ヘン A Note On $\langle I \rangle_{O(I)}$ Note On Surfaces Note On Surfaces Note and Opzaces Note and Opzaces Scotty Tilton UCSD Apr; 1 12th, 2023 d freide I'm presenting on "A Note on Sorfaces in CP2 and CP2#CP2" a paper written and added on the arXiV in Oce2022sy Marco Mavengon Allison N. Miller arxiv.org/abs/ Arunima Ray 2210.12486 András Stipsicz I way have added some of my own thoughts and errors.

Outline for this talk

P_ May go further or shorter on this plot, but we'll have exciting conclusion next week an at the same Bat-time on this Same Bat-Channel.

Exposition Mathe maticians love to classify things prine numbers, finite graps, semisimple lie algebras, Manifold s (???) (let's start with splexes) Poincare conjecture if M~~S~ is M~~~S~? homeo Topological - 20 Poincave. (10) (10)(3D)(4D) 19905 v Smle Exposition Mathematicians love to classify things odd dim elen dim Smooth ppincare \hat{O} \vee 1,3,5,61 Moise el se 2 🗸 4 + 🦰 Kennice - M. Inor 603 M. Loor, Sande, Serve Hill-Hopkins-Room for Wang-Xc 16 So let's work on 4

Exposition: Classifying smooth 4-mflds Gonpf - Freedman - Morrison lools + Techniques Walker Suspect one can solve the smooth Freedman's theorem poincave conjecture in dim 4 Seiberg - Witten equations Using slile knots in W\B4 where W~S? Baver-Fursta invariants Monolescu - Piccirillo Kirby Calculus have candidates for Minimal genus Surfacescounterexamples using 0-surgery.

Minimal gens Sov face (vush Course 002 cx = cr E03} · Let M be a snorty 4-mild and let Mx:= M B4 • Note $H_2(M^*, \partial M^*) \cong H_2(M^*) \cong H_2(M)$. · JM×=S³ and Knots love living in S³ · Every knot bounds an orienzed surface alleda Seifer + surface.

· Since ne classified 2-D surfaces, the gens is cell-defred.

Definitions-O-Min-Genus Let $\alpha \in H_{2}(M)$ • $G_{M}(\alpha) := \min \{genus(\Sigma) \mid i: \Sigma \xrightarrow{genus}{i \in ([\Sigma]) = \alpha}\}$ Let K be a knot $K \subset \partial M^* \cong S^3$, $g_M^{top}(K) := \min \left\{ g_{envs}(\Sigma_1) \mid \partial \Sigma = K \right\}$ $\sum_{envedding} M^*$ • $\mathcal{G}_{M}(k) := \min \left\{ genus(\mathbf{Z}) \middle| \begin{array}{c} \partial \mathbf{Z} = k \\ \mathbf{\Sigma} \frac{smooth}{enter \mathcal{U}_{my}} \mathcal{M}^{x} \right\}$ • $g_{M}^{H}(k) := \min \left\{ \frac{g_{M}}{g_{4}} \right\}$ (1) Definitions/Facts about min genus

Slice if $g_n(k) = 0$, topologically slice if $g_n^{t_m}(k) = 0$. H-slice if gm(k)=0.

FACT $g_{M}^{(top)}(k) \leq g_{q}^{(top)}(k)$ 9m(K) ≤ 9y(K) s^q√m. connect sum

Successes on the minimal genus from for M= CP2 Thm Kronleimer - Mouka '94 (Thom Consecure) Let $h \in H_2(\mathbb{C}P^2; \mathcal{Z})$ be a given tor. Let $d \neq 0$ be an integer. Then $G_{\alpha P^2}(d \cdot h) = \frac{(|d|-1)(|d|-2)}{2}$ (Morgan, Szabó, Taubes 1996 proved for Kähler Mfbls) for surfaces of nonnegative selfinter sealing (Later Oszunth-Szaco proved for symplectic nflds) 1998

Successes on the minimal genus from for M=CP2

Cor I.N Shared gap (h) = for any hour ll. Kasprowski Ponell 122 Ray Teichner Specifically 1

if M is simply connected and not diffeo, to CP2 or S4 $(1) g^{top}_{M}(h) = 0$

(2) $g_{cr}^{top}(h) \leq 1$ and $g_{cr}((T_{1,3})^{#3}) = 1$

Successes on the minimal genus front for M= CP2 Yasahurg '11, Ait Noch '09, 14, Richelmeyer '19 Studied problems related to smooth minimal genus in CP2. Thm Nouh '09 If 359517 $9cr(T_{2,q}) = g_{4}(T_{2,q}) - | = \frac{q-3}{2}$ $\implies gcr(T_{2,q}) = 7 - \frac{g_{1,q}}{2}$ $\implies gcr(T_{2,q}) = 7 - \frac{g_{1,q}}{2}$ Conflict/Questions Ait Noch: (1) Does $g_{\alpha P'}(T_{P,q}) \stackrel{?}{=} g_{4}(T_{P,q}) - [= \frac{(P-1)(q-1)}{2} - [?]$ 2 Does there exist a knot K where $g_{ap}^{top}(k)=0$ but $g_{ap}(k)\neq0?$

Conflict/Questions Pickelneyer M(3) If Ki and K2 have Art (Ki)=Art(K2), dues $g_{\alpha \rho \alpha}(k_1) = g_{\alpha \rho \alpha}(k_2)$? Arf(k)=0 or 1 if Kms O or Kms & (4) KM did CP2, Norman did 52×52, CP2# 672. When ason CP #682, Manolescu 5 $g_{\mu3}^{tor}(h) = 0$, but does $g_{\mu3}(h)$ ever not early. Marenjon 20 Piccirillo <u>Rising Action</u> On our journey to find a solution to our problem, ne time into some old theorems lying around.

With those in mind, Can we find a knot with huge gens? MMRS invite is to try Let $g_{0} \ge 0$ be as 6ig as youd like. Let $C_{0} \ge \frac{3}{2}\sqrt{2g_{0}+2} \ge 1$. Let K be a Knot satisfying ex • $\sigma_{k}(-) \equiv 0$ • $-\tau(k) \geq g_{0} - \frac{c_{0}(1-c_{0})}{2}$ ((1)) alexandr polyis 1 • Let $\leq be a genus g surface in (CP²)*$ $with <math>\partial \mathcal{I} = k$ and $[\mathcal{I}] = d[CP'] \in H_2(CP)*$ $O_{\text{Svaty-S2a60}} O_3 \Longrightarrow g \ge -T(K) + \frac{|d|(1-|d|)}{z}$ $\geq 9_{0} - \frac{C_{0}(1-c_{0})}{2} + \frac{IdI(1-(d1))}{2}$ 9 ² 9° (V) |d| ≥ Co>1. podd | ld| => 2 | I al 🗲 $2g+1 \ge \left|\frac{r^{2}-1}{2r^{2}}d^{2}-1\right|$ $2g+1 \ge \left|\frac{r^{2}-1}{2r^{2}}d^{2}-1\right|$ $2r^{2}-1c^{2}-1$ $\frac{r^{2}-1}{2r^{2}}c^{2}-1$ $\frac{r^{2}-1}{2r^{2}}c^{2}-1$ $\frac{r^{2}-1}{2r^{2}}c^{2}-1$ $\frac{r^{2}-1}{2r^{2}}c^{2}-1$ Jeil, Vir 29+12 ---Z = = (9,72)-1

What did he pure? Proposition (proved a Gove) There exist Knows with arbitrarily large CP² genus.

Question (an we find knots in $(\mathbb{C}P^2)^{\times}$ with $g_{eP2}^{toP}(k) = 0$ but $g_{eP2}(k) \neq 0$?

 $\frac{Q}{Q} \frac{vestion}{vestion} = 0 \quad \text{find knots in } (CP^2)^{\times} \text{ with}$ Answer Thm MMRS Ves. $p \neq (\bullet \text{Recall} \quad g_{M}^{top}(k) \leq g_{4}^{top}(k)$ #n Knotshere are topologically slice
(Alexander Poly is 1, Same for #, apply FQ'90) $g_{m}^{\mu\rho}(h) \leq g_{\mu}(k) = O$ · they have and travily largegines by proposition!

Recall the conflict	
Conflict	
Ait Noch:	
(1) Does $g_{ap^{*}}(T_{p,q}) \stackrel{?}{=} g_{q}(T_{p,q}) - [= \frac{(p-1)(q-1)}{2} - p]$	E still not done.
(2) Does there exist a knot k where g ^{top} _{ap} (k)=0 but g _{an} (k)≠0?	E Heck yeah there does!
Conflict	
Pickelneyer'M (3) If K1 and K2 have Art (K1)=Art (K2),	e Can we approach this?
dues $g_{apr}(k_1) = g_{apr}(k_2)$? $Arf(k) = 0 \text{ or } 1$ if $K_{pris} \bigcirc \sigma K_{pris} \bigotimes$	
ELT=~ ETT= or ETT= The or ETT= ETT= Managerson did CP, Norman did 5"45", CP # EP2. Under CP # CP	E Can ne do this?
Maringon 10 (5) $g_{\mu\nu}^{tr}(h) = 0$, but does $g_{\mu\nu}(h)$ ever not evalue.	Gave for another day.

Mext time ... · Will the bark (Art!) be brager than +Le 61+e (slive!)? · Do we know about tous knots in 4P2? 8 stars point to yes.... Can me nake a good estimate at what might Ge? Ger# cpr

