Dehn it!

Distinguishing diffeomorphisms with Equivariant Bauer-Furuta Invariants

Scotty Tilton

UC San Diego

November 2, 2023

Goals

(1) Purpose

- Share math
- Ask questions, learn more
- Introduce you all to what I think about
- Consolidate the things I think about
(2) Successful Outcome
- You understand where this fits into the mathematical landscape
- You understand what I'm trying to do, broadstrokes
- You have an idea of what's been done before
- At least one person asks me one question
- I see a part of the presentation I could've made clearer

Plan for today

(1) Beginning!
(2) Context/History

Context History
(3) Definitions
(4) Key Results

Kronheimer-Mrowka Jianfeng Lin
5. Present + Future
(6) End

Context

Where are we visiting

Context

4-manifolds: All our 4-manifolds are simply connected, $\pi_{1}(X)=0$.

- (Useful old result) Freedman's classification ($Q, 0$ or $\left.1_{\text {not }}^{\text {smooth }}\right)$
- (Big topology goal) Smooth Poincare conjecture $X \simeq S^{4} \stackrel{?}{\Rightarrow} X \cong$ Diff S^{4}
- (Big goal) $11 / 8$ conjecture. $X \in \operatorname{Spin} 4 \mathrm{Mfld}_{c l s}^{s m}$ iff $b_{2}(X) \stackrel{?}{\geq} \frac{11}{8}|\sigma(X)|$ or $q \stackrel{?}{\geq} 3 p$ for $2 p E_{8} \oplus q\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- (Big goal) 4D Smale conjecture $\pi_{0}\left(\operatorname{Diff}\left(S^{4}\right)\right) \stackrel{?}{\cong} \mathbb{Z} / 2$
- Spin-manifolds e.g $S^{4}, S^{2} \times S^{2}, \mathrm{~K} 3$, non e.g. $\mathbb{C P}^{2}, \mathbb{C P}^{2} \# 9 \overline{\mathbb{C P}}^{2}$

Key things

- (Pin(2)-)Seiberg Witten equations
- Seiberg-Witten invariants
- (Pin(2)-)Bauer-Furuta invariants

Selected History up to 2010

'81 Matsumoto $\frac{11}{8}$
[Mat81]
‘82 Freedman, TopMfld ${ }^{4}$ [Fre82]

‘94 SW Equations
 [Wit94]

‘94 Kronheimer Pin(2) SW
Lecture in 94 at Cambridge

Furuta $\frac{11}{8}$
 [Fur01]

'02 Bauer-Furuta invariant '03 Birgit Schmidt's thesis
[BF02]
‘04 FBF
[Xu04]
[Szy20]

Selected History up to 2010

'81 Matsumoto $\frac{11}{8}$
[Mat81]

‘82 Freedman, TopMfld ${ }^{4}$ [Fre82]

‘94 SW Equations
[Wit94]

‘94 Kronheimer Pin(2) SW
Lecture in 94 at Cambridge

Furuta $\frac{11}{8}$
 [Fur01]

‘02 Bauer-Furuta invariant '03 Birgit Schmidt's thesis
[BF02]
‘04 FBF
[Xu04]

‘08 FBF

[Szy20]

Selected History after 2010

'15 \triangle Conjecture [Man13b]

'20 Exotic Diffeomorphism using FBF [KM20]

'21 Exotic Diffeomorphism using FBF [Lin20]
'23 Exotic Diffeo on more seifert fibered [KMT23]

Selected History after 2010

'15 \triangle Conjecture [Man13b]

$\frac{11}{8}$ Progress [HLSX18]

'20 Exotic Diffeomorphism using FBF [KM20]

'21 Exotic Diffeomorphism using FBF [Lin20]
'23 Exotic Diffeo on more seifert fibered [KMT23]

History, more linear

- ~1981 Matsumoto's 11/8 conjecture [Mat81]
- ~1982 Freedman classifies 4-manifolds [Fre82]
- ~1994 Seiberg-Witten equations [Wit94]
- ~2001 Furuta 10/8| $\sigma \mid+2$ [Fur01]
- ~2002 Bauer-Furuta invariant [BF02]
- ~2003 Calculations and work toward 11/8 [Sch03]
- ~2004 Families Bauer-Furuta [Xu04]
- ~2008 Families Bauer-Furuta [Szy20]
- ~2013 Pin(2) intersection[Man13a]
- ~2015 Disproof of Δ-conj [Man13b]
- ~2018 Work towards 11/8 [HLSX18]
- ~2020 Exotic Diffeo [KM20]
- ~2021 Exotic Diffeo [Lin20]
- ~2023 Exotic Diffeo 2023 Exotic Diffeo on seifert fibered manifold[KMT23]

Definitions

- $\operatorname{Pin}(2)$
- Spin(n), $\operatorname{Spin}^{c}(n)$
- Seiberg-Witten Equations
- equivariant stable homotopy theory
- Bauer-Furuta invariant
- Families Bauer-Furuta invariant
- Dehn twist

Definitions:

- Pin(2)

$$
\subset \mathbb{C} \oplus j \mathbb{C}=\mathbb{H}=\mathrm{Cl}\left(\mathbb{R}^{2}\right)
$$

or, also a particular double cover of $\mathrm{O}(2)$

- $\operatorname{Spin}(n)=$ double cover of $\mathrm{SO}(n)$, or also, $\operatorname{Pin}(n) \cap \mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)$

Examples: | n | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Spin}(n) \cong_{t o p}$ | S^{0} | S^{1} | S^{3} | $S^{3} \times S^{3}$ |

- $\operatorname{Spin}^{c}(n) \cong \operatorname{Spin}(n) \times_{\{ \pm 1\}} S^{1}$, or, also the double covering of $\mathrm{SO}(n) \times S^{1}$ which is nontrivial on both factors.

Spin structure

Let X be an oriented 4-manifold, so there is a principal bundle

A Spin structure is a bundle P such that the following commutes

There is a way to make a Spin c-structure. See [Mor96]

Spin structure

FACT:

A vector bundle $E \rightarrow X$ admits a Spin structure iff $w_{2}(E)=0$.
A principal spin structure gives us

Watch Stipsicz video from minicourse for more.

Spin structure

Fact

When spin structures exist on M (any manifold),

$$
\{\text { Spin-structures }\} \stackrel{1: 1}{\longleftrightarrow} H^{1}(M ; \mathbb{Z} / 2) .
$$

Given a fiber bundle | $X \rightarrow \underset{\substack{\downarrow \pi \\ \downarrow \pi}}{E}$, you can take the vertical tangent |
| :---: |
| |

bundle $T^{v} E:=\operatorname{ker}(D \pi)$, to get a vertical frame bundle

$$
\begin{gathered}
\mathrm{SO}(4) \leftrightarrow \mathrm{Fr}^{v}\left(T^{v} E\right) \\
\downarrow \\
B
\end{gathered}
$$

When $w_{2}\left(T^{v} E\right)=0$, you get a Spin structure.

Seiberg-Witten equations v. 1

Seiberg Witten Equations

A set of nonlinear elliptic differential equations.
Their solutions satisfy a nice compactness condition that you don't run into all the time.

Seiberg-Witten equations v. 2

Let A be a unitary connection on $L:=\operatorname{det}\left(S^{ \pm}(P)\right)$
Let $\ddot{\phi}_{A}$ be the Dirac operator associated to $\nabla_{L . C}$ on $\operatorname{Fr}(T X)$ and A. Let $\psi \in C^{\infty}\left(S^{+}(P)\right)$
Let h be a generic, self-dual two form on X

Seiberg-Witten Equations [Mor96, 4.2s]

$$
\begin{array}{r}
L_{2}^{2} \overbrace{\left(\left(T^{*} X \otimes i \mathbb{R}\right) \oplus S^{+}(P)\right)} \stackrel{F}{\longrightarrow} L_{1}^{2}\left(\left(\Lambda_{+}^{2} T^{*} X \otimes i \mathbb{R}\right) \oplus S^{-}(P)\right) \\
(A, \psi) \longmapsto\left(F_{A}^{+}-q(\psi)-i h, \partial_{A}(\psi)\right)
\end{array}
$$

Equation: $F(A, \psi)=0$

Seiberg-Witten Equations v. 2

Seiberg-Witten Equations [Mor96, 4.2s]

$$
\begin{aligned}
L_{2}^{2} \overbrace{\left(\left(T^{*} X \otimes i \mathbb{R}\right) \oplus S^{+}(P)\right)}^{T_{p} c(P)} \xrightarrow{F} & L_{1}^{2}\left(\left(\Lambda_{+}^{2} T^{*} X \otimes i \mathbb{R}\right) \oplus S^{-}(P)\right) \\
(A, \psi) \longmapsto & \left(F_{A}^{+}-q(\psi)-i h, \not \partial_{A}(\psi)\right)
\end{aligned}
$$

Equation: $F(A, \psi)=0$

Theorem

Suppose that $b_{2}^{+}(X)>1$.
$\mathcal{M}_{P}:=F^{-1}(0) / \operatorname{Maps}\left(X, S^{1}\right)$ is a closed, orientable manifold of dimension

$$
\frac{c_{1}(L)^{2}-2 \chi(X)-3 \sigma(X)}{4}
$$

Seiberg witten invariant

Suppose $\operatorname{dim}\left(\mathcal{M}_{P}\right)=d$ is even.
Let μ be a specific Chern class with an association to P defined in [Mor96].Then

$$
\begin{aligned}
S W(X,-) & : \overbrace{\left\{\begin{array}{l}
\text { space of } \\
\text { Spin }^{c} \text { strs }
\end{array}\right.}^{\cong_{\text {not natral }} H^{2}(X ; \mathbb{Z})} \longrightarrow \mathbb{Z}_{\mathcal{M}_{P}} \mu^{d / 2}
\end{aligned}
$$

Important case $(d=0): \int_{M_{P}} \mu^{0}=\sum_{p \in \mathcal{M}_{P}} \operatorname{sign}(p)$ ($d>0$?)

Equivariant Things

- We're in an incomplete universe \mathcal{U} with countably many irreducible representations of $\operatorname{Pin}(2)$ that matter to us.
- Most important representations today
trivial: $\mathbb{R}, \quad j$-flip: $\widetilde{\mathbb{R}}, \quad$ quaternionic: \mathbb{H}
- $n V:=V^{\oplus n}$,
- $S(n V):=\{v \in n V \mid\|v\|=1\}$,
- $S^{n V}:=(n V)^{+}$
- $M_{+}:=M \sqcup\{*\}$
- $\{X, Y\}^{\operatorname{Pin}(2)}$ is the $\{$ stable, pointed $\operatorname{Pin}(2)$-equiv. maps $/ \simeq\}$
- $\{X, Y\}^{\operatorname{Pin}(2)}:=\lim _{\substack{C \cdot d \\ f . \mathcal{U}^{\prime}}}\left[S^{V} \wedge X, S^{V} \wedge Y\right]^{\operatorname{Pin}(2)}$

Bauer-Furuta invariant

Nonequivariant version

$\tilde{\mathcal{M}}_{P}:=F^{-1}(0)_{/ \text {Maps }_{*}\left(X, S^{1}\right)}$ is a stably framed manifold (submanifold of a Hilbert space), and so is represented in a stable homotopy group of spheres, and so $B F(X, P)=\left[\tilde{\mathcal{M}}_{P}\right] \in \pi_{d+1}^{s t .}$

Equivariant versions

Let $n=\frac{-\sigma(X)}{16}$ and $m=b_{2}^{+}(X)$

- $B F^{S^{1}}(X) \in\left\{S^{2 n \mathbb{C}}, S^{m \mathbb{R}}\right\}^{S^{1}}$,and
- $B F^{\operatorname{Pin}(2)}(X) \in\left\{S^{n \mathbb{H}}, S^{m \widetilde{\mathbb{R}}}\right\}^{\operatorname{Pin}(2)}$

Pros and Cons of each BF

Some intuition

- $B F(X)$ - likely stronger than $S W$-invariant
- $B F^{S^{1}}(X)$ - recovers $S W$-invariant, more symmetry
- $B F^{\operatorname{Pin}(2)}(X)$ - More structure, more refined, more symmetry

S^{1}-Bauer-Furuta \rightarrow Seiberg-Witten invariant

 We'll use $B F^{S^{1}}$ here.Recovery of SW-invariant: Let $m-1 \leq 2 n-1$.
Suppose we have a map $S^{2 n \mathbb{C}} \xrightarrow{F_{\text {approx }}} S^{m \mathbb{R}}$ Then we have a cofiber sequence

$$
S^{0} \rightarrow S^{2 n \mathbb{C}} \rightarrow \Sigma S(2 n \mathbb{C})_{+} \rightarrow S^{1}
$$

$$
\underbrace{\left\{S^{1}, S^{m \mathbb{R}}\right\}^{S^{1}}}_{0} \rightarrow \underbrace{\left\{\Sigma S(2 n \mathbb{C})_{+}, S^{m \mathbb{R}}\right\}^{S^{1}}}_{\substack{\left\{S(2 n \mathbb{C})_{+}, S^{(m-1) \mathbb{R}} \\\left\{\mathrm{cr}_{+}^{2 n-1}, S^{m \mathbb{R}}\right\}\right.}} \stackrel{\cong}{\leftrightarrows}\left\{S^{2 n \mathbb{C}}, S^{m \mathbb{R}}\right\}^{S^{1}} \rightarrow \underbrace{\left\{S^{0}, S^{m \mathbb{R}}\right\}^{S^{1}}}_{0}
$$

$$
\left(s^{2 n \mathrm{C}} \xrightarrow{F_{\text {approx }}} S^{m \mathbb{R}}\right) \longmapsto\left(\mathrm{CP}_{+}^{2 n-1} \xrightarrow{\tilde{f}} S^{(m-1) \mathbb{R}}\right),
$$

$$
\longmapsto \pi^{\pi^{m-1}\left(\mathrm{CP}^{2 n-1}\right)}
$$

$$
H^{m-1}\left(\operatorname{CP}^{2 n-1}\right)= \begin{cases}\mathbb{Z} & m \text { odd } \\ 0 & m \text { even }\end{cases}
$$

Families Bauer-Furuta invariant

Dehn twist

- $\pi_{1}(\mathrm{SO}(4))=\mathbb{Z} / 2$
- take a nontrivial loop $[\gamma] \in \pi_{1}(\mathrm{SO}(4))$.
- Then you have a map

$$
\begin{aligned}
S^{3} \times[0,1] & \longrightarrow S^{3} \times[0,1] \\
(x, t) & \longmapsto(\gamma(t) \cdot x, t)
\end{aligned}
$$

Key examples of $\delta \in \operatorname{Diff}_{\partial}\left(\stackrel{\circ}{X}^{\circ}, \partial{ }^{\circ}\right)$ or $\delta \in \operatorname{Diff}(X)$:

$$
\dot{X}:=X \backslash B^{4}
$$

$$
X \# Y
$$

Key Results in our world today

- Kronheimer-Mrowka
- Jianfeng Lin

Kronheimer-Mrowka

Theorem ([KM20])

The dehn twist on $K 3 \# K 3$ is not smoothly isotopic to the identity in Diff(K3\#K3)

Key ideas

- Mapping torus M_{δ} of Dehn twist along K3\#K3 (2 spin structures since $\left.H^{1}\left(M_{\delta} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\right)$.
- Use $B F$ on M_{δ}
- $B F(\mathrm{~K} 3)=\eta$
- Lemma on $X \#_{\alpha} Y$ giving a product formula for Families Bauer furuta
- $0 \neq \eta^{3} \in \pi_{3}^{s t}=\mathbb{Z} / 24$
- The dehn twist can't be isotopic to 1

Picture Frame if we'd like

Jianfeng Lin

Theorem ([Lin20])

The dehn twist on $K 3 \# K 3 \#\left(S^{2} \times S^{2}\right)$ is not smoothly isotopic to the identity in Diff $\left(K 3 \# K 3 \#\left(S^{2} \times S^{2}\right)\right)$.
First instance of exotic structure staying after one stabilization, i.e $\# S^{2} \times S^{2}$

Key Ideas

- Create a mapping torus along the dehn twist and compare the spin structures.
- Use $B F^{\operatorname{Pin}(2)}$
- Reduce to nonequivariant.
- Find a contradiction $0 \neq \eta^{3}$ from [KM20].

More Dehn twists to look at

Question 1

Is the dehn twist isotopic to the identity on $(\mathrm{K} 3 \# \mathrm{~K} 3)^{\circ}$?

Question 2

Is the dehn twist isotopic to the identity on $(E(4))^{\circ}$?

Potential Ideas

Potential ideas: Follow some ideas from [HLSX18] or work out some equivariant K-theory computations.

$$
\begin{gathered}
R(\operatorname{Pin}(2)) \cong \frac{\mathbb{Z}[z, w]}{\left(z w=2 w=w^{2}\right)} \\
R O(\operatorname{Pin}(2)) \cong \frac{\mathbb{Z}[D, K, H]}{\text { lots-o-relns }}
\end{gathered}
$$

The End!

Thank You!

Questions?

References

Stefan Bauer and Mikio Furuta.

A stable cohomotopy refinement of seiberg-witten invariants: I, 2002.

Michael Hartley Freedman.

The topology of four-dimensional manifolds. Journal of Differential Geometry, 17(3):357-453, 1982.

Mikio Furuta.
Monopole equation and the $\frac{11}{8}$-conjecture. 2001.

Michael J. Hopkins, Jianfeng Lin, XiaoLin Danny Shi, and Zhouli Xu.
Intersection Forms of Spin 4-manifolds and the Pin(2)-Equivariant Mahowald Invariant, 2018.

Peter Kronheimer and Tomasz Mrowka.
The Dehn twist on a sum of two K3 surfaces, 2020.
Hokuto Konno, Abhishek Mallick, and Masaki
Taniguchi.
Exotic dehn twists on 4-manifolds, 2023.
Jianfeng Lin.
Isotopy of the Dehn twist on K3 \# K3 after a single stabilization, 2020.

On the intersection forms of spin four-manifolds with boundary, 2013.
Ciprian Manolescu.
Pin(2)-equivariant seiberg-witten floer homology and the triangulation conjecture, 2013.

Yukio Matsumoto.
On the Bounding Genus of Homology 3-Spheres : Preliminary Report, 1981.

John W. Morgan.

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44). Princeton University Press, 1996.

Birgit Angelika Schmidt.

Spin 4-manifolds and pin(2)-equivariant homotopy theory, 2003.

Markus Szymik.
Characteristic cohomotopy classes for families of 4-manifolds, 2020.

Edward Witten.
Monopoles and Four-Manifolds, 1994.
Ming Xu.
UC San Diego
The bauer-furuta invariant and a cohomotopy

