(1) Let G be a finite group and let V, W be finite-dimensional G-representations. Define $\Phi: V^* \otimes W \to \text{Hom}(V, W)$ by $\Phi(\sum_i f_i \otimes w_i) = F$ where $F(v) = \sum_i f_i(v)w_i$. Show that Φ is well-defined and is a G-equivariant isomorphism.

(2) Let G be a finite abelian group and let V be an irreducible representation over an algebraically closed field (of arbitrary characteristic). Use Schur’s lemma to prove that $\dim V = 1$.

(3) Let G be a group. Define $[G, G]$ to be the subgroup of G generated by elements of the form $xyx^{-1}y^{-1}$ where $x, y \in G$.

(a) Show that $[G, G]$ is a normal subgroup and that $G/[G, G]$ is abelian.

(b) Show that $[G, G]$ is in the kernel of any representation $\rho: G \to \text{GL}(V)$ where $\dim(V) = 1$ and deduce that there is a bijection between the 1-dimensional representations of G and of $G/[G, G]$.

(4) Let X be a set with G-action and let $V = \mathbb{C}[X]$ be the permutation representation. Let χ_1 be the character of the trivial representation.

(a) Show that (χ_V, χ_1) is the number of orbits of G acting on X.

(b) For the rest of the problem, assume that X has size at least 2 and that G has 1 orbit on X.

The line spanned by $\sum_{x \in X} e_x$ is a subrepresentation, let U be a subrepresentation of $\mathbb{C}[X]$ which is a complement of it. Show that $(\chi_U, \chi_1) = 0$.

(c) Define an action of G on $X \times X$ by $g \cdot (x_1, x_2) = (g \cdot x_1, g \cdot x_2)$. Show that $\chi_{\mathbb{C}[X \times X]} = \chi_U^2$.

(d) Show that U is irreducible if and only if G has exactly 2 orbits on $X \times X$.

(5) Let F be a field, let $G = \text{GL}_2(F)$ be the group of invertible 2×2 matrices with entries in F, and let X be the set of lines, i.e., 1-dimensional subspaces in F^2 which has a natural action of G. Show that $X \times X$ has exactly 2 orbits. When F is finite, the representation U from above is called the Steinberg representation of G.

(6) Let $n > 1$ and let k be a field. Prove that $\{(x_1, \ldots, x_n) \in k^n \mid x_1 + \cdots + x_n = 0\}$ is an irreducible representation of the symmetric group S_n when k has characteristic 0. Show that this remains true if k has characteristic $p > 0$ and p does not divide n. What happens when p divides n?