UNRAMIFIED FORCING!

J. R. SHOENFIELD

1. Introduction. The method of forcing was invented by Cohen in order to
solve some classical independence problems. As it became apparent that the method
was applicable in much more general circumstances, it was simplified and genera-
lized by set theorists. One result of these efforts is the theory of Boolean models,
discussed in the article by Scott and Solovay, part II of these Proceedings.

A feature of the Boolean approach is that the use of the ramified hierarchy of
constructible sets has disappeared. Since forcing models can be obtained from
Boolean models, it is apparent that this hierarchy is not needed for forcing models
either.

One purpose of the present article is to give a direct construction of forcing
models which does not use the ramified hierarchy. In addition, I have tried to
present a summary of some of the simplifications and generalizations of forcing
theory mentioned above. Many of these are only contained in the folk literature at
present.

[t would be an impossible task to list all the people who have contributed to
each advance in the subject. The historical notes should at least show who the
main contributors have been. The overall exposition owes much to notes by Scott
and by Silver for this institute and to lectures by Rowbottom at UCLA in the fall
of 1967. Conversations with Chang and Rowbottom have also been very helpful.

2. Background. We review here the principal facts about set theory which
we need.

We use ZF for the Zermelo-Fraenkel axiom system (extensionality, regularity,
infinity, union, replacement, and power set) and ZFC for ZF plus the axiom of
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Henceforth, we shall take model to mean transitive model, and identify a model with
its universe.

Let M be a model. To indicate that something is being considered in the model
M, we append the phrase ‘in M’ or a superscript M. Thus if ® is a sentence

* (possibly containing names of elements in M), we abbreviate ‘D is true when

interpreted in M’ to ‘® holds in M or simply Y. A cardinal in M is an element g of
M such that ‘g is a cardinal’ holds in M. We designate by w?! the element a of M
such that ®(a)", where ®(x) is the sentence of set theory saying that x is w,. Other
examples are interpreted similarly.

A class in M is a set [a:ae M & ®(a)M], where ((x) contains only symbols
from the language of ZFC and symbols for sets in M. Every set in M is a class in
M. If M is a model of ZFC, then every class in M which is included in a set in M
is itself a set in M. A functional in M is a function F such that for some formula
®(x, y) of the type described above, F(a) = b if and onlyifa, b € M and ®(a, b)M.

If M is a model of ZFC, then the image of a set in M under a functional in M is a
set in M.

LEMMA 2.1. Every transitive set M satisfying the Jollowing four conditions
is a model of ZF.

(a) we M.

(b) Every class in M which is included in a set in M is itself a set in M.

(c) For every functional F in M and every set a in M included in the domain of F,
U([F(b):b € a)) is included in a set in M.

(d) For every set ain M, S(a) N M is included in a set in M.

A relation symbol P defined in ZFC is absolute if for every model M of ZFC,
P coincides with P on arguments in M. A similar definition holds for operation
symbols (including constants, which are operation symbols with zero arguments).
Most of the symbols introduced through the development of ordinals are absolute
Sisanexception. For details, see [9] or [10]. If Fis absolute, then Ftakes elements
of M into elements of M (since F does). The absoluteness of ‘is an ordinal’ implies
that the ordinals in M are the real ordinals which belong to M.

The axiom of constructibility [5] states that every set is constructible. It implies
that there is a definable well-ordering of the universe and that the GCH holds. If
M is a model of ZFC, the constructible sets in M form a model of ZFC plus the
axiom of constructibility. The canonical function mapping the ordinals onto the
constructible sets is absolute; so the constructible sets in a model M of ZFC are
the images under this function of the ordinals in M. Thus if M and N have the
same ordinals, then they have the same constructible sets.

3. Notions of forcing. Suppose that M is a model of ZFC, and that a, b € M.
We wish to extend M to a model N in which there is a mapping F of a onto b.
To avoid obvious difficulties, we suppose that a is infinite and b 0.

Let C be the set of all mappings form a finite subset of a into 6. Then Ce M
by absoluteness. The set G of all finite subsets of F will be a subset of C; but it will
not necessarily be in M. Our idea is first to select G, and then use G to build M.
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no C-generic set over M exists. Thus the requirement of countability in the existence
theorem cannot be dropped.

HistoricAL NoTE. The basic ideas of this section are due to Cohen [1], [2).
The notion of a dense set is due to Solovay.

4. Themodel. Now suppose that C is a notion of forcing in2 a countable model
M of ZFC and that G is C-generic over M. We are going to construct an extension
of M containing G.

We shall first define a structure which has universe M but has a new membership
relation €; defined by

ac;be (3peG)la,p)eb).
(Here and in what follows, a, b, ¢, and d represent elements of M.) We then use

the collapsing technique to convert (M, €} into a transitive model. We first note
that

4.1) a€,;b—aeRa(b)
and hence
4.2) ac,b—rk(a) < rk(b).

We then define
K;(b) = [Ky(a):a g b).

By (4.2), this is a legitimate definition by induction on rk(b). Finally, we define
M|[G] = [K (a):ae M).

PRINCIPAL THEOREM. Let M be a countable model of ZFC; C a notion of
Sforcing in M; G a set which is C-generic over M. Then M[G) is a countable model
of ZFC which includes M and contains G; and it is the smallest such model.

The proof of the fundamental theorem will be given in this and the next two
sections. Throughout the rest of the paper, M, C, and G are assumed to satisfy
the hypotheses of the fundamental theorem unless otherwise indicated. We shall
write g for K (a).

We begin with some simple observations. From the definition of Af[G] and
the countability of M, we see that M[G] is countable and transitive. Now define

b=[,1):aeb)

by induction on rk(b). This definition can be given in M; so the mapping from
atodisa f'unctional in M. In particular, @ € M. An easy induction (using (G1))
shows that K;(b) = b; so M < M[G]. Now set (with an abuse of notation)

G=[p,prpeCl.
Then G € M and K,(G) = G. Hence G € M[G). Insummary, M[G]is a countable

* A notion of forcing C is in a model M if both the set C and the relation < arein M.
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pF* a # b by induction on max (rk(a), rk(b)). We may then use (c) to define
pIF*a = b, (a) to define plF*aeb, and (c) to define plF*aé¢b. We can then
prove (b). This defines p IF* ® for atomic . We then use (c), (d) and (e) to define
p IF* @ for all ® by induction on the length of ®.

[t is trivial to prove the definability lemma for IF* by induction on the length
of O(x,,...,x,) (noting that the quantifiers in (a)~(e) vary through M or through
the set Cin M). Of course the definition of the class [(p, a, b) :p IF* a £ b] will be
by transfinite induction in M as described above,

We prove the other two lemmas by proving them for the sentences on the left of
(a)-(e) under the assumption that they are true for the sentences on the right;
this is seen to be a valid method of proof as above. The extension lemma is quite
trivial; so we consider only the truth lemma.

We first show that if the truth lemma holds for @, then

(5.2) acgb& tp 0 (3p € G)(3q = p)({a, gEb&pIH* D),

For if the left side holds, there are g, r € Gsuch that (a,g) € band r IF* ®, Choos-
ing a common extension p ofgand rin G by (G3), we have p IF* @ by the extension
lemma. Conversely, let the right side of (5.2) hold for p and ¢. Then F, @ by the
truth lemma. Also q € G by (G2); soaegb.

Now we turn to the cases of the truth lemma.

(a) By the definition of 4, F,aeb is equivalent to Ic(c ey b & Fga = c).
By the hypothesis and (5.2), this is equivalent to

de(3p € G)(3Ag = p)((e, PEb&pIH*a=)
and hence to (Ip € G)(p IH* a € b).

(b) Clearly kg a # bif and only if either de(cega& bye¢b)oric(ceyb &
Fg ¢ ¢ a). By the hypothesis and (5.2), this is equivalent to
3c(3p e G)3q9 Z p)({c,q) €a &pIH* ¢ ¢ b)
V3c(3pe G)3q = p)({c,q) e b &plt*c¢a)
and hence to (3p € G)(p IF* a = b).

(c) By hypothesis, F, = ® if and only if =1(3p € G)(p IF* ®). Hence we must
prove that exactly one of (Ip e G)(plH* @) and (Ip e G)(p IF* = @) holds. To
show that at least one holds, it will suffice by (G4) to show that D = [p:pIF* @ or
pF* —1 ®Jisadensesetin M. Itisin M by the definability lemma; so we must show
every p has an extension in D. But either p has an extension ¢ such that g IF* @
and hence g€ D, or p IF* = ® and hence p itself is in D.

Now suppose there are p, g € G such that pIF* @ and g IF* = @. By (G2), p
and ¢ have a common extension r; and by the extension lemma, r IF* ®. This
contradicts g IF* — O,

We leave the easy proofs of (d) and (e) to the reader.

Now we prove (5.1). Suppose pIt* = 9 ®. If G is generic and p €@,
then t; =1 =1 @ by the truth lemma; so F¢®. Thus pIF®. Now suppose
S(pIF* 1 3 ®). Thengq IF* — @ for someq = p. Choose a generic G such that
g € G. By the truth lemma, ; =1 ®; and by (G2), pe G. Hence ~1(p IF D).
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We now show that every element x of U([F(h):b € @) has a name in d; in view
of Lemma 6.2, this will complete our proof. We have v € F(b) with b € @; and we
may suppose that b €, a. Letting ¢ be a name of F(h), we have (b, ¢); so
some p € G forces P(b, ¢). Hence for some ¢’ € d, pIF d(h, ¢’). Then F,D(b, ¢');
so F(b) = ¢'. Thus x€¢’; whence x = a’ with @’ &, ¢’ and hence a’ € Ra(c’).
Since ¢’ € d and d is transitive, a’ € d as required.

Finally, we prove that (d) holds. Letae M[G] and let b € S(@) N M[G)]. By
Lemma 6.1, b has a name ¢ such that ¢ < Ra(a) x Cand hence ¢ € S¥(Ra(a) x C).
The desired result now follows from Lemma 6.2. Thus M [G] is a model of ZF.

LEMMA 6.3.  If N is a model of ZF which includes M and contains G, then there
is a functional in N whose restriction to M is K.

Proor. We define (in V)
XE* v (Ip e G)(x, pyey), K*(y) = [K¥(x):x e* y]

(using induction on rk(y)). It is easy to see (using the transitivity of M) that €* and
K* agree with €, and K, for arguments in M.

It follows from the lemma that K, (a) € N for all a € M, so that M[G] < N.
Thus M[G] is even the smallest model of ZF including M and containing G.
Moreover, we can apply Lemma 6.3 to M[G]. We obtain a function K in M[G]
whose restriction to M is K;.

Now let @ € M[G]. Then there is a mapping of an ordinal onto Ra(a) which
is in M and hence in M[G). Composing K with this mapping, we get in M[G] a
mapping from an ordinal onto

[K(x):x € Ra(a)] = [h:b € Ra(a)).

But by (4.1), this set includes 4. Thus in M[G], the following holds: for every x,
there is a mapping from an ordinal onto a set including x. This implies that the
axiom of choice holds in M[G]. We have thus completed the proof of the funda-
mental theorem.

HisTorRICAL NOTE. Most of the ideas of this section are due to Cohen. The
proof that the power set axiom holds in M[G] is essentially due to Solovay; it is
simpler than Cohen’s proof.

7. The axiom of constructibility. To make the best use of the fundamental
theorem, we need information about the relation between M and M[G)]. The
following simple result is often useful.

LEMMA 7.1. M and M[G) have the same ordinals.

PROOF. Since M < M[G], we need only show that every ordinal « in M[G] is
in M. A simple induction shows that rk(a) < rk(a) for all a. Taking a to be a
name of «, & = rk(«) < rk(a). Since rk is absolute, rk(a) € M; so « € M by the
transitivity of M.
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ProbuUCT THEOREM. Let C, and C, be notions of forcing in M. If G, is C;-
generic over M and G, is Cy-generic over M[G,], then G, X G, is (Cy X C,)-generic
over M, and M[G, X G,] = M[G,, G,). Every set which is (C; X C,)-generic over
M is obtained in this way.

Proor. It is easy to verify (G1), (G2) and (G3) for G, X G,. Let D be a
(C, X C,)-dense set in M. We must show that (G, X Gy) N D s 0, i.e. that
G, N D, # 0, where

D, = [p,:(3p, € G)((p1, P2) € D)).

Since D, € M[G,], it will suffice to show that D, is C,-dense.
Let ¢, € C;; we must find p, < ¢, and p, € G, such that (p,, p,) € D. In other
words, we must show G, N D, # 0, where

Dy = [p1:(3p: = ¢)((p1s p2) € D)).

Since D, € M, it suffices to show D, is C,-dense. Letq, € C;, and choose (p;, p;) =
(¢4, g2) such that (p,, p,) € D. Then p, < ¢, and p, € D,.

The equality M[G, x G,] = M[G,, G,] holds because both are the smallest
model of ZFC including M and containing G, and G,.

Now let G be (C; X C,)-generic over M, and let G, and G, be the projections
of G on C, and C, respectively. Clearly G = G, x G,. Toprove G = G, X G, let
(p1, p2) € Gy X G,. For some ¢, and ¢s, (p1,92), (41, p2) € G. Hence they have a
common extension {r,, r,) in G. Since (ry, rs) < (py, p2), We have (py, p.) € G.

The verification of (G1), (G2), and (G3) for G, and G, is easy. To verify (G4)
for G,, let D, be a C;-dense set in M. Then D, x C, is a (C; X C,)-dense set in
M. Hence G N (D, x C,) #0; so Gy N D, # 0.

To verify (G4) for G,, let D, be a C,-dense setin M [G,]. Letabeaname of D,,
and let ® be the sentence of the forcing language which says that a is C,-dense.

We show that

D = [(py, p2):p1 IF ¢ — p, eal

is dense. Let (g,,¢,) be given, and choose G C,-generic over M so that g, € G,.
If KG;(a) is C,-dense, choose p, =< ¢, so that p, € K(;;(a); otherwise, let p, = ¢,.
In either case, I-G;(I) — p, € a. Hence some p, € G| forces ® — p, € a; and by
(G3) and the extension lemma, we may suppose p; = 4. Then (py, p2) = (15 q2)
and (p,, p2) € D.

Since D € M, it follows that G N D # 0. Let (p;, p,) € G N D. Since p, € G,
and p, IF ® — j, € a, we have l-ul(b — p, €a. But I-GI(D; so p, €4 = D,. But
also p, € G,; so G, N D, # 0.

COROLLARY. Let C, and C, be notions of forcing in M. Let G, be C,-generic
over M and let G, be Cy-generic over M[G,). Then G, is C,-generic over MIG,),
and M[G,, G,] = M[G,, G,].

PrROOF. By the theorem, G, X G, is (C, x:'Cz)-generic over M. Applying the
obvious isomorphism of C, x C, and C, X Cy, Gy X Gy is (C, x C,)-generic
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We assume that the reader is familiar with OD (ordinal-definable) and HOD
(hereditarily ordinal-definable) sets.* We need a slight generalization.

We say that u is OD from v,, . . ., v, if there is an a such that v,, ..., v, € V(o)
and u is definable in (V(a), €, vy, ..., v). Wesay that u is OD over w if for some
Uy, 0., 0 €w,uis OD from ey, ..., 0, w. We say that u is HOD over w if u is
OD over w and every member of v is HOD over w; this is a definition by induction
on rk(u).

The basic results about OD and HOD sets carry over to this situation. Thus
every ordinal is OD from any vy, . . ., v, and hence OD over any w. Ifuy, ..., u,
are OD from vy, . .., v, (or over w), then u(vy, ..., v,) is also (where u is a term
defined in ZFC). The class of sets HOD over w is a model of ZF (but not necessarily
of the axiom of choice). It is also clear that every member of w is OD over w.

LEMMA 9.3.  Let U be a set of automorphisms of C such that W € M, and suppose
that C is -homogeneous. Let u be OD from vy, .. ., v, in M[G], and suppose that
Uys « . . » U have U-invariant names. Thenu N M e M.

Proor. There is a formula ®(x) of the forcing language, containing names
only for v,, ..., v, and some « € M[G], such that

©.1) deues F,d(a)

for all a. Since x € M by Lemma 7.1, & is 2-invariant; so we may suppose that
every name in ®(x) is A-invariant. Then putting d for a in (9.1) and using Lemma
9.2,

acue— t0@ 11k fg(d).

Thus u "M = [a:1 IF ®(d)] is a class in M. But if § = rk(u), then u "M <
Vi) "M = VYM(B);sou N Misasetin M.

THEOREM 9.1.  Let C be homogeneous in M. If u is OD in M[G]), thenu " M €
M; ifuis HOD in M[G], then ue M.

ProoF. The first conclusion is a special case of Lemma 9.3. The second
conclusion follows easily from the first by induction on rk(u).

Now let M satisfy the axiom of constructibility, and let C = H(w, 2). Using
Theorem 9.1, the corollary to Lemma 7.1, and the fact that every constructible set
is HOD, we see that in M[G] the constructible sets coincide with the HOD sets.
As seen in §7, there is a subset of w which is nonconstructible in M[G]. Since every
member of w is HOD, it follows that this set is not OD in M[G]. From this, it
follows that there is no OD mapping from an ordinal to S(w) in M[G]; for if F
is OD, then so is every F(x).

Next let C = H(w, 2)°. Let G, be the set of ith coordinates of elements in G,
and let H = [G;:i € w]. Let N be the set of all sets which are HOD over H in
M[G). Then N is a model of ZF. We shall show that N is not a mode] of the axiom
of choice; in fact, that there is no mapping from an ordinal onto S(w) in N.

4 See the article by Myhill and Scott, these Proceedings.
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We shall now obtain some sufficient conditions for the converses to hold.

Let C be a notion of forcing, and let p,q € C. We say p and ¢ are compatible
if they have a common extension; otherwise, we say p and g are incompatible.
We say C satisfies the m-chain condition if every set of pairwise incompatible
elements in C has cardinal <m.

LEMMA 10.2  Let m be a regular cardinal in M such that C satisfies the m-chain
condition in M. Then: (a) if o € M and m = cf¥(2), then cfM (o) = cfMIG)();
every cardinal in M which is Zw is a cardinal in M[G).

ProoF. Let x(y) = z be the formula of set theory which says that x is a
function whose value at y is z. We say that y is a possible value of a at 8 if some p
forces a(f) = $. We claim that the set of possible values of a at § has cardinal
<m. For each such possible value y, let p, force a(f) = §. It will clearly suffice
toshow thatify # 0, thenp,andp,, are incompatible. Suppose they had a common
extension g. Choose a generic G’ such that g € G'. By the extension lemma, ¢
forces a(ﬂ) =7 and a(f) = 0; so by the truth lemma, Fg.a(f) =4 and
Fe-a(B) = 6. Hence y = ap) = o.

Now let « be as in (a). Let n = cf¥{¢)(a). Then n is a cardinal in M[G] and
hence in M. Let @ be a mapping from n onto a cofinal subset of «. Let b be the
set of possible values of a at ordinals <n. Clearly be M. If ¢ < nand d(s) = 7,
thensome p € G forces a(6) = #; so risa possible value of aat 0. Thus Ra(d) < b;
so b is cofinal in a. Hence cf(a) < |b| in M.

By the result above, b is, in M, the union of n sets, each having cardinal
<m. Ifn < m, then |b| < m in M (since m is regular in M). This is impossible
since m S cf(a) = |6) in M. Thus m < n; so [ Em-n=nin M. Thus
cf(e) = 1] = nin M, ie. cfV(a) S cfYI%) (). Using (10.1), we get equality.

Now let n be a cardinal in M such that m < n; we show by induction on n
that n is a cardinal in M[G]. If n is regular in M, then cfY(n1) = u = m; so
cfHGI(n) = cf¥(n) = n by (a); so n is a cardinal in M[G]. If n is singular in
M, then n is the supremum of the set of cardinals p in M such that m < p < n.
Since these are all cardinals in M[G] and the supremum of a set of cardinals is a
cardinal, nis a cardinal in M[G].

CoroLLARY. If C satisfies the R -chain condition in M, then cfM = cfMIG),
and M and M[G] have the same cardinals.

We wish to apply these results to H, (4, B). We note first that for each p < m
(including finite p), there are at most |A4|® subsets D of A such that |D| = p, and
that for each such D, there are | B[’ mappings from D to B . Thus

|H,.(4, B)| £ X |A]° - |B°;
p<m
SO

(10.2) |H,.(4, B)| = (4] - |B])*.
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ProoF.  Clearly (*a) < (%a)M(). Now let b € (*a)M(6), Let d(x, y) be
Iz(zed & (z,y) e b) — (x,yyeb;

and for each 8 < «, let )
Dy = [p:3c(p Ik D, A)].

Then Dy is a section in M. We use Lemma 10.4 to see that it is dense. Let G’
be generic. Then forsomec e a, . ®(¢é, f); so by the truth lemma, Dy, NG #0.
By Lemma 10.5, D = ;., D, is dense. Hence there is a qeGND. If
q - ®(¢, B),then ¢ = b(B). Hence b(B) is the unique ¢ such that g Ik O, p). It
readily follows that b € M.
The last conclusion follows by taking @ = 2 and using the correspondence
between a set and its characteristic function.

COROLLARY. Let C be m-closed in M. Then: (a) if «e M and cfM(a) < m,
then cfM (a) = cfV1¥(a); (b) every cardinalwin M which is Smisa cardinal in M [G].

PROOF. (a) If not, then cfY1%)(«) < cf¥(«) < m. Let f be a mapping from
cf4%)(«) onto a cofinal subset of « in M[G]. By the theorem, fe M; so
cfY16 (o) = cf¥(«), a contradiction. (b) If not, there is a mapping f from an
ordinal <n onto n in M[G]. By the theorem, fe M; and this is impossible.

We note that if we prove that M and M[G] have the same cardinals by means of
the theorems of this section, then cf = cf¥[¢). This suggests a problem: can we
choose C so that M and M[G] have the same cardinals, but cf¥ 3 cfM(61? Prikry
has shown that it is possible if there is a measurable cardinal in M.

HisToricaL NoTe. The results on m-closed notions are due to Solovay; the
remaining results are due to Cohen.

11. The continuum hypothesis. We first investigate the size of power sets in
MI[G].

Lemma 11.1. Let C satisfy the m-chain condition in M. Then for every infinite
cardinaln in M,

S| = ((CI¥y™M™.
PROOF. Forae M and « < u,let ¢ (o) = [p:pIF & €al. Then
dcn&bcn&¢,=¢,—a=Ab.

By symmetry, it suffices to show that @ < b. Let « €4. Then some peGisin
¢a(e) and hence in ¢,(B); so F,&e€b; so a€b.
It follows that

ISV < |[$,:a € M|

Now ¢, is a mapping from 1 to Q, where Q is the set of all sets [p:pIF®]. It will
thus suffice to prove |Q| < |C| in M.
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Now suppose that we have defined a constant I" in ZFC and proved in ZFC that
I'is a cardinal. We would like to show that 2% = T is consistent with ZFC. In
view of Konig’s theorem, we require that cf(I') > w is provable in ZFC. Assume
this, and take M to satisfy the axiom of constructibility and hence the GCH. From
the GCH and cf(I') > w we can prove [ = I'; so (I')¥ = 'Y, Choosing C
asin Theorem 11.1, we have 2% = I in M[G). We then have the desired result if
we can show 'Y/ = T'MIGl Recalling that M and M[G] have the same cardinals
and the same cf function, this holds if " is, say, X, or R or the first weakly
inaccessible cardinal (provided that there is a weakly inaccessible cardinal in M).

Suppose now that the GCH holds in M. If we make 2" = n in M[G], then
2P 2 n for p 2 m; so the GCH may fail in M[G] above m. We show that we
can keep the GCH below m if m is regular in M.

THEOREM 11.2. Let the GCH hold in M. Let m and n be infinite cardinals of M
such that m is regular in M and cf(n) > m in M. For a suitable choice of C,
cfY = cfMC: M and M[G) have the same cardinals; 2™ = 1 in M[G); and ¥Vp(p <
m — 2¥ = p*) holds in M[G].

PrROOF. We take C = Hjl(m x n,2). The hypotheses show that m®¥ = m
in M. Hence Lemmas 10.2 and 10.3 and the corollary to Lemma 10.6 show that
cf¥ = cfMG)and that M and M[G] have the same cardinals. The proofthat2™ = n
in M[G]is essentially as before (noting that cf(1) > m and the GCH imply n™ = n).
If p < m, S¥(p) = SMCG)(p) by Lemma 10.6. Since M and M[G] have the same
cardinals and 2° = p* in M, we see that 2° = p* in M[G].

It is not known if Theorem 11.2 holds when mt is singular in M. The simplest
unsolved problem is: is it consistent with ZFC to assume that Va(n < w — 28» =
X,.1)and 2% == X 7

HistoriCAL NOTE. Theorem I1.1 is due to Cohen; Theorem 11.2 is due to

Solovay.

12. Forcing with classes. So far we have assumed that C is a set in M. Some-
times we can construct forcing models when C is merely a class in M. Since the
general situation has not been investigated very thoroughly, we shall consider only
a specific problem.

This problem is a generalization of that in the last section. Suppose that H
is a mapping from the set of infinite cardinals of M to itself which is a functional
in M. We want to choose C so that M and M[G] have the same cardinals, and so
that for every infinite cardinal m in M, 2" = H(m) in M[G].

We must clearly have

(12.1) m = n— H(m) < H(n).
Moreover

(12.2) m < cf(H(m))
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It follows that
(12.4) GnNnC, =G,

Noting that C is the union of the C,,, we may define A(b) in M by induction on
rk(b) as follows: A(b) is the smallest m such that A(a) = m for all « € Ra(b) and
p € C,, for all p e Do(b). We prove by induction on rk(b) that

(12.5) A(b) = m — Kp(b) = K, (b).

m
If a, p) € b, then A(a) = A(b) < m, so K(a) = K, (a) by induction hypothesis.
Alsope C,; sope G «>peG, by (12.4). Hence K,(b) = K (b).
Now define
a™ = [, py:(b,py€a & peC,].
Again this is a functional in M. We prove

(12.6) Kg(@™) = Kg (a)

m
by induction on rk(a). By the induction hypothesis and (12.4),
Ki(@"™) = [Ku(b™):(3p e G)(b, pyea & p e Cy)]
= [Kg, (6):(3p € G,)((b, p) € )]

= K¢, (@)
An easy induction shows that
(12.7) | A@™) < m.
From (12.5) and (12.6) we obtain
(12.8) M[G] = U MI[G,].
Moreover, "
(12.9) m=n— M[G,] = M[G,]

For K¢, (a) = Kg(a'") = Kan(a‘"") by (12.6), (12.7), and (12.5).
All the C,, have the same forcing language as C. We define p Ik} @ for C,, as
before. We then set A(a, b) = max(A(a), A(b)), and define
plt*aeb if py,, i a€b,
plt¥as#b if py,, Figna#b

The definability and extension lemmas are trivial. To prove the truth lemma for,
say, a € b, we have for m = A(a, b):

tca€be t; aeb by (12.5)
—>@peCG)(placbh)
— 3pel)(p,Fyaeb)
— (ApeG)plF*aehb).
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Then {’Da} is a sequence of classes in M. Using Lemma 10.4, we see that D, is a
dense section. Hence by Lemma 12.1, there is a ¢ € G" such that

(12.11) (Va < m)(FpeCG,)(p Ygqge D,).
For a < mand p € C,, let 4, , be the set of b such that
(12.12) p YqlkIxd(&, x) - O(&, b).

Let g be a function in M whose domain is the set of («, p) in m X C,, such that
A, , # 0, and such that g((«, p)) € 4, , for each such (x, p). We show that

(12.13) S = [Ks(b), 2):(3p € G)(b = g({=, p))).

By (12.11), there is for each « < m a p € G,, such that 4, , # 0, and hence such
that g((a, p)) is defined. Hence we must show that if p € G,, and b = g({«, p)),
then K (b) = f(2). Since (12.12) holds and since pUqgeG by (12.3),
Feax®(&, x) = O(&, b). From this and (12.10), F(x) = K;(b); so f(x) = Kq(b).

Choose 1 so that m < n and A(b) < n for b € Ra(g). By (12.4) and (12.5),
(12.13) becomes

S = [Kg, (), a):(3p € G)(b = g, p))}.

Since G, € M[G,] and there is a functional in M[G,] coinciding with K, on
arguments in M, it follows that f€ M[G,]. Hence fe M[G].
Now suppose that [F(x):a < m] < K (a); we want to show that we may take

n = m. We modify D, to be the set of p such that

(3b € Ra(@™))[p IF Ax(x € a™ & B(&, x)) — ®(&, b)].

In proving this is dense, we have to note that every member of K,,(a™’) has a name
in Ra(@™) by (4.1). The fact that F,Ix(x€a™ & ®(«, x)) — P(a, b) yields
F(a) = K, (b) now uses (12.6). We can now suppose that every b in Ra(g) is in
Ra(a™) and hence is of the form »"™. But A(6''™) < m; so we may indeed take
n=m.

LemMMA 12.3. If ae M[G), and a # 0, then there is an m such that a € M[G,]
and a mapping f of m onto a which is in M[G,,].

ProoOF. Choose n by 12.8 so that d € M[G,). Choose m so that n < m and
|a] £ min M[G,). Then there is an f in M[G,] mapping m onto 4; and 4, f€
M[G,] by (12.9).

Now we verify that M [G] satisfies the conditions of Lemma 2.1. Sincew € M <
M|[G], (a) holds. Now letd@ € M[G], d # 0; and choose ntand fasin Lemma 12.3.
Suppose A is a class in M[G] such that 4 < @ and A4 # 0. Since fe M[G], it is
easy to define a functional Fin M[G] with domain m and range A. By Lemma 12.2,
Fe M[G,); so Ae M[G,] = M[G]. This proves (b). It also shows that every
subset of 4 in M[G] is in M[G,,] and hence in the power set of @ in M[G,,]. This
proves (d). .










