Representation of p-adic GL(n)

Finn McGlade

UCSD

3

(日) (周) (三) (三)

Administration

Welcome to RTG Grad Colloquium!

- Student run (organisers Kiran¹, Nandagopal and myself).
- The goal is to get graduate students in the RTG (algebra, number theory, algebraic geometry) group to give talks about whatever. We don't really have expectations for the talks, but we'd like to encourage early career grad students to participate.
- The target audience should be graduate students in the RTG group.
- The talks should be self contained and can be reasonably technical.

The seminar will not be able to run if we don't have volunteer speakers. So far there are two volunteers, but they cannot speak until November 18th.

- 10/21 needs filling.
- 10/28 needs filling.
- 11/04 needs filling.
- 11/11 needs filling.

¹Kiran is not a student

Finn McGlade (UCSD)

Representation of p-adic GL(n)

The *p*-adic numbers

Definition

Take $p \geq 2$ prime. The *p*-adic numbers \mathbb{Q}_p is the field of fractions of

$$\mathbb{Z}_p := \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}.$$

topologized so that $\{p^n \mathbb{Z}_p\}_{n \in \mathbb{Z}}$ is a neighbourhood basis of 0.

A *p*-adic number $a \in \mathbb{Q}_p$ is a *p*-adic decimal expansion

$$a_{-\ell}a_{-\ell+1}\cdots a_0.a_1\cdots = a_{-\ell}p^{-\ell} + a_{-\ell+1}p^{-\ell+1} + \cdots + a_0p^0 + a_1p^1 + \cdots$$

where $\ell \in \mathbb{Z}_{\geq 0}$ and $a_{-\ell}, a_{-\ell+1}, \dots \{0, 1, \dots, p-1\}$. Compare this with *p*-adic decimal expansion of $b \in \mathbb{R}$,

$$\pm b_{\ell}b_{\ell-1}\cdots b_0.b_{-1}\cdots = \pm (b_{\ell}p^{\ell} + b_{\ell-1}p^{\ell-1} + \cdots + b_0p^0 + b_{-1}p^{-1} + \cdots)$$

where $\ell \in \mathbb{Z}_{>0}$ and $b_{\ell}, b_{\ell-1}, \dots \{0, 1, \dots, p-1\}$. Finn McGlade (UCSD) Representation of p-adic GL(n)October, 2020, San Diego

3 / 20

p-adic Arithmetic

In \mathbb{Q}_p the addition and multiplication of *p*-adic decimal expansions

 $a_{-\ell}a_{-\ell+1}\cdots a_0.a_1\cdots$

is similar to in \mathbb{R} , except the "carry operations" move left to right.

Example		
$ \begin{array}{c} \ln \mathbb{Q}_{3}, & 1.000 \dots \\ & + 2.222 \dots \\ \hline & 0.000 \dots \end{array} $	vhereas in base 3 real arithmetic	

This is no small difference, $\operatorname{Gal}(\overline{\mathbb{R}}/\mathbb{R}) = \mathbb{Z}/2\mathbb{Z}$ whereas $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is a huge infinite group with many non-abelian quotients.

Example (Jones-Roberts [JR06])

The number N_d of isomorphism classes of degree *d*-extensions of \mathbb{Q}_2 .

d	2	3	4	5	7	8	10	13	15	16	17	21	24	25
N_d	7	2	59	2	2	1823	158	2	4	IIIa	2	6	- !!!	3

^athe data base crashes

Smooth Representations of $GL_n(\mathbb{Q}_p)$

Goal

The representation theory of $GL_n(\mathbb{Q}_p)$ gives arithmetic information of \mathbb{Q}_p . We'll use $GL_p(\mathbb{Q}_p)$ to study examples of non-abelian degree $p^3(p+1)$ extensions of \mathbb{Q}_p .

All representations are complex, V is always a complex vector space.

Definition

Let (π, V) be a complex $\operatorname{GL}_n(\mathbb{Q}_p)$ -representation. The representation (π, V) is *smooth* if (π, V) satisfies: if $v \in V$ then

 $\operatorname{Stab}_G(v) := \{g \in G \colon \pi(g)v = v\}$ is an open subgroup.

Often, this condition is naturally true of the representations (π, V) occuring in the wild. The situation is a little funny because we're studying representations of the *p*-adic object $\operatorname{GL}_n(\mathbb{Q}_p)$ on a complex vectorspace V.

- There is no naive definition of " (π,V) algebraic" or " (π,V) rational".
- If V is smooth and irreducible such that $\dim V > 1$ then $\dim V = \infty_{q_0}$

Principal Series for GL_2 .

Let
$$B = \left\{ \begin{pmatrix} t_1 & x \\ 0 & t_2 \end{pmatrix} : t_1, t_2 \in \mathbb{Q}_p^{\times}, x \in \mathbb{Q}_p \right\}$$
 and suppose $\mu : B \to \mathbb{C}^{\times}$ is a smooth character.

Define

$$\mathcal{B}_{\mu} = \left\{ \begin{array}{c} \text{locally constant functions} \\ f: \operatorname{GL}_{2}(\mathbb{Q}_{p}) \to \mathbb{C} \end{array} : \begin{array}{c} \text{if } x \in \operatorname{GL}_{2}(\mathbb{Q}_{p}) \text{ and } b \in B \\ \text{then } f(bx) = \mu(b)f(x) \end{array} \right\}$$

Then \mathcal{B}_{μ} is a smooth $\operatorname{GL}_2(\mathbb{Q}_p)$ -representation ρ_{μ} via right translations i.e. if $g, x \in \operatorname{GL}_2(\mathbb{Q}_p)$ and $f \in \mathcal{B}_{\mu}$ then

$$\rho_{\mu}(g)f(x) = f(xg).$$

With minor tweaking, smooth induction $\operatorname{Ind}_{H}^{\operatorname{GL}_{n}(\mathbb{Q}_{p})}(\chi)$ makes sense for $H \leq \operatorname{GL}_{n}(\mathbb{Q}_{p})$ any closed subgroup and $\chi \colon H \to \mathbb{C}$ a smooth character. But

$$(\rho_{\mu}, \mathcal{B}_{\mu}) = \operatorname{Ind}_{B}^{\operatorname{GL}_{2}(\mathbb{Q}_{p})}(\mu)$$

is particularly special, in part because $B \setminus GL_2(\mathbb{Q}_p)$ is compact.

Parabolic Induction.

 $P \leq \operatorname{GL}_n(\mathbb{Q}_p)$ a closed subgroup such that $P \setminus \operatorname{GL}_n(\mathbb{Q}_p)$ is compact.

Definition

Let (σ, W) be a smooth representation of P. The parabolic induction $\operatorname{Ind}_{P}^{\operatorname{GL}_{n}(\mathbb{Q}_{p})}\sigma$ is the $\operatorname{GL}_{n}(\mathbb{Q}_{p})$ -representation (X, Σ) where

 $X = \left\{ \begin{array}{cc} \text{locally constant functions} \\ f: \operatorname{GL}_n(\mathbb{Q}_p) \to W \end{array} : \begin{array}{c} \text{if } x \in \operatorname{GL}_n(\mathbb{Q}_p) \text{ and } p \in P \\ \text{then } f(px) = \sigma(p)f(x) \end{array} \right\}$

and $\Sigma \colon \operatorname{GL}_n(\mathbb{Q}_p) \to \operatorname{GL}(X)$ is given by right translations.

Let
$$P = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix} \right\} = \left\{ \begin{pmatrix} \operatorname{GL}_2(\mathbb{Q}_p) & \mathbb{Q}_p \\ 0 & \mathbb{Q}_p^{\times} \\ 0 & \mathbb{Q}_p^{\times} \end{pmatrix} \right\} \simeq \mathbb{Q}_p^2 \rtimes (\operatorname{GL}_2(\mathbb{Q}_p) \times \mathbb{Q}_p^{\times}).$$

 $P\backslash G$ is compact and if $\mu\colon B\to \mathbb{C}^{\times}$ is a smooth character then

 $\sigma \colon P \to \operatorname{GL}_2(\mathbb{Q}_p) \xrightarrow{\rho_\mu} \operatorname{GL}(\mathcal{B}_\mu) \quad \text{is a smooth representation of } P$

and $\operatorname{Ind}_P^{\operatorname{GL}_3(\mathbb{Q}_p)}\sigma$ is smooth $\operatorname{GL}_3(\mathbb{Q}_p)$ -representation.

Finn McGlade (UCSD)	Representation of p -adic $GL(n)$	October, 2020, San Diego	7 / 20
---------------------	-------------------------------------	--------------------------	--------

Parabolic Induction.

 $P \leq \operatorname{GL}_n(\mathbb{Q}_p)$ a closed subgroup such that $P \setminus \operatorname{GL}_n(\mathbb{Q}_p)$ is compact.

Definition

Let (σ, W) be a smooth representation of P. The parabolic induction $\operatorname{Ind}_{P}^{\operatorname{GL}_{n}(\mathbb{Q}_{p})}\sigma$ is the $\operatorname{GL}_{n}(\mathbb{Q}_{p})$ -representation (X, Σ) where

 $X = \left\{ \begin{array}{l} \text{locally constant functions} \\ f: \operatorname{GL}_n(\mathbb{Q}_p) \to W \end{array} : \begin{array}{l} \text{if } x \in \operatorname{GL}_n(\mathbb{Q}_p) \text{ and } p \in P \\ \text{then } f(px) = \sigma(p)f(x) \end{array} \right\}$

and $\Sigma \colon \operatorname{GL}_n(\mathbb{Q}_p) \to \operatorname{GL}(X)$ is given by right translations.

Question

Let (π, V) be an irreducible smooth representation of $\operatorname{GL}_n(\mathbb{Q}_p)$. Does there exists a proper parabolic subgroup $P < \operatorname{GL}_n(\mathbb{Q}_p)$ and a smooth P-representation (σ, W) such that π is isomorphic to a subrepresentation of $\operatorname{Ind}_P^{\operatorname{GL}_n(\mathbb{Q}_p)}\sigma$? Is every irreducible smooth (π, V) isomorphic to a subrepresentation of a non-trivial parabolic induction $\operatorname{Ind}_P^{\operatorname{GL}_n(\mathbb{Q}_p)}\sigma$?

Matrix Coefficients.

Let (π, V) be a smooth representation of GL_n . Write (π^*, V^*) for the $GL_n(\mathbb{Q}_p)$ representation on $V^* = Hom_{\mathbb{C}}(V, \mathbb{C})$ with

 $\langle \pi^*(g)\lambda, v \rangle := \langle \lambda, \pi(g^{-1})v \rangle \qquad v \in V, \quad \lambda \in V^* \quad g \in \mathrm{GL}_n(\mathbb{Q}_p).$

The smooth dual (π^{\vee}, V^{\vee}) of π is the $\operatorname{GL}_n(\mathbb{Q}_p)$ -representation

$$V^{\vee} = \bigcup_{\substack{U \leq \operatorname{GL}_n(\mathbb{Q}_n) \text{ compact open}}} (V^*)^U$$

where
$$(V^*)^U = \{\lambda \in V^* : \text{ if } u \in U \text{ then } \pi^*(u)\lambda = \lambda\}.$$

Theorem (Harish-Chandra [BZ76])

Let (π, V) be an irreducible smooth representation of $GL_n(\mathbb{Q}_p)$. TFAE.

• There does not exists a pair $(P, (\sigma, W))$ consisting of a proper parabolic subgroup $P < GL_n(\mathbb{Q}_p)$ and smooth *P*-representation (σ, V) such that (π, V) is isomorphic to a subrepresentation of $\operatorname{Ind}_P^{GL_n(\mathbb{Q}_p)}(\sigma)$.

• If $v \in V$ and $\lambda \in V^{\vee}$ then the function $\gamma_{v \otimes \lambda} \colon \operatorname{GL}_n(\mathbb{Q}_p) \to \mathbb{C}$, $g \mapsto \langle \pi(g)v, \lambda \rangle$ is compactly supported modulo the center Z of $\operatorname{GL}_n(\mathbb{Q}_p)$.

Supercuspidal Representations

Theorem (Harish-Chandra [BZ76])

Let (π, V) be an irreducible smooth representation of $\operatorname{GL}_n(\mathbb{Q}_p)$. TFAE. • There does not exists a pair $(P, (\sigma, W))$ consisting of a proper parabolic subgroup $P < \operatorname{GL}_n(\mathbb{Q}_p)$ and smooth P-representation (σ, V) such that (π, V) is isomorphic to a subrepresentation of $\operatorname{Ind}_P^{\operatorname{GL}_n(\mathbb{Q}_p)}(\sigma)$. • If $v \in V$ and $\lambda \in V^{\vee}$ then the function $\gamma_{v \otimes \lambda} \colon \operatorname{GL}_n(\mathbb{Q}_p) \to \mathbb{C}$, $g \mapsto \langle \pi(g)v, \lambda \rangle$ is compactly supported modulo the center Z of $\operatorname{GL}_n(\mathbb{Q}_p)$.

Definition

An irreducible smooth $\operatorname{GL}_n(\mathbb{Q}_p)$ -representation (π, V) is *supercuspidal* if the "matrix coefficients" $\{\gamma_{v\otimes\lambda}\colon (v,\lambda)\in V\times V^{\vee}\}$ of π are compactly supported modulo the center Z of $\operatorname{GL}_n(\mathbb{Q}_p)$.

There are a lot of supercuspidal representation of $\operatorname{GL}_n(\mathbb{Q}_p)$. Supercuspidal representation have an arithmetic interpretation, known as the Local Langlands Correspondence for $\operatorname{GL}_n(\mathbb{Q}_p)$.

The Local Langlands Correspondence for $GL_n(\mathbb{Q}_p)$.

Definition

An irreducible smooth $\operatorname{GL}_n(\mathbb{Q}_p)$ -representation (π, V) is *supercuspidal* if the "matrix coefficients" $\{\gamma_{v\otimes\lambda} \colon (v,\lambda) \in V \times V^{\vee}\}$ of π are compactly supported modulo the center Z of $\operatorname{GL}_n(\mathbb{Q}_p)$.

Theorem (Harris-Taylor, Henniart)

(Roughly), there is a canonical bijection $\pi \mapsto \rho_{\pi}$

$$\left\{\begin{array}{c} \text{isomorphism classes of} \\ \text{supercuspidal representations} \\ \text{of } \operatorname{GL}_n(\mathbb{Q}_p) \end{array}\right\} \xrightarrow{\sim} \left\{\begin{array}{c} \text{continuous} \\ n\text{-dimensional irreducible} \\ \mathbb{C}\text{-representations of} \\ \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \text{ up to equivalence.} \end{array}\right.$$

If (π, V) a supercupsidal of $\operatorname{GL}_n(\mathbb{Q}_p)$, then there is an continuous homomorphism $\rho_{\pi} \colon \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \operatorname{GL}_n(\mathbb{C})$, well defined up to conjugacy on $\operatorname{GL}_n(\mathbb{C})$. In particular, there is a finite extension E_{π}/\mathbb{Q}_p such that $\operatorname{ker}(\rho_{\pi}) = \operatorname{Gal}(\overline{\mathbb{Q}}_p/E_{\pi})$ and ρ_{π} embedds $\operatorname{Gal}(E_{\pi}/\mathbb{Q}_p)$ into $\operatorname{GL}_n(\mathbb{C})$ as a finite subgroup.

The Local Langlands Correspondence for $GL_n(\mathbb{Q}_p)$.

Theorem (Harris-Taylor, Henniart)

(Roughly), there is a canonical bijection $\pi \mapsto \rho_{\pi}$

isomorphism classes of
supercuspidal representations
of
$$\operatorname{GL}_n(\mathbb{Q}_p)$$
 $\xrightarrow{\sim}$ $\left\{ \begin{array}{c} \operatorname{continuous} \\ n \operatorname{-dimensional} irreducible \\ \mathbb{C}\operatorname{-representations} of \\ \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \text{ up to equivalence.} \end{array} \right\}$

If (π, V) a supercupsidal of $\operatorname{GL}_n(\mathbb{Q}_p)$, then there is a finite extension E_π/\mathbb{Q}_p such that $\operatorname{ker}(\rho_\pi) = \operatorname{Gal}(\overline{\mathbb{Q}}_p/E_\pi)$ and ρ_π embedds $\operatorname{Gal}(E_\pi/\mathbb{Q}_p)$ into $\operatorname{GL}_n(\mathbb{C})$ as a finite subgroup (well defined up to conjugacy).

- 1. Define p-1 finite subgroups G_1, \ldots, G_{p-1} of $\operatorname{GL}_p(\mathbb{C})$.
- 2. Describe p-1 supercuspidal representations π_1, \ldots, π_{p-1} of $\operatorname{GL}_p(\mathbb{Q}_p)$.
- 3. Quote a theorem of Bushnell and Henniart saying $\operatorname{Gal}(E_{\pi_i}/\mathbb{Q}_p) = G_i$.

We cannot describe the fields E_{π_i} themselves, only the Galois groups G_i and their images under ρ_{π_i} in $\operatorname{GL}_p(\mathbb{C})$. We also have good information of the "ramification filtration of $\operatorname{Gal}(E_{\pi_i}/\mathbb{Q}_p)$ ". Assume $p \neq 2_{2}$

The Heisenberg Group

The Heisenberg group $H(p) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{F}_p \right\}$ has center $\mathbb{F}_p \simeq \left\{ \begin{pmatrix} 1 & 0 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$ which fits into an extension $0 \to \mathbb{F}_p \to H(p) \to \mathbb{F}_p^2 \to 0$.

Proposition (Classical, Chan [Cha])

- (i) The SL₂(𝔽_p) action SL₂(𝔽_p) → Aut_{𝔽p}(𝔽_p²) lifts uniquely to an action SL₂(𝔽_p) → Aut(*H*(*p*)) such that SL₂(𝔽_p) fixes the center 𝔽_p ⊆ *H*(*p*).
 (ii) There is a natural bijection due × 𝒯_p.
- (ii) There is a natural bijection $\psi\mapsto\pi_\psi$

 $\left\{\begin{array}{l} \textit{non-trivial character} \\ \psi \colon \mathbb{F}_p \to \mathbb{C}^{\times} \end{array}\right\} \xrightarrow{\sim} \left\{\begin{array}{l} \textit{isom. classes of } p\textit{-dimensional} \\ \textit{irreducible } \mathbb{C}\textit{-representations of } H(p) \end{array}\right\}$

where π_{ψ} is the representation of H(p) on the \mathbb{C} -vector space $L^2(\mathbb{F}_p)$ of set maps $f : \mathbb{F}_p \to \mathbb{C}$ with

$$\pi_{\psi} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} f(x) = \psi(-bx+c)f(x-a)$$

for $x, a, b, c \in \mathbb{F}_p$ and $f \in L^2(\mathbb{F}_p)$.

The Weil Representation

Let $\psi \colon \mathbb{F}_p \to \mathbb{C}^{\times}$ be non-trivial and write $\pi_{\psi} \colon H(p) \to \mathrm{GL}(L^2(\mathbb{F}_p)) \simeq \mathrm{GL}_p(\mathbb{C})$. Given $g \in \mathrm{SL}_2(\mathbb{F}_p)$, define

$$\pi_{\psi} \circ g \colon H(p) \to \operatorname{GL}(L^2(\mathbb{F}_p)), \quad h \mapsto \pi_{\psi}(g \cdot h).$$

Then $\pi_{\psi} \circ g$ is *p*-dimensional irreducible with central character ψ . So

 $\pi_{\psi} \simeq \pi_{\psi} \circ g$ as H(p)-representation on $L^2(\mathbb{F}_p)$.

By Schur's lemma, $g \in SL_2(\mathbb{F}_p)$ determines an element $W_{\psi}(g) \in PGL(L^2(\mathbb{F}_p))$.

Proposition (Classical, Chan [Cha])

Let $\psi \colon \mathbb{F}_p \to \mathbb{C}^{\times}$ be non-trivial.

(i) The projective \mathbb{C} -representation $W_{\psi} \colon \mathrm{SL}_2(\mathbb{F}_p) \to \mathrm{PGL}(L^2(\mathbb{F}_p))$ lifts uniquely to the Weil-representation

$$\widetilde{W}_{\psi} \colon \mathrm{SL}_2(\mathbb{F}_p) \to \mathrm{GL}(L^2(\mathbb{F}_p)) \simeq \mathrm{GL}_p(\mathbb{C})$$

such that trivial central character.

The groups $G_1, \ldots, G_{p-1} \leq \operatorname{GL}_p(\mathbb{C})$

The p-1 non-trivial character $\psi \colon \mathbb{F}_p \to \mathbb{C}^{\times}$ are ennumerated $\psi_1, \ldots, \psi_{p-1}$.

Definition

Define $G_i \leq \operatorname{GL}_p(\mathbb{C})$ as the subgroup

$$G_i = \langle \pi_{\psi_i}(H(p)), \widetilde{W}_{\psi_i}(U) \rangle \leq \operatorname{GL}_p(L^2(\mathbb{F}_p)) \simeq \operatorname{GL}_p(\mathbb{C}).$$

where $U \in SL_2(\mathbb{F}_p)$ is a generator of the *Coxeter Torus* $(d \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times 2})$

$$T_d = \{ \begin{pmatrix} t & du \\ u & t \end{pmatrix} \in \operatorname{SL}_2(\mathbb{F}_p) \colon t, u \in \mathbb{F}_p, t^2 - du^2 = 1 \},\$$

which is cyclic of order p + 1, and well defined up to conjugacy in $SL_2(\mathbb{F}_p)$.

Proposition (Bushnell-Henniart [BH14])

 $G_i \leq \operatorname{GL}_p(\mathbb{C})$ acts irreducibly on \mathbb{C}^p , the conjugacy class of G_i in $\operatorname{GL}_p(\mathbb{C})$ depends only on ψ_i , and G_i is an extension

$$1 \to H(p) \to G_i \to \mathbb{Z}/(p+1)\mathbb{Z} \to 0.$$

Finn McGlade (UCSD)

Representation of p-adic GL(n)

October, 2020, San Diego

Affine Generic Characters

The supercuspidals π_i such that $\operatorname{Gal}(E_{\pi_i}/\mathbb{Q}_p) \simeq G_i$ are induced off

$$I^{+} = \left\{ \begin{pmatrix} {}^{1+pa_{1}} & {}^{b_{ij}} \\ {}^{pc_{ij}} & \ddots & {}^{pc_{ij}} \end{pmatrix} \in \operatorname{GL}_{p}(\mathbb{Q}_{p}) \mid a_{\ell}, b_{ij}, c_{ji} \in \mathbb{Z}_{p} \right\}.$$

For $\psi_i\colon \mathbb{F}_p\to \mathbb{C}^{ imes}$ a non-trivial additive character define $\chi_i\colon I^+\to \mathbb{C}^{ imes}$ by

$$\chi_i \begin{pmatrix} 1 + pa_1 & & b_{ij} \\ & 1 + pa_2 & & b_{ij} \\ & & \ddots & \\ & & pc_{ij} & & \ddots & \\ & & & 1 + pa_n \end{pmatrix} = \psi_i(b_{1,2} + \dots + b_{p-1,p} + c_{p,1}).$$

where $b_{1,2} + \ldots + b_{p-1,p} + c_{p,1} \in \mathbb{Z}_p$ is taken modulo p.

Theorem (Reeder [GR10])

Extend χ_i trivially to the subgroup ZI^+ where Z denotes the center of $\operatorname{GL}_p(\mathbb{Q}_p)$. The compactly induced representation

$$\pi_i := \mathsf{c-Ind}_{ZI^+}^{\mathrm{GL}_p(\mathbb{Q}_p)} \chi_i$$
 is irreducible and supercuspidal.

and $\pi_i \not\simeq \pi_j$ for $i \neq j$.

Simple Supercuspidals

Theorem (Reeder [GR10])

Extend χ_i trivially to the subgroup ZI^+ where Z denotes the center of $\operatorname{GL}_p(\mathbb{Q}_p)$. The compactly induced representation

 $\pi_i := \mathsf{c-Ind}_{ZI^+}^{\operatorname{GL}_p(\mathbb{Q}_p)} \chi_i \quad \text{is irreducible and supercuspidal.}$

 $\operatorname{c-Ind}_{ZI^+}^{\operatorname{GL}_p(\mathbb{Q}_p)}\chi_i = \left\{ \begin{array}{cc} \operatorname{locally \ constant \ functions} & \operatorname{if } x \in \operatorname{GL}_n(\mathbb{Q}_p) \text{ and } k \in ZI^+ \text{ then} \\ f \colon \operatorname{GL}_p(\mathbb{Q}_p) \to \mathbb{C} & : \begin{array}{c} \operatorname{fi} x \in \operatorname{GL}_n(\mathbb{Q}_p) \text{ and } k \in ZI^+ \text{ then} \\ f(kx) = \chi_i(k)f(x) \text{ and } f \text{ is \ compactly} \\ \text{supported \ modulo \ } ZI^+ \end{array} \right\}$

with $\operatorname{GL}_p(\mathbb{Q}_p)$ acting by right translations.

Remark

 (σ,W) an irreducible smooth $ZI^+\text{-}\mathrm{representation}.$ By Harish Chandra's result

 $\operatorname{c-Ind}_{ZI^+}^{\operatorname{GL}_n(\mathbb{Q}_p)}\sigma \text{ is irreducible } \Longrightarrow \operatorname{c-Ind}_{ZI^+}^{\operatorname{GL}_n(\mathbb{Q}_p)}\sigma \text{ is supercuspidal.}$

Compact induction is the main tool for constructing supercuspidal representations.

 Finn McGlade
 (UCSD)
 Representation of p-adic GL(n) October, 2020, San Diego
 17 / 20

The Langlands Correspondence for π_i

Theorem (Bushnell-Henniart [BH14])

Let $\psi_i \colon \mathbb{F}_p \to \mathbb{C}^{\times}$ be a non-trivial character. Write

$$\pi_i = \mathsf{c-Ind}_{ZI^+}^{\mathrm{GL}_p(\mathbb{Q}_p)} \chi_i$$

and

$$1 \to H(p) \to G_i \to \mathbb{Z}/(p+1)\mathbb{Z} \to 0.$$

- If ρ_{πi}: Gal(Q
 _p/Q_p) → GL_p(C) is the Langlands parameter of π_i then Im(ρ_{πi}) = G_i (up to conjugacy).
- If E_{π_i} is the kernel field of ρ_{π_i} then $\operatorname{Gal}(E_{\pi_i}/\mathbb{Q}_p) \simeq G_i$. In particular, E_{π_i}/\mathbb{Q}_p is a non-abelian Galois extension of degree $p^3(p+1)$.
- The extension E_{πi}/Q_p is totally ramified with non-abelian wild inertia subgroup

$$\operatorname{Gal}(E_{\pi_i}/\mathbb{Q}_p)_1 \simeq H(p).$$

Finn McGlade (UCSD)

- 3

イロト イポト イヨト イヨト

References I

Colin J. Bushnell and Guy Henniart.

Langlands parameters for epipelagic representations of GL_n . Math. Ann., 358(1-2):433-463, 2014.

I. N. Bernšteĭn and A. V. Zelevinskiĭ.

Representations of the group GL(n,F), where F is a local non-Archimedean field.

Uspehi Mat. Nauk, 31(3(189)):5–70, 1976.

Charlotte Chan.

The Weil representation.

Benedict H. Gross and Mark Reeder. Arithmetic invariants of discrete Langlands parameters. *Duke Math. J.*, 154(3):431–508, 2010.

John W. Jones and David P. Roberts. A database of local fields. J. Symbolic Comput., 41(1):80–97, 2006.

October, 2020, San Diego

イロト イヨト イヨト イヨト

3