Math 251C, Lecture 4

Multiplicity-Free Actions

Ref: Howe, "Perspectives on invariant theory"

Last time: irreducible reps of $GL_n \mathbb{C}$

$$S^\lambda \mathbb{C}^n$$

$$\lambda \geq \ldots \geq \lambda_n \in \mathbb{Z}^n$$

W rep \Rightarrow $W \cong \bigoplus (S^\lambda \mathbb{C}^n)^{\otimes m, \lambda}$ \leftarrow multiplicity

Def. W is **multiplicity-free** if $m_{\lambda} \leq 1 \ \forall \ \lambda$

Similarly, if W is rep of $GL_n \mathbb{C} \times GL_m \mathbb{C}$,

then $W \cong \bigoplus (S^\lambda \mathbb{C}^n \otimes S^\mu \mathbb{C}^m)^{\otimes m, \lambda, \mu}$

W multiplicity-free if $m_{\lambda, \mu} \leq 1 \ \forall \ \lambda, \mu$

Note: $m_\lambda = \dim$ of space of h.w. vectors in W at weight λ
Given vector space U, let $\text{Sym}^d U^*$

$= d^{th}$ symmetric power of U^*

$= (U^*)^d / \left< u_1 \otimes \cdots \otimes u_d - u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(d)} \right>_{\sigma \in S_d, \ u_1, \ldots, \ u_d \in U^*}$

symmetric group

If we pick basis x_1, \ldots, x_n of U^*, then $\text{Sym}^d U^*$ is the space of homogeneous degree d polynomials in x_1, \ldots, x_n.

$\text{Sym} U^* := \bigoplus_{d \geq 0} \text{Sym}^d U^*$

$= \text{all polynomials in } x_1, \ldots, x_n$.

Note: If GL_k acts on U, then $\text{Sym}^d U^*$ & also $\text{Sym} U^*$ are representations of GL_k.
If $f \in \text{Sym} U^*$, $u \in U$, then evaluation $f(u) \in C$ makes sense.

$\text{Sym } U^*$ is infinite-dim. \mathbb{Q}, but each $\text{Sym}^d U^*$ is finite-dim. \mathbb{Q}, so previous results apply.

Example $G\text{-}L(V)$ acting on $U = V^*$, so $U^\perp = V$

Claim: $\text{Sym}^d V$ is irreducible for all $d \geq 0$.

Pick a basis x_1, \ldots, x_n for V.

Weight vectors of $\text{Sym}^d V$ are monomials in x_1, \ldots, x_n. $x_1^{d_1} \cdots x_n^{d_n} \mapsto$ weight (d_1, \ldots, d_n)

x_1^d is h.w. and only one, weight is $(d, 0, \ldots, 0)$

Eg. $(a \ b) \cdot x_1 x_2 = (ax_1)(bx_1 + cx_2)$

$\implies \text{Sym } V$ is multiplicity-free.

Goal: Find condition on U so that $\text{Sym } U^*$ is multiplicity-free.
Zariski topology

\(U = \text{vector space, } f: U \to \mathbb{C} \) is polynomial if it is so wrt a basis for \(U \).

Given a set of polynomials \(f_i: U \to \mathbb{C} \)

\[Z(I) := \{ u \in U \mid f_i(u) = 0 \ \forall f_i \in I \} \]

(zero set of \(I \))

WLOG, we usually assume that \(I \) is an ideal:

1. \(f + g \in I \) \(\forall f, g \in I \)
2. \(fh \in I \) \(\forall f \in I, h \text{ arbitrary polynomial} \)
3. \(I \neq \emptyset \).

Given a set of polynomials \(\{ f_i \} \),

\(\langle f_i \rangle = \text{smallest ideal containing all } f_i \)

\[= \{ h_i f_1 + \ldots + h_r f_r \mid h_i \text{ arbitrary} \} \]

\(I \) is generated by \(\{ f_i \} \) if \(I = \langle f_i \rangle \).

Thm (Hilbert basis thm) Every ideal can be generated by finite set of polynomials.
Sum of ideals: \(I_1 + I_2 = \{ f + g \mid f \in I_1, g \in I_2 \} \)

Product of ideals: \(I_1 I_2 = \langle fg \mid f \in I_1, g \in I_2 \rangle \)

(Infinitesimal sums of ideals ok)

Def. The Zariski topology on \(U \) is the topology whose closed sets are the \(\mathbb{Z}(I) \).

Check:
1. \(\emptyset = \mathbb{Z}(\langle 1 \rangle) \)
2. \(U = \mathbb{Z}(\langle 0 \rangle) \)
3. Intersection: \(\bigwedge_j \mathbb{Z}(I_j) = \mathbb{Z}\left(\sum_j I_j \right) \)
4. Finite unions: \(\mathbb{Z}(I_1) \cup \ldots \cup \mathbb{Z}(I_r) = \mathbb{Z}(I_1 \cdots I_r) \).

The \(\mathbb{Z}(I) \) are affine varieties.

Given an affine variety \(X \subset \mathbb{C}^n \), denote \(\mathbb{C}[X] \) the quotient of \(\text{Sym} \, X^* \) by ideal of all polynomials which are identically zero on \(X \).

Note: \(\mathbb{C}[U] = \text{Sym} \, U^* \)
Ex. $\text{GL}_n \mathbb{C} \subset \mathbb{C}^{n^2}$ is complement of affine variety $\mathbb{Z}(\langle \text{det} \rangle) \Rightarrow \text{GL}_n \mathbb{C}$ is open in Zariski topology

Introduce new variable t

Consider $\mathbb{Z}(\langle t \cdot \text{det} - 1 \rangle) \subset \mathbb{C}^{n^2+1}$

\[
\{ (g, x) \mid \lambda \cdot \text{det}(g) = 1 \} = \{ (g, x) \mid \lambda = \frac{1}{\text{det}g} \}
\]

λ is redundant

Projecting onto first n^2 coordinates, we get a bijection $\mathbb{Z}(\langle t \cdot \text{det} - 1 \rangle) \sim \mathbb{C}^{n^2} \setminus \mathbb{Z}(\langle \text{det} \rangle)

\Rightarrow \text{GL}_n \mathbb{C}$ is an affine variety.

In fact, an algebraic group.

Det A topological space X is irreducible if, whenever $X = X_1 \cup X_2$, X_i closed subsets, then $X = X_1$ or $X = X_2$.
Prop. A vector space V with Zariski topology is irreducible.

Pf. Suppose $V = \mathbb{Z}(I_1) \cup \mathbb{Z}(I_2) = \mathbb{Z}(I_1, I_2)$ for ideals I_1, I_2. Then $I_1 I_2 = 0$ since every nonzero polynomial has a $u \in U$ such $\exists f(u) \neq 0$.

\Rightarrow $fg = 0 \ \forall f \in I_1, g \in I_2$

\Rightarrow If $I_1 \neq 0$, then $I_2 = 0$ since $fg \neq 0$ whenever $f \neq 0$ and $g \neq 0$.

(1) If $I_1 \neq 0$, then $I_2 = 0$ since $fg \neq 0$ whenever $f \neq 0$ and $g \neq 0$.

(2) Similarly, if $I_2 \neq 0$, then $I_1 = 0$.

In case 1, $\mathbb{Z}(I_1) = U$ ✓

In case 2, $\mathbb{Z}(I_1) = U$ ✓

Else, both $I_1 = I_2 = 0$ ✓.

Prop. Every nonempty open subset Y of an irreducible space is dense (i.e., if $X' \supseteq Y$ is closed, then $X' = X$)

Pf. $X = X' \cup (X \setminus Y)$, both closed.

$X_{\text{irred}} \Rightarrow X = X'$ ✓

or $X = X \setminus Y \Rightarrow Y$ is empty ✓.
Now consider U is $GL(V)$-rep, $X \subset U$ affine variety. $G < GL(V)$ subgroup s.t. X is closed under action of G.

The G-orbits of X are the equivalence classes of the relation $x \sim x'$ if $\exists g \in G$ s.t. $x' = gx$.

Thus let X be an affine variety in a rep of $GL(V)$. Let $B < GL(V)$ Borel subgroup.

Assume: $\exists B$-orbit $Y \subset X$ which is dense. Then

(a) $C[X]$ is multiplicity-free rep.

(b) Let λ be a h.w. of h.w. vector in $C[X]$.

Pick $u \in Y$ and let $H = \text{stab}(u) = \{g \in GL(V) ~|~ h.u = u\}$

Then, $\lambda(h) = 1 \quad \forall h \in H \cap B$.
