Harmonic bases for generalized coinvariant algebras

Tianyi Yu
(Joint with Brendon Rhoades and Zehong Zhao)

UCSD
Outline

1. The classical coinvariant algebra R_n and its harmonic space V_n

2. The generalized coinvariant algebra $R_{n,\lambda}$

3. Describe the harmonic space and construct a harmonic basis for $R_{n,\lambda}$.
Classical coinvariant algebra

Let I_n be an ideal of $\mathbb{Q}[x_n] := \mathbb{Q}[x_1, \ldots, x_n]$ defined as

$$I_n := \langle e_1, \ldots, e_n \rangle$$

where e_d is the elementary symmetric polynomial of degree d.

The classical coinvariant ring R_n is the associated quotient ring

$$R_n := \mathbb{Q}[x_n]/I_n$$
Some properties of R_n

1. **Artin**: The following set of monomials:

 \[
 \{ x_1^{i_1} \ldots x_n^{i_n} : 0 \leq i_j \leq n - j \}
 \]

 descends to a basis of R_n.

2. **Chevalley**: R_n is isomorphic to the regular representation $\mathbb{Q}[\mathfrak{S}_n]$ as ungraded \mathfrak{S}_n-modules.

3. **Lusztig-Stanley**:

 \[
 \text{grFrob}(R_n; q) = \sum_{w = w_1 \ldots w_n} q^{\text{maj}(w)} x_{w_1} \ldots x_{w_n}
 \]
Defining the harmonic space

Take $f \in \mathbb{Q}[x_n]$. Let ∂f be the differential operator

$$\partial f := f(\partial/\partial x_1, \ldots \partial/\partial x_n)$$

Then $\mathbb{Q}[x_n]$ acts on itself by:

$$f \odot g := (\partial f)(g)$$

We also define an inner product of $\mathbb{Q}[x_n]$:

$$\langle f, g \rangle := \text{constant term of } f \odot g$$
Defining the harmonic space

Let \(I \subset \mathbb{Q}[x_n] \) be a homogeneous ideal. Its harmonic space \(V \) is defined as:

\[
V := I^\perp = \{ g \in \mathbb{Q}[x_n] : \langle f, g \rangle = 0 \text{ for all } f \in I \}
\]

A basis of \(V \) is called a *harmonic basis*.

Fact: If \(I \) is \(S_n \)-invariant, then \(\mathbb{Q}[x_n]/I \cong V \) as graded \(S_n \)-modules.

Now, let \(V_n \) be the harmonic space associated to \(R_n \).
Motivating V_n

Why we want to study V_n, instead of R_n?

Answer: It is hard to determine whether $f + I_n = 0$ for a given $f \in \mathbb{Q}[x_n]$. We can avoid this challenge by studying V_n. Elements of V_n are polynomials, not cosets.
Describe V_n

Fact: V_n is the smallest space that contains δ_n and is closed under $\partial/\partial x_1, \ldots, \partial/\partial x_n$. Here, δ_n is the *Vandermonde determinant*:

$$\delta_n := \prod_{1 \leq i < j \leq n} (x_i - x_j).$$

Fact: The following is a basis of V_n.

$$\{(x_1^{c_1} \cdots x_n^{c_n}) \odot \delta_n : 0 \leq c_i \leq n - i\}.$$
From R_n to $R_{n,\lambda}$

Sean Griffin generalized R_n to $R_{n,\lambda}$. Let $k \leq n$ be nonnegative integers and let λ be a partition of k with s parts. Then let $I_{n,\lambda} \subseteq \mathbb{Q}[x_n]$ be the ideal generated by x_1^s, \ldots, x_n^s and $e_d(S)$, where the range of S and d will be illustrated in the next example.

Let $R_{n,\lambda} := \mathbb{Q}[x_n]/I_{n,\lambda}$ be the associated quotient ring. Let $V_{n,\lambda}$ be the harmonic space.
An example of $I_{n,\lambda}$

Assume $n = 9$, $k = 7$, $s = 4$, and $\lambda = (3, 2, 2, 0)$.

$I_{9,(3,2,2,0)}$ is generated by x_1^4, \ldots, x_9^4 together with: $e_d(S)$, where possible d, S are:

\[
\begin{array}{ccc}
9 & 8 & 7 \\
6 & 5 \\
4 & 3 \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & 8 & 7 \\
\cdot & 6 \\
\cdot & 5 \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & \cdot & 7 \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array}
\]

$|S| = 9 \quad |S| = 8 \quad |S| = 7$
Some special cases of $R_{n,\lambda}$

1. When $k = s = n$ and $\lambda = (1^n)$, then $R_{n,\lambda} = R_n$.

2. When $k = n$, λ is a partition of n. The ring $R_{n,\lambda}$ is the Tanisaki quotient studied by Tanisaki and Garsia-Procesi.

3. When $\lambda = (1^k, 0^{s-k})$, the ring $R_{n,\lambda}$ was introduced by Haglund, Rhoades and Shimozono to give a representation-theoretic model for the Haglund-Remmel-Wilson Delta Conjecture.
Injective tableaux

Let λ be a partition. Let $\text{Inj}(\lambda; \leq n)$ be the family of tableaux of shape λ such that:

1. Each column is strictly increasing
2. No two entries are the same
3. Each entry is at most n

$\text{Inj}((4, 2, 1, 0, 0); \leq 9)$ contains

```
  2 1 3 9
  5 4
  6
```
For any subset $S \subseteq [n]$, define

$$\delta_S := \prod_{i,j \in S, i < j} (x_i - x_j)$$

Take $T \in \text{Inj}(\lambda; \leq n)$, where λ has s parts. Let C_1, \ldots, C_r be columns of T. Then

$$\delta_T := \delta_{C_1} \cdots \delta_{C_r} \times \prod x_i^{s-1}$$

where the final product is over all $i \in [n]$ which do not appear in T.

Generalizing Vandermonde
Let T be the following element in \(\text{Inj}((4, 2, 1, 0, 0); \leq 9) $:

\[
\begin{array}{cccc}
2 & 1 & 3 & 9 \\
5 & 4 \\
6
\end{array}
\]

Then $C_1 = \{2, 5, 6\}$, and

\[
\delta_{C_1} = (x_2 - x_5)(x_2 - x_6)(x_5 - x_6)
\]

Then we have

\[
\delta_T = \delta_{\{2,5,6\}} \times \delta_{\{1,4\}} \times \delta_{\{3\}} \times \delta_{\{9\}} \times x_7^4 x_8^4
\]

\[
= (x_2 - x_5)(x_2 - x_6)(x_5 - x_6) \times (x_1 - x_4) \times 1 \times 1 \times x_7^4 x_8^4.
\]
Describing $V_{n,\lambda}$

Theorem ([Rhoades-Y-Zhao])

Let $k \leq n$ and λ be a partition of k. The harmonic space $V_{n,\lambda}$ is the smallest subspace of $\mathbb{Q}[x_n]$ which

- contains δ_T for any $T \in \text{Inj}(\lambda, \leq n)$, and
- is closed under $\partial/\partial x_1, \ldots, \partial/\partial x_n$.

When $k = n$, this statement was proved by N.Bergeron and Garsia.
A spanning set of $V_{n,\lambda}$

Goal: construct a basis of $V_{n,\lambda}$.

Fact: The following is a spanning set of $V_{n,\lambda}$:

$$\{(x_1^{b_1} \cdots x_n^{b_n}) \otimes \delta_T : T \in \text{Inj}(\lambda; \leq n), \ b_i \geq 0\}$$

Strategy: Extract a basis from this spanning set. To do so, we need to study some combinatorial objects.
Ordered set partition

Given $k \leq n$ and a partition λ of k with s parts, let $\mathcal{OP}_{n,\lambda}$ be the family of sequences $\sigma = (B_1, \ldots, B_s)$ of subsets of $[n]$ such that $[n] = B_1 \sqcup \cdots \sqcup B_s$ and $|B_i| \geq \lambda_i$ for all i.

For example, if $n = 16$ and $\lambda = (3, 3, 2, 2, 0, 0)$, then $\mathcal{OP}_{n,\lambda}$ contains the following:

$$
\begin{array}{cccc}
14 & 16 \\
9 & 10 & 15 & \emptyset & 11 \\
5 & 8 & 12 & 13 \\
3 & 7 & 2 & 4 \\
1 & 6
\end{array}
$$
Coinversion code of permutations

Recall that a coinversion pair of \(w \in S_n \) is \((i, j)\), where \(i < j \) and \(j \) is to the right of \(i \) in one-line notation of \(w \).

We can encode \(w \) as \((c_1, \ldots, c_n)\), where \(c_i \) counts the number of coinversion pair \((i, j)\) in \(w \). This is called the coinversion code of \(w \).

For instance, if \(w \) is 31452 in one-line notation, then its coinversion code is \((3, 0, 2, 1, 0)\).
Generalizing coinversion pair

Take $\sigma \in \mathcal{OP}_{n,\lambda}$. For $1 \leq i < j \leq n$, we say that the pair (i,j) is a coinversion of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- i is floating: j is to the right of i and is on the top of the container.
Generalizing coinversion pair

Take $\sigma \in \mathcal{OP}_{n,\lambda}$. For $1 \leq i < j \leq n$, we say that the pair (i, j) is a coinversion of σ when one of the following three conditions holds:

- i is not floating: j is to the right of i and on the same row of i.
- i is not floating: j is to the left of i and is one row below i.
- i is floating: j is to the right of i and is on the top of the container.

\[
\begin{array}{cccc}
14 & 15 & \emptyset & 11 \\
9 & 10 & 12 & 13 \\
5 & 8 & 2 & 4 \\
1 & 6
\end{array}
\]
Generalizing coinversion pair

Take \(\sigma \in \mathcal{OP}_{n, \lambda} \). For \(1 \leq i < j \leq n \), we say that the pair \((i, j)\) is a coinversion of \(\sigma \) when one of the following three conditions holds:

- \(i \) is not floating: \(j \) is to the right of \(i \) and on the same row of \(i \).
- \(i \) is not floating: \(j \) is to the left of \(i \) and is one row below \(i \).
- \(i \) is floating: \(j \) is to the right of \(i \) and is on the top of the container.

\[
\begin{array}{cccc}
14 & 16 & 15 & 10 \\
9 & 10 & 5 & 8 \\
3 & 7 & 2 & 4 \\
1 & 6 & \emptyset & 11 \\
\end{array}
\]
Generalizing coinversion code

For $1 \leq i \leq n$, assume i is in p^{th} block of σ, we define c_i as

$$
\begin{cases}
|\{i < j : (i, j) \text{ is a coinversion of } \sigma\}| & \text{if } i \text{ not floating} \\
|\{i < j : (i, j) \text{ is a coinversion of } \sigma\}| + (p - 1) & \text{otherwise}
\end{cases}
$$

The coinversion code of σ is given by $\text{code}(\sigma) := (c_1, \ldots, c_n)$.

\[
\begin{array}{cccccc}
14 & 16 \\
9 & 10 & 15 & \emptyset & 11 \\
5 & 8 & 12 & 13 \\
3 & 7 & 2 & 4 \\
1 & 6
\end{array}
\]

\[
\text{code}(\sigma) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5).
\]
For $1 \leq i \leq n$, we define a_i as

$$
\begin{cases}
|i < j : i, j \text{ are on the same row}| & \text{if } i \text{ not floating} \\
s - 1 & \text{otherwise}
\end{cases}
$$

The max code of σ is given by $\text{maxcode}(\sigma) := (a_1, \ldots, a_n)$.

$$
\begin{array}{cccc}
14 & 16 \\
9 & 10 & 15 & \varnothing & 11 \\
5 & 8 & 12 & 13 \\
3 & 7 & 2 & 4 \\
1 & 6
\end{array}
$$

$\text{maxcode}(\sigma) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)$
$T(\sigma)$ and δ_σ

Let $T(\sigma)$ be the element in $\text{Inj}(\lambda; \leq n)$ whose column i consists of elements on row i of σ.

$$\sigma = \begin{array}{cccc}
1 & 4 & 16 & 9 \\
10 & 15 & \emptyset & 11 \\
5 & 8 & 12 & 13 \\
3 & 7 & 2 & 4 \\
1 & 6
\end{array} \quad T(\sigma) = \begin{array}{ccc}
5 & 2 & 1 \\
8 & 3 & 6 \\
12 & 4 \\
13 & 7
\end{array}$$

Define δ_σ by the rule

$$\delta_\sigma := (x_1^{a_1-c_1} \cdots x_n^{a_n-c_n}) \odot \delta_{T(\sigma)}$$

where $\text{code}(\sigma) = (c_1, \ldots, c_n)$ and $\text{maxcode}(\sigma) = (a_1, \ldots, a_n)$
δ_σ example

\[
\begin{array}{ccc}
\sigma &=& \begin{array}{cccc}
14 & 16 \\
9 & 10 & 15 & \emptyset & 11 \\
5 & 8 & 12 & 13 \\
3 & 7 & 2 & 4 \\
1 & 6 \\
\end{array} \\
T(\sigma) &=& \begin{array}{ccc}
5 & 2 & 1 \\
8 & 3 & 6 \\
12 & 4 \\
13 & 7 \\
\end{array}
\end{array}
\]

\[\text{maxcode}(\sigma) = (1, 3, 2, 1, 3, 0, 0, 2, 5, 5, 5, 1, 0, 5, 5, 5)\]

\[\text{code}(\sigma) = (1, 2, 2, 1, 3, 0, 0, 2, 2, 3, 5, 1, 0, 1, 2, 5)\]

Finally, we have:

\[
\delta_\sigma = (x_1^0 x_2^1 x_3^0 x_4^0 x_5^0 x_6^0 x_7^0 x_8^0 x_9^3 x_{10}^2 x_{11}^0 x_{12}^0 x_{13}^0 x_{14}^4 x_{15}^3 x_{16}^0) \odot \delta T(\sigma).
\]
Harmonic Basis

Theorem ([Rhoades-Y-Zhao])

Let $k \leq n$ be positive integers and let λ be a partition of k with s parts. The set

$$\{\delta_\sigma : \sigma \in \mathcal{OP}_{n,\lambda}\}$$

is a harmonic basis of $R_{n,\lambda}$. The lexicographical leading term of δ_σ has exponent sequence $\text{code}(\sigma)$.

This result implies a combinatorial formula for the Hilbert series of $R_{n,\lambda}$:

$$\text{Hilb}(R_{n,\lambda}; q) = \sum_{\sigma \in \mathcal{OP}_{n,\lambda}} q^{\text{sum}(\text{code}(\sigma))}.$$
A future direction

We can introduce a new set of variables \(y_1, \ldots, y_n \) to \(V_{n, \lambda} \). Define \(DV_{n, \lambda} \) to be the smallest space such that:

1. It contains \(\delta_T \) for any \(T \in \text{Inj}(\lambda, \leq n) \)

2. It is closed under \(\partial/\partial x_1, \ldots, \partial/\partial x_n \) and \(\partial/\partial y_1, \ldots, \partial/\partial y_n \)

3. It is closed under \(y_1(\partial/\partial x_1) + \cdots + y_n(\partial/\partial x_n) \)

Question: What is its Bigraded Frobenius image?

Haiman solved the special case: \(\lambda = (1^n) \).
Thanks for listening!!