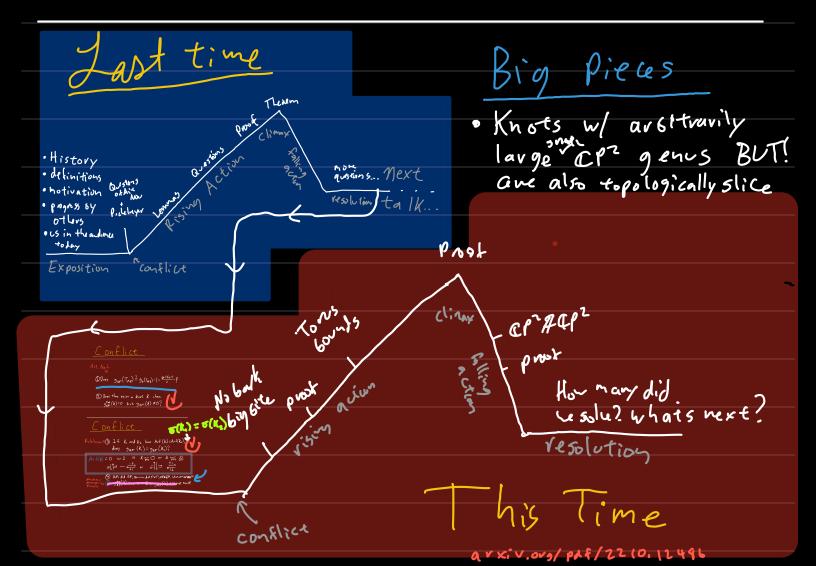
$\langle i \rangle$ $\langle 1 \rangle \bigoplus \langle 1 \rangle$ A Note On (P) n Sur ote e end (pz"es T * epz" +1 (1) +, 6 . ^ Scotty Tilton CS \bigcup a Jakida Apr: 19th, 2023



Things Proved ast Time Proposition There are Knots in (CP2)x MMRS with argitravily large smoon CP grous. <u>e.g</u> (#h Theorem 1.1 Let $n \ge 0$ There exists a knot MMRS with $g_{opi}^{(t_0)}(k) = 0$ and $g_{opi}(k) \ge h$ Questions We answered Ait Nay '09: Does there exist a knot K with $g_{ar^{2}}^{top}(k) = 0$ but $g_{ar^{2}}(k) \neq 0?$ Answert Ves! The knots from Theorem 1.] Pichelmeyer 19: If K, and K2 Satisfy Art (K1)=Auf(K2), and $\sigma(k_1) = \sigma(k_2), \in Important! Missed$ does $\mathcal{G}_{CP}(k) = \mathcal{G}_{CP}(k)$ Answer No! The knows from theorem 2 have $\sigma_{K}(-) \equiv 0$ and $A \lor f \equiv 0$.

Questions le ft Natural Question Can we produce a lot of Knots with $g_{er}^{top}(k) = 0?$ KPRT22 should $g_{er}^{top}(k) \leq 1$ for all k. Ait Noch '09 (Does $\mathcal{G}_{CP^{2}}(T_{P,q}) = \mathcal{G}_{4}(T_{P,q}) - | = \frac{(P^{-1})(q-1)}{2} - 1$? Natural We know Gepz because of Kronleimer and Mrowka, We know Gszysz and Gepz#Epz becauset Abram. Can we glean any info about Gepz#CPZ? Natural Answer to first question All Bark? Top slice! & My name for the MMRS Prop 7.4 Let $K \subset S^3$ be a Knot. If Avf(K) = 0 then $g_{ep}^{top}(K) = 0$

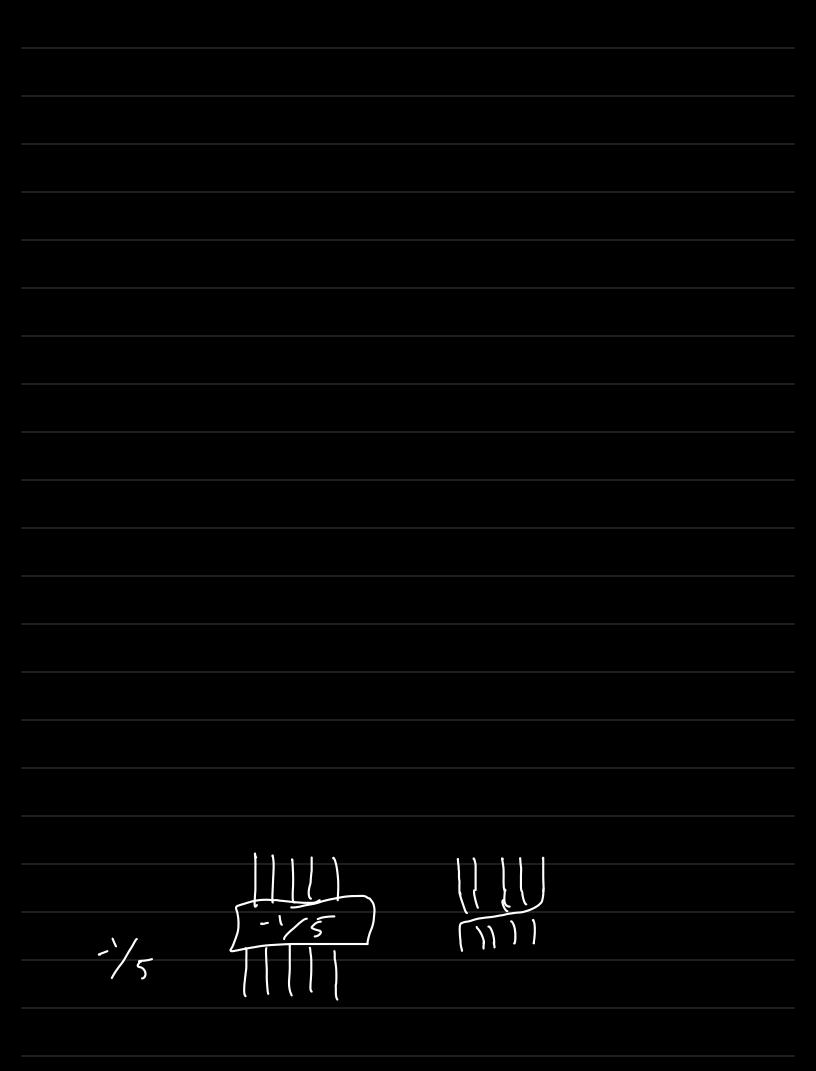
Proof • Let △ be a gene vicelly immedd disk
in B⁴ with
$$K = ∂ △ ⊂ ∂ B4 = S2$$

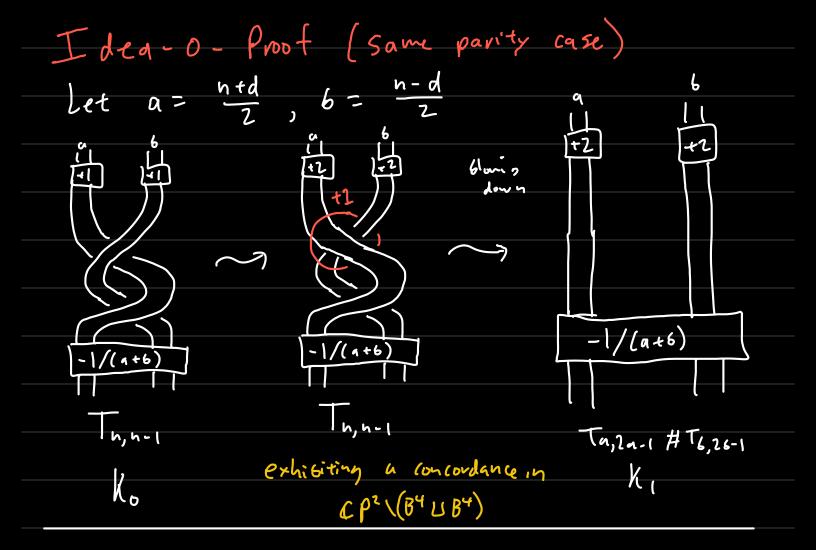
• Add trivial, local self-in tersections so the
double points of △ algebraically cancel
• Pair these double points with Whitny disks {Wi³}
where $W_i \land △$ at isolated primes
3D whitny dish orangle
• Matanuto 78, Friedran Kinsy 76, Schweidenm (14 proved
 $Arf(K) = \sum_{W_i} \#(W_i \land △) \mod 2 = 0$
 W_i
• Now connect sum B⁴ # CP² = (CP²)^x so that
 $△, 2Wi3; ore disjoint from CP'.
• Tube △ into CP', call this △' $\# M^{2}$ x: s²q-1(or)⁴
• This means FQ 90 State Δ in the CP¹ with the orange Δ is a neceddary
 $\Delta = \sum_{W_i}^{L} M_i = \Delta_i^{-1} = \Delta_i^{-1} = \Delta_i^{-1} = \sum_{W_i}^{L} M_i$$

"I The above theorem gives us a lot of Knows with $g_{qr2}^{t_{op}}(h) = 0$. (No claim it's all often) Natural Question 1

What a bout the minimal ap-gens of torus Khots?

Theorem 2.26 Let n>d=0. MMRS The tons Knot Tu,n-1 bands a surface 2 in (CP2)× with degree of and genus $\left(\frac{1}{4}\left((n+d-2)^{2}+(n-d-2)^{2}\right)\right)$ $n \equiv d n d 2$ $\left(\frac{1}{4}\left((n+d-1)(n+d-3)+(n-d-1)(n-d-3)\right)\right)$ $n \neq d m d 2$





· Cap off Ko with a minimal surface in B4 to get $\begin{array}{c} (2^{1}) = g_{4}(T_{a_{1}2a_{-1}}) + g_{4}(T_{b_{1}2b_{-1}}) \\ = (q_{1}-1)^{2} + (8-1)^{2} \\ \end{array}$ $\begin{cases} \text{Sim, law story for n \neq d mod 2} \\ \text{Sim, law story for n \neq d mod 2} \\ \text{Sim, law story for n \neq d mod 2} \\ \text{Ser (k) \leq 94 (T_{n,n-1})} \\ \text{Ser (k) \leq 94 (T_{n,n-1})} \\ \text{Set (T_{n,n-1}) = \frac{n-2}{2} n \equiv 0, \text{store} \\ \text{Set (T_{n,n-1}) = \frac{n-1}{2} n \equiv 1 \text{ mod 2} \\ \text{Set (T_{n,n-1}) = \frac{n-1}{2} n \equiv 1 \text{ mod 2} \\ \text{Set (T_{n,n-1}) = \frac{n-1}{2} n \equiv 1 \text{ mod 2} \\ \end{cases}$ <u>p</u>f Set d = 0.

This answers a question.

Ait Noch '09 Does $\mathcal{G}_{CP^{2}}(T_{P,q}) = \mathcal{G}_{4}(T_{P,q}) - | = \frac{(p-1)(q-1)}{2} - 1$ Ansner [Nope! plugin N72 S Finally, CP2#CP2 Note $H_2(\mathbb{C}P^2\#\mathbb{C}P^2) = H_2(\mathbb{C}P^2) \oplus H_1(\mathbb{C}P^2)$ M.V. $G_{\mathbb{C}P^{\#}\mathbb{C}P^{2}} \leq G_{\mathbb{C}P^{2}} + G_{\mathbb{C}P^{2}}?$ Yeah probably, but how much less?

 $\mathcal{G}_{ar^2}(-T_{n,n-1}) = \mathcal{O}$ • Note • We can choose the slice dish to be $[\mathcal{Z}] = n \left[Cr' \right] \in H_{2}(a^{n} \times , \partial cr^{n})$ E handle decomp for (CP2)* t blondown gives empty surgery for 53 and - Ta, n-1 E image of std. slice gives n · generotor of rel H2 • Take $((\mathbb{C}p^2)^{\times}, \mathbb{T}_{n,n-1}) \# ((\mathbb{C}p^2)^{\times}, -\mathbb{T}_{n,n-1})$ with the surface from theorem 2.6 and our dish just nour, so ne ger a surtra with genes from 2.6 • it's bon-day is Th, n-1#-Th, n-1 which is slice in B4 · Capoff with disk to get a cloudswhe Z in CP²#CP² representing (n, d).

So what? The over 1.3 MMR5 $G_{\mathbb{C}P^2 \# \mathbb{C}P^2} \stackrel{(n,d)}{\leq} G_{\mathbb{C}P^1}(n) + G_{\mathbb{C}P^1}(d) + \begin{cases} \frac{n-3d}{2} & n \neq d \neq d \\ \frac{n-3d+1}{2} & n \neq d \neq d \neq d \end{cases}$) The difference between Ger#Gr^(n,l)and Ger(n)+Ger(d) Can se av si travily large. AN'14 improved the native upper 60-rd by 2. Re cap Thm 2.1 For any n=0, then are knows with $g_{er}(k)=0$ and $g_{er}(k)=0$ and $g_{er}(k)=0$. $\begin{array}{c|c} Cor 1.2 & For any & n \ge 0 \\ g_{\mathcal{C}P^{2}}\left(T_{n,n-1}\right) & \leq \begin{cases} g_{\mathcal{C}}\left(T_{n,n-1}\right) - \frac{n-2}{2} & n \equiv d \mod 2 \\ g_{\mathcal{C}P^{2}}\left(T_{n,n-1}\right) & \leq \begin{cases} g_{\mathcal{C}}\left(T_{n,n-1}\right) - \frac{n-1}{2} & n \equiv d \mod 2 \\ g_{\mathcal{C}}\left(T_{n,n-1}\right) - \frac{n-1}{2} & n \equiv d \mod 2 \end{cases}$ $G_{CP^2\#CP^2} \xrightarrow{(n,d)} \xrightarrow{\zeta} G_{CP^1}(n) + G_{CP^1}(d) + \begin{cases} \frac{n-3d}{2} & n \neq d \neq d \\ \frac{n-3d+1}{2} & n \neq d \neq d \neq d \end{cases}$ Theorem 1.3 MMR-5

What's Next? • 9K3 (K) 76? Fact: Needs u(k) > 21: • All knots with $g_{cr^2}^{t,p}(k) = 0$? • Better bounds for $g_{cr^2}(T_{r,q})$ or $G_{cr^2}H_{dr^2}$? 9 K3 (M) = mm Genus Z1 Z1 Locally K3* (Putenessing Avri Avri Avri Sever