∞ A Note On $\langle 1\rangle$ or (1)

Of in Note On $S_{c_{r}} f_{f_{c}}$

in
Part
Pr I
Snotty Wilton
UCSD
April $12^{\text {th }}, 2023$

I'm presenting on
"A Note on Surfaces in $\mathbb{C} P^{2}$ and $\mathbb{C P}^{2} \nRightarrow \mathbb{C} P^{2}$ ", a paper written and added on the ar $X_{i} V$ in $\mathrm{Oc}+2022$ ar

Marco Mavengon	
Allison N. Miller	arxiv.arg/abs/
Arunima Ray	2210.12486
András Stipsicz	

I nay have added some of my own thougersazl errors.

Outline for this talk

We may go further or shorter on this plot, but weill hae an exciton caclesion next week at the same Bat-time on this Same Bat-chamel.

Exposition
Ma the maticines love to classity things
prone $\ddot{\ddot{n}}$ unbers, finite graps, semisimple lie algesuns, manifolds(???) (let's stout wit spheres)
Poincave coyiectuc) if $M^{n} \simeq S^{n}$ is $M^{n} \cong S^{n}$?
Topological
Poincave
(10) (20)
homeo

$$
\begin{aligned}
& \text { difteo } \\
& \text { plieeo }
\end{aligned}
$$

Exposition
Mathematicians love to classify things

So lets wovk on 4

Exposition: Classifying smooth 4-mflds

Minimal genus sou face (nash (over

- Let M be a smote, $4 . m f\left(J\right.$ and let $M^{x}:=M \backslash \dot{b}^{4}$
- Note $H_{2}\left(M^{x}, \partial M^{*}\right) \underset{\text { LES }}{\cong} H_{2}\left(M^{x}\right) \cong H_{\text {M. }}(M)$.
- $\partial M^{*} \cong S^{3}$ and Knots love living in S^{3}.
- Every knot bounds an oriented surface cullen sititertsurfur.
- Since we classified 2-0 swines, the gens is ueli-difined.

$$
\text { Definitions- } 0 \text { - Min-Gencs }
$$

Let $\alpha \in H_{2}(m)$

Let K be a Knot $K \subset \partial M^{x} \cong s^{3}$,

$$
\begin{aligned}
& \text { - } g_{M}(K):=\min \left\{\operatorname{ganas}(\Sigma) \left\lvert\, \begin{array}{l}
\partial \varepsilon=k \\
\sum \frac{\operatorname{snoth}}{\operatorname{mon} \lambda_{m-m}} M^{*}
\end{array}\right.\right\}
\end{aligned}
$$

Definitions/ Facts about min genus

Slice if $g_{M}(k)=0$, topologically slice $\operatorname{It} g_{m}^{\operatorname{top}_{m}}(k)=0$.
H-slice if $g_{m}^{H}(k)=0$.

FACT) $g_{\mu}^{(\text {top })}(k) \leq g_{4}^{(\text {top })}(k) \quad g_{\mu}(k) \leq g_{4}(k)$
connect sum $s^{4}-/ m$.

Successes on the minimal genus frowt for $M=C P^{2}$
Thm
Kronleimer - Mowka' 74 (Than Conscerve)
Let $h \in H_{2}\left(\mathrm{CP}^{2} ;\right.$ 7) bea ginumar. Let $d \neq 0$ beani-ngy.
Then $G_{c p^{2}}(d \cdot h)=\frac{(|d|-1)(|d|-2)}{2}$.
(Morgan, Szabo , Taubes ${ }^{\text {anb }}$ proved for Kähles Mflds)
for swfaces w/ nonuapaic selfintersecsur, $($ Later Oszuath - Sza 60 prod for symple ctic n flds
1998

Successes on the mininal genus frout for $M=\mathbb{C p} p^{2}$
Cov I.n
Kasprowski $\operatorname{shwed} \operatorname{gap}_{\text {tip }}(k) \leq 1$ foany haull.
Powall 122 sperificallyl
Ray
Teichner
(1)g $\operatorname{top}_{m}(h)=0$ if M is simply conected and not difre.to CP 2 or S^{4}

Successes on the mininal genus frome hor $M=a^{2}$
Yasuhura '11, Ait Noch '09, 14, pichluryar 19 Stubied paston melead to smoth minimal genus in CP^{2}.
Than Nooh 'o9] If $3 \leq q^{\text {oadd }} \leq 17$

$$
\begin{aligned}
& g_{c \mu}\left(T_{2, q}\right)=g_{4}\left(T_{2, q}\right)-1=\frac{q-3}{2} \\
& \Rightarrow g_{\alpha r^{2}}\left(T_{2}, 12\right)=7-9 \text { staddod! }
\end{aligned}
$$

Conflict/Questions
Ait Noh:
'o9
(1) Does $g_{a p}\left(T_{p, q}\right) \stackrel{?}{=} g_{4}\left(T_{p, q}\right)-1=\frac{(r-1)\left(r_{r}-1\right)}{2}-1$?
(2) Dous the exist a knut k shace

$$
g_{\operatorname{tap}}^{\operatorname{top}}(k)=0 \quad 6 \vee t g_{\mathrm{cm}}(k) \neq 0 \text { ? }
$$

Conflict/ Questions

Piclelneyerin (3) If X_{1} and K_{2} have $\operatorname{Arf}\left(k_{1}\right)=\operatorname{Arf}\left(k_{2}\right)$, does $g_{c^{2}}\left(K_{1}\right)=g_{C^{2}}\left(K_{2}\right)$?

 Mavengon'20 (5) $g_{k 3}^{\text {tor }}(K)=0$, but does $g_{u 3}(K)$ ever not eimilo.
Piccivill.

Rising Action

$今$
On our jouncy to find a solution to ar poodem, ne fume into some old the eras lying around.

Some Invariants
chain $\operatorname{CF}\left(s^{s}\right)$
$\operatorname{kc} \xi^{3}$ iducs a filemen
τ-invariant
 -lowes band

$$
v_{i j}=\phi\left(c_{i}, \sigma_{j}\right)
$$

$$
\phi: H_{1}(s)=H_{1}(s) \rightarrow Z
$$

$a, 6 \mapsto \operatorname{lh}\left(a^{+}, b^{-}\right)$
$\sigma_{k}(z)$ Trist ram-Levie sigh Sign gtuce

$$
\text { Siguatue }\left((1-z) V+(1-\bar{z}) V^{\top}\right)
$$

See hichorinchros for tintin.
Let $K \in S^{3}$ be a knat bounding a suaticpe,

$$
[\Sigma]=d\left[c p^{\prime}\right] \text { in } H_{2}\left(\mathbb{C p ^ { 2 x }} ; \mathbb{U}\right) \cong H_{2}\left(\mathbb{C p ^ { 2 }} ; \mathbb{Z}\right)
$$

Thesem Oszvath Szaso 103 For the Hereand-Floer maine τ,

$$
g \geq-\tau(k)+\frac{|d| l(1-|a|)}{2}
$$

Thoums Gillac ' 81 , Vivo 701

Where $\sigma_{\rho}(k)=\sigma_{k}\left(e^{\varepsilon i \frac{p 1}{p}}\right)$

With those in mind, Can we find a knot with huge gens?
MMRS invites to try
Let $g_{0} \geq 0$ be as big as yod like.
Let $C_{0}>\frac{3}{2} \sqrt{2 g_{0}+2}>1$.
-Th (Tretal ike)
Let K be a Knot satisfying

$$
\begin{aligned}
& \text { - } \sigma_{k}(-) \equiv 0 \\
& \text { - }-\tau(K) \geq g_{0}-\frac{c_{0}\left(1-c_{0}\right)}{2}
\end{aligned}
$$

alexaybr
polyis 1

- Let \sum be a genes g surface in $\left(\mathbb{C} P^{2}\right)^{x}$ with $\partial \tau=k$ and $[\Sigma]=d\left[\mathbb{C} P^{\prime}\right] \in H_{2}\left(\left(\left.\mathbb{C}\right|^{\prime}\right)^{2}\right)$

$$
\begin{aligned}
& \text { Osvath - } \text { Sasoso }^{\prime} 03 \Rightarrow g \geq-\tau(K)+\frac{|d|(1-|d|)}{2} \\
& \geq g_{0}-\frac{c_{0}\left(1-c_{0}\right)^{2}}{2}+\frac{|d|\left(1-l_{d \mid}\right)}{2} \\
& |d| \geq c_{0}>1 . \Rightarrow p \text { odd }||d| \stackrel{\text { Gil ir }}{\Rightarrow} \\
& 2 g+1 \geq 1 \frac{d^{2}}{2}-1 \\
& 2 y+1 \geq\left|\frac{x^{2}-1}{2 p^{2}} d^{2}-1\right| \\
& 1 \geq \frac{6_{0}^{2}}{2}-1 \quad g \geq 90 \text {. } \\
& \geq \frac{9}{4}\left(x_{0}+2\right)-1 \\
& \frac{3 p^{2}-1}{2 p^{2}} c_{0}^{2}-1 \\
& >\left(\frac{1}{2}-\frac{1}{2 r}\right) \frac{a}{4}\left(2 y_{0}+2\right)=2 b_{0}+1
\end{aligned}
$$

What did we pore?
Proposition (proved about) There exist Knots with arbitrarily lave $\mathbb{C} P^{2}$ genus.

Question Can we find knots in $\left(\mathbb{C} p^{2}\right)^{x}$ with

$$
g_{G p^{2}}^{\text {top }}(k)=0 \text { but } g \operatorname{cp}^{2}(k) \neq 0 \text { ? }
$$

Question $C_{\text {an }}$ we find k mots in $\left(\mathbb{C} p^{2}\right)^{x}$ with

$$
g c p^{t o p}(k)=0 \text { but } g \operatorname{cp}^{2}(k) \neq 0 \text { ? }
$$

Answer) The MMRS Yes.
$\rho f\left(\circ\right.$ Recall $g_{m}^{t_{o p}}(K) \leq g_{4}^{t_{o p}}(K)$

- Kuotshere are topologically slice (Alexander Poly is 1, save fou $\#$, apply FQ'90)

$$
g_{m}^{t_{1} p}(k) \leq g_{4}(k)=0
$$

- Hay have aretrarily lavgegrans by proposition!

Recall the conflict

Conflict
Ait Now h:

(2) Does then exist a knot K whee $g_{\text {er }}^{\text {top }}(k)=0 \quad$ ut $g_{\text {ar }}(k) \neq 0$?
\leftarrow still not done.
\leftarrow Heck yeah there does!
\leftarrow can we approach this? does $g_{C_{P^{2}}}\left(k_{1}\right)=g_{C^{2}}\left(k_{2}\right)$?
Ar $f(k)=0$ or 1 if $K_{\text {mas }} 0$ or k pars 2
(4) KM did $\mathbb{C P}^{2}$, Noinm did $S^{2} \times 5^{2},\left(\mathbb{C r}^{2} \# \overline{\mathrm{cr}^{2}}\right.$. Whanaer $\left(\mathrm{Cr} \%\left(\mathrm{f}^{2}\right)\right.$

\leftarrow Can we do this? \& Save for another day.
Next time...

- Will the bark (Art!) be bigger than the bite (sine!)?
- Do we know about tours knots in $4 P^{2}$? 8 stars point to yes....
- Can me rake a good estimger at what $\sigma_{\mathbb{C P} \boldsymbol{P}^{2} \# \mathbb{C} P^{2}}$ might be?

Thank
Youl

