
1 The Razborov monotone circuit lower bound

Theorem 1 (Razborov-Alon-Boppana). Let 3 ≤ k ≤ n1/4, then the circuit

complexity for Cliquen,k is nΩ(
√
k).

Note: If k = n1/4, then we have nΩ(n1/8) ≥ 2n
1

8 . In other words, this is an
exponential lowerbound.

1.1 Parameters

Throughout we have the following parameters (not all terms have been de-
fined yet):

• n, the number of nodes in an undirected graph

•
(
n
2

)
, the number of inputs to our circuit, x{i,j}. Think of these as

answering True/False whether or not there is an edge connecting i
and j in a graph.

• k, the size of a clique

• l, the maximum size of a clique indicator

• m the maximum number of clique indicators in an approximator

• p, the number of petals in a sunflower

Definition 2. A positive test graph is a graph that is a k-clique, and no
other edges are present. A negative test graph is a graph formed by a (k−1)-
coloring adding edges between all vertices of different colors.

Our goal is to show that “too-small” monotone circuits will either assign
0 to many positie test graphs, or assign 1 to many negative test graphs.
To show this, we will work with approximations of monotone circuits. The
approximation is performed by sequentially replacing gates in an ∧ and ∨
circuit, with approximate gates ⊓ and ⊔.

Definition 3. A clique indicator ⌈X⌉ is a Boolean function given by a set
X ⊆ {1, . . . , n}, |X| ≤ l.

⌈X⌉(x1, . . . , x(n
2
)) :=

{
1 if X is a clique in this graph

0 otherwise.
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Definition 4. A is an approximator if it is a disjunction of no more than
m clique indicators.

A =
m′∨

i=1

⌈Xi⌉

for m′ ≤ m and |Xi| ≤ l.

1.2 Construction

Let C be a monotone circuit. The approximator C̃ for C is defined induc-
tively on the size of C. To define the construction, we will make use of
plucking sunflowers.

Definition 5. A sunflower is a collection of sets, z1, . . . , zp such that pair-
wise intersections are constant. In other words, there is some z0 such that
if i 6= j, then zi ∩ zj = z0. This z0 is called the center, and p is the number
of petals. To pluck a sunflower is to replace z1, . . . , zp with z0.

The construction is as follows.
Base case: if C has 0 gates, then C is just x{i,j}, so let X := {i, j}, and

C̃ is defined to be ⌈X⌉. Notice that this approximator gets the thing it is
approximating right.

Induction step (∨): In this case C = C1 ∨ C2. Let A =
∨m1

i=1⌈Xi⌉ and
B =

∨m2

i=1⌈Yi⌉ be the approximators for C1 and C2. We would like our
approximator A ⊔B to be

m1∨

i=1

⌈Xi⌉ ∨
m2∨

i=1

⌈Yi⌉.

If m1+m2 ≤ m, then this is our approximator. Otherwise, we need to pluck
sunflowers until we have no more than m clique indicators remaining.

Induction step (∧) In this case, C = C1 ∧ C2. Let A =
∨m1

i=1⌈Xi⌉ and
B =

∨m2

i=1⌈Yi⌉ be the approximators for C1 and C2, as before. We will form
A ⊓B in stages:

1. Start by considering:
m1∨

i=1

m2∨

j=1

⌈Xi⌉ ∧ ⌈Yi⌉.

2. Replace this with:
m1∨

i=1

m2∨

j=1

⌈Xi ∪ Yi⌉.
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3. Discard any ⌈Xi ∪ Yj⌉ with |Xi ∪ Yj | > l.

4. There are up to m2 many clique indicators left, so repeatedly pluck
sunflowers until fewer than m are left.

In order to use the above construction, we need a guarantee that sun-
flowers exist. This is achieved by the next lemma.

Lemma 6 (Sunflower Lemma). Let p ≥ 2. Suppose Z is a collection of sets
of size no bigger than l. If |Z| > (p − 1)ll!, then Z contains a sunflower,
z1, . . . , zp ∈ Z with p petals.

Proof. We induct on l.
For l = 1, |Z| > (p−1)ll! ≥ p−1. Take z1, . . . , zp to be distinct elements

of Z. They form a sunflower with empty center.
For l ≥ 2: Choose a maximal set z1, . . . zt of Z with empty center. If

t ≥ p, then we’re done (we have a sunflower with empty center). So assume
t < p. Thus we have, ∣∣∣∣∣

t⋃

i=1

zi

∣∣∣∣∣ ≤ tl ≤ (p− 1)l.

We know that every element z ∈ Z intersects this union (because z1, . . . , zp
are maximal pairwise disjoint). So some x ∈ ⋃t

i=1 zi intersects fraction
1

(p−1)l
members of Z.

Fix some such x. Let F := {z ∈ Z : x ∈ z}. Then |F | ≥ |Z|
(p−1)l >

(p− 1)l−1(l− 1)!. Let G := {z−{x} : z ∈ F}. G satisfies the hypotheses of
lemma for l − 1, and has more than (p− 1)l−1(l − 1)! members each of size
≤ l−1. By the induction hypothesis, there is a p petal sunflower, T1, . . . , Tp

of G with center T0. But then T1 ∪ {x}, T2 ∪ {x}, . . . , Tp ∪ {x} is a p petal
sunflower in Z.

1.3 The approximators do what we want

At this point we have two subgoals:
Subgoal 1: We want to show that any monotone circuit C that is “too

small” is closely approximated by its approximator C̃ on both positive and
negative test graphs.

Subgoal 2: We want to show that any approximator either makes a lot of
errors (outputs 0) on positive test graphs, or makes a lot of errors (outputs
1) on negative test graphs.

3



Lemma 7 (Subgoal 2). Let A =
∨m′

i=1⌈Xi⌉ be an approximator. Then either
(i) A outputs 0 on all graphs or (ii) A outputs 1 (accepts) more than

(
1−

(
l
2

)

k − 1

)
(k − 1)n

negative test graphs.

Note: there are (k− 1)n many negative test graphs, because we describe
a negative test graph by a (k−1) coloring (so two negatives test graphs that
are isomorphic but colored differently are counted as distinct).

Proof. If m′ = 0, then A is the empty disjunction (in other words, 0). If
m′ ≥ 1, consider just some ⌈Xj⌉, |Xj | ≤ l. We claim any ⌈Xj⌉ accepts a
randomly chosen negative test graph with probability at least

1−
(
l
2

)

k − 1
.

In other words, that ⌈Xj⌉ rejects a negative test graph with probability less

than
(
l
2

)
/(k−1). But the probability that ⌈Xj⌉ rejects a negative test graph

is the same as the probability that there exists an x, y in Xj and x and y
are assigned the same color. The probability that any two nodes receive the
same color is 1/(k − 1), so by the union bound we have

Pr[∃x, y ∈ Xj and x,y are same color] ≤
(
l
2

)

k − 1

which completes the proof.

Lemma 8 (Subgoal 1, part i). The number of positive test graphs which are
accepted by C, but rejected by its approximator, C̃ is less than or equal to
size(C)m2

(
n−l−1
k−l−1

)
.

Proof. We’ll show that each gate of C contributes no more than n2
(
n−l−1
k−l−1

)

such positive test graphs. We argue by induction. For the base case, (in
other words on the inputs) approximators are the same as the circuits they
approximate, so these contribute no positive test graphs rejected by C̃. For
the ∨ induction step: We want to count the number of positive test graphs
which are accepted by C̃1 ∨ C̃2 but are rejected by C̃1 ⊔ C̃2. But any test
graph accepted by C̃1∨ C̃2 is also accepted by C̃1⊔ C̃2. This is because these
are the same, accepted in the approximator, we replace a certain number of
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sunflowers by their centers. This is okay, though, because a disjunction of a
sunflower has the same truth value as the center on positive test graphs.

For the ∧ induction step: We need to count the number of positive test
graphs for which C̃1∧ C̃2 is true, but C̃1⊓ C̃2 is false. At the stage where we
pass from ⌈Xi⌉ ∧ ⌈Yj⌉ to ⌈Xi ∪ Yj⌉, there are no new rejected positive test
graphs, because these functions have the same truth value on positive test
graphs. But from here, we discard any ⌈Xi ∪ Yj⌉ for which |Xi ∪ Yj | > l,
and this can cause the approximator to reject a positive test graph. There
are no more than

(
n−l−1
k−l−1

)
such positive test graphs for Xi and Yj , and there

are at most m2 such ⌈Xi ∪ Yj⌉, so we’re done.

Lemma 9 (Subgoal 1, part ii). The number of negative test graphs (which
are rejected by C) that are accepted by C̃ is less than or equal to

size(C)m2

[ (
l
2

)

k − 1

]p
(k − 1)n

Proof. The argument is similar to the last lemma. We consider each gate
passing to its approximator, and counting the number of erroneous negative
test graphs that could be introduced at each gate.

First, consider C = C1 ∨ C2. Say C̃1 =
∨m1

i=1⌈Xi⌉, C̃2 =
∨m2

j=1⌈Yj⌉. Now
we ask: What negative test graphs are rejected by C̃1 ∨ C̃2 but not by C̃?
Let z1, . . . , zp be a sunflower. We want to bound the number of negative test
graphs rejected by

∨p
i=1⌈zi⌉, but accepted by ⌈z0⌉, where z0 is the center of

the sunflower.
We’ll compute the probability that a randomly chosen negative test

graph has this property. Say that a collection of vertices is “properly col-
ored (p.c.)” if all vertices receive different colors. A negative test graph has
a clique on a set of vertices exactly when that set of vertices is properly
colored. So then we want to bound

Pr[z0 is p.c. and z1, . . . , zp are each not p.c. ].

This is less than or equal to

Pr[z1, . . . , zp are each not p.c. | z0 is p.c. ]

By independence, this is less than or equal to

p∏

i=1

Pr[zi is not p.c. | z0 is p.c. ] ≤
p∏

i=1

Pr[zi is not p.c.]
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≤
p∏

i=1

(
l

2

)
1

k − 1
=

((
l

2

)
1

k − 1

)p

For the ∧ case, this is similar. Discarding ⌈Xi ∪ Yj⌉ is ok, because we
never accept any new graphs. And there are fewer than m2 many pluckings,
so we use the same bounds as above.

We are now ready to prove the theorem.

Theorem 10 (Razborov-Alon-Boppana). Let 3 ≤ k ≤ n1/4, then the circuit

complexity for Cliquen,k is nΩ(
√
k).

Proof. Let C be a circuit for Cliquen,k. Let l =
√
k, p = ⌈10

√
k log n⌉,

m = (p − 1)ll!. By Lemma 2, we have two possible situations: either (i) C̃

rejects all positive test graphs or (ii) C̃ accepts at least

(
1− (l

2
)

k−1

)
(k− 1)n

many negative graphs.
If we are in the first situation, then by Lemma 3 we know that

(
n

k

)
≤ size(C)m2

(
n− l − 1

k − l − 1

)
.

If we are in the second situation, then by Lemma 4, we know that

(
1−

(
l
2

)

k − 1

)
(k − 1)n ≤ size(C)m2

(
1−

(
l
2

)

k − 1

)p

(k − 1)p.

At this point we are done. To see this, we do some algebra.
For the first case,

(
n
k

)
(
n−l−1
k−l−1

) =
n

k

n− 1

k − 1
· · · n− l

k − l
≥
(
n−

√
k

k

)√
k

Also,

m = (p− 1)ll! = (p− 1)
√
k(
√
k)!

≤ (10
√
k log n)

√
k

√
k

√
k

e
√
k

= k
√
k

(
10

e
log n

)√
k
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Hence,

m2 ≤ k2
√
k

(
10

e
logn

)2
√
k

.

Therefore,

size(C) ≥
(
n−

√
k

k

)√
k

1

k2
√
k
(
10
e log n

)2√k

size(C) ≥ (n−
√
k)

√
k

k3
√
k
(
10
e log n

)2√k

Since k ≤ n1/4, we have

size(C) ≥ (n−
√
k)

√
k

n3/4
√
k
(
10
e log n

)2√k

Therefore size(C) ≥ nΩ(
√
k).

In the other situation, we have

(
l
2

)

k − 1
<

1

2

since l =
√
k. So then,

size(C)m2 1

2p
≥ 1

2

Hence,

size(C) ≥ 2p−1

m2
≥ 210

√
k logn

k2
√
k
(
10
e log n

)2√k
=

n10
√
k

n
√
k/2
(
10
e logn

)2√k

Thus size(C) ≥ nΩ(
√
k).

2 Constant Depth Circuits

In this setting we allow unbounded fan-in ∧’s, ∨’s, and negations only on
variables. Typically we measure complexity of constant depth circuits by
counting only the number of ∧’s and ∨’s.

We could use other connectives. Other possibilities are, unbounded fan-
in parity gates, unbounded fan-in mod k gates (i.e. gates that output 1 if
the number of true inputs is 0 mod k), Majority gates, and Threshold gates.
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Definition 11 (Πk- and Σk-circuits and formulas). We definie these induc-
tively. A Π1-circuit is a conjunction of literals. A Σ1-circuit is a disjunction
of literals. A Πk+1-circuit is a circuit with output gate ∧, and all its inputs
are Σk-circuits. A Σk+1-circuit is defined dually. Σk-formulas and Πk-
formulas are defined in the same way, replacing everywhere the word circuit
with formula above.

Proposition 12. Any depth d circuit C of
∨
’s,
∧
’s, and n literals can be

converted into a Πd+1-circuit and Σd+1 circuit of size less than or equal to

d · size(C) + d · n

Proof. The idea is that if we have the output of one gate feed into another,
and the gates are of the same type, we merge the inuts of the first gate with
the second, and we duplicate gates as needed to make sure the levels work
out.

Theorem 13. Any n-ary Boolean function f has Σ2-circuits of size ≤ 2n,
and dually, Π2-circuits of the same size.

Proof. Use the CNF and DNF forms.

Theorem 14. If f is an n-ary Boolean function, then f has Σ3-circuits of
size O(2n/n) (dually, Π3-circuits of the same size).

Proof. This follows from the Lupanov construction.
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