arithmetic progressions which have
at least two elements in a single C; is o(N?). Since there are at least ¢, N*
arithmetic progressions of length % for a fixed ¢, > 0, the desired conclusion
follows.

This result is an example of a so-called “canonical” partition theorem,
first introduced by Erdss and Rado for Ramsey’s Theorem [15]. Other
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theorems of this type have recently been given by Baumgartner [2],
Taylor [62], Voigt [64], [46] and others. One of the most striking theorems
of this type is the canonical partition theorem for the n-dimensional ana-
logues of van der Waerden’s theorem. As an illustration of the increased
range of behavior the canonical partitions can have, consider the case
n =k = 2. Suppose w? = | J C;. Let us say that (z, y) ~ (@', 9') it (x,y)
and (¢, y’) belong to the same C,. Consider the following six partitions:

(i) (@, y) ~ (x,7 y') iff (,y) = (2, YY),

(i) (2,y) ~(a',y") for all (x,y), (@',y) € w?,

(ill) (@, y) ~ (2", y') iff =o',

(Iv) (z,9) ~ (2", y") iff y =y’

(V) (@,9) ~(a',y') iff o4y =o' +y,

(Vi) (@,9) ~ (2", y) iff 2—y =a'—y'.

In Figure 1, we show the six different possibilities for the four vertices
of a square in w? (where, a, 8, ... denote distinct classes).

y. 8. a a a B
(i) (if) (iii)
a, o, a f. a .
B. B. Y. a, B, .
(iv) ) (vi)

Fig. 1. The six canonical partitions of {0, 1}2.

It follows from the following theorem that these are a complete set of

canonical partitions, i.e., in any partition w? = U O; at least one of these
ifew
patterns must occur.

TEEOREM (Deuber, Graham, Promel, Voigt [11]). AWl canonical parti-
tions of w" are given as follows: For a subspace V < R® over R, partition
R™ into disjoint translates of V by

R* = (V+a).

acd

This induces a partition of o™ = ;;szg C; (where B is countable). These partitions
€.
Jorm a complete set of canonical partitions of o".

We remark that the only proof known for this result requires the use
of the deep Furstenberg—-Katznelson density version of the Gallai~Witt The-
orem.

46 — Proceedings..., t, II
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Hales-Jewett revisited

In order to describe the next series of results we will first recast the Hales—
Jewett Theorem into a different format. As usual, we fix a finite set 4 and
assume A No = @. For X € o, ke o, welet (X)* denote the set of partitions
of X into % nonempty blocks. Furthermore, we let (X )%, denote the set of
partitions of XuA into k- |4] nonempty blocks so that each block
contains at most one element of A. Such partitions will be called A-parti-
tions of X UA. Finally, if ¥ e (X)* and m < k then (Y)% denotes the set
of A-partitions Z of XuA having m+[A|blocks such that every block
of Y is contained in a block of Z. Thus, Y is a refinement of Z.
The theorem of Hales and Jewett can be restated as follows:

THEOREM. For all finite A andrif N > N (A4, r) and (N)) = C,V...UC,
then there exists X e (N)Y such that (X)% = C, for some 1.

This was generalized by Graham and Rothschild in 1971:

TuroreM [29]. For all finite A and k, m,r € 0, m <k, there ewisis
N(A,k,m,r) such that if N=N(A,k,m,r) and (N)y = Cyv ... ul,
then there exists X e (N such that (X)% < C; for some i.

A very beautiful generalization of this has now just been proved by
Carlson and Simpson. It deals with infinite partitions of . To state the
result ‘we first introduce the following topology on (w)”, the partitions of
o having infinitely many blocks. Any partition X e (o) induces an equiv-
alence relation on o xw by having z, ¥ € w equivalent iff they belong to
the same block. The set of all binary relations 2°*“ can be endowed with
the usual product topology, where cach factor has the discrete topology.
In this way (w)® becomes a topological space under the topology inherited
from 2°*¢. The following result can in a certain sense be considered a dual
to the usual Ramsey Theorem.

CARLSON-SIMPSON THEOREM [7]. For any k € o, if (0)* = 0,V ... UC,
where each C, is Borel then there exists X € (w)” such that (X ¥ < O, for some 1.

Carlson and Simpson in fact prove the stronger analogous result for
A-partitions of (w)% and which can properly be considered as an infinite
generalization of the Graham-Rothschild Theorem. It should be pointed
out that some condition on the C; is necessary since otherwise a counter-
example for ()2 = 0; U0, can be easily constructed using transfinite induc-

tion.
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In addition to the preceding results, dual forms are proved in [7] for
the Galvin-Prikry extension [25] of Ramsey’s Theorem for the case of
infinite subsets of w, as well as for Ellentuck’s generalization [13] of it,
but space limitations prevent us from discussing them further.

In another direction, Carlson (see [44]) has very recently obtained
a beautiful theorem which unifies a large number of known Ramsey-type
theorems, both finite and infinite. Again, space restrictions do not allow
us to give a full description of this striking achievement here. However,
we will now describe a key ingredient used in the proof, which is of signifi-
cant interest in its own right.

To begin with, for a fixed finite set 4 and a variable v e A, denote by
W(v) the set of all “variable words” of A, Le., the set of all finite strings
@y @y, ..., A, Where a; € AU {v} and a; = v for at least one index j. For
aed and w(v) € W(v) we can form the string w(a) by simply replacing
each occurrence of v in w(v) by a (i.e., we just “evaluate” w(v) ab a). Let
8 = 8(4, v) denote the set of all infinite sequences 3 = (s4(v), s,(v), )
where s;(v) e W(v). By a wv-reduction of 5 we mean any sequcnce
t = (to(v), #;(v), ...) formed from s in the following way. For each ¢ € w, s;(v)
is replaced by s,(b;) where b; € AU {v}. Disjoint blocks of consecutive s;(b,)’s
are then concatenated, forming a sequence of strings § = (to(0), 11(0), ...),
where the symbol v must still oceur at least once in each t,(v), (thus, € 8).
Denote by R(5) the set of all v-reductions of s and by E,(5) the set of all
to(v) for & = (2,(v), t,(v), ...) € R(3).

MAIN LEMMA (Carlson). For any se8, if Ry(5) = C,u ... UC, then
there exists t € R(3) such that By(t) < C; for some .

This deceptively simple looking statement conceals much of its inherent
strength. As a simple application, we derive Hindman’s Theorem (following
[6]). Let w = C,u ... UC, be given. Choose A = {0} and partition W (v)
= C7uU ... UC} by defining: w(v) e CF iff w(v) has m o’s oceurring in it and
m € U;. Applying Carlson’s result for 3 — (v, v, ...) we are guaranteed the
existence of = (£,(v), #,(v), ...) € By(3) = W(v) with R,(¥) = C* for some
i. For any finite subset J < W, the word w,(v) = (Do) (D). ee ty_1(by_y)
e CF where

b o ifjed,
CTl0 if je¢d.

Thus, if n; denotes the number of v’s occurring in #,(v) then this implies

) m; e C; for all finite J, which is just Hindman’s Theorem.
jed
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We should note here that Voigt [65] has very recently independently
algo obtained infinite generalizations of the Hales—Jewett and Graham-—
Rothschild Theorems which are similar to, though somewhat weaker than,
Carlson’s Main Lemma. His proofs however are more combinatorial in
nature whereas Carlson relies on the intricate use of idempotent ultrafilter
arguments (which are often quite effective for problems of this type, e.g.,
see [35]).

Van der Waerden again

The finite form of van der Waerden’s Theorem (for two classes) asserts the
following: For all k € w, there exists a least W (k) so that if {1, 2, ..., W(k)}
= (,u(, then some C; must contain a k-term arithmetic progression.

The determination of the values and, in fact, even the growth rate of
W (k) has proved to be extremely frustrating for combinatorialists. The

known exact values are listed in Table 1.

Table 1

L o|1]e]s|4] 56
w1 )3 ]9 |35] 178] 0

The best lower bound known is due to Berlekamp [4]:
w(k+1) >%k-2¥ if k is a prime power.

There is currently no known upper bound for W (k) which is primitive
recursive. This is because all available proofs leading to upper bounds
involve at some point a (perhaps intrinsic) double induction, with k as one
of the variables. This leads naturally to rapidly growing functions like the
Ackermann function which may help to explain the enormous gap in our
knowledge here. The possibility that W(k) might in fact actually have
this Ackermann-like growth has been strengthened by the work of Paris
and Harrington [43], Ketonen and Solovay [37], and more recently Fried-
man [18], who show that some natural combinatorial questions do indeed
have lower bounds which grow this rapidly (and even much more rapidly,
e.g., see [b4], [65]). In spite of this potential evidence to the contrary,
I am willing to make the following:
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CONJECTURE.

W) < 2
Jor k=1, where the number of 2°s is k.

It should be pointed out that while any partition of the set {1, 2, ..., 9}
= (,u(, always results in some C; containing a 3-term arithmetic pro-
gression (and this is true for any set homethetic to {1, 2, ..., 9}), other
sets also have this property, e.g., {1,3,4,5,6,7, 8, 9, 11}. However,
it can be shown [53] that no 8-element set has the property. In general,
define

W*k) =min{X]: X € w, X = C,ul,=s0me

O; contains a k-term arithmetic progression}.
Thus,

W*3) = W(8) =9
and, in general,
W* (k) < W(E).

It turns out perhaps unexpectedly that W*(k) ecan be strictly smaller than
W (k). In particular, recent computations have yielded W*(4) < 27, com-

pared to W(4) = 35. The characteristic function of a set which achieves
the bound of 27 is given by:

1001001101111111113111111111011001.001.,

It would be of great interest to know if W* (%) is in general significantly
smaller than W (%), e.g., does

W* (k)W (k)0 as k—oo?

As an abbreviation, let us write X—-AP (k) to denote the fact that for
any partition of X = C,u0(,, some (; contains a k-term arithmetic pro-
gression. Going in the other direction from W*(k), one might naturally
ask whether there exist arbitrarily large sets X (k) with the properties:

(i) X(k)y—AP(k);

(ii) Y-4~>AP(k) for any proper subset ¥ < X(k).
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In fact, the existence of arbitrarily large “critical” sets for both k-term
arithmetic progressions as well as more general combinatorial lines in 4N
has just recently been established by Graham and Nefetfil [28]. From this
work, it appears that even the structure of sets X (3) which satisfy (i) and
(ii) for £ = 3 can be exceedingly complex.

Concluding remarks

As mentioned earlier, we did not have the opportunity here to give more
than a brief sketch of a few of the large number of exciting recent develop-
ments in Ramsey theory. The interested reader will find more of these
developments reported in the following references: {35], [67], [41], [27],

{81, [1], [36], [42], [46], [38].

Finally, I remark that essentially no progress has occurred on the
following (by now) old conjecture of Erdos on arithmetic progressions,
which would imply Szemerédi’s theorem and for which Erdos currently
offers US § 3000:

CONJECTURE. If A < o and D 1lla = oo then A contains arbitrarily
acd

long arithmetic progressions.
A related perhaps easier conjecture is this:

CONJECTURE. If A € w? and D 1/(i®-+j%) = oo then A contains the
(irj)EA
4 vertices of a square.
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